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Abstract

Cryptic crossword clues are challenging cognitive
tasks, for which new test sets are released on a
daily basis by multiple international newspapers.
Each cryptic clue contains both the definition of
the answer to be placed in the crossword grid
(in common with regular crosswords), and ‘word-
play’ that proves that the answer is correct (i.e. a
human solver can be confident that an answer is
correct without needing crossing words to confirm
it). Using an existing cryptic wordplay proving
framework (operating on Python proofs created
by an LLM), we show that it is possible to distin-
guish between correct answers and almost-correct
ones based upon whether the wordplay ‘works’.

1. Introduction
Recent advances in computational models have significantly
improved their ability to handle diverse natural language
tasks involving complex syntactic and semantic interpreta-
tions. Despite these strides, machines continue to fall short
of human performance in areas requiring flexible problem-
solving, swift adaptation to new tasks, and effective gener-
alization across unfamiliar domains.

This gap is particularly evident in the domain of cryptic
crossword solving - a popular activity across the world, with
multiple papers in the UK, Australia, India and elsewhere
featuring daily puzzles for readers to solve.

The domain of cryptic crossword solving has received little
attention, despite being a notable language-oriented cogni-
tive task, with solvers worldwide. One possible reason is
that cryptic crosswords are much less common in the United
States than ‘regular crosswords’. Another possibility is that
cryptic crosswords combine a challenging cross-discipline
mix of advanced language processing capabilities, logical
reasoning, and an ‘Aha! moment’.
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# (1) Statement of original problem
def proof(

clue="arrived with an artist, \
to get optical device",

pattern="6",
answer="CAMERA"): # Provided

"""
# (2) Hypothesised by local LM
definition: arrived with an artist, \

to get {optical device}
wordplay: CAME (arrived) + \

RA (artist, from RA = Royal Academy)
"""
# (3) Continuation generated by LLM
assert is_synonym("arrived", "CAME")
assert is_abbreviation("artist", "RA")
assert "CAME" + "RA" == "CAMERA"
assert is_synonym(

"optical device", "CAMERA",
pattern="6")

proof() # Triggers proof verification

Figure 1. From problem statement to LLM formalisation

The following illustrates the elements of a cryptic crossword
clue (for more background please refer to the Appendix A):

clue: Research done, primarily,
on most of magical beings (5)

definition: {Research} done, primarily,
on most of magical beings

wordplay: D[one] (primarily) (most of)
ELVE[s] (magical beings)

answer: DELVE

In this example, the clue is the text given to solvers (with
the number of letters in the answer in brackets). The reason-
ing steps include: (i) identifying the definition (high-
lighted with curly braces), similar to a regular crossword;
(ii) parsing the remainder of the clue to identify the key
elements of the wordplay. Here, for instance, there are
action words like ‘primarily’ (meaning : take the first letter),
and ‘most of’ (meaning : remove some letters from) that
are applied to other parts of the clue; (iii) finally assembling
the first letter of ‘done’ and most of the letters in ‘elves’
(the magical beings) to ‘prove’ that the correct answer is
‘DELVE’ (agreeing with the definition span).

In this work, taking a cue from the effectiveness of verifiers
for other reasoning problems (Lightman et al., 2023; Jiang
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et al., 2023), we approach the cryptic crossword clue solving
problem as one that combines Language Models to tackle
(i) the NLP elements; (ii) the creation an informal proof (i.e.
coming up with wordplay); (iii) the formalisation process
(which re-writes the wordplay logic in Python); and (iv)
a ‘prover’ that can check whether the claims are justifiable.
Rather than simply returning valid/invalid, the prover
provides ‘LLM-friendly’ messages about validity, allowing
the LLM to re-write its previous attempt iteratively.

1.1. Contributions

The following is the main contribution of this work:

• Show the effectiveness of the proving mechanism - By
using both the true answer and a nearby candidate,
we show that the prover can distinguish between them
based on the provability of the wordplay

2. Related Work
2.1. Regular Crosswords

Non-cryptic (“regular”) crosswords are known throughout
the world, and are the predominant type found in newspapers
in the U.S.A. One key difference from cryptic crosswords is
that regular crossword clues are generally not ‘standalone’ -
there may be a number of different answers that fit the given
clue. The key to solving regular crosswords is thus the in-
teraction between answers (i.e. the crossing-words), which
allows for planning/backtracking to aid in breaking the com-
binatorial explosion of possibilities to achieve solving rates
in the high 90% range (Wallace et al., 2022).

