
Under review as a conference paper at ICLR 2022

POLAR: A POLYNOMIAL ARITHMETIC FRAMEWORK
FOR VERIFYING NEURAL-NETWORK CONTROLLED
SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose POLAR, a polynomial arithmetic framework that leverages polyno-
mial overapproximations with interval remainders for bounded-time reachability
analysis of neural-network controlled systems (NNCSs). Compared with existing
arithmetic approaches that use standard Taylor models, our framework uses a novel
approach to iteratively overapproximate the neuron output ranges layer-by-layer
via a combination of Bernstein polynomial interpolation for continuous activation
functions and Taylor model arithmetic for the other operations. This approach over-
comes the main drawback in the standard Taylor model arithmetic, i.e. its inability
to handle functions that cannot be well approximated by Taylor polynomials, and
significantly improve the accuracy and efficiency of reachable states computation
for NNCSs. To further tighten the overapproximation, our method keeps the Taylor
model remainders symbolic under the linear mappings when propagating Taylor
models across the neural-network controller. We show that POLAR can be seam-
lessly integrated with existing Taylor model flowpipe construction techniques, and
our approach significantly outperforms the current state-of-the-art techniques on a
suite of benchmarks.

1 INTRODUCTION

Neural networks have been increasingly used as the central decision makers in a variety of tasks Mnih
et al. (2015); Lillicrap et al. (2016); Pan et al. (2018). However, the use of neural-network controllers
also gives rise to new challenges on verifying the correctness of the resulting closed-loop control
systems especially in safety-critical settings. In this paper, we consider the reachability verification
problem of neural-network controlled systems (NNCSs). The high-level architecture of a simple
NNCS is shown in Figure 1 in which the neural network senses the system state, i.e. the value of
x, at discrete time steps, and computes the corresponding control values u for updating the system
dynamics which is defined by an ordinary differential equation (ODE) over x and u. The bounded-
time reachability analysis problem of an NNCS is to compute an (over-approximated) reachable
set that contains all the trajectories starting from the initial set for a finite number of control steps.
Figure 2 shows an illustration of reachable sets for 4 steps, where the orange regions are the reachable
set, and two red arrowed curves are two exemplary trajectories starting from the initial set X0 (blue).

Reachability analysis of general NNCSs is notoriously difficult due to nonlinearity in both the
neural-network controller and the plant, further exacerbated by the coupling of the controller and
the plant. Since exact reachability of general nonlinear systems is undecidable Alur & Dill (1994),
current approaches for reachability analysis of nonlinear dynamical systems aim at computing a
tight overapproximation of the reachable sets Dreossi et al. (2016); Lygeros et al. (1999); Yang
et al. (2016); Prajna & Jadbabaie (2004); Huang et al. (2017a); Frehse et al. (2011); Chen et al.
(2013); Althoff (2015). Earlier works on NNCS verification drew on techniques for computing the
output ranges of neural networks Huang et al. (2017b); Katz et al. (2017); Dutta et al. (2018); Wang
et al. (2018); Weng et al. (2018); Zhang et al. (2018); Singh et al. (2019) when integrating with the
aforementioned reachability analysis. However, they have been shown to be ineffective for NNCS
verification due to the lack of consideration on the interaction between the neural-network controller
and the plant dynamics Dutta et al. (2019); Huang et al. (2019). In particular, since their primary goal
is to bound the output range of the neural network instead of approximating its input-output function,

1

Under review as a conference paper at ICLR 2022

Figure 1: A typical NNCS model.

x(t)

δc 2δc 3δc 4δc0

X0

·x = f(x, u0),
u0 = κ(x(0))

·x = f(x, u3),
u3 = κ(x(3δc))

·x = f(x, u1),
u1 = κ(x(δc))

·x = f(x, u2),
u2 = κ(x(2δc))

Figure 2: Executions over 4 control steps.

they cannot be used to track dependency across the closed-loop system and across multiple time steps
in reachability analysis.

Direct end-to-end approximation Dutta et al. (2019); Huang et al. (2019); Fan et al. (2020) and
layer-by-layer propagation Ivanov et al. (2019; 2021b;a) are the two main categories of approaches
in the NNCS verification literature. The former directly computes a function approximation of the
neural network and suffers from efficiency problems, i.e. they cannot handle systems with more than
a few dimensions due to the need to sample in the input space. The latter approach tries to exploit
the neural network structure and uses Taylor model (TM) arithmetic to more efficiently obtain a
function approximation by propagating the TMs layer by layer. A Taylor model (p, I) consists of a
polynomial p for point-wise approximation, and an interval remainder I to bound the approximation
error. However, due to the limitations of basic TM arithmetic, these approaches cannot handle
non-differentiable activation functions and suffer from rapid growth of the interval remainders during
propagation which effectively degrades the analysis to an interval analysis.

In this paper, we tackle the challenge of dependency tracking by constructing a function overapproxi-
mation, specifically a Taylor model (TM) approximation, of the neural-network controller using a
unified polynomial arithmetic framework (POLAR) that enables precise layer-by-layer propagation
of TMs for general feed-forward neural networks. POLAR addresses the key challenges of applying
basic TM arithmetic through a novel use of univariate Bernstein polynomial interpolation to handle
non-differentiable activation functions and symbolic remainders to taper the growth of the interval
remainders. For the former, we leverage an efficient sampling-based analysis to provide a sound
overapproximation. The latter avoids the so-called wrapping effect Jaulin et al. (2001) that can lead
to rapid growth of the interval remainders in linear mappings.

In summary, our work makes the following novel contributions.

• We propose a novel polynomial arithmetic framework for bounded-time reachability analysis of
NNCSs, keeping track of state-wise dependency across the closed-loop system. Compared to
existing propagation-based approaches, our framework has the advantage of being able to handle
NN controllers with general and heterogeneous activation functions.

• We propose neuron-wise Bernstein polynomial interpolation and show that it can be seamlessly
integrated with Taylor model approximations. In addition, we present the first application of
symbolic remainders to tightening the overapproximation of neural network behaviors.

• We conduct a comprehensive comparison of our approach with state-of-the-art techniques, in-
cluding an evaluation on the full set of benchmarks published in these works, showing the
overwhelming advantage of our proposed approach.

