
PIPER: Primitive-Informed Preference-based
Hierarchical Reinforcement Learning via Hindsight Relabeling

Utsav Singh 1 Wesley A. Suttle 2 Brian M. Sadler 3 Vinay P. Namboodiri 4 Amrit Singh Bedi 5

Abstract
In this work, we introduce PIPER: Primitive-
Informed Preference-based Hierarchical rein-
forcement learning via Hindsight Relabeling, a
novel approach that leverages preference-based
learning to learn a reward model, and subse-
quently uses this reward model to relabel higher-
level replay buffers. Since this reward is unaf-
fected by lower primitive behavior, our relabeling-
based approach is able to mitigate non-stationarity,
which is common in existing hierarchical ap-
proaches, and demonstrates impressive perfor-
mance across a range of challenging sparse-
reward tasks. Since obtaining human feedback
is typically impractical, we propose to replace the
human-in-the-loop approach with our primitive-
in-the-loop approach, which generates feedback
using sparse rewards provided by the environment.
Moreover, in order to prevent infeasible subgoal
prediction and avoid degenerate solutions, we pro-
pose primitive-informed regularization that con-
ditions higher-level policies to generate feasible
subgoals for lower-level policies. We perform
extensive experiments to show that PIPER mit-
igates non-stationarity in hierarchical reinforce-
ment learning and achieves greater than 50% suc-
cess rates in challenging, sparse-reward robotic
environments, where most other baselines fail to
achieve any significant progress.

1. Introduction
Deep reinforcement learning (RL) has propelled significant
advances in sequential decision-making tasks, where an

1CSE dept., IIT Kanpur, Kanpur, India. 2U.S. Army Research
Laboratory, Adelphi, MD, USA. 3University of Texas, Austin,
Texas, USA. 4Department of Computer Science, University of
Bath, Bath, UK. 5CS dept., University of Central Florida, Or-
lando, Florida, USA.. Correspondence to: Utsav Singh <ut-
savz@cse.iitk.ac.in>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

agent learns complex behaviors through trial and error. Ex-
amples of such tasks include playing Atari games (Mnih
et al., 2013), mastering the game of Go (Silver et al., 2016),
and performing complicated robotic manipulation tasks (Ra-
jeswaran et al., 2017; Kalashnikov et al., 2018; Gu et al.,
2016; Levine et al., 2015). However, the success of RL-
based approaches is impeded by issues like ineffective ex-
ploration and long-term credit assignment, especially in
sparse-reward scenarios (Nair et al., 2018).

Off-policy hierarchical reinforcement learning (HRL) (Sut-
ton et al., 1999; Dayan & Hinton, 1992; Vezhnevets et al.,
2017; Klissarov et al., 2017; Harb et al., 2018) approaches
hold the promise of improved sample efficiency due to
temporal abstraction and improved performance due to
more effective exploration (Nachum et al., 2019). In goal-
conditioned feudal architectures (Dayan & Hinton, 1992;
Vezhnevets et al., 2017), a widely used subset of HRL meth-
ods, higher-level policies predict subgoals for the lower-
level policies, while the lower-level policies try to achieve
those subgoals by executing primitive actions directly in the
environment. Despite their advantages, serious challenges
remain for such approaches. In this paper, we focus on two
important issues: the destabilizing effect of lower-level re-
ward non-stationarity on off-policy HRL (Levy et al., 2018;
Nachum et al., 2018b), and performance degradation due
to infeasible subgoal generation by higher-level policies
(Chane-Sane et al., 2021). 1

Recent approaches in preference-based learning (Christiano
et al., 2017; Ibarz et al., 2018; Lee et al., 2021) use human
feedback to learn a reward model and subsequently apply
RL to solve the task using the learned reward model. Im-
pressively, such methods have demonstrated performance
comparable to RL policies trained with access to ground
truth rewards. This raises the following question: can ad-
vances in preference-based learning be used to simultane-
ously address the twin issues of reward non-stationarity and
infeasible subgoal generation in HRL?

In this work, we provide an affirmative answer to the
above question by proposing PIPER: Primitive Informed
PrEference-based hierarchical reinforcement learning via

1The implementation code and data is provided here.

1

https://github.com/Utsavz/piper.git

PIPER

Lower
primitive

Environment

Higher
Policy

Maze

Push Kitchen

Pick and Place

Learning reward
model using

preferences (PiL)

Higher Level
Replay Buffer

Hollow

Figure 1: PIPER Overview This figure shows the overview of PIPER (left). The higher level policy predicts subgoals gt for the lower
primitive, which executes actions at on the environment. We propose to learn a preference-based reward model r̂ϕ using our PiL feedback
on higher level trajectories sampled from higher level replay buffer, and subsequently use r̂ϕ to relabel the replay buffer transitions,
thereby mitigating non-stationarity in HRL. On the right, we depict the training environments: (i) maze navigation environment, (ii) pick
and place environment, (iii) push environment, (iv) hollow environment, and (v) franka kitchen environment.

hindsight Relabeling. The key realization underlying PIPER
is that a suitably designed preference-based RL approach
can be used to learn a high-level reward model that is si-
multaneously decoupled from non-stationary, lower-level
rewards and carefully tailored to generate feasible subgoals.
To achieve this, several innovations are necessary. First, to
overcome the problem of acquiring the human preference
feedback needed to learn the higher-level reward model,
we propose a goal-conditioned, sparse reward-based ap-
proach to replace human trajectory preferences. Second,
to address the sample-inefficiency arising from the use of
sparse rewards, we apply hindsight experience relabeling
(Andrychowicz et al., 2017) to learn a denser, more infor-
mative higher-level reward model. Finally, to encourage
our higher-level policies to predict subgoals achievable by
lower-level policies, we propose a novel value-function reg-
ularization scheme that calibrates subgoal selection to the
current lower-level policy’s abilities. Taken together, these
techniques form the core of PIPER (see Figure 1). We per-
form extensive experiments in complex, sparse-reward en-
vironments that empirically show that PIPER demonstrates
impressive performance and consistently outperforms the
baselines, as well as ablation studies illustrating the impor-
tance of each of PIPER’s component techniques.

We summarize the main contributions of PIPER:

• We demonstrate that PIPER is able to mitigate
non-stationarity in off-policy HRL, by employing
preference-based feedback.

• Since collecting human preference feedback is imprac-
tical, we propose an alternative primitive-in-the-loop
(PiL) scheme to determine preferences between trajec-
tories without human feedback.