2.2. Cryptic Crosswords

In contrast to a regular crossword clue, a cryptic clue leads
to its answer only if it is read in the right way. The clue
itself contains both a conventional ‘straight definition’, and
wordplay that can be used to derive the same answer. Once
a given clue is understood, a solver can enter it into the grid
with near 100% certainty, even on a standalone basis.

To get a flavour of the mental processes involved in solving
these puzzles, it is highly recommended to watch an expert
going through the full process for a recent Times Cryptic
Crossword (including the reasoning steps in each clue) 1.

Despite cryptic crosswords being being relatively unknown
in the U.S.A, globally there are active communities of
solvers, with multiple daily leaderboards and annual in-
ternational competitions.

1Cracking the Cryptic (17-May-2024)
https://youtu.be/vudt7LlUX00?t=124

2.3. Cryptonite Dataset

The (UK) Times Cryptic Crossword is widely considered
the gold standard in puzzles, even though they are not neces-
sarily the most difficult, because the clues are unusually well
constructed. Cryptonite (Efrat et al., 2021) is a large-scale
dataset of Cryptic Crossword clues from the Times, con-
taining 523,000 naturally sourced clues from an extended
time-period, with the train, validation and testing splits cho-
sen so that a given answer only appears in one of the splits.

2.4. Rule-based solvers

Williams & Woodhead (1979) is an early example of at-
tempting to devise a formal language for describing cryptic
clues. However, they found that the clues’ linguistic ele-
ments tend to thwart such formal approaches.

Deits (2015; 2022) used a more flexible rule-based solver
with a manually-crafted probabilistic grammar. Building
on the assumption that a clue can usually be split into a
wordplay and a definition, the (brute-force) solver tries to
find the most probable parse such that the wordplay yields
a semantically-similar result to the definition. Reported in
Efrat et al. (2021), the rule-based solver approach yields an
accuracy of 8.6% on the Cryptonite test set.

2.5. LLM-based solvers

Cryptic crossword clues seemed like an idea target for
BERT-era models. However, Efrat et al. (2021) reported that
a T5-Large model fine-tuned on Cryptonite’s 470k cryptic
clue training set achieved only 7.6% test set accuracy on the
test set (i.e. below that of rule-based solvers).

Interestingly, present day (scaled) Large Language Models
also score very poorly on cryptic clues. This is likely due
to (i) the misleading surface reading of the clues; (ii) the
obliqueness of the definitions; and (iii) the reasoning steps
required to prove the answer correct based on the wordplay
that each clue provides.

2.6. Code & reasoning

To compensate for LLMs only approximating the generation
of logical reasoning, techniques like PAL (Gao et al., 2023)
exploit LLMs’ facility for writing code to create verifiable
reasoning chains. An important influence on this work was
also the Draft, Sketch, and Prove framework (Jiang et al.,
2023) which uses an LLM to draft and create proofs that are
then verified formally.

Informed by the evolution from AlphaCode (Li et al., 2022),
in which huge numbers of programs are generated and fil-
tered in order to generate a valid solution, to AlphaCodium
(Ridnik et al., 2024), in which solutions are iterated upon
and involving much less computation, this work uses a
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prover that can feed back ‘hints’ to the formalising LLM, so
that the task of re-writing nearly-valid proofs is made easier.

3. Methods
3.1. Wordplay dataset

There are a number of websites where cryptic cross-
word enthusiasts post completed puzzles, annotated with
definition, wordplay and answer fields. In order
to capture these key elements of cryptic crossword clue solv-
ing, we make use of a Wordplay dataset gathered from such
sites (further details in Appendix B).

3.2. Language Model set-up

In our experiments, we make use of two Language Models.

In order to generate the definition and wordplay
fields, we make use of the Llama-3-it 8B model (AI@Meta,
2024), fine-tuned using LoRA (Hu et al., 2021) to generate
definition and wordplay annotations from the origi-
nal clue and (importantly) a candidate answer. Training
on 5371 examples (with the prompt format as shown in
Appendix C) took under 3 hours on a single GPU virtual
machine, using the unsloth package (unsloth.ai, 2024).