2 PRELIMINARIES

A Neural-Network Controlled System (NNCS) is a continuous plant governed by a neural network
controller. The plant dynamics is defined by an ODE of the form ẋ = f(x,u) wherein the state
variables and control inputs are denoted by the vectors x and u respectively. We assume that the
function f is at least locally Lipschitz continuous such that its solution w.r.t. an initial state and
constant control inputs is unique Meiss (2007). We denote the input-output mapping of the neural
network controller as κ, and the controller is triggered every δc time which is also called the control

2

Under review as a conference paper at ICLR 2022

stepsize, then a system execution (trajectory) is produced in the following way. Starting from an
initial state x(0), the controller senses the system state at the beginning of every control step t=jδc
for j=0, 1, . . ., and update the control inputs to vj=κ(x(jδc)). The system’s dynamics in that control
step is governed by the ODE ẋ=f(x,vj). Given an initial state set X0 ⊂ Rn, all executions from
a state in it can be formally defined by a flowmap function ϕN : X0 × R≥0 → Rn, such that the
system state at any time t ≥ 0 from any initial state x0 ∈ X0 is ϕN (x0, t). We call a state x′ ∈ Rn
reachable if there exists x0 ∈ X0 and t ≥ 0 such that x′ = ϕN (x0, t). The reachability problem
on NNCS is to decide whether a state is reachable in a given NNCS, and it is undecidable due to
their higher expressiveness than the two-counter machines on which the reachability problem is
undecidable Alur & Dill (1994). Many formal verification problems can be reduced to the reachability
problem. For example, the safety verification problem can be reduced to the reachability problem to
an unsafe state. In the paper, we focus on computing the reachable set for an NNCS over a bounded
number K of control steps. Since flowmap ϕN often does not have a closed form due to the nonlinear
ODEs, we seek to compute state-wise overapproximations for it over time segments, that is, in each
control step [(j − 1)δc, jδc] for j = 1, . . . ,K, the reachable set is overapproximated by a group of
flowpipes F1(x0, τ), . . . ,FN (x0, τ) over the N uniformly subdivided time segments of the time
interval, such that Fi(x0, τ) is a state-wise overapproximation of ϕN (x0, (j − 1)δc + (i− 1)δ + τ)
for τ ∈ [0, δc/N], i.e., Fj(x0, τ) contains the exact reachable state from any initial state x0 in the
i-th time segment of the j-th control step. Here, τ is the local time variable which is independent
in each flowpipe. A high-level flowpipe construction algorithm is presented as follows, in which
X̂0 = X0 and δ = δc/N which is called the flowpipe step or time step.

1: for j = 1 to K do
2: Computing the an overapproximation Ûj−1 for the control input range κ(X̂j−1);
3: Computing the flowpipes F1(x0, τ), . . . ,FN (x0, τ) for the continuous dynamics ẋ =

f(x,u), u̇ = 0 from the initial set x(0) ∈ X̂j−1, u(0) ∈ Ûj−1;
4: R ← R∪ {(F1(x0, τ), . . . ,FN (x0, τ)};
5: X̂j ← FN (z, δ);
6: end for

Notice that x(0) denotes the local initial set for the ODE used in the current control step, while the
variables x0 in a flowpipe are the symbolic representation of an initial state in X0. Intuitively, a
flowpipe overapproximates not only the reachable set in a time step, but also the dependency from an
initial state to its reachable state at a particular time.

In the paper, we use Taylor models to represent the flowpipes. Taylor models are originally proposed
to compute higher-order overapproximations for the ranges of continuous functions (see Berz &
Makino (1998)). They can be viewed as a higher-order extension of intervals Moore et al. (2009)
which are sets of real numbers between lower and upper real bounds, e.g., the interval [a, b] wherein
a ≤ b represents the set of {x | a ≤ x ≤ b}. A Taylor model (TM) is a pair (p, I) wherein p is a
polynomial of degree k over a finite group of variables x1, . . . , xn ranging in an interval domain
D ⊂ Rn, and I is the remainder interval. The range of a TM is the Minkowski sum of the range of
its polynomial and the remainder interval. Thereby we sometimes intuitively denote a TM (p, I) by
p+ I in the paper. TMs are often used as overapproximations for smooth functions. Given a smooth
function f(x) with x ∈ D, its order k TM overapproximation, or simply TM, can be obtained as
(pf (x), If) such that pf is the order k Taylor approximation of f w.r.t. a point in D, and If is a
remainder interval which ensures that ∀x ∈ D.(f(x) ∈ pf (x) + If). Since pf is also over the
same variables x, the overestimation in a TM can be estimated only on the width of If , i,e., if the
remainder is zero, then pf defines the same mapping as f . At this point, a TM serves more like an
overapproximate function than just a range overapproximation such as intervals or polyhedra.

TM arithmetic. TMs are closed under operations such as addition, multiplication, and integration
(see Makino & Berz (2003)). Given functions f, g that are overapproximated by TMs (pf , If) and
(pg, Ig) respectively. A TM for f + g can be computed as (pf + pg, If + Ig), and an order k TM
for f · g can be computed as (pf · pg − rk , If · B(pg) + B(pf) · Ig + If ·Ig + B(rk)) wherein
B(p) denotes an interval enclosure of the range of p, and the truncated part rk consists of the terms
in pf · pg of degrees > k. Similar to reals and intervals, TMs can also be organized as vectors and
matrices to overapproximate the functions whose ranges are multidimensional. For a vector of TMs
((p1, I1), . . . , (pn, In))T such that p1, . . . , pn are over the same variables, we collectively denote it
by (p, I) such that p is the polynomial vector (p1, . . . , pn)T and I is interval vector (I1, . . . , In)T .

3

Under review as a conference paper at ICLR 2022

Figure 3: Exact dependency between the initial set and the control input range for a control step.
Xj−1 is the actual reachable set from X0 at the time (j − 1)δc, its dependency to X0 is represented
by the flowmap ϕN , while Uj−1 is the output range of the NN controller w.r.t. the input range Xj−1,
its dependency on X0 is formed via the composition of κ and ϕN .

As an example, given the TMs (1− 0.5x2, [−0.1, 0.1]) and (x+ 0.1x4, [−0.2, 0.2]) over the domain
x ∈ [−1, 1]. The order 4 TM for the sum is (1 + x − 0.5x2 + 0.1x4, [−0.3, 0.3]), and the order 4
TM for the product is (x− x3 + x4, [−0.38, 0.38]).

Although the technique of Taylor model flowpipe construction can be used to generate state-wise
overapproximate flowpipes for ODEs (see Berz & Makino (1998); Chen (2015)), it is still a challenge
that how to compute and represent the set Ûj−1 by a TM which overapproximates the dependency
from an initial state inX0 to the actual control input rangeUj−1 = {κ(ϕN (x0, (j−1)δc)) |x0 ∈ X0}
at the beginning of that control step. We illustrate this dependency in Figure 3. Our approach aims at
solving this problem.

3 POLYNOMIAL ARITHMETIC FOR NNCS VERIFICATION

In this section, we show how to compute a TM representation for the set Û to overapproximate the
dependency from an initial state in X0 to the actual control input range U in terms of the neural
network controller κ.