• Using primitive informed regularization, PIPER gener-
ates efficient subgoals, thus improving performance.

• We employ hindsight relabeling to improve sample
efficiency in preference-based learning and deal with
sparsity in sparse-reward scenarios.

• PIPER uses soft target updates to mitigate instabil-
ity due to non-stationary reward model learned using
preference-based feedback.

• PIPER achieves greater than 50% success rates in chal-
lenging, sparse-reward robotic environments, where
most other hierarchical and non-hierarchical baselines
fail to achieve any significant progress.

2. Related Works
Hierarchical Reinforcement Learning. HRL ap-
proaches (Sutton et al., 1999; Barto & Mahadevan, 2003;
Parr & Russell, 1998; Dietterich, 1999) promise the intu-
itive benefits of improved exploration and temporal abstrac-
tion (Nachum et al., 2019). In goal-conditioned feudal hier-
archical learning-based approaches (Dayan & Hinton, 1992;
Vezhnevets et al., 2017), the higher-level policy predicts
subgoals for the lower-level primitive, which in turn tries
to achieve them by executing primitive actions on the envi-
ronment. However, such off-policy HRL approaches face
non-stationarity due to dynamically changing lower-level
primitive behavior. Prior approaches (Nachum et al., 2018b;
Levy et al., 2018) partially address this non-stationarity by
relabeling the goals in the replay buffer. In contrast, we
propose a novel approach that first uses preference-based
learning (Christiano et al., 2017; Lee et al., 2021) to learn a
reward model, and subsequently uses the reward model to
relabel the non-stationary rewards in the replay buffer.

2

PIPER

The option learning framework (Sutton et al., 1999; Klis-
sarov et al., 2017) provides the benefits of temporal abstrac-
tion by learning extended macro actions. Unfortunately,
such approaches can lead to degenerate solutions and thus
require additional regularization approaches to ensure feasi-
ble subgoal prediction. Notably, such degenerate solutions
result in unbalanced task-split which nullifies the advan-
tages of hierarchical learning. In our approach, we perform
primitive-informed regularization to regularize the higher-
level policy to predict achievable subgoals for lower primi-
tive. Another line of work uses previously hand-designed
action primitives (Nasiriany et al., 2021; Dalal et al., 2021)
to accelerate hierarchical learning. Such approaches, how-
ever, depend on the quality of hand-designed primitives,
which is difficult to design in complex environments.

Preference-based Learning. Several prior works have pro-
posed approaches that perform reinforcement learning on
human rankings (Knox & Stone, 2009; Pilarski et al., 2011;
Wilson et al., 2012b; Daniel et al., 2015). (Warnell et al.,
2018) extend the TAMER framework by replacing the re-
ward function by feedback signal. (Christiano et al., 2017)
used deep RL advancements to learn a reward model us-
ing neural networks, based on human preference feedback.
Although some works employed on-policy RL (Christiano
et al., 2017) for solving tasks, a more sample efficient ap-
proach (Lee et al., 2021) used off-policy RL (Haarnoja et al.,
2018) to learn a policy using preference feedback, thereby
improving sample efficiency. In this work, we propose
an off-policy hierarchical RL method that uses preference-
based feedback to mitigate non-stationarity in HRL, and
uses primitive informed regularization to generate achiev-
able subgoals for the lower primitive.

3. Problem Formulation
We consider an MDP (S,A, p, r, γ), where S is the state
space, A is the action space, p : S × A → ∆(S) is the
transition probability function mapping state-action pairs to
probability distributions over the state space, r : S ×A →
R is the reward function, and γ ∈ (0, 1) is the discount
factor. At a given timestep t, the agent is in state st, takes
action at ∼ π(·|st) according to some policy π : S →
∆(A) which maps states to probability distributions over
the action space, receives reward rt = r(st, at), and the
system transitions to a new state st+1 ∼ p(·|st, at). The
standard reinforcement learning (RL) objective is given by

π∗ := argmax
π

J(π) = Eπ

[∞∑
t=0

γtrt

]
, (1)

which is also called policy optimization in literature. The
state action value function Q(s, g, ai) computes the ex-
pected cumulative reward when the start state is s, g is the
final goal, and the next primitive action is ai. In hierarchical

RL (HRL) problem, the higher-level policy aims to achieve
an end goal by issuing subgoals to the lower-level policy,
while the lower-level policy chooses primitive actions ori-
ented towards achieving the specified subgoals. In HRL,
the higher-level policy πH : S → ∆(G) specifies a subgoal
gt ∈ G, where G ⊂ S is the set of possible goals. During ex-
ecution at each time step t, the subgoal gt ∼ πH(·|st) after
every k timesteps and gt = gk·⌈t/k⌉, otherwise. The effect
of this is that the higher-level policy issues new subgoals
every k timesteps and keeps subgoals fixed in between.

Furthermore, at each t, the lower-level policy πL : S×G →
∆(A) selects primitive actions at ∼ πL(·|st, gt) accord-
ing to the current state and subgoal specified by πH , and
the state transitions to st+1 ∼ p(·|st, at). Finally, at
each timestep t, the higher level of the hierarchy pro-
vides the lower level with reward rLt = rL(st, gt, at) =
−1{∥st−gt∥2>ε}, where 1B is the indicator function on
a given set B, while the higher level receives reward
rHt = rH(st, g

∗, gt), where g∗ ∈ G is the end goal and
rH : S × G × G → R is a high-level reward func-
tion that we have yet to specify. The lower level popu-
lates its replay buffer with samples (st, gt, at, r

L
t , st+1),

while, at each t such that after every k timesteps, the
higher level populates its buffer with samples of the form
(st, g

∗, gt,
∑t+k−1

i=t rHi , st+k). Next, we highlight key limi-
tations of existing HRL methods.

3.1. Limitations of Existing Approaches to HRL

While HRL promises significant advantages over non-
hierarchical RL, including improved sample efficiency due
to temporal abstraction and improved exploration (Nachum
et al., 2018b; 2019), serious challenges remain. In this work,
we focus on two outstanding issues:

C1: the destabilizing effect of lower-level reward non-
stationarity on off-policy HRL,

C2: and performance degradation due to infeasible subgoal
generation by higher-level policies.

