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ABSTRACT

Multimodal intent recognition poses significant challenges, requiring the incorpo-
ration of non-verbal modalities from real-world contexts to enhance the compre-
hension of human intentions. However, most existing multimodal intent bench-
mark datasets are limited in scale and suffer from difficulties in handling out-
of-scope samples that arise in multi-turn conversational interactions. In this pa-
per, we introduce MIntRec2.0, a large-scale benchmark dataset for multimodal
intent recognition in multi-party conversations. It contains 1,245 high-quality di-
alogues with 15,040 samples, each annotated within a new intent taxonomy of
30 fine-grained classes, across text, video, and audio modalities. In addition to
more than 9,300 in-scope samples, it also includes over 5,700 out-of-scope sam-
ples appearing in multi-turn contexts, which naturally occur in real-world open
scenarios, enhancing its practical applicability. Furthermore, we provide com-
prehensive information on the speakers in each utterance, enriching its utility for
multi-party conversational research. We establish a general framework support-
ing the organization of single-turn and multi-turn dialogue data, modality fea-
ture extraction, multimodal fusion, as well as in-scope classification and out-of-
scope detection. Evaluation benchmarks are built using classic multimodal fu-
sion methods, ChatGPT, and human evaluators. While existing methods incor-
porating nonverbal information yield improvements, effectively leveraging con-
text information and detecting out-of-scope samples remains a substantial chal-
lenge. Notably, powerful large language models exhibit a significant perfor-
mance gap compared to humans, highlighting the limitations of machine learn-
ing methods in the advanced cognitive intent understanding task. We believe that
MIntRec2.0 will serve as a valuable resource, providing a pioneering foundation
for research in human-machine conversational interactions, and significantly fa-
cilitating related applications. The full dataset and codes are available for use at
https://github.com/thuiar/MIntRec2.0.

1 INTRODUCTION

Understanding human intentions in multimodal scenarios holds significant research importance and
has broad applications, such as human-computer interaction (Xu, 2019), intelligent transportation
system (Kaffash et al., 2021), and medical diagnosis (Tiwari et al., 2022; Moon et al., 2022). For
instance, perceiving user tones, expressions, and body language enables better capture of user needs
in intelligent customer systems. This also leads to more personalized, efficient, and natural interac-
tions (Luo et al., 2022). While there emerge numerous multimodal language datasets in recent years,
particularly in multimodal sentiment analysis and emotion recognition (Li et al., 2019; Chudasama
et al., 2022; Hu et al., 2022b), few datasets provide high-quality multimodal intent resources, which
significantly hampers related research. Zhang et al. (2022a) pioneered this area by formulating intent
taxonomies in multimodal conversational scenarios and providing 2,224 annotated utterances with
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Figure 1: An example from the MIntRec2.0 dataset. More examples are provided in the Appendix A.

text, video, and audio information. However, it has three major limitations: First, its scale is rela-
tively small compared to other multimodal datasets (Zadeh et al., 2018b; Poria et al., 2019), leading
to potential overfitting and impacting the generalization ability. Second, it only includes utterances
from single-turn dialogues, neglecting context and multi-party information. Third, it fails to con-
sider out-of-scope utterances, which commonly occur in dialogue systems (Larson et al., 2019) and
are crucial for improving system robustness.

To address these issues, we propose MIntRec2.0, a large-scale multimodal multi-party benchmark
dataset that comprises 1,245 high-quality dialogues, totaling 12.3 hours. A representative sample is
depicted in Figure 1. The construction of this dataset involves four main steps. Initially, raw videos
from three TV series are collected and segmented into utterance-level portions based on timestamps.
These segments are then manually grouped into dialogues in alignment with the conversational
scenes and events. Subsequently, each utterance is annotated with speaker identity information
to leverage specific contextual information. Following this, we propose a new intent taxonomy
incorporating 30 fine-grained intent classes. An OOS tag is also added to identify utterances that
do not belong to any known classes, a phenomenon commonly occurred in real-world, open-ended
scenarios. Lastly, six experienced workers annotate each piece of data using text, video, and audio
information. The final dataset contains 9,304 in-scope and 5,736 out-of-scope samples.

We develop a general framework for multimodal intent recognition and out-of-scope detection
within single-turn and multi-turn conversations. First, data inputs are organized at both utterance and
dialogue levels, where the latter retrieves all the context information corresponding to the speaker
in the current dialogue turn. Secondly, we extract text, video, and audio features for each utter-
ance. For multi-turn dialogues, context information is concatenated to the utterance in the current
turn using a special token as a separator. Third, we perform multimodal fusion on the extracted
features. Specifically, we employ two strong multimodal fusion methods (Tsai et al., 2019; Rah-
man et al., 2020) to leverage nonverbal information by capturing cross-modal interactions. In the
training stage, in addition to the multimodal fusion loss, cross-entropy loss is applied under the su-
pervision of hard and soft targets for learning in-scope and out-of-scope data, respectively. During
inference, a threshold-based method (Shu et al., 2017) is adopted to both identify high-confidence in-
scope and detect low-confidence out-of-scope samples. Experimental results demonstrate that using
multimodal information can effectively improve in-scope intent recognition accuracy and enhance
out-of-scope detection robustness. Furthermore, we evaluate ChatGPT and human performance un-
der a challenging setting with few-shot samples as prior knowledge. The results reveal a significant
performance gap of over 30% absolute scores between large language models (LLMs) and humans.
Humans achieve the state-of-the-art benchmark performance of 71% accuracy with merely 7% of the
training data, indicating this dataset is extremely challenging for existing machine learning methods.

Contributions. (1) This paper presents MIntRec2.0, the first large-scale multimodal multi-party
conversational intent dataset. This dataset provides detailed annotations for both intent and speaker
identity for each utterance within multimodal contexts and enables out-of-scope detection in open-
world scenarios. (2) We establish a universal framework for in-scope classification and out-of-scope
detection, applicable to both single-turn and multi-turn conversations, and introduce strong bench-
mark baselines. (3) Extensive experiments demonstrate the effectiveness of leveraging multimodal
information in intent recognition. However, considerable opportunities for enhancement persist in
existing methods when compared with human performance, highlighting the challenges inherent in
high-level cognitive intent recognition tasks and underscoring the value of this dataset in advancing
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Table 1: Comparison of the MIntRec2.0 dataset with previous intent datasets. #I and #U represent
the number of intent classes and utterances. Conv. denotes the conversational nature of the dataset.
OOS and Multi-Party indicate the inclusion of out-of-scope examples and multiple speakers per
dialogue, respectively. T, V, and A represent text, video, and audio information.

Datasets #I #U Conv. Scenes Conv. Type OOS Multi-Party T V A

ATIS (Tür et al., 2010) 17 6,371 ! Single-turn ✗ ✗ ! ✗ ✗

Snips (Coucke et al., 2018) 7 14,484 ! Single-turn ✗ ✗ ! ✗ ✗

CLINC150 (Larson et al., 2019) 150 23,700 ! Single-turn ! ✗ ! ✗ ✗

MDID (Kruk et al., 2019) 7 1,299 ✗ - ✗ ✗ ! ! ✗

Intentonomy (Jia et al., 2021) 28 14,455 ✗ - ✗ ✗ ✗ ! ✗

MIntRec (Zhang et al., 2022a) 20 2,224 ! Single-turn ✗ ✗ ! ! !

MIntRec2.0 30 15,040 ! Multi-turn ! ! ! ! !

related research. This dataset will be released under the CC BY-NC-SA 4.0 license, and codes will
be publicly available as open source. A portion of the data are accessible in supplementary materials.

2 RELATED WORK

This section provides a brief overview of the existing literature in benchmark datasets, multimodal
fusion methods, and multimodal multi-turn conversations. Further related works focusing on video
understanding and intent analysis are detailed in Appendix B.