Obviously, the key challenges of providing a TM overapproximation (pr(x0), Ir) in terms of κ lie
on how to properly construct a polynomial pr to well capture the state-wise dependency of κ, and
how to effectively estimate a remainder Ir to provide a sound and tight error bound. While the basic
TM arithmetic that works in a layer-by-layer manner for function approximation of a neural network
shows a great potential, demonstrated in early works Ivanov et al. (2021b;a), it still suffers from two
main challenges in terms of the construction of pr and estimation of Ir respectively.

1. Construction of pr. Taylor approximation requires the approximated function to be differentiable,
thus excluding the use of common operations such as ReLU and pooling, and

2. Estimation of Ir. Interval remainders grows rapidly during layer-by-layer propagation of the
TMs, effectively degrading it to an interval analysis.

1 − 0.5&! + &"− 0.3&!&" + −0.1,0.1

−2 + &" − 0.1&!"+ −0.1,0.1

1.5

-1
0.5

2

-0.8

1.2
3

0.1

2

1

0.3

0

-1

2

0

Figure 4: A running example: the numbers in blue
are weights, and the numbers in red are biases.

Our approach, POLAR, focuses exactly on these
two challenges by a novel use of univariate
Bernstein polynomial interpolation (BP) to han-
dle non-differentiable activation functions and
symbolic remainders to taper the growth of the
interval remainders.

Meanwhile, it is worthy noting that Bernstein
polynomial interpolation can also help improve
the remainder estimation, as it is always more
accurate than Taylor expansion at the same order
for a function. Thus, we use univariate Bernstein
polynomial interpolation for all the activation
functions, not limited to non-differentiable ReLU.

4

Under review as a conference paper at ICLR 2022

Algorithm 1 Polynomial arithmetic for overapproximating neural network outputs

Input: Input TM (p(x0), I) with x0 ∈ X0, the M + 1 matrices W1, . . . ,WM+1 of the weights on
the incoming edges of the hidden and the output layers, the M + 1 vectors B1, . . . , BM+1 of the
neurons’ bias in the hidden and the output layers, the M + 1 activation functions σ1, . . . , σM+1

of hidden and output layers.
Output: a TM (pr(x0), Ir) that contains the set κ((p(x0), I)).

1: (pr, Ir)← (p, I);
2: for i = 1 to M + 1 do
3: (pt, It) ← Wi · (pr, Ir) +Bi; # Using TM arithmetic
4: Computing an order k Bernstein polynomial pσ for the activation function over the range

defined by (pt, It), i.e., pσ(y) ≈ σi(y) with y ∈ (pt, It);
5: Evaluating a safe remainder Iσ for the polynomial pσ such that ∀y ∈ (pt, It).(σi(y) ∈

pσ(y) + Iσ) holds;
6: (pr, Ir) ← pσ(pt + It) + Iσ; # Using TM arithmetic
7: end for
8: return (pr, Ir).

We use the following running example to demonstrate the effectiveness of POLAR. We show the
result of using basic TM arithmetic here, and in each of the following sections, we will demonstrate
the improvements from using Bernstein polynomials and symbolic remainders respectively.

Example 1 (Running example with basic TM arithmetic) We demonstrate the computation of a
TM output for a small neural network shown in Figure 4. The input is a vector of two TMs over
x0 = (z1, z2)T which denotes the initial state in a 2-D state space. The neural network has 2 inputs,
1 output and 2 hidden layers each of which has 2 neurons. The activation functions of all the hidden
layers and output layer are sigmoid. In the figure, the TMs 1− 0.5z1 + z2 − 0.3z1z2 + [−0.1, 0.1]
and −2 + z2 − 0.1z2

1 + [−0.2, 0.2] are the inputs, and z1, z2 ∈ [−1, 1]. We hope to obtain an order
2 TM for the output. Note that, with the basic TM arithmetic, we cannot obtain the output TM, as the
remainders for the first hidden layer already explode to the order of 1e23 due to the coarse Taylor
approximations for the neural network.

3.1 POLYNOMIAL ARITHMETIC INTEGRATED WITH BERNSTEIN POLYNOMIAL

Given a TM input for a neural network, our approach combines the use of TM arithmetic and
Bernstein polynomial interpolation to produce a state-wise overapproximation set for the output of
a neural network. The high-level steps are described in Algorithm 1, in which we assume that the
neural network has M hidden layers, the neurons in the same layer have the same type of activation
functions, and the output layer’s neurons also have activation functions. We collectively use σ(y) to
denote applying the activation function σ to each element of y.

In Algorithm 1, the input TM is propagated layer-wisely. While the linear transformation in terms of
the layer weight and bias (line 3) and the TM composition (line 6) can be calculated by TM arithmetic,
the key step is how to point-wisely approximate activation function by Bernstein polynomial
(line 4) and how to evaluate a sound remainder efficiently (line 5).

Computing the Bernstein polynomial pσ (line 4). Given the computed TM (pt, It) in Line 3, pσ
is a vector of univariate Bernstein polynomials Lorentz (2013) each component of which is expressed
in a variable yj which denotes the range of the j-th component (dimension) of (pt, It). Then the

j-th component of pσ is computed as pjσ(yj) =
∑k
s=0

(
σ(

Ȳj−Y j

k s+ Y j)
(
k
s

) (yj−Y j)s(Ȳj−yj)k−s

(Ȳj−Y j)k

)
which is an approximation of the σ(yj) such that Ȳj and Y j denotes the upper and lower bounds
respectively of the range in the j-th dimension in (pt, It), and they can be obtained by interval
evaluating the TM.

Evaluating a remainder Iσ for pσ (line 5). The remainder Iσ is a vector of intervals, each compo-
nent of which is a conservative remainder for the corresponding Bernstein polynomial in pσ such that
the approximation error for σ((pt, It)) is contained. To do so, the j-th interval in Iσ is evaluated as

5

Under review as a conference paper at ICLR 2022

[−εj , εj] such that

εj = max
i=1,··· ,m

(∣∣∣∣∣pjσ(
Y j − Y j

m
(i− 1

2
) + Y j)− σj(

Y j − Y j
m

(i− 1

2
) + Y j)

∣∣∣∣∣+Lj ·
Y j − Y j

m

)
wherein m is the number of samples which are uniformly selected to estimate the remainder. The
soundness of the error bound estimation above has been proven in Huang et al. (2019) for multivariate
Bernstein polynomials. Since univariate Bernstein polynomials, which we use in this paper, is a
special case of multivariate Bernstein polynomials, our approach is also sound. We also provide a
detailed proof in the appendix.

Advantages of Bernstein polynomials. We briefly discuss the advantages of using BP in the
approximation of activation functions. (i) Taylor approximation requires the approximated function
to be differentiable, however BP approximation only requires the function to be continuous. This
fact makes Taylor approximation not applicable to ReLU functions. (ii) BP approximations are
essentially polynomial interpolations which are always more accurate approximation forms than
Taylor expansion at the same order for the a function (see Phillips (2003)). Thus, we apply univariate
BP for general activation functions, rather than just for ReLU (iii) Unlike using multivariate Bernstein
polynomials in Huang et al. (2019), our framework only computes univariate Bernstein polynomials
such that the complexity is always linear in the approximation order k, and the remainder is much
easier to be evaluated. In contrast, the size of a multivariate Bernstein polynomial grows exponentially
in k.