To create the python ‘proofs’ of the correctness of solu-
tions, we use both Google’s Gemini-Pro-1.0-002 and
Gemini-Flash-1.5-001 LLMs (pinned model ver-
sions to enable a level of reproducibility).

While the Llama model was found to be capable of rea-
sonable guesses at correct definition and wordplay
annotations, the creation (and iterative fixing) of the Python
proofs required the use of more capable models.

3.3. Hypothesis testing

The hypothesis tested in this work is whether it is pos-
sible for the combination of Llama definition and
wordplay generation; Gemini LLM formalisation; and
a Python-based prover to have sufficient ‘power’ to dis-
tinguish between candidate answers (one of which is the
correct answer). Ideally, the correct answer will lead to per-
fect wordplay, which then can be translated into elegant
Python code, while an incorrect candidate answer will lead
to ‘bizarre’ wordplay, which in turn will be formalised
into Python that will be incapable of being proved.

3.4. Obtaining a close candidate answer

For a given question, we use the Llama model to create
a definition and wordplay pair from the clue and
the ground-truth answer. We then use the span in the
generated definition to create an alternative candidate
answer that both matches the pattern and is seman-

def proof(answer="RUDE",
clue="rudeness about son’s computer language",
pattern=’4’):
"""
definition:

{rudeness} about son’s computer language
wordplay:

RUD[e] (about, S (son)) +
ASS (assistant)

"""
assert is_synonym("rudeness",

"RUDE", pattern=’4’)
assert is_abbreviation("son", "S")
assert is_synonym(

"assistant", "ASS") # Fails
assert "RUD" + "ASS" == "RUDE" # Fails

proof()
# NB: correct answer is "LISP"
# wordplay:
# (LIP) (rudeness) about (S) (son)

Figure 2. Incorrect answer leading to formalisation failure

tically close to the phrase marked in the definition.
This closest match is obtained by filtering a list of cross-
word words (Beresford, 2000) sorted by cosine-similarity
to the definition span, when both are embedded using
FastText (Mikolov et al., 2018).

3.5. Formalising and proving an answer

From a candidate answer, we use the Llama model to
generate a definition and wordplay pair. We then
use the Gemini LLM to attempt to generate Python proofs,
which are then verified using a Cryptic Crossword DSL
expressed via Python (see Appendix D for further details).
This process includes ‘re-writes’ where the proof verifier
can return errors in response to assertion failures, along with
hints about how these errors might be fixed. After the initial
draft proof, the verifier allows up to 5 re-write attempts to be
made - until the proof is either accepted or the verification
process stops (i.e. no success after 5 re-writes).

In the case of the close candidate answer, the wordplay
is likely to be rather nonsensical - the hypothesis being
tested here is whether the formalisation process can reject
close candidate answers, in favour of the ground-truth an-
swer. Figure 2 gives an illustration of the kind of output
produced when a non-ground-truth answer is converted to
wordplay (and then an attempt at proving it is made).

4. Experiments
4.1. Distinguishing ground-truth answers from close

candidates

For each of 100 different clue examples from the Wordplay
dateset, we use the ground-truth answer to generate 1 close
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Table 1. Frequency of ‘provability’ wins by aggregation method
LLM version: 1.0P is Gemini-Pro-1.0, 1.5F is Gemini-Flash-1.5

METHOD LLM TRUE DRAW FALSE
VER. POS NEG

COMPLETED PROOFS 1.0P 38% 59% 3%
FASTEST SOLVE 1.0P 38% 56% 6%
MEAN SOLVE TIME 1.0P 38% 56% 6%

COMPLETED PROOFS 1.5F 40% 55% 5%
FASTEST SOLVE 1.5F 40% 55% 5%
MEAN SOLVE TIME 1.5F 42% 53% 5%

candidate answer, as in Section 3.4.

We then provide the ground-truth and the candidate an-
swers to Llama to generate 5 different definition and
wordplay samples for each.