Benchmark Datasets. Intent recognition is a substantial task in natural language processing (NLP)
and is supported by a numerous of benchmark datasets. These datasets can be broadly categorized
into two branches. The first branch originates from task-oriented dialogues and includes datasets
like ATIS (Tür et al., 2010), SNIPS (Coucke et al., 2018), CLINC150 (Larson et al., 2019), BANK-
ING77 (Casanueva et al., 2020). Notably, CLINC150 incorporates out-of-scope data to test system
robustness. SIMMC 2.0 (Kottur et al., 2021) is a multimodal dataset focusing on the shopping
domain, but it lacks intent annotations. The second branch stems from open-ended dialogues, rep-
resented by multi-turn dialogue datasets such as DailyDialog (Li et al., 2017) and SWBD (Godfrey
et al., 1992). However, these datasets primarily offer dialogue acts and may not be well-suited for
applications requiring specific intent classes. In recent years, there has been a growing interest in
multimodal language datasets for both single-turn (Zadeh et al., 2016; 2018b; Yu et al., 2020) and
multi-turn dialogues (Busso et al., 2008; Poria et al., 2019). EMOTyDA (Saha et al., 2020) is another
large-scale multimodal dataset for multi-turn dialogues, but it only includes coarse-grained dialogue
acts. Some studies have also explored visual or multimodal intents using image modality (Jia et al.,
2021; Kruk et al., 2019). MIntRec (Zhang et al., 2022a) stands as the first multimodal intent recog-
nition dataset for open-ended dialogues. MIntRec2.0 significantly expands in scale from 2,224 to
15,040 utterances and is designed to handle both out-of-scope utterances and multi-turn dialogues.
A comparison between MIntRec2.0 and other benchmark intent datasets is presented in Table 1.

Multi-modal Fusion Methods. Multimodal fusion presents prosperous development in multimodal
language understanding. Early methods aim to learn cross-modal relations and single-modal prop-
erties (Fukui et al., 2016; Zadeh et al., 2017; 2018a; Hazarika et al., 2020) or efficient multimodal
representations (Liu et al., 2018). MulT (Tsai et al., 2019) designs an effective crossmodal attention
module to learn adaptations across different modalities. MAG-BERT (Rahman et al., 2020) inte-
grates nonverbal information into pre-trained language models using a multimodal adaptation gate.
MBT (Nagrani et al., 2021) restricts cross-modal information flow through tight fusion bottlenecks,
facilitating the connection of relevant inputs in each modality. Very recently, TCL-MAP (Zhou
et al., 2024) leverages prompt learning to provide high-quality supervised signals for multimodal
representation learning. We also explore state-of-the-art methods in multimodal sentiment analysis
(MSA), such as Self-MM (Yu et al., 2021) and MMIM (Han et al., 2021). However, these methods
rely on specific sentiment properties (e.g., polarity) that are not applicable to our task.

Multimodal Multi-turn Conversations. Leveraging multimodal information is a hot topic in multi-
turn conversations (Ghosal et al., 2019; Majumder et al., 2019; Ghosal et al., 2020a). For instance,
DialogueRNN (Majumder et al., 2019) uses GRU networks to track important temporal informa-
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Table 2: Expanded intent classes in the MIntRec2.0 dataset with brief interpretations.

Intent Categories Interpretations

Express
emotions

or
attitudes

Doubt Convey a sense of mistrust or uncertainty regarding someone or something (e.g., questioning with an expression of disbelief).

Acknowledge Indicate comprehension or agreement (e.g., using affirming words such as alright, well).

Refuse Show unwillingness or rejection (e.g., using negative words to decline an offer or request).

Warn Alert to potential dangers or risks (e.g., signaling alarm with a serious expression and tone).

Emphasize Highlight the importance or significance of something (e.g., speaking with stress and a determined attitude).

Achieve
goals

Ask for opinions Request others’ views or thoughts on a particular matter (e.g., asking for others’ perspectives).

Confirm Validate or ascertain the truth or accuracy of something (e.g., affirming certainty without raising doubts).

Explain Provide an elaborate account or clarification (e.g., using explanatory and causal words such as because).

Invite Offer someone to participate in an activity or event (e.g., asking someone to join in activities like going out).

Plan Organize or schedule an event or action (e.g., deliberating on schedules and making commitments for the future).

tion, including the history of speaker states and global states. MM-DFN (Hu et al., 2022a) proposes
a graph-based dynamic fusion module to reduce historical redundancy while tracking the history
of speaker states. Another approach is to construct multimodal fusion networks to integrate con-
textual information between different modalities, such as M2FNet (Chudasama et al., 2022) and
MMGCN (Hu et al., 2021). However, modeling temporal contextual information with multimodal
fusion representations does not yield good results (see Appendix C). Therefore, we propose a simple
baseline that concatenates the context information of inputs before multimodal fusion.

3 THE MINTREC2.0 DATASET

Data Sources & Dialogue Division. First, we collect raw videos from three different TV series:
Superstore, The Big Bang Theory, and Friends on YouTube and obtain subtitles from OpenSubtitles.
We ensure the selected videos do not offend user privacy and do not contain malicious content
(Appendix D). We split them into continuous video segments according to the timestamps in the
transcripts and extract corresponding audio segments. Then, we organize them into a series of
dialogues for multi-turn dialogue intent analysis. Specifically, we manually annotate the starting
and ending indices of video segments for each dialogue and distinguish different dialogues based on
whether they are in the same scene and episode, as suggested in (Poria et al., 2019). Besides, we
establish a baseline to estimate the utterance boundary in each segmented dialogue (Appendix E).

Figure 2: In-scope and out-of-
scope data distribution.

Figure 3: Distribution of in-scope in-
tents in the MIntRec2.0 dataset.

Table 3: Data statistics. # de-
notes the total number.

# data sources 3
# intents classes 30
# dialogues 1,245
# utterances 15,040
# in-scope utterances 9,304
# out-of-scope utterances 5,736
# words in utterances 118,477
# unique words in utterances 9,524
Average length of utterances 7.9
Maximum length of utterances 46
Average video clip duration 3.0 (s)
Maximum video clip duration 19.9 (s)
Video hours 12.3 (h)

Speaker Information. In multi-turn conversations, we can leverage context information to help
analyze the intent conveyed by the speaker in each dialogue turn. However, context information may
involve multiple speakers (e.g., there are a total of 51.5% dialogues with more than two speakers).
As using context information of speakers is helpful for intent analysis (Ghosal et al., 2020b), we
aim to differentiate different speakers in each dialogue and annotate the identities of the speakers.
Specifically, we perform annotation of 21, 7, and 6 main characters in Superstore, The Big Bang
Theory, and Friends, respectively, which account for 90.4% of the data. The remaining data include
other characters with fewer appearances (Refer to Appendix F for statistics of different characters).

Expanded Intent Classes. In this work, we utilize the established intent taxonomy from the
MIntRec dataset (Zhang et al., 2022a). However, as the dataset primarily focuses on discrete single-
turn conversations, and the existing 20 intent classes are insufficient for capturing the diverse range
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of intents in continuous multi-turn conversations. To address this issue, we conduct a comprehen-
sive analysis of the divided dialogues and collect 10 additional high-frequency intent tags for the two
coarse-grained intent classes (i.e., express emotions or attitudes and achieve goals). Specifically, we
add doubt, acknowledge, refuse, warn, emphasize to the former category, and ask for opinions,
confirm, explain, invite, plan to the latter. Interpretations of both the expanded and existing intent
categories can be found in Table 2 and Appendix G, respectively. Notably, these newly introduced
classes account for 37.3% of the utterances in our dataset, highlighting their significance in intent
understanding. The intent taxonomies are highly applicable across various domains, offering con-
siderable promise for real-world applications (Further discussions can be found in Appendix H).

Out-of-scope Utterances. As intents usually reside within particular contextual events (Schröder
et al., 2014), there inevitably exist some utterances that fall outside the predefined intent categories in
continuous conversational interactions, as suggested in (Larson et al., 2019). There are two common
types of such utterances. First, there are statements that primarily convey factual information, such
as statement-non-opinion defined in the 42 dialogue acts (Godfrey et al., 1992). While this type
of dialogue act covers a significant proportion of utterances in multi-turn conversations, it provides
limited contribution to understanding specific and applicable intents. Second, due to the diverse
and uncertain nature of human intentions, the predefined intent classes cannot cover all possible
intentions in an open-world environment (Zhang et al., 2023b), and there may exist utterances falling
under open intent classes. Given the ambiguous boundary in determining specific out-of-scope
utterances, we adopt a similar manner as in (Larson et al., 2019) and define them as those that do
not belong to any of the existing intent classes. Taking these utterances into account in multi-turn
conversations brings us closer to real-world scenarios and presents many practical applications.