Example 2 (Running example with Bernstein polynomial) We can obtain the output TM of Ex-
ample 1 with BP (see the supplementary document), where the remainder is [−0.132, 0.132].

It is important that the polynomial arithmetic algorithm 1 containing the univariate BP can provide a
sound state-wise approximation of a neural network, that leads to the soundness of overall flowpipe
construction. Specifically, if the input TM (p, I) is a state-wise overapproximation for the reachable
state at the beginning of i-th control step, i.e., p(x0) + I contains the reachable state at the time
t = (i− 1)δc from x0 for all x0 ∈ X0, then the returned TM pr(x0) + Ir by Algorithm 1 contains
the exact i-th control input in the execution starting from x0 for all x0 ∈ X0, i.e., the output
TM (pr, Ir) is a state-wise overapproximation of the control input. Hence, we have the important
property given in Theorem 1, and then the setR computed by flowpipe construction (Section 2) is an
overapproximation of the system reachable set in K control steps. A detailed proof can be found in
the appendix.

Theorem 1 If (p(x0, t), I) is the i-th flowpipe computed in the j-th control step, then for any initial
state x0 ∈ X0, the box (p(x0, t), I) is guaranteed to contain the reachable state ϕN (x0, (j − 1)δc +
(i− 1)δ + t), i.e., the TM flowpipes computed by our approach are state-wise overapproximations
for the reachable sets.

3.2 SYMBOLIC REMAINDERS IN NEURAL NETWORK ANALYSIS

The layer-by-layer propagation across the neural network in Algorithm 1 requires a sequence of
consecutive compositions of TMs (line 3 and line 6 for each layer), then the TM remainders may
potentially be greatly enlarged by these operations, since they are evaluated by pure interval arithmetic.
For example, we want to obtain a TM for the polynomial p(y) = c+Ay+ph(y) with y = (q(x0), I),
such that c+Ay is the constant and linear part of p, and ph is the higher-order part. The result can
be obtained by evaluating c + A · q(x0) + A · I + ph(q(x0) + I) by TM arithmetic such that the
term A · I will be wrapped by its interval evaluation which introduces extra overestimation. During
the consecutive compositions of TMs, that overestimation will accumulate, and such phenomenon
is called wrapping effect Jaulin et al. (2001). To further reduce the overestimation in our TMs, we
propose to adapt the symbolic remainder technique, which was previously proposed in Chen &
Sankaranarayanan (2016) for ODEs, to avoid the wrapping effect in the layer-by-layer propagation
for NNs under linear mappings. The key idea is that we do not compute the interval of A · I out when
propagating the TMs to the next layer, but keeps its linear transformation matrix A. When the set
is involved in a later linear mapping B ·A · I , we only composing the matrices and keep the set as
(B ·A) · I . Such a technique requires us to use extra lists to keep the linear transformation matrices.
The detailed method is given below.

6

Under review as a conference paper at ICLR 2022

Algorithm 2 TM output computation using symbolic remainders, input and output are the same as
those in Algorithm 1

1: (pr, Ir)← (p, I);
2: Setting Q as an empty array which can keep M + 1 matrices;
3: Setting J as an empty array which can keep M + 1 multidimensional intervals;
4: for i = 1 to M + 1 do
5: Computing the composite function qi and the remainder interval Iσi

using Bernstein overap-
proximation and TM arithmetic (similar to Line 3 to 5 in Algorithm 1);

6: Constructing Qi using the coefficients of the linear terms in qi;
7: Computing qRi from qi by eliminating the linear terms;
8: (φi, Ji)← qRi (pr + Ir) + Iσi

; # Using TM arithmetic
9: J← Ji;

10: for j = 1 to i− 1 do
11: Q[j]← Qi · Q[j];
12: end for
13: Adding Qi to Q as the last element;
14: for j = 2 to i do
15: J← J +Q[j] · J [j − 1];
16: end for
17: Adding Ji to J as the last element;
18: Computing (pr, Ir) according to (1); # Using TM arithmetic
19: end for
20: return R.

Specifically, we denote the resulting TM (pr, Ir) and the Bernstein overapproximation (pσ, Iσ) in the
i-th iteration (layer) in Algorithm 1 by (pr,i, Ir,i) and (pσi

, Iσi
) respectively. Then (pr,i(x0), Ir,i)

for i = 1, . . . ,M + 1 is computed as pr,i(x0) + Ir,i = pσi
(Wi · (pr,i−1(x0) + Ir,i−1) + Iσi

with (pr,0(x0), Ir,0) = (p(x0), I) which is the input TM. If we use qi(y) to denote the function
pσi(Wi ·y), the above expression can be simplified to pr,i(x0)+Ir,i = qi(pr,i−1(x0)+Ir,i−1)+Iσi .
By decomposing the linear and the remaining part in qi, the function can be expressed as qi(y) =
Qiy + qRi (y) such that Qi is the constant matrix consists of the coefficients of the linear terms in qi,
and qRi is the nonlinear and the constant part in qi. Hence, the output TM can be further expressed as

pr,i(x0) + Ir,i = Qi(pr,i−1(x0) + Ir,i−1) + qRi (pr,i−1(x0) + Ir,i−1) + Iσi︸ ︷︷ ︸
φi(x0)+Ji

and then by unfolding the recurrence relation, we have

pr,i(x0) + Ir,i = Qi(pr,i−1(x0) + Ir,i−1) + φi(x0) + Ji

= Qi(Qi−1(pr,i−2(x0) + Ir,i−2) + φi−1(x0) + Ji−1) + φi(x0) + Ji

= Qi · · · · ·Q1 · p(x0) +Qi · · · · ·Q1 · I + Φi(x0) + Ji
(1)

wherein Φi = φi(x0) + Qi · φi−1(x0) + · · · + Qi · · · · · Q2 · φ1(x0), and Ji = Ji + Qi · Ji−1 +
· · ·+Qi · · · · ·Q2 · J1. Hence, the term Qi · · · · ·Q1 · I can be evaluated without wrapping effect,
and if we keep an array for Jj , the computation of Ji is also free from wrapping effect. Algorithm 2
shows the improvement of Algorithm 1 in accuracy using the symbolic remainder method such that
we additionally use two arrays: Q[j] is Qi · · · · ·Qj and J [j] is Ji for 1 ≤ j ≤ i.

Example 3 (Running example with symbolic remainder) The remainder of the output TM of Ex-
ample 1 with our symbolic remainder technique is further reduced to [−0.069, 0.069], which is more
than 40% improvement compared to the result without symbolic remainder, i.e. [−0.132, 0.132].