As discussed in Nachum et al. (2018b) and Levy et al.
(2018), off-policy HRL suffers from non-stationarity
due to changing lower primitive behavior, since, for
a given transition in the higher-level replay buffer
(st, g

∗, gt,
∑t+k−1

i=t rHi , st+k), the rewards and transition
may have been generated by an outdated lower-level policy.
In addition, it was observed in Chane-Sane et al. (2021)
that, without taking care to ensure valid subgoal selection at
the higher level, HRL methods may issue unachievable sub-
goals to the lower-level policy, stalling learning at the lower
level and significantly impacting performance. The pri-
mary motivation of this work is the development of a novel,
preference-based learning-inspired technique for learning
the high-level reward function, rH , that addresses these key

3

PIPER

limitations of existing HRL methods.

4. Proposed Approach
In this section, we introduce our approach, PIPER: Primitive
Informed PrEference-based hierarchical reinforcement
learning via hindsight Relabeling for solving complex
sparse-reward tasks. The motivating idea behind our ap-
proach is that preference-based RL, where human prefer-
ences are used to learn a dense, informative reward function,
can be used to learn a high-level reward function that si-
multaneously mitigates the issues of reward non-stationarity
and infeasible subgoal generation described in Section 3.1.
Before presenting the main idea, let us briefly discuss
preference-based learning.

4.1. Preference-based Learning (PBL)

In traditional RL, agents learn to maximize the accumulated
rewards r(st, at) obtained from the environment, where the
reward r : S × A → R is assumed to be known. In many
real-world scenarios, however, suitable environment rewards
are notoriously difficult to construct and typically require
domain-specific knowledge (Ng et al., 1999). To learn the
high-level reward necessary for the HRL setting considered
in this paper, we use a preference-based RL setup, where the
agent learns to perform the high-level task using preferences
over agent behaviors (Wilson et al., 2012a; Christiano et al.,
2017; Lee et al., 2021; Ibarz et al., 2018).

In the preference-based setting, agent behavior over
a k-length trajectory can be represented by a se-
quence, δ, of state observations and actions: δ =
((st, at), (st+1, at+1)...(st+k−1, at+k−1)). The goal is to
learn a reward function, r̂ϕ : S ×A → R, with neural net-
work parameters ϕ, such that preferences between any two
trajectories δ1, δ2 can be modeled using the Bradley-Terry
model (Bradley & Terry, 1952):

Pϕ

[
δ1 ≻ δ2

]
=

exp
∑

t r̂ϕ
(
s1t , a

1
t

)∑
i∈{1,2} exp

∑
t r̂ϕ

(
sit, a

i
t

) , (2)

where δ1 ≻ δ2 denotes the event that δ1 is preferred over
δ2. To learn parameters ϕ such that (2) matches the true
preferences, behavior and preference data are recorded in
a dataset D with entries of the form (δ1, δ2, y), where y =
(1, 0) when δ1 is preferred over δ2, y = (0, 1) when δ2

is preferred over δ1, and y = (0.5, 0.5) when there is no
preference. The standard approach in the preference-based
literature (see (Christiano et al., 2017; Lee et al., 2021)),
which we adopt in PIPER, is to learn the reward function r̂ϕ
using a cross-entropy loss:

L(ϕ) = −
∑
D

(
y1logPϕ

[
δ1≻δ2

]
+ y2 logPϕ

[
δ2≻δ1

])
,

(3)

where (δ1, δ2, y) ∈ D and y1 and y2 denote the first and
second entries of y. Given the preference model and learn-
ing objective in (2) and (3), we now turn to the problem of
acquiring preference data in our hierarchical setting.

Challenges of directly applying PBL in HRL:

• First, collecting the quantity of human feedback needed
to enable preference-based learning of the high-level
reward function is impractical. To address this, we
propose a replacement PiL scheme to determine pref-
erences between trajectories without human feedback.

• Second, standard goal-conditioned rewards are too
sparse for sample-efficient learning. We therefore in-
corporate hindsight relabeling to reduce sparsity and
increase the informativeness of observed trajectories.

• Third, even with hindsight relabeling the higher-level
policy may choose subgoals that are infeasible for the
lower-level policy, so we regularize the PiL reward
with the value function of the lower-level policy to
encourage feasible subgoal selection.

• Finally, we incorporate soft target updates (Lillicrap
et al., 2015) to mitigate the training instability while
learning the high-level reward function. Taken together,
this combination of techniques constitutes PIPER, the
primary contribution of this paper. The rest of this
section provides details on each aspect of our approach.
Pseudo-code for PIPER is provided in Algorithm 1.

4.2. PiL: Primitive-in-the-Loop Feedback for HRL

We next introduce our Primitive-in-the-Loop (PiL) approach
for generating higher-level preference feedback. This tech-
nique provides an effective, easily computable replacement
for human feedback, avoiding the impracticality of obtain-
ing human preference data for trajectories observed during
training in the HRL setting. The key idea is to replace
human preferences over higher-level trajectories with pref-
erences generated by using a simple, g∗-conditioned sparse
reward to perform pairwise comparisons. We note that the
sparsity of the proposed reward presents additional issues,
which we address in Section 4.3 below.

Implicit reward functions: Let s be the current
state, g be the subgoal predicted by higher level, and
g∗ be the final goal. In our goal-conditioned HRL
setting, we represent k-length trajectories of lower-
level primitive behavior as sequences ∆ given by
∆ = ((st, at), (st+1, at+1), . . . , (st+k−1, at+k−1)), and
n-length trajectories of higher-level behavior as se-
quences σ of states and subgoal predictions, i.e., σ =
((st, gt), (st+k, gt+k), . . . , (st+(n−1)k, gt+(n−1)k)), where
the higher-level policy is executed for n timesteps and the

4

PIPER

lower-level policy is executed for k timesteps between each
pair of consecutive subgoal predictions. In preference-based
learning, the preferences are assumed to correspond to an
implicit reward function r : S ×G ×A → R implied by the
true preferences. Let g∗ be the final goal and σ1 and σ2 be
two higher-level trajectories. Whenever σ1 is preferred to
σ2, denoted by σ1 ≻ σ2, then the assumption that r encodes
the true preferences implies:

Algorithm 1 PIPER

1: Initialize preference dataset D = {}
2: Initialize higher level replay bufferRH = {} and lower

level replay bufferRL = {}
3: Initialize reward model parameters ϕ
4: Initialize target reward model parameters of ϕ′ ← ϕ
5: for i = 1 . . . N do
6: // Collect experience using πH and πL and store

transitions inRH andRL

7: for each timestep t do
8: dH ← dH ∪ {(st, g∗, gt,

∑t+k−1
i=t ri, st+k−1)}

9: dL ← dL ∪ {(st, gt, at, rt, st+1)}
10: end for
11: RH ← RH ∪ dH

12: RL ← RL ∪ dL

13: // Sample higher level behavior trajectories and goal
14: (σ1, σ2) ∼ RH and g ∼ G
15: Sample a set of additional goals for relabeling G′

16: for g
′ ∈ G′

do
17: Relabel g by g

′
and generate label y using Equa-

tion (11)
18: Store preference D ← D ∪ {(σ1, σ2, y)}
19: end for
20: // Reward Model Learning
21: for each gradient step do
22: Optimize model reward r̂ϕ using Equation (3)
23: // Soft update target reward model parameters
24: ϕ′ ← τϕ+ (1− τ)ϕ′

25: end for
26: // Policy Learning
27: for each gradient step do
28: Sample {(σj)}mj=1 fromRH

29: Sample {(δj)}mj=1 fromRL

30: Relabel rewards in {(σj)}mj=1 using target reward
model r̂ϕ′

31: Optimize higher policy πH using SAC
32: Optimize lower policy πL using SAC
33: end for
34: end for

n−1∑
i=0

r(s1t+ik, g
∗, g1t+ik) >

n−1∑
i=0

r(s2t+ik, g
∗, g2t+ik). (4)

Replacing human feedback: In the standard preference-
learning framework, preferences are elicited from human
feedback (Christiano et al., 2017) and are subsequently used
to learn the reward model r̂ϕ. In this work, we replace
this Human-in-the-Loop (HiL) feedback with Primitive-in-
the-Loop (PiL) feedback by using implicit sparse rewards,
rs(st, g

∗, gt), defined presently, to determine preferences y
between behavior sequences σ1 and σ2. We call this feed-
back Primitive-in-the-Loop since we generate this feedback
using primitive sparse rewards. We obtain these primitive
rewards as follows. Suppose the higher level policy πH

predicts subgoal gt ∼ πH(·|st, g∗) for state st and goal
g∗. The lower-level primitive executes primitive actions
according to its policy πL for k timesteps and ends up in
state st+k−1. We use the sparse reward provided by the
environment at state st+k−1 as the implicit sparse reward,
i.e., rs(st, g∗, gt) = −1{∥st+k−1−g∗∥2>ϵ}. Note that this
reward is directly available from the environment. We re-
place the implicit reward r in Equation (4) with rs, and thus
use rs to obtain preferences between higher level behavior
sequences. Concretely, for the goal g∗, σ1 ≻ σ2 implies

n−1∑
i=0

rs(s1t+ik, g
∗, g1t+ik) >

n−1∑
i=0

rs(s2t+ik, g
∗, g2t+ik).

(5)
The preferences elicited using rs are subsequently used to
learn the preference reward function r̂ϕ.

Effect on non-stationarity: Off-policy HRL approaches
suffer from non-stationarity due to outdated transitions in
the higher-level replay buffer caused by the changing lower-
level policy. In our approach, the rewards in the higher-level
replay buffer are relabeled using r̂ϕ. Hence, the transi-
tions are updated from (st, g

∗, gt,
∑t+k−1

i=t ri, st+k−1) to
(st, g

∗, gt, r̂ϕ(st, gt), st+k−1). Since r̂ϕ does not depend
on changing lower primitive behavior, this reward relabel-
ing eliminates the non-stationarity typically encountered in
off-policy HRL.

4.3. PiL with Goal-conditioned Hindsight Relabeling

Despite the intuitive appeal of the sparse PiL feedback re-
ward rs proposed in Section 4.2 for providing preferences
between higher-level trajectories, due to its sparsity it mostly
fails to generate a meaningful reward signal. As a result,
learning an appropriate reward function r̂ϕ using rs as our
PiL primitive is unreliable. To address this issue, we em-
ploy hindsight relabeling (Andrychowicz et al., 2017) when
comparing trajectories σ1 and σ2. Specifically, we first ran-
domly sample a new goal ĝ from the set {s1t+ik, s

2
t+ik}

n−1
i=1

of states encountered during trajectories σ1, σ2, then apply
Equation (5) with g∗ replaced by ĝ:

n−1∑
i=0

rs(s1t+ik, ĝ, g
1
t+ik) >

n−1∑
i=0

rs(s2t+ik, ĝ, g
2
t+ik). (6)

5

PIPER

Using hindsight relabeling, we are able to generate signif-
icantly better preference feedback, resulting in improved
sample efficiency and performance during training. We
show in Section 5, Figure 4 that this simple hindsight relabel-
ing approach significantly boosts performance in complex
sparse-reward tasks.

4.4. Primitive-informed Regularization

As discussed above, the preference reward learned using
PiL with hindsight relabeling motivates the higher-level
policy to reach the goal g, while mitigating non-stationarity.
However, the higher-level subgoal predictions gt may be too
difficult for the current lower-level policy, which may stall
learning at the lower level (see Figure 2 for a comparison of
PIPER with and without regularization). Ideally, the higher-
level policy should produce subgoals at an appropriate level
of difficulty, according to the current capabilities of the
lower primitive. Properly balancing the task split between
hierarchical levels is a recurring challenge in HRL.

For a given lower-level policy πL : S × G → A, denote
the corresponding state value function by VπL(s, g). To
encourage appropriate subgoal selection by the higher-level
policy, we propose using the lower-level state value function
VπL to regularize the higher-level policy to predict feasible
subgoals for the lower-level policy. Intuitively, VπL(st, gt)
provides an estimate of the achievability of subgoal gt from
current state st, since a high value of VπL(st, gt) implies
that the lower level expects to achieve high reward for sub-
goal gt. Let rs(s, g∗, g) denote the parameterized reward
model corresponding to the preference data, as defined in
Section 4.2. For a trajectory τ of length T , consider the
following KL-regularized formulation of preference-based
learning, where πreg is the regularizing policy for the higher-
level policy πH :

max
πH

EπH [

T∑
t=0

(rs(s, g∗, g)−βDKL[π
H(·|st)∥πreg(·|st)])],

(7)
where β ≥ 0 is a scalar hyperparameter controlling the
deviation from the regularization policy πreg. We propose
the following formulation of the regularization policy:

πreg(gt | st) =
exp(m(VπL(st, gt)))

Ẑ(st)
, (8)

where Ẑ(st) =
∑

gt
exp(m(VπL(st, gt)), and m = α

β . The
policy πreg(·|gt) is simply the softmax distribution generat-
ing a given subgoal gt with probability proportional to its
value VπL(st, gt). We substitute (8) in (7) to get

max
πH

EπH

[
T∑

t=0

(rs(s, g∗, g) + α(VπL(st, gt)) + m̂(st))

]
,

(9)

where m̂(st) = βH(st) − β logZ(st), and H(st) =
− log πH(gt|st) is the entropy term for πH . Following
prior work (Levine, 2018; Ziebart et al., 2008), we get the
following optimal solution for the higher-level policy:

πH(gt|st) =
1

Z(st)
exp(

1

β
(rs(s, g∗, g)+α(VπL(st, gt)))),

(10)
where Z(st) =

∑
gt
exp(1β (r

s(s, g∗, g)+α(VπL(st, gt))))
is the partition function and α is the primitive regularization
weight hyperparameter. Appendix A.1 contains the com-
plete derivation. Notice that this optimal policy πH(gt|st)
assigns high probability to subgoals gt which maximize
the regularized reward rtotal(s, g∗, g) = rs(s, g∗, g) +
α(VπL(st, gt)). If we use rtotal to generate preferences
between trajectories instead of the standard preferences out-
lined in Section 4.1, we end up with the optimal policy
under this primitive-regularized, preference-based learning
scheme. Hence, we substitute rtotal(s, g∗, g) into inequality
(6) to yield our final preference condition for determining if
δ1 ≻ δ2:
n−1∑
i=0

rtotal(s1t+ik, ĝ, g
1
t+ik) >

n−1∑
i=0

rtotal(s2t+ik, ĝ, g
2
t+ik).

(11)

PIPER uses the preferences elicited by (11) to learn the
reward function r̂ϕ, which is in turn used to perform reward
relabeling of the higher-level replay buffer. As illustrated
in Figure 2, value regularization can lead to significantly
improved performance in certain tasks, while leading to
minimal performance degradation in others.

4.5. PIPER Implementation

Reward stabilization using target networks: To mitigate
potential training instability when the reward model r̂ϕ is
learned using preference-based learning, we utilize target
networks with soft target updates (Lillicrap et al., 2015). In
practice, we found this to greatly stabilize learning.

Pseudo-code details: We explain our approach in detail
in Algorithm 1. The higher- and lower-level policies are
both trained using Soft Actor Critic (SAC) (Haarnoja et al.,
2018). The rewards in higher level transitions are relabeled
using the reward model r̂ϕ. Instead of relabeling all replay
buffer transitions, we relabel the higher-level replay buffer
transitions as they are sampled while training.

5. Experiments
We perform experiments to empirically investigate the fol-
lowing questions: (1) How well does PIPER perform in
sparse maze navigation and robotic manipulation tasks?
(2) Is PIPER able to mitigate the recurring issue of non-
stationarity in HRL? (3) Does PIPER outperform flat

6

PIPER

(a) Maze navigation (b) Pick and place (c) Push (d) Hollow (e) Kitchen

Figure 2: Success rate comparison This figure compares the success rate performances on four sparse maze navigation and robotic manipulation environments. The solid line
and shaded regions represent the mean and standard deviation, across 5 seeds. We compare our approach PIPER against multiple baselines. As can be seen, PIPER shows
impressive performance and significantly outperforms the baselines.

(a) Maze navigation (b) Pick and place (c) Push (d) Hollow (e) Kitchen

Figure 3: Learning rate α ablation This figure compares the success rate performances for various values of primitive informed regularization weight α hyper-parameter. If α is
too small, we loose the advantages of primitive informed regularization, leading to degrading performance. In contrast, if α is too large, it may lead to degenerate solutions. Thus,
these success rate performance plots demonstrate that proper primitive subgoal regularization is crucial for appropriate subgoal prediction, and improving overall performance.

(a) Maze navigation (b) Pick and place (c) Push (d) Hollow (e) Kitchen

Figure 4: Hindsight Relabeling ablation This figure compares the performance of our PIPER approach with PIPER-No-HR ablation, which is effectively PIPER without
hindsight relabeling (Andrychowicz et al., 2017) (as explained in Section 4.3). The plots showcase that although hindsight relabeling demonstrates minor performance
improvement in sparse maze and kitchen tasks, it provides significant training speedup in sparse pick and place and push environments.

(a) Maze navigation (b) Pick and place (c) Push (d) Hollow (e) Kitchen

Figure 5: Target networks ablation This figure compares the performance of our PIPER approach with PIPER-No-Target ablation, which is effectively PIPER without target
networks implementation (Lillicrap et al., 2015). The plots showcase that using target networks significantly improves performance and indeed reduces training instability caused
by non-stationary reward models r̂ϕ, learnt using preference based learning.

(a) Maze navigation (b) Pick and place (c) Push (d) Hollow (e) Kitchen

Figure 6: Dense rewards ablation This figure compares the success rate performances between PIPER and two baselines based on dense rewards: (i) SAC-Dense, and (ii)
PEBBLE-Dense. Although SAC-Dense outperforms PIPER on easier tasks, PIPER is able to outperform SAC-Dense in harder tasks. Notably, PEBBLE-Dense is unable to solve
any of the tasks. Thus, PIPER shows impressive performance, and is a viable approach in complex sparse reward scenarios.

7

PIPER

preference-based learning? (4) Does PIPER enhance sample
efficiency and training stability? (5) What is the contribution
of each of the design choices in PIPER?

5.1. Setup

We evaluate PIPER on four robotic navigation and ma-
nipulation tasks: (i) maze navigation, (ii) pick and
place (Andrychowicz et al., 2017), (iii) push, (iv) hollow,
and (v) franka kitchen (Gupta et al., 2019). Since we focus
on sparse reward scenarios, we re-implement these environ-
ments as sparse reward environments. Notably, since the
pick and place, push, hollow and kitchen task environments
are difficult, in order to speedup training, we assume ac-
cess to a single human demonstration, and use an additional
imitation learning objective at the lower level. We do not
assume access to any demonstration in the maze navigation
task. We keep this assumption consistent among all base-
lines to ascertain fair comparisons. We provide additional
implementation details in Appendix A.3.