Annotation Process. Six college students proficient in English are employed to perform multimodal
label annotation. They are provided with a comprehensive guidebook detailing intent interpretations
and application scenarios and are only permitted to begin after achieving high accuracy on seed
examples. The annotators are evenly divided into two groups and assigned to annotate half of the
data simultaneously. To facilitate their work, a user-friendly annotation platform with a unified
database has been developed (Appendix I). Each worker is tasked with analyzing the speaker’s
intention in a video segment by combining text, video, and audio information. They are then required
to choose from a set of 30 known intent tags, as well as an OOS tag. The final label for each
utterance is determined through majority voting, with at least two out of three votes required to
reach a consensus. We operate under the assumption that each utterance has a single intent, and the
rationale for not opting for multi-intent labeling is elaborated in Appendix J. To mitigate potential
issues, utterances that receive three different votes are excluded from our dataset.

Annotation Results. We have successfully collected 1,245 high-quality dialogues to create the
MIntRec2.0 dataset. This dataset consists of 9,304 in-scope and 5,736 out-of-scope utterances with
multimodal labels. The statistics of the dataset are presented in Table 3. To assess annotation relia-
bility, we calculate the Fleiss’s kappa statistics for each of our six annotators to measure interrater
reliability. The Fleiss’s kappa scores range from 0.66 to 0.70, averaging 0.69. This indicates a
level of substantial agreement, as defined in (McHugh, 2012). The distribution of the dataset across
three different data sources is illustrated in Figure 2. Superstore, The Big Bang Theory, and Friends
contribute 53%, 22%, and 25% of the dataset, respectively. Each data source contains between
54.5% and 67.9% of in-scope utterances. The intent distribution of in-scope utterances is depicted
in Figure 3, demonstrating a common long-tailed distribution similar to real-world scenarios. As
expected, some intents such as inform, explain, doubt, and complain are more prevalent in daily life,
while others like warn, refuse, emphasize, and flaunt tend to occur less in specific occasions and
scenes. To ensure adequate training, each intent class contains more than 90 samples.

4 BENCHMARK FRAMEWORK

This section presents a general benchmark framework, illustrated in Figure 4. It includes data orga-
nization, multimodal feature extraction, multimodal fusion, training, and evaluation.

Data Organization. In the case of single-turn dialogues, we utilize the pre-segmented utterance-
level samples. Each individual utterance represents a complete turn of dialogue and includes corre-
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Figure 4: Overview of the benchmark framework for the MIntRec2.0 dataset.

sponding text, video, and audio information of one speaker. For multi-turn dialogues, we employ
well-divided dialogues as described in Section 3. In particular, the utterances within each dialogue
are arranged chronologically based on the order in which the speakers take their turn. To further
leverage the context of the respective speaker, we attribute the corresponding speaker identity infor-
mation to each utterance, as suggested in (Poria et al., 2019).

Text Feature Extraction. We select the pre-trained BERT (Devlin et al., 2018) language model as
a powerful backbone for processing the text modality, which has demonstrated strong performance
when fine-tuned on our dataset. For each text utterance s, we first tokenize it in the required format,
i.e., [CLS], s1, · · · , sn, [SEP], and then obtain the token embeddings ET ∈ RLT×DT

, where LT is
the sequence length, and DT is the feature dimension.

Video Feature Extraction. Video features are extracted at the frame-level, as suggested in (Yu
et al., 2020; Zadeh et al., 2018b). Since video frames often contain multiple individuals, we begin
by identifying regions of interest (RoIs) for the speakers, using a sequence of automated procedures.
This involves scene detection, object detection (Ren et al., 2015), face detection (Zhang et al., 2017),
face tracking, and audio-visual active speaker detection (Tao et al., 2021), as described in (Zhang
et al., 2022a). This process can generate more than 1,000K high-quality keyframes with speaker
bounding boxes in approximately 5 days. Next, we use these annotated RoIs and employ the instance
segmentation method, Mask R-CNN (He et al., 2017), pre-trained on the COCO (Lin et al., 2014)
dataset to extract visual features. We utilize the well-initialized Swin Transformer (Liu et al., 2021),
pre-trained on the ImageNet-1K (Deng et al., 2009) dataset, as the backbone due to its superior vision
task performance. We use it to extract feature maps of each keyframe and apply RoIAlign (He et al.,
2017) to convert them into fixed sizes using annotated RoIs. Finally, applying average pooling to
these feature maps yields the overall RoI feature embeddings EV ∈ RLV ×DV

.

Audio Feature Extraction. To process the audio modality, we first use the librosa toolkit (McFee
et al., 2015) to load the audio waveform data with a sampling rate of 16,000 Hz. Then, we employ
WavLM (Chen et al., 2022), a speech pre-trained model to extract audio feature representations.
Due to its masked speech prediction and denoising pre-training strategy, it has shown remarkable
performance in a wide range of speech tasks, outperforming other powerful speech pre-trained mod-
els such as wav2vec 2.0 (Baevski et al., 2020) and HuBERT (Hsu et al., 2021). Notably, it excels
in speaker verification and speech separation tasks, which is suitable for conversational scenarios
involving multiple speakers. By utilizing WavLM, we acquire audio embeddings EA ∈ RLA×DA

.

Incorporating Context Information. In single-turn dialogues, we can directly extract embeddings
for text, video, and audio modalities, as mentioned previously. However, in multi-turn dialogues, it is
substantial to consider the context information of different modalities to gain a better understanding
of the conversation. To address this, we utilize the context information based on different speakers,
as suggested in (Majumder et al., 2019; Ghosal et al., 2019). Specifically, for the utterance in the
current turn, we first obtain the speaker identity information and then retrieval all the content from
the previous dialogue turns corresponding to this speaker, which serves as the context information.
Next, we employ a simple and effective method to leverage the context information by concatenating
it with the utterance in the current turn. Taking the context information from one turn of utterance
as an example, for the text modality, the first sequence comprises all the token embeddings in the
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current turn: E
T(1)

[CLS],E
T(1)

1 , · · · ,ET(1)

2 ,E
T(1)

[SEP]. The second sequence comprises the context infor-
mation. We remove the first token [CLS] and concatenate the remaining embeddings with the first
sequence: E

T(1)

[CLS], · · · ,E
T(1)

[SEP],E
T(2)

1 , · · · ,ET(2)

[SEP]. Besides, we include segment embeddings to aid
in understanding the relationships between current and contextual utterances. The segment embed-
dings for the first and second sequences are encoded as zero and one vectors, respectively, with the
same length as the token embeddings. For nonverbal modalities, we insert a one-dimensional zero
vector between the feature embeddings of the two sequences to distinguish them. If additional con-
text information is available, such as more contextual utterances, we append each of them to the end
of the latest context utterance using the same operation as the second sequence.

Multimodal Fusion. After extracting multimodal features, our goal is to utilize multimodal fusion
techniques to capture cross-modal interactions and exploit complementary information from differ-
ent modalities to further enhance intent recognition capability. Specifically, we use ET , EV , and
EA as inputs and feed them into a multimodal fusion network F to obtain multimodal representa-
tions z = F(ET ,EV ,EA). In this work, we adopt two strong multimodal fusion methods, namely
MAG-BERT (Rahman et al., 2020) and MulT (Tsai et al., 2019) as baselines.

Training. Following multimodal fusion, we employ the multimodal representations z for training.
For in-scope samples zin = {zi|yi ∈ Y}Ni=1, we perform classification on zin using the cross entropy
loss LCE, where N is the number of training samples, and Y is the set of K known intent labels. For
out-of-scope samples zout = {zi|yi /∈ Y}Ni=1, we apply the outlier exposure (OE) (Hendrycks et al.,
2018) loss, denoted as LOE, to distinguish them from the in-scope samples and enhance the model’s
robustness and its generalization ability for out-of-scope samples. Specifically, we use a uniform
distribution over the K known classes as soft targets. The definitions for losses are as follows:

LCE = − 1

N

N∑
i=1

log
exp(ϕ(zini )yi)∑K
j=1 exp(ϕ(z

in
i )j)

,LOE = − 1

N

N∑
i=1

K∑
j=1

1

K
log

exp(ϕ(zouti )j)∑K
m=1 exp(ϕ(z

out
i )m)

,

where ϕ(·) is the classifier with a linear layer. The training loss LTrain = LCE + LOE + LFusion,
where LFusion is the loss specified in different multimodal fusion methods. Besides, we also conduct
experiments by training a (K+1)-way classifier with out-of-scope samples grouped as the (K+1)th
class, resulting in significant decrease in the performance of in-scope classification (Appendix K).