Time and space complexity. Although Algorithm 2 always produces a TM with a smaller remainder
than Algorithm 1 because of the symbolic treatment of the remainder intervals I and Ji under linear
mappings, it requires (1) two extra arrays to keep the matrices QM , QM ·QM−1, . . . , QM · · · · ·Q1,
and the remainder JM+1, . . . , J1, (2) two extra inner loops which perform i− 1 and i− 2 iterations
in the i-th outer iteration. The size of Qi · · · · ·Qj is determined by the rows in Wi and the columns
in Wj , and hence the maximum number of neurons in a layer determines the maximum size of the

7

Under review as a conference paper at ICLR 2022

-0.6 -0.4 -0.2 0 0.2
-0.9

-0.85

-0.8

-0.75

-0.7

Initial Set

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1
0.5

0.6

0.7

0.8

0.9

1

Initial Set

-0.2 0 0.2 0.4 0.6 0.8
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

Initial Set

Figure 5: Comparison between reachable sets of the 6-dimensional attitude control benchmark
produced by POLAR (green) and Verisig 2.0 (gray). The red curves are simulated trajectories.

matrices in Q. Similarly, the maximum dimension of Ji is also bounded by the maximum number of
neurons in a layer. Because of the two inner loops, time complexity of Algorithm 2 is quadratic in M ,
whereas Algorithm 1 is linear in M .

4 EXPERIMENTS

In this section, we first present an illustrating example of attitude control with 6 state variables and 3
control inputs. We then present a comprehensive comparison to the state-of-the-art tools over the full
benchmarks in the related work Huang et al. (2019). Finally, we remark on the observed limitations
of our approach. All our experiments were run on a machine with 6-core 2.90 GHz Intel Core i5 and
8GB of RAM.

Illustrating example: attitude control. We consider the attitude control of a rigid body with six
states and three inputs as a physically illustrating example Prajna et al. (2004). The complexity of
this example lies in the combination of the numbers of the state variables and control inputs. The
system dynamics is

ω̇1 = 0.25(u0 + ω2ω3), ω̇2 = 0.5(u1 − 3ω1ω3), ω̇3 = u2 + 2ω1ω2,

ψ̇1 = 0.5
(
ω2(ψ2

1 + ψ2
2 + ψ2

3 − ψ3) + ω3(ψ2
1 + ψ2

2 + ψ2 + ψ2
3) + ω1(ψ2

1 + ψ2
2 + ψ2

3 + 1)
)
,

ψ̇2 = 0.5
(
ω1(ψ2

1 + ψ2
2 + ψ2

3 + ψ3) + ω3(ψ2
1 − ψ1 + ψ2

2 + ψ2
3) + ω2(ψ2

1 + ψ2
2 + ψ2

3 + 1)
)
,

ψ̇3 = 0.5
(
ω1(ψ2

1 + ψ2
2 − ψ2 + ψ2

3) + ω2(ψ2
1 + ψ1 + ψ2

2 + ψ2
3) + ω3(ψ2

1 + ψ2
2 + ψ2

3 + 1)
)
.

wherein the state x=(ω, ψ) consists of the angular velocity vector in a body-fixed frame
ω∈R3, and the Rodrigues parameter vector ψ∈R3. The control torque u∈R3 is updated
every 0.1 seconds by a neural network with 3 hidden layers each of which has 64 neu-
rons. The activation of the hidden layers are sigmoid and identity respectively. The initial
state set is: ω1∈[−0.45,−0.44], ω2∈[−0.55,−0.54], ω3∈[0.65, 0.66], ψ1∈[−0.75,−0.74], ψ2 ∈
[0.85, 0.86], ψ3 ∈ [−0.65,−0.64]. POLAR computed the TM flowpipes for 30 control steps in
201 seconds. Figure 5 shows the plot of the octagonal enclosures of the flowpipes. We can observe
that the flowpipes computed by POLAR are tight w.r.t. the simulated traces. As a comparison,
although Verisig 2.0 Ivanov et al. (2021a) can handle this system in theory, its remainder explodes
very quickly and the tool crashes after only a few steps.

Comparison to state-of-the-arts. We compare POLAR to the state-of-the-art tools on the full
benchmarks in Huang et al. (2019), including Sherlock Dutta et al. (2019) (only for ReLU) , Verisig
2.0 Ivanov et al. (2021a) (only for sigmoid and tanh), NNV Tran et al. (2020), and ReachNN*Fan
et al. (2020)1. We refer to Huang et al. (2019); Ivanov et al. (2021a) for the details of the benchmarks.
The results are presented in Table 1 where NNV is not included since we were not able to successfully
use it to prove any of the benchmarks likely because it is designed for linear systems. Similar results
for NNV are also observed in Ivanov et al. (2021a). We can see that POLAR successfully verifies
almost all cases within seconds, which is on average 23x and up to 353x faster compared to the
tool with the second best efficiency, and achieves the best performance among all the tools (detailed

1The results of ReachNN* are based on GPU acceleration.

8

Under review as a conference paper at ICLR 2022

Table 1: V : number of state variables, σ: activation functions, M : number of hidden layers, n:
number of neurons in each hidden layer. For each approach (POLAR, ReachNN*, Sherlock, Verisig
2.0), we give the runtime in seconds if it successfully verifies the property. ‘Unknown’: the property
could not be verified. ‘–’: the approach cannot be applied due to the type of σ.

V NN Controller POLAR ReachNN* Sherlock Verisig 2.0
σ M n Fan et al. (2020) Dutta et al. (2019) Ivanov et al. (2021a)

1 2

ReLU 3 20 22 26 42 –
sigmoid 3 20 20 75 – 47

tanh 3 20 18 Unknown – 46
ReLU+tanh 3 20 11 71 – –

2 2

ReLU 3 20 2 5 3 –
sigmoid 3 20 Unknown 13 – 7

tanh 3 20 3 73 – Unknown
ReLU+tanh 3 20 2 Unknown – –

3 2

ReLU 3 20 13 94 143 –
sigmoid 3 20 24 146 – 44

tanh 3 20 22 137 – 38
ReLU+sigmoid 3 20 14 150 – –

4 3

ReLU 3 20 1 8 21 –
sigmoid 3 20 3 22 – 11

tanh 3 20 3 21 – 10
ReLU+tanh 3 20 2 12 – –

5 3

ReLU 4 100 7 103 15 –
sigmoid 4 100 15 27 – 190

tanh 4 100 16 Unknown – 179
ReLU+tanh 4 100 6 Unknown – –

6 4

ReLU 4 20 4 1130 35 –
sigmoid 4 20 6 13350 – 83

tanh 4 20 6 2416 – 70
ReLU+tanh 4 20 4 1413 – –

comparisons on the tightness of reachable sets can be found in the Appendix). In addition, POLAR
scales better with the size of the neural network controller compared to ReachNN* and Verisig 2.0.
This demonstrates the potential of handling larger scale systems such as the attitude control example.
Note that the only exception is #2 with sigmoid NN controller. We discuss this in detail below.