For environments (i)− (v) ((i) maze navigation, (ii) pick
and place (Andrychowicz et al., 2017), (iii) push, (iv)
hollow, and (v) franka kitchen (Gupta et al., 2019)), the
maximum task horizon T is set to 225, 50, 50, 100, 225
timesteps, respectively, and the lower primitive is allowed
to execute for k = 15, 7, 7, 10 and 15 timesteps, respec-
tively. For environments (i)− (v), the primitive regulariza-
tion weight hyper-parameter α is set as 10−5, 10−4, 10−4,
10−4, 10−6 in environments (i) − (v), respectively (see
Figure 3). In our experiments, we use off-policy Soft Ac-
tor Critic (SAC) (Haarnoja et al., 2018) for optimizing RL
objective, using the Adam (Kingma & Ba, 2014) optimizer.
The actor and critic networks are formulated as three-layer,
fully connected neural networks with 512 neurons in each
layer. The experiments are run for 6.75e5, 1.5e5, 6.5E5,
and 6.75e5 timesteps in environments (i) − (iv), respec-
tively. In our experiments, we use off-policy Soft Actor
Critic (SAC) (Haarnoja et al., 2018) for optimizing RL ob-
jective, using the Adam (Kingma & Ba, 2014) optimizer.
The actor and critic networks are formulated as three-layer,
fully connected neural networks with 512 neurons in each
layer. The experiments are run for 6.75e5, 1.5e5, 6.5E5, and
6.75e5 timesteps in environments (i)− (iv), respectively.

In the maze navigation task, the closed gripper (fixed at
table height) of a 7-degree-of-freedom (7-DoF) robotic arm
has to navigate across a four room maze to the goal position.
In pick and place task, a 7-DoF robotic arm gripper has to
navigate to the square block, pick it up and bring it to the
goal position. In the push task, a 7-DoF robotic arm gripper
has to push the square block towards the goal position. In
hollow task, the 7-DOF robotic arm gripper has to pick a
square hollow block and place it such that a fixed vertical
structure on the table goes through the hollow block. In the

kitchen task, a 9-DoF franka robot has to navigate and open
the microwave door. To ensure fair comparisons, we keep
parameters including neural network layer width, number
of layers, choice of optimizer, SAC implementation parame-
ters, etc., consistent across all baselines. For implementing
the RAPS baseline, we use the following lower-level be-
haviors: in maze navigation, we design a single primitive,
reach, where the lower-level primitive travels in a straight
line towards the subgoal predicted by higher level. In the
pick and place, push and hollow tasks, we design three
primitives: gripper-reach, where the gripper goes to given
position (xi, yi, zi); gripper-open, which opens the gripper;
and gripper-close, which closes the gripper. In the kitchen
environment, we use the action primitives implemented in
RAPS (Dalal et al., 2021).

5.2. Evaluation and Results

In order to analyse our design choices, we consider multi-
ple baselines: PIPER-No-V (PIPER without primitive in-
formed regularization, Section 4.4), RFLAT (Single-level
PEBBLE (Christiano et al., 2017) implementation with tar-
get networks), HIER (vanilla hierarchical SAC implemen-
tation), HAC (Hindsight Actor Critic (Levy et al., 2018)),
DAC (Discriminator Actor Critic (Kostrikov et al., 2018)),
FLAT (Single-level SAC), and RAPS (Dalal et al., 2021).
In Figure 2, we compare the success rate performances
of PIPER with hierarchical and non-hierarchical baselines.
To illustrate the advantage of primitive informed regular-
ization, we implemented PIPER-No-V, which is PIPER
without primitive-informed regularization. As seen in Fig-
ure 2, though PIPER significantly outperforms PIPER-No-V
baseline in pick and place and push tasks, it only slightly
outperforms PIPER-No-V in the maze, hollow and kitchen
environments. This illustrates that primitive-informed regu-
larization successfully encourages the higher-level policy to
generate subgoals achievable by lower-level policies.

We implemented two other baselines: HAC (Hierarchical
Actor Critic) (Andrychowicz et al., 2017), a hierarchical ap-
proach that deals with the non-stationarity issue by relabel-
ing transitions, while assuming an optimal lower primitive;
and HIER, which is a vanilla HRL baseline implemented us-
ing SAC. As seen in Figure 2, PIPER is able to significantly
outperform both these baselines, illustrating that PIPER is
indeed able to mitigate non-stationarity in HRL. We also
compare PIPER with RFLAT, which is a re-implementation
of PEBBLE (Christiano et al., 2017) with target networks,
and where the preference feedback is generated using PiL
approach. Since the environments are sparse, we also aug-
mented PEBBLE with hindsight relabeling in our imple-
mentation of RFLAT. As seen in Figure 2, PIPER is able to
significantly outperform RFLAT. This empirically illustrates
that our hierarchical preference-based learning approach is
able to outperform flat preference-based learning approach.

8

PIPER

We finally compare against RAPS (Dalal et al., 2021), a
hierarchical approach where the higher-level policy picks
from among hand-designed action primitives at the lower
level. Importantly, the performance of RAPS depends on
the quality of action primitives. We found that RAPS was
able to outperform PIPER and all other baselines in the
maze navigation environment. We hypothesize that this is
because the hand-designed lower primitive used in the maze
task makes the task significantly easier for the higher level.
However, RAPS did not show progress in the more difficult
pick and place, push, hollow and kitchen tasks. We also
implemented Discriminator Actor-Critic (DAC) (Kostrikov
et al., 2018) with access to a single demonstration in the pick
and place, push, hollow and kitchen environments, to anal-
yse how PIPER fares against single-level baselines trained
with privileged information. Additionally, we compared
PIPER with a single-level RL baseline implemented using
SAC. Both baselines failed to show significant progress,
while PIPER clearly outperforms the baselines.