Inference. During inference, our goal is to both identify in-scope classes and detect out-of-scope
samples. To accomplish this, we employ a threshold-based open world classification method in NLP
called DOC (Shu et al., 2017), which performs well in our experiments. This method rejects low-
confidence samples, assigning statistical thresholds to each known class. For each sample zi, the
predicted probability of the kth class is given by p(k|zi) = Sigmoid(ϕ(zi)

k). We use the output
probabilities from each class of the training samples to calculate the corresponding class threshold
δk. Specifically, we fit them to one half of the Gaussian distribution with µ = 1 and calculate the
standard deviations σk using two symmetric halves of the probabilities. The class threshold is then
given by δk = max(0.5, 1 − ασk), where α = 1 usually works well. A test sample is detected
as out-of-scope if p(k|zi) < δk,∀k ∈ Y . Otherwise, it is considered as an in-scope sample and is
assigned the predicted class with the maximum probability, denoted as yp = argmaxk∈Y p(k|zi).

5 EXPERIMENTS

Implementation Details. We partition our dataset into training, validation, and testing sets, main-
taining an approximate ratio of 7:1:2 for both dialogues and utterances. (Further details are provided
in Appendix L). For the text modality, we utilize BERTLARGE as a powerful backbone consisting
of 24 transformer layers implemented in the Huggingface transformers library (Wolf et al., 2020),
to extract features with the dimension DT of 1024. For the video modality, we employ well-trained
checkpoints of Mask R-CNN from the MMDetection toolbox (Chen et al., 2019) to extract features
with the dimension DV of 256. For the audio modality, we use the pre-trained model WavLM, im-
plemented in (Wolf et al., 2020) to extract features with the dimension DA of 768. In single-turn dia-
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Table 4: Benchmark baseline results on the MIntRec2.0 dataset.

In-scope Classification In-scope + Out-of-scope Classification

Train Methods F1 P R ACC WF1 WP F1-IS ACC F1-OOS F1

w / o OOS

TEXT 51.60 55.47 51.31 59.30 58.01 58.85 43.37 43.24 30.40 42.96
MAG-BERT 55.17 57.78 55.10 60.58 59.68 59.98 46.48 44.80 34.03 46.08
∆(MAG-BERT) 3.57↑ 2.31↑ 3.79↑ 1.28↑ 1.67↑ 1.13↑ 3.11↑ 1.56↑ 3.63↑ 3.12↑
MulT 54.12 58.02 53.77 60.66 59.55 60.12 45.65 46.14 38.57 45.42
∆(MulT) 2.52↑ 2.55↑ 2.46↑ 1.36↑ 1.54↑ 1.27↑ 2.28↑ 2.90↑ 8.17↑ 2.46↑

w OOS

TEXT 52.08 54.57 52.11 59.99 58.62 58.65 45.83 55.61 61.54 46.34
MAG-BERT 53.64 54.84 53.79 60.12 59.11 58.83 47.52 56.20 62.47 48.00
∆(MAG-BERT) 1.56↑ 0.27↑ 1.68↑ 0.13↑ 0.49↑ 0.18↑ 1.69↑ 0.59↑ 0.93↑ 1.66↑
MulT 52.72 56.45 52.56 60.18 58.82 59.38 46.88 56.00 61.66 47.35
∆(MulT) 0.64↑ 1.88↑ 0.45↑ 0.19↑ 0.20↑ 0.73↑ 1.05↑ 0.39↑ 0.12↑ 1.01↑

w OOS

Context TEXT 53.61 54.46 54.10 59.04 58.69 59.27 46.42 56.12 63.56 46.98
Context MAG-BERT 53.89 55.72 54.21 59.84 59.41 60.22 46.74 56.20 62.52 47.25
∆(Context MAG-BERT) 0.28↑ 1.26↑ 0.11↑ 0.80↑ 0.72↑ 0.95↑ 0.32↑ 0.08↑ 1.04↓ 0.27↑
Context MulT 53.96 54.91 54.15 59.48 59.33 60.04 46.45 56.07 62.93 46.98
∆(Context MulT) 0.35↑ 0.45↑ 0.05↑ 0.44↑ 0.64↑ 0.77↑ 0.03↑ 0.05↓ 0.63↓ 0.00

logues, we apply zero-padding with a maximum sequence length of 50, 180, and 400 for text, video,
and audio features, respectively. The number of training epochs is set to 40, and the training batch
size is set to 16 for all baselines. We employ AdamW (Loshchilov & Hutter, 2019) for optimization,
implement our approach using PyTorch 1.13.1, and conduct experiments on Tesla V100-SXM2-
32GB GPUs. For all experiments, we report the results averaged over five runs, using random seeds
ranging from 0 to 4 (Additional hyper-parameters details are available in Appendix M).

Benchmark Baselines. As text is the predominant modality in conversational multimodal intent
recognition (Zhang et al., 2022a), we establish a robust baseline by fine-tuning BERTLARGE, com-
paring its performance with two multimodal fusion methods: MAG-BERT and MulT. We evaluate
these methods in both single-turn and multi-turn conversations, focusing on in-scope classification
and out-of-scope detection. For single-turn conversations, we use only in-scope utterances for train-
ing. The out-of-scope utterances are included in the testing set and treated as a separate class,
following (Lin & Xu, 2019; Zhang et al., 2023b). For multi-turn conversations, we consider both
in-scope and out-of-scope samples at the dialogue-level during training, and all the baselines uti-
lize the context information as described in section 4. We conduct additional baselines related to
dialogue intent classification in NLP and out-of-distribution detection across different sources in
Appendices N and O, respectively. Besides, we test the performance of ChatGPT on our dataset
using both zero-shot and few-shot settings. In the zero-shot setting, ChatGPT is provided with the
prompts of the label sets (e.g., 30 intent labels and one OOS) and an introduction to the task. In the
few-shot setting, we use 10 dialogues with 227 utterances that cover all intent classes as the learning
data (Details of the utilized prompts can be found in Appendix P). Finally, we invite ten evaluators
to assess human performance. Each worker is assigned an equal portion of the testing set, ensuring
they have not seen the data before. They receive the same background information as that provided
to ChatGPT to ensure a fair comparison. Additionally, we provide them with more prior knowl-
edge, consisting of 100 dialogues and 997 utterances, to explore human potential in addressing this
complex problem. We average the predictions from all evaluators to obtain the final score.

Evaluation Metrics. To evaluate the in-scope classification performance, we adopt six commonly
used metrics: F1-score (F1), Precision (P), Recall (R), Accuracy (ACC), Weighted F1 (WF1), and
Weighted Precision (WP). To evaluate out-of-scope detection performance, we utilize four metrics
commonly employed in open intent classification (Shu et al., 2017; Zhang et al., 2023b): Accuracy,
Macro F1-score over all classes, In-scope classes (F1-IS), and the Out-of-scope class (F1-OOS).

Results. The performance of benchmark baselines on the MIntRec2.0 dataset is presented in
Table 4. In this table, ∆ denotes the improvements achieved by multimodal fusion meth-
ods compared to the text baseline using the current evaluation metric. For single-turn dia-
logues, we conduct experiments on two settings: training without out-of-scope samples (w / o
OOS) and with out-of-scope samples (w OOS). It is evident that when only in-scope utterances
are available, all multimodal fusion methods significantly outperform the text baseline. MAG-
BERT and MulT demonstrate 1∼4% increase in scores across all metrics. Moreover, we ob-
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serve that multimodal fusion methods show a larger proportion of improvement of over 2% in-
crease in almost all settings when involving out-of-scope samples. This suggests that mod-
eling cross-modal interactions and utilizing complementary information not only enhances in-
scope identification but also remarkably improves the model robustness of out-of-scope detection.

Table 5: Performance of ChatGPT and
humans on the MIntRec2.0 dataset.