Limitations. POLAR did not prove the property on test # 2 with sigmoid activation but Verisig 2.0
and ReachNN* did. The main reason is the combined use of Bernstein and Taylor approximations.
Although a lower-order Taylor approximation can be derived from a higher-order one by truncating
the higher-order terms, it is not the case for a Bernstein approximation since the term coefficients
often need to be recomputed if the order is changed. Thus, simply using truncation to simplify a TM
may produce a large remainder. Secondly, TM-based techniques can be sensitive to the choice of TM
settings (stepsizes, orders, etc.). In our experiments, we use the same TM settings for all the tools.

5 CONCLUSION

In this paper, we propose POLAR, a polynomial arithmetic framework, which integrates TM flowpipe
construction, Bernstein overapproximation, and symbolic remainder method to efficiently compute
reachable set overapproximations for NNCS. Empirical comparison over a suite of benchmarks
show that POLAR performs significantly better than state-of-the-art techniques in terms of both
computation efficiency and tightness of reachable set estimation. Future work includes automatic
tuning of the hyper-parameters in POLAR to further improve performance and accessibility.

Reproducibility Statement. The implementation code can be found in our attached attached zip
package, and we will also release it on GitHub once published. In addition, we also provide proofs of
two important propositions, the TM outputs of Example 2 and Example 3, and the additional experi-
mental results that include the visualization of the reachable set computed by different approaches in
the Appendix.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Matthias Althoff. An introduction to CORA 2015. In International Workshop on Applied veRification
for Continuous and Hybrid Systems (ARCH), volume 34 of EPiC Series in Computing, pp. 120–151,
2015. 1

Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical computer science, 126(2):
183–235, 1994. 1, 3

Martin Berz and Kyoko Makino. Verified integration of ODEs and flows using differential algebraic
methods on high-order Taylor models. Reliable computing, 4:361–369, 1998. 3, 4

Xin Chen. Reachability Analysis of Non-Linear Hybrid Systems Using Taylor Models. PhD thesis,
RWTH Aachen University, 2015. 4

Xin Chen and Sriram Sankaranarayanan. Decomposed reachability analysis for nonlinear systems.
In Proc. of RTSS’16, pp. 13–24, 2016. 6

Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. Flow*: An analyzer for non-linear hybrid
systems. In Proc. of CAV’13, volume 8044 of LNCS, pp. 258–263, 2013. 1

Tommaso Dreossi, Thao Dang, and Carla Piazza. Parallelotope bundles for polynomial reachability.
In Proceedings of ACM International Conference on Hybrid Systems: Computation and Control
(HSCC), pp. 297–306. ACM, 2016. 1

Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. Output range analysis
for deep feedforward neural networks. In Proc. of NFM’18, volume 10811 of LNCS, pp. 121–138.
Springer, 2018. 1

Souradeep Dutta, Xin Chen, and Sriram Sankaranarayanan. Reachability analysis for neural feedback
systems using regressive polynomial rule inference. In Proc. of HSCC’19, pp. 157–168. ACM,
2019. 1, 2, 8, 9, 13, 14

Jiameng Fan, Chao Huang, Xin Chen, Wenchao Li, and Qi Zhu. ReachNN*: A tool for reachability
analysis of neural-network controlled systems. In Proceedings of International Symposium on
Automated Technology for Verification and Analysis (ATVA), volume 12302 of LNCS, pp. 537–542.
Springer, 2020. 2, 8, 9, 13, 14

Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray, Olivier Lebeltel,
Rodolfo Ripado, Antoine Girard, Thao Dang, and Oded Maler. Spaceex: Scalable verification
of hybrid systems. In Proceedings of International Conference on Computer Aided Verification
(CAV), volume 6806 of Lecture Notes in Computer Science, pp. 379–395, 2011. 1

Chao Huang, Xin Chen, Wang Lin, Zhengfeng Yang, and Xuandong Li. Probabilistic safety verifica-
tion of stochastic hybrid systems using barrier certificates. ACM Trans. Embed. Comput. Syst., 16
(5s):186, 2017a. 1

Chao Huang, Jiameng Fan, Wenchao Li, Xin Chen, and Qi Zhu. ReachNN: Reachability analysis
of neural-network controlled systems. ACM Trans. Embed. Comput. Syst., 18(5s):106:1–106:22,
2019. 1, 2, 6, 8, 13, 14

Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety verification of deep neural
networks. In Proc. of CAV’17, volume 10426 of LNCS, pp. 3–29. Springer, 2017b. 1

Radoslav Ivanov, James Weimer, Rajeev Alur, George J. Pappas, and Insup Lee. Verisig: verifying
safety properties of hybrid systems with neural network controllers. In Proc. of HSCC’18, pp.
169–178. ACM, 2019. 2

Radoslav Ivanov, Taylor Carpenter, James Weimer, Rajeev Alur, George J Pappas, and Insup Lee.
Verisig 2.0: Verification of neural network controllers using taylor model preconditioning. In Proc.
of CAV’21, volume 12759 of LNCS, pp. 249–262. Springer, 2021a. 2, 4, 8, 9

Radoslav Ivanov, Taylor J. Carpenter, James Weimer, Rajeev Alur, George J. Pappas, and Insup Lee.
Verifying the safety of autonomous systems with neural network controllers. ACM Trans. Embed.
Comput. Syst., 20(1):7:1–7:26, 2021b. 2, 4, 13, 14

10

Under review as a conference paper at ICLR 2022

Luc Jaulin, Michel Kieffer, Olivier Didrit, and Éric Walter. Interval analysis. In Applied Interval
Analysis. Springer, 2001. 2, 6

Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex: An
efficient SMT solver for verifying deep neural networks. In Proc. of CAV’17, volume 10426 of
LNCS, pp. 97–117. Springer, 2017. 1

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In ICLR’16
(Poster), 2016. 1

George G. Lorentz. Bernstein Polynomials. American Mathematical Society, 2013. 5

John Lygeros, Claire J. Tomlin, and Shankar Sastry. Controllers for reachability specifications for
hybrid systems. Automatica, 35(3):349–370, 1999. 1

Kyoko Makino and Martin Berz. Taylor models and other validated functional inclusion methods.
International Journal of Pure and Applied Mathematics, 4(4):379–456, 2003. 3

James D. Meiss. Differential Dynamical Systems. SIAM publishers, 2007. 2

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533, 2015. 1

R. E. Moore, R. B. Kearfott, and M. J. Cloud. Introduction to Interval Analysis. SIAM, 2009. 3

Yunpeng Pan, Ching-An Cheng, Kamil Saigol, Keuntaek Lee, Xinyan Yan, Evangelos A. Theodorou,
and Byron Boots. Agile autonomous driving using end-to-end deep imitation learning. In Proc. of
RSS’18, 2018. 1