Given the definition and wordplay, we use the Gem-
ini LLM to formalised the problem into Python (an example
of which is shown in Figure 1), and then attempt verifica-
tion of that Python proof, with a maximum of 5 re-writes
(attempts at re-formalisation) for each potential proof (as in
Section 3.5).

Finally, we gather the results (number of re-writes required
for successful proof, or a fail) across all 100 questions × 5
samples × 2 candidate answers.

To see whether the ground-truth answer was more ‘provable’
than the close candidate, we check which of them obtained:
(a) the higher number of completed proofs (of any number
of re-writes); (b) the fastest proof (i.e a proof requiring
fewest re-writes); (c) the faster average solve time, where
unsolved counts for 6 re-writes (rather than infinity).

5. Results
The results of testing the ‘provability’ hypothesis are shown
in Table 1, where we show percentages of True Positive
(ground-truth answer more provable), False Negative (non-
ground-truth answer more provable) and Draw (both an-
swers proved to equal extents) across the different provabil-
ity measures, for each of the two Gemini models.

Clearly, the results suggest that the proving system has a
degree of preference towards correct answers, but is a long
way from being a reliable oracle of answer correctness.

This points to an issue that would likely occur if the system
were scaled up to testing many candidate answers, rather
than just 2 possibilities here. Specifically, if the cryptic
crossword clue task were transformed to choosing between
a large number of potential candidates the current system
would likely start to become less accurate overall, since
the number of False Negative results would likely start to

dominate the True Positive results. That being said, there
are many avenues for improvement, in particular solving
some of the limitations outlined in the Section 6.

Looking across the LLM versions, it is also encouraging to
see that the (much cheaper) Gemini-Flash model is slightly
more capable of proving the ground-truth answers.

6. Limitations
The Prover does not detect a number of potential errors /
problems:

• Cryptic crossword setting ‘rules’ dictate that the clues
should contain exactly enough to prove an answer, the
prover does not check that all valuable words in the clue
have been utilised

• Proofs may be logically disconnected, with left-hand-side
terms not necessarily being connected to right-hand-side
terms in other lines of the code.

• Entire Python function consists of comments : Nothing
triggers assert

• Python function contains conditional execution, routing
around assert statements : Nothing triggers assert

• Occasionally, the hint assert XYZ failed results
in a re-write assert XYZ==False, which is cheating

With additional effort, the authors believe that these issues
are surmountable. However, since the Gemini LLM is only
being used In-Context, there currently is little chance that
the above issues are being systematically abused (which
would almost certainly happen if there were learning-in-the-
loop in a Reinforcement Learning setting).

7. Conclusions
It is increasingly hypothesised that the next-token-prediction
task may be insufficient to get machines to reason and plan
(Kambhampati, 2024). By framing the cognitive task of
cryptic crossword solving as a reasoning problem that is
addressable by LLMs supported by a verification system,
this work has sought to bring this reasoning task within the
scope of what is tractable by systems that have components
that include LLMs as well as verifiers and coding aids.

The authors sincerely hope that this work sparks an inter-
est in the cryptic crossword domain, since it presents a
challenging NLP/reasoning task, with huge scope for test-
ing different reasoning approaches. Notably, the current
State-of-the-Art solving methods score less than 20% on a
real-world test set.
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Impact Statement
There are many current cryptic crossword enthusiasts that
would potentially not welcome AI-enabled solvers to ‘take
over’ their favourite pastime. In particular, when taken
further, this line of work would be potentially disruptive to
public leaderboards that rank people according to the time
taken to solve puzzles 100% correctly.

However, there is currently little risk of LLM cryptic solvers
as being anything more than comic relief for current experts.

Naturally, the authors also believe that the techniques here
have wider applications to the field of Machine Learning, but
they do not in themselves present any particular additional
societal risk.

Bias towards English-language speakers

The English language has a high capacity for ambiguity and
wordplay overall, making cryptic crosswords much more
feasible. However, they do exist in other languages - please
see the Cryptic Crossword Wikipedia page for a broader
view of their worldwide prevalence. Note that deriving the
answers is very difficult (even for native English speakers),
whereas understanding the answer from given wordplay is
much simpler.
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A. Cryptic Crossword Background
The following borrows extensively from the description on Wikipedia (2024) (kudos to the authors there), to which we have
added wordplay annotations in a notation typical of the FifteenSquare.com website (and in the Wordplay dataset
use in this work).