In-scope In-scope + Out-of-scope

Methods ACC WF1 WP ACC F1-OOS F1

MAG-BERT-10 9.82 11.58 13.34 34.28 50.57 3.75
ChatGPT-0 35.27 37.10 48.22 27.68 21.21 28.34
ChatGPT-10 34.53 36.39 49.27 29.72 27.85 28.41
Humans-10 64.34 67.82 72.80 60.43 62.83 57.83
Humans-100 71.03 75.63 81.83 71.86 75.41 69.49

After using out-of-scope data for training, we find that
all baselines may suffer a slight decrease in some in-
scope evaluation metrics but gain significant improve-
ments in out-of-scope detection with an increase of over
30% in F1-OOS scores. Though incorporating mul-
timodal information brings improvements on all met-
rics, they show less increase compared with the former
setting, indicating the challenges of effectively utiliz-
ing multimodal information on out-of-scope data. For
multi-turn dialogues, multimodal fusion methods yield
improvements in all metrics for in-scope classification
compared with the text baseline. However, it shows minor improvements or even decrease when
testing on a mixture of in-scope and out-of-scope data. This also indicates that there remain sub-
stantial opportunities to explore the potential of multimodal information in conversational contexts.

ChatGPT v.s. Humans. Finally, we present the performance of ChatGPT and humans in Ta-
ble 5. As humans typically excel at learning from few-shot samples and quickly grasping new
concepts (Lake et al., 2015), we apply a challenging setting with only 10 dialogues of 227 utter-
ances. Multimodal fusion baselines, such as MAG-BERT-10, struggle significantly in this setting,
easily overfitting and falling into trivial solutions, such as predicting the most frequent in-scope
or out-of-scope class, due to the challenges posed by imbalanced and few-shot training samples.
In contrast, ChatGPT demonstrates much better performance even without prior knowledge of la-
beled data (ChatGPT-0), which shows its strong language understanding and reasoning capabilities,
comprehending complex textual semantics and understanding human intentions (Bang et al., 2023).
Besides, ChatGPT shows overall improvements with a 1∼6% score increase across most metrics
with only 10 dialogues for training (ChatGPT-10). This suggests that ChatGPT can learn from prior
knowledge and enhance intent recognition capability. Notably, it achieves a significant 6% im-
provement in F1-OOS, highlighting its improved out-of-scope detection robustness. However, when
humans are provided with the same prior knowledge of 10 dialogues (Humans-10), they achieve an
increase of over 30% in scores across almost all metrics compared to ChatGPT. This demonstrates
that humans can effectively leverage limited multimodal information to understand high-level inten-
tions and discern between known and unknown boundaries, highlighting the significant limitations
of existing AI methods in this challenging task. To further explore human potential, we observe their
performance with additional knowledge of 100 dialogues of 997 utterances (Humans-100). Com-
pared with Humans-10, they achieve over a 10% improvement in almost all metrics and achieve
the state-of-the-art benchmark performance. This also underscores the advantages of humans in
mastering this complex task by leveraging multimodal information.

6 CONCLUSIONS

This paper presents MIntRec2.0, a pioneering dataset for multimodal intent recognition, encompass-
ing 1,245 dialogues and 15,040 multimodal utterances. This marks MIntRec2.0 as the first large-
scale dataset in this domain. The dataset includes annotations for speaker identity and introduces
a comprehensive taxonomy of 30 intent classes, spanning 9,304 in-scope utterances. To evaluate
model robustness, 5,736 out-of-scope utterances are also annotated. We propose a general frame-
work for organizing data, extracting multimodal features, and performing multimodal fusion for
in-scope classification and out-of-scope detection in both single-turn and multi-turn conversations.
Extensive experiments reveal the substantial potential of using multimodal information and uncover
significant opportunities for improvement in effectively utilizing out-of-scope data and context in-
formation. Moreover, even with a strong LLM such as ChatGPT, using text-only modality remains
challenging in scenarios with limited prior knowledge, highlighting the importance and challenge
of using multimodal information compared to human performance. The limitations and potential
negative societal impacts of this work are discussed in Appendix Q.
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A SAMPLE SELECTION WITHIN THE MINTREC2.0 DATASET

Figure 5 illustrates a diverse selection of samples from our MIntRec2.0 dataset to showcase repre-
sentative examples. The selected samples cover all 30 intent categories and the OOS label.

B ADDITIONAL RELATED WORK

Video Understanding. As a significant research field within computer vision, video understanding
involves the extraction of valuable information from video content. Numerous methods have been
developed to handle spatial and temporal data in videos, including the Two-Stream method, which
comprises TDD (Wang et al., 2015), LRCN (Donahue et al., 2015), Fusion (Feichtenhofer et al.,
2016), and TSN (Wang et al., 2016). This methodology integrates a secondary path to learn a video’s
temporal information by training a convolutional neural network on the optical flow stream. How-
ever, these methods require extensive computation and storage capacity due to the pre-computation
of optical flow.

To address this, researchers introduce 3D convolutional neural networks (3D CNNs) such as
I3D (Carreira & Zisserman, 2017), R3D (Hara et al., 2018), S3D (Xie et al., 2018), Non-local (Wang
et al., 2018a), and SlowFast (Feichtenhofer et al., 2019). More recently, self-attentive mechanisms
like TimeSformer (Bertasius et al., 2021) and Video Swin Transformer (Liu et al., 2022) are demon-
strating exceptional performance in image and video tasks. TimeSformer encodes video frames into
a sequence of two-dimensional images, employing temporal self-attention to understand temporal
relationships, while Video Swin Transformer partitions the input video into two-dimensional spa-
tial and one-dimensional temporal patches, applying self-attention and cross-attention to manage
long-distance temporal dependencies. X-CLIP (Ni et al., 2022), a CLIP-based method, has achieved
state-of-the-art performance in video understanding by processing video content through matching
video frames with text data.
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While these techniques show proficiency in action recognition, they encounter difficulties when at-
tempting to understand fine-grained intentions with high-level semantics and require considerable
computational resources. For instance, X-CLIP demonstrates subpar performance on our task and
demands a substantial amount of GPU memory, underscoring the need to incorporate other modal-
ities such as language and acoustics in multimodal intent recognition tasks. Consequently, we have
established baselines using multimodal fusion methods in this work.

Intent Analysis. Intent analysis is an important research area in spoken language understand-
ing (Qin et al., 2021). It plays a pivotal role in task-oriented dialogue systems, enabling the recog-
nition of user queries’ intentions alongside the slot filling task (Wang et al., 2018b; Zhang et al.,
2019). However, early research usually focus on the closed-world classification problem, lacking
the capability to handle out-of-scope utterances encountered in real-world scenarios (Zhang et al.,
2021a). To address this challenge, Lin & Xu (2019) first explore this task by employing margin loss
to detect unknown intent. Zhang et al. (2021b) learn adaptive decision boundaries for each known
class, thereby further reducing the open space risk. Yan et al. (2020) use Gaussian mixture models to
tackle this problem and extends the task to zero-shot intent detection. Cheng et al. (2022) construct
out-of-scope samples using manifold mixup technologies and employed soft labels for representa-
tion learning. Zhou et al. (2022) enhance intent representations to balance both empirical and open
space risks with the aid of contrastive learning in the K-nearest neighbors space.

In practical applications, out-of-scope utterances may contain multiple fine-grained intent classes,
making the discovery of potential new intent classes highly valuable for industry applications, such
as dialogue and user-modeling systems (Lin et al., 2020; Li et al., 2022). Lin et al. (2020) formulate
this task in a semi-supervised manner, with limited labeled data for known intents and a vast amount
of unlabeled data for both known and new intents. To address this task, Lin et al. (2020); Zhang
et al. (2022b) identify group-level known and new intent clusters by learning from both strong and
weak pairwise supervised signals. Zhang et al. (2021c); Zhou et al. (2023) employ centroid-based
alignment strategies to generate high-quality and specific pseudo-labels for self-supervised learn-
ing. However, these methods perform poorly in purely unsupervised scenarios. However, these
methods have shown limited success in purely unsupervised scenarios. Zhang et al. (2023a) propose
a groundbreaking approach in unsupervised new intent discovery utilizes unsupervised pre-training
with strongly augmented data, followed by effective clustering. This method leverages historical
centroid information for initialization and employs cluster assignments to learn discriminative rep-
resentations at both the instance and cluster levels, marking a significant advancement over previous
state-of-the-art methods.