George M. Phillips. Interpolation and Approximation by Polynomials. Springer Science & Business
Media, 2003. 6

Stephen Prajna and Ali Jadbabaie. Safety verification of hybrid systems using barrier certificates. In
Hybrid Systems: Computation and Control, pp. 477–492. Springer, 2004. 1

Stephen Prajna, Pablo A Parrilo, and Anders Rantzer. Nonlinear control synthesis by convex
optimization. IEEE Transactions on Automatic Control, 49(2):310–314, 2004. 8

Gagandeep Singh, Rupanshu Ganvir, Markus Püschel, and Martin T. Vechev. Beyond the single
neuron convex barrier for neural network certification. In Proc. of NeurIPS’19, pp. 15072–15083,
2019. 1

Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau, Luan Viet Nguyen,
Weiming Xiang, Stanley Bak, and Taylor T. Johnson. NNV: the neural network verification tool for
deep neural networks and learning-enabled cyber-physical systems. In Proc. of CAV’20, volume
12224 of LNCS, pp. 3–17. Springer, 2020. 8, 13, 14

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Formal security analysis
of neural networks using symbolic intervals. In Proc. of USENIX Security (USENIX), pp. 1599–
1614, 2018. 1

Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, and Inderjit
Dhillon. Towards fast computation of certified robustness for relu networks. In International
Conference on Machine Learning (ICML), 2018. 1

Zhengfeng Yang, Chao Huang, Xin Chen, Wang Lin, and Zhiming Liu. A linear programming
relaxation based approach for generating barrier certificates of hybrid systems. In Formal Methods,
pp. 721–738. Springer, 2016. 1

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural network
robustness certification with general activation functions. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems, pp. 4944–4953, 2018. 1

11

Under review as a conference paper at ICLR 2022

A TM OUTPUTS OF THE RUNNING EXAMPLE

The result with Bernstein polynomial:

(7.920880969687617e− 01) + (−7.738563820601800e− 03 ∗ z2)+

(4.240508129753556e− 03 ∗ z1) + (1.541011940991888e− 03 ∗ z2
2)+

(2.115950977442756e− 03 ∗ z1 ∗ z2) + (3.129465795158815e− 04 ∗ z2
1)+

[−1.316162684352782e− 01, 1.316162684352782e− 01]

The result with symbolic remainder:

(7.879035543566243e− 01) + (−7.425376458676299e− 03 ∗ z2)+

(4.133105242196053e− 03 ∗ z1) + (−7.124243361287374e− 05 ∗ z2
2)+

(7.930977707887526e− 05 ∗ z1 ∗ z2) + (−2.207266239135132e− 05 ∗ z2
1)+

[−6.906656051103792e− 02, 6.906656051103792e− 02]

B THEOREM PROOF

B.1 PROOF OF SOUNDNESS OF SAMPLING-BASED ERROR ANALYSIS

Proof. The input range of an activation function σj is subdivided into m line segments. Consider the

i-th segment [
Y j−Y j

m (i− 1) + Y j ,
Y j−Y j

m (i) + Y j], and let c =
Y j−Y j

m (i− 1
2) + Y j be the center

of the segment. The difference between the Bernstein polynomial pjσ and the activation function at
the center of the i-th segment is computed as

∣∣pjσ(c)− σj(c)
∣∣ . Then, the value of εj can be bounded

by this difference at the center, as well as the product between the Lipschitz constant of the activation

function with respect to this segment Lj and the size of the segment
Y j−Y j

m , i.e., Lj ·
Y j−Y j

m . The
detailed deduction is given below.

|pjσ(x)− σj(x)|
=|pjσ(x)− pjσ(c) + pjσ(c)− σj(c) + σj(c)− σj(x)|
≤|pjσ(x)− pjσ(c)|+ |pjσ(c)− σj(c)|+ |σj(c)− σj(x)| Triangle inequality

≤|pjσ(x)− pjσ(c)|+ |pjσ(c)− σj(c)|+ Lj ·
Y j − Y j

2m
Def. of Lipschitz continuity for σj

≤Lj ·
Y j − Y j

2m
+ |pjσ(c)− σj(c)|+ Lj ·

Y j − Y j
2m

Def. of Lipschitz continuity for pjσ [a]

=|pjσ(c)− σj(c)|+ Lj
Y j − Y j

m

Note that Bernstein polynomial pjσ has the same Lipschitz constant with σj [a]. Thus we also use Lj
to bound |pjσ(x)− pjσ(c)| in the deduction. The error bound over the whole range [Y j , Y j] should be
the largest error bound among all the segments. �.

B.2 PROOF OF THEOREM 1

Proof. First, any of our Bernstein overapproximation pσ + Iσ is an input-wise overapproximation
for the (component-wise) activation function σ in a layer, i.e., for any input y in the range that Iσ is
evaluated, we have that σ(y) ∈ pσ(y) + Iσ. Therefore, the Taylor model (TM) output (pr, Ir) of
Algorithm 2 and 3 is a state-wise overapproximation w.r.t. the TM variable z, which is the variable
representing the initial state and ranging in the system initial set X0.

We prove Theorem 1 by an induction on the number of control steps j. Assume that N = δc/δ is the
number of flowpipes computed in each control step.

Base Case. When j = 0, the TM flowpipes are computed for the reachable set in the first control step
and the evolution is under the pure continuous dynamics ẋ = f(x,u0), u̇ = 0 with x(0) ∈ X0 and

12

Under review as a conference paper at ICLR 2022

u(0) = κ(x(0)). The range of u(0), that is {κ(x(0)) |x(0) ∈ X0}, is overapproximated by a TM
(pr(x0), Ir) with z ∈ X0 using Algorithm 2 or 3. Hence, by performing TM flowpipe construction
for the ODE ẋ = f(x,u), u̇ = 0 with the initial set x(0) = x0, u(0) ∈ pr(x0) + Ir such that z
range in X0, we have that for any i = 1, . . . , N , the i-th TM flowpipe (pi(x0, t), Ii) contains the
exact reachable state at the time (i− 1)δ + t. Here, t is the flowpipe local time variable ranging in
[0, δ].