A.1. Basics

A cryptic clue leads to its answer only if it is read in the right way. What the clue appears to say when read normally (the
surface reading) is usually a distraction with nothing to do with the solution. The challenge is to find the way of reading the
clue that leads to the solution.

A typical clue consists of two parts:

• The straight or definition. This is in essence the same as any non-cryptic crossword clue: a synonym for the answer. It
usually exactly matches the part of speech, tense, and number of the answer, and usually appears at the start or end of a
clue. For our annotations, the span that encompasses the definition is highlighted using curly braces.

• The cryptic, subsidiary indication or wordplay. This gives the solver some instructions on how to get to the answer in
another (less literal) way. The wordplay parts of clues can be obscure, especially to a newcomer, but they tend to utilise
standard rules and conventions which become more familiar with practice.

Sometimes the two parts of the clue are joined with a link word or phrase such as ‘from’, ‘gives’ or ‘could be’. One of the
tasks of the solver is to find the boundary between the definition and the wordplay, and insert a mental pause there when
reading the clue cryptically.

We list below several of the important styles of wordplay that are commonly used, each with an annotated example. For a
more comprehensive list, along with an outline of the ‘Ximenean principles’, please see Wikipedia (2024).

A.2. Anagrams

An anagram is a rearrangement of a certain section of the clue to form the answer. This is usually indicated by a codeword
which indicates change, movement, breakage or something otherwise amiss. For example:

clue: Chaperone shredded corset (6)
definition: {Chaperone} shredded corset
answer: ESCORT
wordplay: (corset)* (*shredded)

A.3. Charade

In a charade, the answer is formed by joining individually clued words to make a larger word (namely, the answer). For
example:

clue: Outlaw leader managing money (7)
definition: Outlaw leader {managing money}
answer: BANKING
wordplay: BAN (outlaw) + KING (leader)

A.4. Containers

A container or insertion clue puts one set of letters inside another. For example (also starting to add a little more indirection):

clue: Utter nothing when there’s wickedness about (5)
definition: {utter} nothing when there’s wickedness about
answer: VOICE
wordplay: O (nothing) with VICE (wickedness) around it (about)

7
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A.5. Deletions

Deletion is a wordplay mechanism which removes some letters of a word to create a shorter word. For example:

clue: Bird is cowardly, about to fly away (5)
definition: {Bird} is cowardly, about to fly away
answer: RAVEN
wordplay: [c]RAVEN (cowardly) - ’C’ (i.e. circa, about) (-fly away)

A.6. Double definition

A clue may, rather than having a definition part and a wordplay part, have two definition parts. For example:

clue: Not seeing window covering (5)
definition: {Not seeing} {window covering}
answer: BLIND
wordplay: Double Definition (DD)

A.7. Hidden words

With hidden word clues, the solution itself is written within the clue – either as part of a longer word or across more than
one word. For example:

clue: Found ermine, deer hides damaged (10)
definition: Found ermine, deer hides {damaged}
answer: UNDERMINED
wordplay: [fo]UND ERMINE D[eer] (hides)

A.8. Homophones

Homophones are words that sound the same but have different meanings, such as ‘night’ and ‘knight’. Homophone clues
always have an indicator word or phrase that has to do with being spoken or heard. For example:

clue: We hear twins shave (4)
definition: We hear twins {shave}
answer: PARE
wordplay: "pair" (twins, "we hear")

A.9. Reversals

A word that gets turned around to make another is a reversal. For example:

clue: Returned beer fit for a king (5)
definition: Returned beer {fit for a king}
answer: REGAL
wordplay: (LAGER)< (beer, <returned)

8
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B. Wordplay Dataset
The Wordplay Dataset used in this work is extracted from websites where cryptic crossword enthusiasts post solutions to the
puzzles published in major publications. Each completed puzzle is annotated by an solver who provides the community with
definition, wordplay and answer fields for each of the approximately 30 clues in that day’s grid.