C PERFORMANCE OF DIALOGUERNN

Table 6: Results of DialogueRNN on the MIntRec2.0 dataset.

In-scope Classification In-scope + Out-of-scope Classification

Setting F1 P R ACC WF1 WP F1-IS ACC F1-OOS F1

K+1 0.67 0.58 3.34 10.7 2.15 1.77 0.36 16.65 34.82 1.47
Outlier Exposure 2.75 4.19 3.74 3.89 3.23 5.29 2.21 11.10 23.67 2.91

To leverage context information, existing methods typically use multimodal fusion representations
to directly model the temporal information of contexts. However, we find this approach to be in-
effective for our task. Specifically, we select DialogueRNN (Majumder et al., 2019), a method
specifically designed for multimodal emotion detection in conversations, for evaluation. We con-
duct experiments under two settings: K+1 and Outlier Exposure. The former treats the out-of-scope
class as the (K+1)th class and trains using both K intent classes and one out-of-scope class, while
the latter employs the outlier exposure loss on out-of-scope data during training.

As illustrated in Table 6, DialogueRNN demonstrates significantly low performance across all met-
rics. Furthermore, we observe that it tends to fall into trivial solutions, predominantly predicting
most utterances as the out-of-scope class. This observation suggests that leveraging temporal in-
formation with fused multimodal representations remains a considerable challenge. Consequently,
we adopt a simple method to leverage context information by concatenating the context information
from the inputs of each modality.
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Figure 5: Samples of the MIntRec2.0 dataset.
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D DATA PRIVACY AND CONTENT CONSIDERATIONS

Our dataset is meticulously curated and consists exclusively of character names and dialogues
sourced from television shows, ensuring no infringement on the privacy or disclosure of personal in-
formation pertaining to real individuals. We have rigorously reviewed the content to maintain a high
standard of decorum, assiduously avoiding any material that could be construed as offensive. Our
focus remains strictly confined to the dialogues and interactions, all contextualized within the nar-
rative framework of the respective shows, allowing for a comprehensive understanding of character
dynamics without compromising ethical standards.

E UTTERANCE BOUNDARY ESTIMATION

To further validate the accuracy of these boundaries, we conduct additional experiments using a
metric known as Speaker Boundary Error Rate (SBER), commonly employed in speech diarization
tasks (Sturm et al., 2007). This metric quantifies the difference between predicted and reference
speaker boundaries, with a lower SBER indicating better performance and serving as a proxy for
sentence boundary accuracy. We utilize an end-to-end method implemented with pyannote (Bredin
et al., 2020; Bredin & Laurent, 2021), a pre-trained speaker change detection model, to predict
speaker IDs, starting times, and durations for each utterance within a dialogue segment. These
predictions are then compared to the ground truth.

The results show an average SBER of 0.59 across all dialogues, suggesting considerable room for
improvement in automatic sentence boundary segmentation. We believe this approach offers a rea-
sonable method for evaluating utterance boundary performance.

F STATISTICS OF CHARACTERS

To further analyze the character distribution in each of the three data sources (i.e., Superstore,
Friends, The Big Bang Theory) within our dataset, we present the proportions of characters from
these sources in Figure 6, Figure 7, and Figure 8.

In Superstore, seven main characters and 21 recurring characters are observed. It can be noted that
the seven main characters represent a significant proportion of nearly 80%, distributed uniformly.
Friends have six main characters who constitute about 85% of the data, also distributed uniformly.
The Big Bang Theory has seven main characters, while their distribution is imbalanced, a property
we preserve due to the distinctive nature of each speaker. It is worth noting that there are other
characters involved in the conversations, contributing 9.3%, 14.4%, and 5.9% respectively in each of
the three TV series. These characters are also differentiated within each dialogue in our experiments.

G INTENT TAXONOMIES DEFINED IN THE MINTREC DATASET

The MIntRec dataset (Zhang et al., 2022a) introduces a hierarchical intent taxonomy, including
two coarse-grained and 20 fine-grained intent categories. The two coarse-grained classes include
Express Emotions or Attitudes and Achieve Goals. Based on these, it further includes 11 and 9
fine-grained classes for them, respectively. In particular, Express Emotions or Attitudes contains
complain, praise, apologize, thank, criticize, care, agree, oppose, taunt, flaunt, and joke. Achieve
Goals contains inform, advise, arrange, introduce, comfort, leave, prevent, greet, and ask for help.
The interpretations of these categories are shown in Table 7, referring to (Zhang et al., 2022a).

H APPLICATION OF INTENT LABELS

Our intent labels can be generalized to many domains, including intelligent customer service, health-
care, mental health therapy, hazard detection, virtual assistants, and personalized recommendation
systems. For instance:

• complain, criticize, comfort: These labels are instrumental in identifying potential mental
health concerns in patients and can be pivotal in healthcare settings.
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Figure 6: Proportions of characters from the TV series of Superstore.

Figure 7: Proportions of characters from the TV series of Friends.

Figure 8: Proportions of characters from the TV series of The Big Bang Theory.
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• warn, prevent, OOS: These labels can be employed effectively in systems designed for
hazard detection.

• ask for help, inform: These labels are particularly suited for customer service platforms.

• praise, complain, agree: These labels can be harnessed in personalized recommendation
engines.

• the majority of these intent labels: These labels are ideal for virtual robots designed to
interact naturally with users.

Table 7: Intent taxonomies of the MIntRec dataset with brief interpretations.

Intent Categories Interpretations

Express
emotions

or
attitudes

Complain Express dissatisfaction with someone or something (e.g., saying unfair encounters with a sad expression and helpless motion).
Praise Express admiration for someone or something (e.g., saying with an appreciative expression).
Apologize Express regret for doing something wrong (e.g., saying words of apology such as sorry).

Thank Express gratitude in word or deed for the convenience or kindness given or offered by others (e.g., saying words
of appreciation such as thank you).

Criticize Point out and emphasize someone’s mistakes (e.g., yelling out someone’s problems).
Care Concern about someone or be curious about something (e.g., worrying about someone’s health).
Agree Have the same attitude about something (e.g., saying affirmative words such as yeah and yes).
Oppose Have an inconsistent attitude about something (e.g., saying negative words to express disagreement)
Taunt Use metaphors and exaggerations to accuse and ridicule (e.g., complimenting someone with a negative expression).
Flaunt Boast about oneself to gain admiration, envy, or praise (e.g., saying something complimentary about oneself arrogantly).
Joke Say something to provoke laughter (e.g., saying something funny and exaggerated with a cheerful expression).

Achieve
goals

Inform Tell someone to make them aware of something (e.g., broadcasting something with a microphone).
Advise Offer suggestions for consideration (e.g., saying words that make suggestions).
Arrange Plan or organize something (e.g., requesting someone what they should do formally).

Introduce Communicate to make someone acquaintance with another or recommend something (e.g., describing the identify of a person
or the properties of an object).

Comfort Alleviate pain with encouragement or compassion (e.g., describing something is hopeful).
Leave Get away from somewhere (e.g., saying where to go while turning around or getting up).
Prevent Make someone unable to do something (e.g., stop someone from doing something with a hand).
Greet Express mutual kindness or recognition during the encounter (e.g., waving to someone and saying hello).
Ask for help Request someone to help (e.g., asking someone to deal with the trouble).

I MULTIMODAL INTENT ANNOTATION PLATFORM

We have developed an efficient platform featuring a unified database for multimodal label annota-
tion, aiming to facilitate seamless interaction between annotators and the diverse set of multimodal
data. The interface of this platform is depicted in Figure 9. This user-friendly interface allows anno-
tators to access transcripts and associated videos from the dialogues and data sources easily, thereby
ensuring accurate and consistent annotations. Annotators simply need to select one label from the
30 intent classes and an out-of-scope (OOS) tag by clicking a button. This intuitive design mini-
mizes the learning curve for annotators and accelerates the annotation process. Once annotation is
complete, the selected labels are automatically recorded in the database for statistical analysis.

This systematic approach ensures the reliability and consistency of the annotated data, which is
crucial for training robust and high-performing models. The platform not only aids in the efficient
collection of annotated data but also serves as a valuable tool for exploring and understanding the
intricate relationships between different modalities and intents.