5.3. Ablation Analysis

Here, we empirically demonstrate the importance of our
each various component technique, by performing corre-
sponding ablation study. We analyze the effect of varying
the weight parameter α in Figure 3, and found that set-
ting appropriate value of hyperparameter α is crucial for
improved performance. If α is too small, we lose the ad-
vantages of primitive-informed regularization, leading to
poor performance. In contrast, if α is too large, it leads
to degenerate solutions. We also analyze the effect of re-
moving the hindsight relabeling (PIPER-No-HR ablation).
In Figure 4, the empirical results show that hindsight rela-
beling indeed leads to improved performance. Further, we
remove the target networks from PIPER (PIPER-No-Target),
to analyze whether using target networks stabilizes training.
As seen in Figure 5, target networks significantly improve
training stability. Finally, in Figure 6, we compare PIPER
against two baselines with well-behaved, hand designed
dense reward functions ((i) flat SAC with dense reward
function (SAC-Dense), and (ii) PEBBLE with actual hu-
man preferences (PEBBLE-Dense)). This comparison aims
to aid the practitioners for choosing between hand-designing
dense reward functions, or implementing PIPER. Although
SAC-Dense outperforms PIPER in easier tasks, PIPER is
able to outperform SAC-Dense in harder environments. No-
tably, SAC-Dense completely fails to solve the kitchen task.
PEBBLE-Dense is unable to show good performance in any
task. We provide further discussion in Appendix A.4.1.

6. Discussion
Limitations: PIPER uses L2 distance between states as the
informative metric, which might be hard to compute in sce-

narios where the subgoals and goals are high-dimensional
(e.g. images). A possible way to deal with this is to find a
near optimal latent representation (Nachum et al., 2018a).
Further, although PIPER replaces human-in-the-loop prefer-
ences via primitive-in-the-loop (PiL) approach to generate
trajectory preferences, human preferences may contain ad-
ditional information that PiL may be unable to capture (say,
humans may prefer trajectories that are safe to traverse,
which do not involve any wall collisions). A possible way to
deal with this issue is to employ additional rewards in Eqn 5,
which prefer a safe trajectory. Similarly, the proposed prim-
itive regularization approach may not generate such safe
subgoals in its naive form. To this end, we can additionally
learn a new safe value function V s(s, g), which regularizes
the higher agents to produce safe subgoals. Finally, the
proposed target networks require additional memory and
training overhead, and require setting the hyper-parameter
τ . However, we found in practice that the memory and train-
ing overheads are minimal, and setting τ does not cause a
significant overhead. Although not explored in this work,
we would like to overcome these limitations in the future.

Conclusion and future work: In this work, we propose
PIPER, a primitive informed hierarchical RL algorithm that
leverages preference based learning to mitigate the non-
stationarity issue in HRL. Using primitive informed regular-
ization, PIPER is able to generate efficient subgoals, accord-
ing to the goal achieving capability of the lower primitive.
We demonstrate that by incorporating primitive informed
regularization, hindsight relabeling, and target networks,
PIPER is able to perform complex robotic tasks in sparse
scenarios, and significantly outperform the baselines. Addi-
tionally, PIPER is able to outperform flat preference based
learning. We therefore believe that hierarchical preference
based learning is a promising step towards building practical
robotic systems that solve complex real-world tasks.

Software and Data
The implementation code and data is provided here.

Impact Statement
Regarding the impact of our proposed approach and al-
gorithm, we don’t see any immediate impact in terms of
technological advancements. Instead, our contributions are
principally conceptual, aiming to address foundational as-
pects of Hierarchical Reinforcement Learning (HRL). By
advocating for a preference-based methodology, we propose
a novel framework that we believe holds significant poten-
tial for enriching HRL research and its associated domains.
This conceptual groundwork lays the foundation for future
explorations and could catalyze advancements in HRL and
related areas.

9

https://github.com/Utsavz/piper.git

PIPER

References
Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong,

R., Welinder, P., McGrew, B., Tobin, J., Abbeel, P.,
and Zaremba, W. Hindsight experience replay. CoRR,
abs/1707.01495, 2017. URL http://arxiv.org/
abs/1707.01495.

Barto, A. G. and Mahadevan, S. Recent advances in hierar-
chical reinforcement learning. Discrete Event Dynamic
Systems, 13:341–379, 2003.

Bradley, R. A. and Terry, M. E. Rank analysis of
incomplete block designs: I. the method of paired
comparisons. Biometrika, 39:324, 1952. URL https:
//api.semanticscholar.org/CorpusID:
125209808.

Cao, Z., Wong, K., and Lin, C.-T. Human preference scal-
ing with demonstrations for deep reinforcement learning.
arXiv preprint arXiv:2007.12904, 2020.

Chane-Sane, E., Schmid, C., and Laptev, I. Goal-
conditioned reinforcement learning with imagined sub-
goals. In International Conference on Machine Learning,
pp. 1430–1440. PMLR, 2021.

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg,
S., and Amodei, D. Deep reinforcement learning from
human preferences. Advances in neural information pro-
cessing systems, 30, 2017.

Dalal, M., Pathak, D., and Salakhutdinov, R. R. Acceler-
ating robotic reinforcement learning via parameterized
action primitives. Advances in Neural Information Pro-
cessing Systems, 34:21847–21859, 2021.

Daniel, C., Kroemer, O., Viering, M., Metz, J., and Peters, J.
Active reward learning with a novel acquisition function.
Autonomous Robots, 39:389–405, 2015.

Dayan, P. and Hinton, G. E. Feudal reinforcement learning.
Advances in neural information processing systems, 5,
1992.

Dietterich, T. G. Hierarchical reinforcement learning
with the MAXQ value function decomposition. CoRR,
cs.LG/9905014, 1999. URL https://arxiv.org/
abs/cs/9905014.

Gu, S., Holly, E., Lillicrap, T. P., and Levine, S. Deep
reinforcement learning for robotic manipulation. CoRR,
abs/1610.00633, 2016. URL http://arxiv.org/
abs/1610.00633.

Gupta, A., Kumar, V., Lynch, C., Levine, S., and Hausman,
K. Relay policy learning: Solving long-horizon tasks
via imitation and reinforcement learning. arXiv preprint
arXiv:1910.11956, 2019.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep rein-
forcement learning with a stochastic actor. CoRR,
abs/1801.01290, 2018. URL http://arxiv.org/
abs/1801.01290.

Harb, J., Bacon, P.-L., Klissarov, M., and Precup, D. When
waiting is not an option: Learning options with a delib-
eration cost. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2018.

Ibarz, B., Leike, J., Pohlen, T., Irving, G., Legg, S., and
Amodei, D. Reward learning from human preferences
and demonstrations in atari, 2018.

Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog,
A., Jang, E., Quillen, D., Holly, E., Kalakrishnan, M.,
Vanhoucke, V., and Levine, S. Qt-opt: Scalable deep
reinforcement learning for vision-based robotic manip-
ulation. CoRR, abs/1806.10293, 2018. URL http:
//arxiv.org/abs/1806.10293.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Klissarov, M., Bacon, P.-L., Harb, J., and Precup, D. Learn-
ings options end-to-end for continuous action tasks. arXiv
preprint arXiv:1712.00004, 2017.