For UK papers, these enthusiast websites include:

• timesforthetimes.co.uk - Times, Times Quick

• www.fifteensquared.net - Independent, Guardian, Financial Times

• bigdave44.com - Telegraph, Sunday Telegraph

The following is an example from the Wordplay dataset, formatted in YAML:

title: Financial Times 16,479 by FALCON
url: https://www.fifteensquared.net/2020/05/18/ \

financial-times-16479-by-falcon/
author: teacow
clues:
- clue: ’{Offer} of support also broadcast’

pattern: ’8’
ad: D
answer: PROPOSAL
wordplay: PROP (support) + (ALSO)* (*broadcast)

- ...

In the above:

• clue is the original clue, as given to solvers, but with the ‘regular crossword’ definition portion highlighted with
curly braces;

• pattern is the number of characters in the answer;

• ad (across/down) is potentially significant, because some clues include directional hints such as ‘before’ or ‘upwards’
which are only meaningful if the orientation of the answer within the grid is known;

• answer is the clue’s final answer (not known to the solvers before solving); and

• wordplay is an informally annotated explanation of how the clue words act together to logically build the letters in
the answer (the resulting grid letters typically being in upper case) - here the * symbol signifies that ALSO is to be
anagrammed due to the anagram indicator (broadcast) in the clue.

Code that generates the Wordplay dataset is available at https://github.com/mdda/cryptic-wordplay. Note
that care has been taken to ensure that the training/validation/test splits follow those of the Cryptonite dataset (and the test
set is deliberately not provided, to reduce the chance that it becomes training data itself).
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C. Fine-tuning prompt
The following is a verbatim training example used for the fine-tuning of the Llama-3-it model:

<|start_header_id|>system<|end_header_id|>

Cryptic clue wordplay generation : Given the clue and the answer, \
return expert definition and wordplay annotations<|eot_id|>\
<|start_header_id|>user<|end_header_id|>

clue: "musical and ballet, oddly, that can be avoided"
answer: EVITABLE ˜ evitable<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>

definition: musical and ballet, oddly, {that can be avoided}
wordplay: EVITA (musical) + B[a]L[l]E[t] (ballet, odd letters)<|eot_id|>\
<|end_of_text|>

D. In-Context Learning Prompts for the Gemini LLM
The Gemini LLM is prompted in-context with the concatenation of the following sections:

• Cryptic Crossword overview

• Many-shot wordplay examples

• Declaration of ‘external’ Python functions

• 6-shot formalisation demonstration

• Actual problem statement (for continuation as a Python proof)

• After a verification failure: Error messages for the generated proof, with hints if available, and request to improve
iteratively

The sections of the prompt are described more fully below, note that care was taken to ensure that the chosen terminology
was use consistently throughout.

D.1. Cryptic Crossword preamble

The following is the rubric and wordplay preamble given to the Gemini LLM:

A Cryptic crossword question involves using the words in \
the given clue to yield an answer that matches the letter pattern.
The clue will provide a definition of the answer, as well \
as some ’wordplay’ that can also be used to confirm the answer.
Expert question solvers write informal ’proofs’ using a \
particular format.

For the definition, the original clue is annotated with \
’{}’ to denote where the definition is to be found.
For the wordplay, the following conventions are loosely used:
* The answer is assembled from the letters in CAPS
* Words in brackets show the origins of letters in CAPS, \
often being synonyms, or short forms
* Action words are annotated as illustrated:

+ (ETO N)* (*mad = anagram-signifier) = TONE
+ (FO OR)< (<back = reversal-signifier) = ROOF
+ [re]USE (missing = removal-signifier) = USE

* DD is a shorthand for ’Double Definition’
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D.2. Many-shot wordplay examples

Around 20 examples from the Wordplay dataset are included in the in-context prompt:

For example:
---
clue: "arrived with an artist, to get optical device (6)"
definition: arrived with an artist, to get {optical device}
answer: CAMERA
wordplay: CAME (arrived) + RA (artist, short form)
---
clue: ...

D.3. External Python DSL functions

Domain Specific Python functions are described in-context to the LLM, which appears able to use them without seeing their
internal functionality. In fact, the actual implementation of the functions is more extensive than described, since calls to
these functions also track ‘near misses’ which can be fed back as hints during the re-write process.