J SINGLE-INTENT ASSUMPTION

In real-world scenarios, it is possible for multiple intents coexist among the 30 pre-defined classes
in a single utterance. In this work, we obey the single-intent assumption due to the following two
reasons:

• Single vs. Multi-Intent Datasets: Most existing single-turn intent datasets in NLP, such
as SNIPS, CLINC, and BANKING, focus on single-intention labeling. This is also true for
multi-turn dialogue datasets like SWBD (Godfrey et al., 1992) and DailyDialog (Li et al.,
2017), which generally assume a single dialogue act label at the utterance level. Therefore,
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Figure 9: The interface of the annotation platform.

while multiple intentions could theoretically exist in an utterance, the prevailing practice is
to identify a primary intent for the sake of clarity and brevity.

• Applicability to Real-World Scenarios: We have examined multi-intent datasets like
Standford LU (Hou et al., 2021) and (Xu & Sarikaya, 2013). These datasets often in-
clude action and slot labels (e.g., find music or movie, request address or route), which are
more suited for task-oriented dialogue systems. Such labeling is generally not applicable
in real-world multimodal scenarios, as suggested in (Zhang et al., 2022a).

To verify our assumption, we conduct an additional multi-intent annotation on the testing set. Six
annotators are asked to identify up to three probable intents for each utterance. The results are shown
in Table 8.

Table 8: Statistics of multiple intents in one utterance.

Express
emotions

or
attitudes

Classes complain, praise, apologize, thank, criticize, care, agree, warn
Number 9, 5, 2, 1, 8, 1, 6, 1,
Classes oppose, taunt, flaunt, joke, doubt, acknowledge, refuse, emphasize
Number 7, 4, 1, 2, 14, 3, 1, 8

Achieve
goals

Classes inform, advise, arrange, introduce, comfort, leave, prevent
Number 5, 1, 1, 1, 2, 4, 0
Classes greet, ask for help, ask for opinions, confirm, explain, invite, plan
Number 1, 1, 4, 5, 35, 1, 2

The results show that only 136 out of 3,230 utterances (4.2%) have a second most probable intent,
and none have a third. This suggests that multi-intent scenarios are relatively rare, reinforcing the
adequacy of our single-intent taxonomy. In summary, our findings align with those of most existing
benchmark intent datasets, indicating that our intent taxonomy is both general and distinguishable
enough for real-world applications.

K (K+1)-WAY CLASSIFICATION PERFORMANCE

We also investigate another prevalent method, the (K+1)-way classification, to utilize the out-of-
scope samples during training. In other words, we train on both the K known classes and one
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out-of-scope class. The results of this approach are displayed in Table 9. A noticeable decrease of
approximately 10% in in-scope classification performance across numerous metrics (e.g., F1-score,
recall, accuracy, weighted F1) is observed, compared to the results obtained with outlier exposure
(OE) as depicted in Table 4 in the paper. Although there are slight improvements in F1-OOS (2%
score increase) for out-of-scope detection in most methods, these methods still underperform when
recognizing known classes and in overall performance. Therefore, we opt for outlier exposure as a
more effective technique to deal with out-of-scope samples and adopt this approach in our work.

Table 9: K+1 classification results on the MIntRec2.0 dataset.

In-scope Classification In-scope + Out-of-scope Classification

Methods F1 P R ACC WF1 WP F1-IS ACC F1-OOS F1

TEXT 42.23 55.34 37.42 43.84 49.60 64.28 40.52 55.69 64.28 41.29
MAG-BERT 40.68 53.34 36.57 43.75 48.95 63.14 38.87 55.76 64.41 39.70
MulT 39.48 54.96 34.90 42.47 48.04 64.17 38.26 56.33 65.48 39.14

Context TEXT 40.33 50.45 36.97 43.72 47.80 59.18 38.21 54.65 63.79 39.04
Context MAG-BERT 43.14 53.20 39.34 47.09 51.70 62.53 40.87 55.65 64.04 41.62
Context MulT 42.46 54.72 38.28 31.54 35.80 65.88 40.38 42.59 50.02 40.69

L DATA SPLITS

We partition our dataset into training, validation, and testing sets at an approximate ratio of 7:1:1
for both utterances and dialogues. Detailed statistics for each set, encompassing both in-scope and
out-of-scope data, are presented in Table 10.

Table 10: Data splits of the MIntRec2.0 dataset. # denotes the number.

Item # Dialogues # Utterances # In-scope Utterances # Out-of-scope Utterances

Total 1,245 15,040 9,304 5,736
Training 871 9,989 6,165 3,824
Validation 125 1,821 1,106 715
Testing 249 3,230 2,033 1,197

M HYPER-PARAMETER CONFIGURATIONS

The comprehensive configurations of hyper-parameters used in our experiments are presented in
Table 11, Table 12, Table 13, Table 14, Table 15, and Table 16.

Table 11: The hyperparameters of the TEXT baseline in single-turn conversations.

Setting hyperparameters value

w / o OOS

eval monitor: accuracy
train batch size: 16
eval batch size: 8
test batch size: 8
wait patience: 8
num train epochs: 40
warmup proportion: 0.1
lr: 2e-5
weight decay: 0.1

Setting hyperparameters value

w OOS

eval monitor: accuracy
train batch size: 16
eval batch size: 8
test batch size: 8
wait patience: 8
num train epochs: 40
warmup proportion: 0.1
lr: 1e-5
weight decay: 0.1

N DIALOGUE INTENT CLASSIFICATION IN NLP

We have conducted experiments to benchmark our dataset with two state-of-the-art algorithms in
open intent detection for NLP: DA-ADB (Zhang et al., 2023b) and KNNCL (Zhou et al., 2022) with
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Table 12: The hyperparameters of the MAG-BERT baseline in single-turn conversations.

Setting hyperparameters value

w / o OOS

need aligned: True
eval monitor: accuracy
train batch size: 16
eval batch size: 8
test batch size: 8
wait patience: 8
num train epochs: 40
beta shift: 0.005
dropout prob: 0.5
warmup proportion: 0.1
lr: 5e-6
aligned method: ctc
weight decay: 0.03

Setting hyperparameters value

w OOS

need aligned: True
eval monitor: accuracy
train batch size: 16
eval batch size: 8
test batch size: 8
wait patience: 8
num train epochs: 40
beta shift: 0.005
dropout prob: 0.5
warmup proportion: 0.1
lr: 5e-6
aligned method: ctc
weight decay: 0.1

Table 13: The hyperparameters of the MulT baseline in single-turn conversations.

Setting hyperparameters value

w / o OOS

padding mode: zero
padding loc: end
need aligned: False
eval monitor: accuracy
train batch size: 16
eval batch size: 8
test batch size: 8
wait patience: 8
num train epochs: 40
dst feature dims : 80
nheads: 4
n levels: 8
attn dropout: 0.0
attn dropout v: 0.1
attn dropout a: 0.1
relu dropout: 0.3
embed dropout: 0.0
res dropout: 0.0
output dropout: 0.2
text dropout: 0.1
grad clip: 0.5
attn mask: True
conv1d kernel size l: 5
conv1d kernel size v: 1
conv1d kernel size a: 1
lr: 5e-6

Setting hyperparameters value

w OOS

padding mode: zero
padding loc: end
need aligned: False
eval monitor: accuracy
train batch size: 16
eval batch size: 8
test batch size: 8
wait patience: 8
num train epochs: 40
dst feature dims : 80
nheads: 4
n levels: 8
attn dropout: 0.0
attn dropout v: 0.1
attn dropout a: 0.1
relu dropout: 0.3
embed dropout: 0.0
res dropout: 0.0
output dropout: 0.0
text dropout: 0.0
grad clip: 0.5
attn mask: True
conv1d kernel size l: 5
conv1d kernel size v: 1
conv1d kernel size a: 1
lr: 5e-6

the open-source TEXTOIR platform (Zhang et al., 2021a). Consistent with the original settings of
these algorithms, they are trained on in-scope samples and tested on both in-scope and out-of-scope
samples. The results are shown in Table 17.

The results show that even state-of-the-art methods for open intent detection generally underperform
compared to the BERTLARGE text classifier across most metrics. However, they do excel in iden-
tifying out-of-scope utterances, typically achieving higher F1-OOS scores. Notably, KNNCL also
scores higher in accuracy.