Induction. When j > 0, we assume that the local initial set Xj = (p0(x0), I0) is a state-wise
overapproximation of the reachable set at the time jδc from any x0 ∈ X0. Then by Algorithm 2 or
3, the obtained TM (pr(x0), Ir) is a state-wise overapproximation for the control input set κ(Xj),
i.e., the control output generated by the neural network controller based on the jδc-time state in
the execution from any initial state x0 ∈ X0 is contained in the box pr(x0) + Ir. Hence, for any
i = 1, . . . , N , the i-th flowpipe (pi(x0, t), Ii) computed for the ODE ẋ = f(x,u), u̇ = 0 with
the initial set x(0) ∈ Xj , u(0) ∈ pr(x0) + Ir is a state-wise overapproximation for the reachable
set in the time interval of [jδc + (i− 1)δ, jδc + iδ]. More precisely, the reachable state at the time
jδc + (i− 1)δ + t for any t ∈ [0, δ] is contained in the box pi(x0, t) + Ii. �

C ADDITIONAL EXPERIMENTAL RESULTS

Here, we present additional plots of reachable sets computed by different techniques for the bench-
marks in Section 4 of the main paper.

For each benchmark, the goal is to check whether the system will reach a given target set. For each
tool and in each test, if the computed reachable set overapproximation for the last control step lies
entirely in the target set, we consider the tool to have successfully verified the reachability property.
If the overapproximation of the reachable set does not intersect with the target set, the tool would
have successfully disproved the reachability property. Otherwise, we consider the verification result
to be unknown.

The red trajectories are sample system executions and should be contained entirely by the flowpipes
computed by each tool. The dark green sets are the flowpipes computed by POLAR. The light green
sets are the flowpipes computed by ReachNN* Huang et al. (2019); Fan et al. (2020). The blue
sets are the flowpipes computed by Sherlock Dutta et al. (2019). The grey sets are the flowpipes
computed by Verisig 2.0 Ivanov et al. (2021b). In some benchmarks, the reachable sets computed by
Verisig 2.0 are almost overlapping with the reachable sets computed by POLAR. However, POLAR
takes much less time to compute the reachable sets compared to Verisig 2.0 as shown in Table 1
of the main paper. We also show results from NNV Tran et al. (2020) in yellow for some of the
benchmarks. For the rest, NNV used up all of the system memory (8GB) and could not finish the
computation. Our observations are consistent with those in Ivanov et al. (2021b) where NNV is not
able to verify any of these benchmarks. The blue box represents the target set in each test. Except
for ex2-sigmoid, POLAR produces the tightest reachable set estimation and successfully proves or
disproves the reachability property for all the examples.

D IMPLEMENTATION

The source code can be found in the attached zip. Please follow the instructions described in
README.md to run the examples shown in the paper.

13

Under review as a conference paper at ICLR 2022

-0.5 0 0.5 1

x1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x
2

Benchmark 1 (ReLU)

(a) ex1-relu

-0.5 0 0.5 1

x1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x
2

Benchmark 1 (sigmoid)

(b) ex1-sigmoid

-0.5 0 0.5 1

x1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x
2

Benchmark 1 (tanh)

(c) ex1-tanh

0 0.2 0.4 0.6 0.8 1

x1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x
2

Benchmark 1 (ReLU_tanh)

(d) ex1-relu-tanh

-0.5 0 0.5 1

x1

-1.5

-1

-0.5

0

0.5

1

x
2

Benchmark 2 (ReLU)

(e) ex2-relu

-1 -0.5 0 0.5 1

x1

-3

-2

-1

0

1

2

x
2

Benchmark 2 (sigmoid)

(f) ex2-sigmoid

-1.5 -1 -0.5 0 0.5 1

x1

-3

-2

-1

0

1

2

3

x
2

Benchmark 2 (tanh)

(g) ex2-tanh

-0.5 0 0.5 1

x1

-1.5

-1

-0.5

0

0.5

1

x
2

Benchmark 2 (ReLU_tanh)

(h) ex2-relu-tanh

0.2 0.4 0.6 0.8 1

x1

-0.4

-0.2

0

0.2

0.4

0.6

x
2

Benchmark 3 (ReLU)

(i) ex3-relu
0.2 0.4 0.6 0.8 1

-0.4

-0.2

0

0.2

0.4

0.6

(j) ex3-sigmoid

0.2 0.4 0.6 0.8 1

x1

-0.4

-0.2

0

0.2

0.4

0.6

x
2

Benchmark 3 (tanh)

(k) ex3-tanh
0 0.2 0.4 0.6 0.8 1

-0.4

-0.2

0

0.2

0.4

0.6

(l) ex3-relu-sigmoid

-0.2 -0.1 0 0.1 0.2 0.3

x1

0

0.05

0.1

x
2

Benchmark 4 (ReLU)

(m) ex4-relu

-0.1 0 0.1 0.2 0.3

x1

-0.05

0

0.05

0.1

x
2

Benchmark 4 (sigmoid)

(n) ex4-sigmoid

-0.1 0 0.1 0.2 0.3

x1

-0.05

0

0.05

0.1

x
2

Benchmark 4 (tanh)

(o) ex4-tanh

-0.2 -0.1 0 0.1 0.2 0.3

x1

0

0.05

0.1

x
2

Benchmark 4 (ReLU_tanh)

(p) ex4-relu-tanh

-0.4 -0.2 0 0.2 0.4

x1

0

0.1

0.2

0.3

0.4

0.5

0.6

x
2

Benchmark 5 (ReLU)

(q) ex5-relu

-0.5 0 0.5

x1

0

0.1

0.2

0.3

0.4

0.5

0.6

x
2

Benchmark 5 (sigmoid)

(r) ex5-sigmoid

-0.5 0 0.5

x1

0

0.1

0.2

0.3

0.4

0.5

0.6

x
2

Benchmark 5 (tanh)

(s) ex5-tanh

-0.5 0 0.5

x1

0

0.1

0.2

0.3

0.4

0.5

0.6

x
2

Benchmark 5 (ReLU_tanh)

(t) ex5-relu-tanh

-1 -0.5 0 0.5 1

x1

-1

-0.5

0

0.5

1

x
2

Benchmark 6 (ReLU)

(u) ex6-relu

-1 -0.5 0 0.5 1

x1

-1.5

-1

-0.5

0

0.5

1

x
2

Benchmark 6 (sigmoid)

(v) ex6-sigmoid

-1 -0.5 0 0.5 1

x1

-1.5

-1

-0.5

0

0.5

1

x
2

Benchmark 6 (tanh)

(w) ex6-tanh

-1 -0.5 0 0.5 1

x1

-1

-0.5

0

0.5

1

x
2

Benchmark 6 (ReLU_tanh)

(x) ex6-relu-tanh

Figure 6: Results of Benchmarks. We can see that except for ex2-sigmoid, POLAR produces
the tightest reachable set estimation (dark green sets) and successfully proves or disproves the
reachability property for all the examples. This is in comparison with other state-of-the-art tools
including ReachNN* Huang et al. (2019); Fan et al. (2020) (light green sets), Sherlock Dutta et al.
(2019) (blue sets), Verisig 2.0 Ivanov et al. (2021b) (grey sets), and NNV Tran et al. (2020) (yellow
sets).

14