The task is to produce a formal proof using python code, \
where the docstring will also include an informal proof as an aid.
The following are functions that can be used in your output code:

Action=Enum(’Action’, ’ANAGRAM,REMOVE_FIRST,INITIALS,REMOVE_LAST,’+
’GOES_INSIDE,GOES_OUTSIDE,REVERSE,SUBSTRING,HOMOPHONE’)

# External definitions
def is_synonym(phrase:str, test_synonym:str, pattern:str=’’) -> bool:

# Determines whether ’test_synonym’ is a reasonable synonym for ’phrase’,
# with letters optionally matching ’pattern’

def is_abbreviation(phrase:str, test_abbreviation:str) -> bool:
# Determines whether ’test_abbreviation’ is
# a valid abbreviation or short form for ’phrase’

def action_type(phrase:str, action:Action) -> bool:
# Determines whether ’phrase’ might signify the given ’action’

def is_anagram(letters:str, word:str) -> bool:
# Determines whether ’word’ can be formed from ’letters’ (i.e. an anagram)

def is_homophone(phrase:str, test_homophone:str) -> bool:
# Determines whether ’test_homophone’ sounds like ’phrase’

D.4. Few-shot formalisation examples

The following are 3 (out of 6) of the few-shot formalisation examples given before the final test-case prompt:

The following are examples of simple functions that prove that \
each puzzle solution is correct:

‘‘‘python
def proof(answer="ONCE",

clue="head decapitated long ago", pattern=’4’):
"""
definition: head decapitated {long ago}
wordplay: [b]ONCE (head decapitated = remove first letter of BONCE)
"""
assert is_synonym("head", "BONCE")
assert action_type("decapitated", Action.REMOVE_FIRST) \

and "BONCE"[1:]=="ONCE"
assert is_synonym("long ago", "ONCE", pattern=’4’)

proof()
‘‘‘

‘‘‘python
def proof(answer="DECIMAL",

clue="the point of medical treatment", pattern=’7’):
"""

11



ICML 2024 Workshop on LLMs and Cognition : Cryptic Verification

definition: {the point} of medical treatment
wordplay: (MEDICAL)* (*treatment = anagram)
"""
assert is_synonym("the point", "DECIMAL", pattern=’7’)
assert action_type("treatment", Action.ANAGRAM)
assert is_anagram("MEDICAL", "DECIMAL")

proof()
‘‘‘

‘‘‘python
def proof(answer="SUPERMARKET",

clue="fat bags for every brand that’s a big seller",
pattern=’11’):

"""
definition: fat bags for every brand that’s {a big seller}
wordplay: SUET (fat) (bags = goes outside) of \

(PER (for every) + MARK (brand))
"""
assert is_synomym("fat", "SUET")
assert action_type("bags", Action.IS_OUTSIDE)
assert "SUET" == "SU" + "ET"
assert is_abbreviation("for every", "PER")
assert is_synomym("brand", "MARK")
assert "SU"+"PER"+"MARK"+"ET" == "SUPERMARKET"
assert is_synonym("a big seller", "SUPERMARKET", pattern=’11’)

proof()
‘‘‘

D.5. Formalisation instruction

The following instruction is given before the final ‘test-case’ prompt illustrated in Figure 1:

# Please complete the following in a similar manner, and return the whole function:

‘‘‘python
def proof(answer= ...

D.6. Proof Verification with Hinting

Examples of assertion failures, with constructive hinting, are shown:

AssertionError: assert: is_abbreviation(’an Artist’, ’RA’) :
’an Artist’ does not have a valid abbreviation;
’RA’ is an abbreviation for : artist, artillery, Royal Artillery,
gunners, painter

AssertionError: assert action_type(’goes crazy’, Action.ANAGRAM) :
’goes crazy’ itself does not suggest Action.ANAGRAM, but ’crazy’ does

AssertionError: assert action_type(’worked’, Action.HOMOPHONE) :
’worked’ does not suggest Action.HOMOPHONE, but maybe Action.ANAGRAM

# Please re-implement the SOLUTION above \
(altering both the docstring and the python code as required), \
taking care to fix each of the problems identified, \
and return the whole function:

‘‘‘python
def proof(answer= ...

Once the prover has fully parsed a given output with zero assertion failures, the proof is considered a success (up to 5
re-write iterations are allowed, more that that is considered an overall failure to prove the answer).
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