O OUT-OF-DISTRIBUTION DETECTION ACROSS DIFFERENT SOURCES

We also explore the model performance in an out-of-distribution (OOD) setting across different
sources. To address this, we have conducted experiments where we use data from one source as
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Table 14: The hyperparameters of the TEXT baseline in multi-turn conversations.

hyperparameters value

eval monitor: accuracy
train batch size: 2
eval batch size: 2
test batch size: 2
wait patience: 3

num train epochs: 40
warmup proportion: 0.1

lr: 1e-5
weight decay: 0.1

train batch size: 16

Table 15: The hyperparameters of the MAG-BERT baseline in multi-turn conversations.

hyperparameters value

need aligned: True
eval monitor: accuracy

train batch size: 2
select batch size: 16
eval batch size: 2
test batch size: 2
wait patience: 3

num train epochs: 40
context len: 0.5
beta shift: 0.05

dropout prob: 0.05
warmup proportion: 0.01

lr: 4e-6
aligned method: conv1d
weight decay: 0.1

the in-distribution dataset for training, validation, and testing. We then use data from the other
two sources exclusively for OOD testing, in accordance with (Hendrycks & Gimpel, 2017; Liang
et al., 2018). For evaluation, we utilize a comprehensive set of metrics: AUROC (Area Under the
Receiver Operating Characteristic Curve), AUPR-In (Area Under the Precision-Recall Curve for
in-distribution detection), AUPR-Out (Area Under the Precision-Recall Curve for OOD detection),
FPR-95 (False Positive Rate at 95% True Positive Rate), and EER (Equal Error Rate). Higher scores
are preferable for the first three metrics, while lower scores are desirable for the last two.

As shown in Table 18, the results indicate that MAG-BERT shows lower performance on OOD
detection compared with the text baseline on most metrics. Both text and multimodal fusion methods
achieve very low performance on OOD detection metrics, highlighting the substantial challenges
presented by this setting. This opens up an intriguing avenue for future research in OOD detection
under these conditions.

P CHATGPT PROMPTS

We provide prompts for both zero-shot (ChatGPT-0) and few-shot (ChatGPT-10) settings of Chat-
GPT. The detailed prompts are as follows:

ChatGPT-0 Prompts: Here is a set of given intent labels: [ Acknowledge, Advise, Agree, Apologise,
Arrange, Ask for help, Asking for opinions, Care, Comfort, Complain, Confirm, Criticize, Doubt,
Emphasize, Explain, Flaunt, Greet, Inform, Introduce, Invite, Joke, Leave, Oppose, Plan, Praise,
Prevent, Refuse, Taunt, Thank, Warn, OOS]. Additionally, OOS represents an unknown intent that
does not belong to the known set of intents. Next, I will provide you with a collection of dialogs:
utterances. The collection contains multiple utterances presented in sequential order, and they can be
considered as contextualized conversations. When considering each sample and taking into account
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Table 16: The hyperparameters of the MulT baseline in multi-turn conversations.

hyperparameters value

padding mode: zero
padding loc: end
need aligned: False
eval monitor: accuracy

train batch size: 2
select batch size: 16
eval batch size: 2
test batch size: 2
wait patience: 3
context length: 1

num train epochs: 40
dst feature dims: 80

nheads: 4
n levels: 8

attn dropout: 0.0
attn dropout v: 0
attn dropout a: 0.1
relu dropout: 0.2

embed dropout: 0.1
res dropout: 0

output dropout: 0
text dropout: 0.4

grad clip: 0.5
attn mask: True

conv1d kernel size l: 5
conv1d kernel size v: 1
conv1d kernel size a: 1

lr: 5e-6

Table 17: Performance of open intent detection on the MIntRec2.0 dataset.

In-scope Classification Out-of-scope Classification

Methods F1 P R ACC WF1 WP F1-IS ACC F1-OOS F1

TEXT 51.60 55.47 51.31 59.30 58.01 58.85 43.37 43.24 30.40 42.96
DA-ADB 46.16 51.28 46.08 57.44 54.96 55.66 39.60 39.18 36.17 39.49
KNNCL 50.64 51.19 50.71 56.54 56.27 56.39 35.58 48.58 55.77 36.23

Table 18: OOD detection performance across different sources.

ID source OOD source(s) Methods AUROC AUPR-In AUPR-Out FPR95 EER

Superstore Bigbang & Friends TEXT 51.33 21.75 80.25 93.47 49.43
MAG-BERT 50.96 21.28 80.14 93.74 49.21

Bigbang Superstore & Friends TEXT 51.33 21.75 80.25 93.47 49.43
MAG-BERT 50.96 21.28 80.14 93.74 49.21

Friends Bigbang & Superstore TEXT 55.97 26.17 80.56 91.22 45.40
MAG-BERT 51.01 25.62 79.81 92.57 45.90

its contextual information, please select an appropriate label from the intent label set (emphasis: you
can only choose intent labels from the given set of intent labels). If there are no suitable labels in the
set, assign the label of the sample as OOS. Please provide the output in the following format: Serial
number and original text of the sample: Intent label. Apart from that, do not output anything else.

ChatGPT-10 Prompts: Here is a list of multiple multi-turn conversations. Each dictionary in the
list represents a conversation paragraph, where each key-value pair represents an intent example
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as a key and its corresponding label as a value. Next time I will enter my request, please only
reply ”received”. This is a list of given intent labels: [ Acknowledge, Advise, Agree, Apologise,
Arrange, Ask for help, Asking for opinions, Care, Comfort, Complain, Confirm, Criticize, Doubt,
Emphasize, Explain, Flaunt, Greet, Inform, Introduce, Invite, Joke, Leave, Oppose, Plan, Praise,
Prevent, Refuse, Taunt, Thank, Warn, OOS], where OOS represents an unknown intent that is not
intended otherwise. Now, you need to learn from the conversations that you were given in the last
Q&A, and then I’ll provide you with a dialog that contains utterances in it, and these utterances are
given in order and can be considered as contextual. Now, for each utterance that requires you to use
the knowledge you gained from the given conversations, select a label as output from the given list
of labels: for the following given dialog, in this format: Original sample: Intent labels output.

Q LIMITATIONS AND POTENTIAL NEGATIVE SOCIETAL IMPACTS

Limitations: This study presents several limitations that warrant acknowledgment. First, deploying
this system in real-world settings necessitates collecting personal data, including facial expressions,
voice, and text, thereby raising critical privacy concerns requiring meticulous attention. Second, the
issue of liability remains ambiguous, especially in sensitive applications such as medical diagnosis,
should the technology produce erroneous results. Third, our training dataset may lack comprehen-
sive representation across diverse cultural backgrounds, potentially resulting in misunderstandings
or the perpetuation of stereotypes. Lastly, substantial opportunities exist for enhancing the system’s
performance, particularly in effectively utilizing context information and out-of-scope sample data
and incorporating non-verbal modalities.

Potential Negative Societal Impacts: While our work contributes valuable advancements in the
field of multimodal intent recognition, it also has the potential to introduce negative societal impacts.

Firstly, there is the potential for misuse of our dataset if it becomes publicly available under an open-
source license. Such misuse could include unauthorized commercial applications or other nefarious
purposes that could result in harm. To mitigate this, we strongly urge users to adhere strictly to the
licensing terms associated with this dataset.

Secondly, as AI systems like ours become increasingly sophisticated and prevalent, there is the risk
of over-reliance on these technologies. This could lead to a decline in certain human skills, especially
those related to understanding and interpreting conversational cues. As researchers and developers,
we must continue to balance the advancement of AI with the preservation and enhancement of
human capabilities.

Thirdly, the baseline system might be used with malicious intent. While any technology can be
used for both beneficial and harmful purposes, our system is designed to detect out-of-scope (OOS)
categories, which could be exploited to identify harmful or malicious intents. By integrating robust
OOS detection, our system can flag conversations or utterances that deviate from predefined, accept-
able intents. This feature could act as a first line of defense against technology misuse, as it can be
tailored to detect and flag potentially harmful conversation intents.

Furthermore, establishing a benchmark in this field can have numerous positive societal impacts,
such as enhancing human-computer interactions, aiding mental health assessments, and improving
customer service automation. We believe the ethical deployment of this technology largely hinges
on implementation safeguards and the specific contexts in which it is used.
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