Knox, W. B. and Stone, P. Interactively shaping agents via
human reinforcement: The tamer framework. In Proceed-
ings of the fifth international conference on Knowledge
capture, pp. 9–16, 2009.

Kostrikov, I., Agrawal, K. K., Dwibedi, D., Levine, S., and
Tompson, J. Discriminator-actor-critic: Addressing sam-
ple inefficiency and reward bias in adversarial imitation
learning. arXiv preprint arXiv:1809.02925, 2018.

Lee, K., Smith, L., and Abbeel, P. Pebble: Feedback-
efficient interactive reinforcement learning via relabeling
experience and unsupervised pre-training, 2021.

Levine, S. Reinforcement learning and control as proba-
bilistic inference: Tutorial and review. arXiv preprint
arXiv:1805.00909, 2018.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. End-
to-end training of deep visuomotor policies. CoRR,
abs/1504.00702, 2015. URL http://arxiv.org/
abs/1504.00702.

Levy, A., Konidaris, G., Platt, R., and Saenko, K. Learning
multi-level hierarchies with hindsight. In International
Conference on Learning Representations, 2018.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous

10

http://arxiv.org/abs/1707.01495
http://arxiv.org/abs/1707.01495
https://api.semanticscholar.org/CorpusID:125209808
https://api.semanticscholar.org/CorpusID:125209808
https://api.semanticscholar.org/CorpusID:125209808
https://arxiv.org/abs/cs/9905014
https://arxiv.org/abs/cs/9905014
http://arxiv.org/abs/1610.00633
http://arxiv.org/abs/1610.00633
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1806.10293
http://arxiv.org/abs/1806.10293
http://arxiv.org/abs/1504.00702
http://arxiv.org/abs/1504.00702

PIPER

control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. A.
Playing atari with deep reinforcement learning. CoRR,
abs/1312.5602, 2013. URL http://arxiv.org/
abs/1312.5602.

Nachum, O., Gu, S., Lee, H., and Levine, S. Near-optimal
representation learning for hierarchical reinforcement
learning. arXiv preprint arXiv:1810.01257, 2018a.

Nachum, O., Gu, S. S., Lee, H., and Levine, S. Data-efficient
hierarchical reinforcement learning. Advances in neural
information processing systems, 31, 2018b.

Nachum, O., Tang, H., Lu, X., Gu, S., Lee, H., and Levine,
S. Why does hierarchy (sometimes) work so well in re-
inforcement learning? arXiv preprint arXiv:1909.10618,
2019.

Nair, A., McGrew, B., Andrychowicz, M., Zaremba, W.,
and Abbeel, P. Overcoming exploration in reinforcement
learning with demonstrations. In 2018 IEEE international
conference on robotics and automation (ICRA), pp. 6292–
6299. IEEE, 2018.

Nasiriany, S., Liu, H., and Zhu, Y. Augmenting reinforce-
ment learning with behavior primitives for diverse ma-
nipulation tasks. CoRR, abs/2110.03655, 2021. URL
https://arxiv.org/abs/2110.03655.

Ng, A. Y., Harada, D., and Russell, S. Policy invariance
under reward transformations: Theory and application
to reward shaping. In Icml, volume 99, pp. 278–287.
Citeseer, 1999.

Parr, R. and Russell, S. Reinforcement learning with hierar-
chies of machines. In Jordan, M., Kearns, M., and Solla,
S. (eds.), Advances in Neural Information Processing
Systems, volume 10. MIT Press, 1998.

Pilarski, P. M., Dawson, M. R., Degris, T., Fahimi, F., Carey,
J. P., and Sutton, R. S. Online human training of a my-
oelectric prosthesis controller via actor-critic reinforce-
ment learning. In 2011 IEEE international conference on
rehabilitation robotics, pp. 1–7. IEEE, 2011.

Rajeswaran, A., Kumar, V., Gupta, A., Schulman, J.,
Todorov, E., and Levine, S. Learning complex dexter-
ous manipulation with deep reinforcement learning and
demonstrations. CoRR, abs/1709.10087, 2017. URL
http://arxiv.org/abs/1709.10087.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the

game of go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016.

Sutton, R. S., Precup, D., and Singh, S. Between mdps
and semi-mdps: A framework for temporal abstraction in
reinforcement learning. Artificial intelligence, 112(1-2):
181–211, 1999.

Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N., Jader-
berg, M., Silver, D., and Kavukcuoglu, K. Feudal net-
works for hierarchical reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 3540–3549.
PMLR, 2017.

Warnell, G., Waytowich, N., Lawhern, V., and Stone,
P. Deep tamer: Interactive agent shaping in high-
dimensional state spaces. In Proceedings of the AAAI
conference on artificial intelligence, volume 32, 2018.

Wilson, A., Fern, A., and Tadepalli, P. A bayesian
approach for policy learning from trajectory preference
queries. In Pereira, F., Burges, C., Bottou, L., and
Weinberger, K. (eds.), Advances in Neural Information
Processing Systems, volume 25. Curran Associates, Inc.,
2012a. URL https://proceedings.neurips.
cc/paper_files/paper/2012/file/
16c222aa19898e5058938167c8ab6c57-Paper.
pdf.

Wilson, A., Fern, A., and Tadepalli, P. A bayesian approach
for policy learning from trajectory preference queries.
Advances in neural information processing systems, 25,
2012b.

Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K., et al.
Maximum entropy inverse reinforcement learning. In
Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

11

http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://arxiv.org/abs/2110.03655
http://arxiv.org/abs/1709.10087
https://proceedings.neurips.cc/paper_files/paper/2012/file/16c222aa19898e5058938167c8ab6c57-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/16c222aa19898e5058938167c8ab6c57-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/16c222aa19898e5058938167c8ab6c57-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/16c222aa19898e5058938167c8ab6c57-Paper.pdf

PIPER

A. Appendix
A.1. Deriving the final optimum of KL-Constrained Reward Maximization Objective

In this appendix, we will derive Eqn 10 from Eqn 7. Thus, we optimize the following objective:

max
πU

EπU
[

T∑
t=0

(rs(s, g∗, g)− βDKL[π
H(gt|st)∥πreg(gt|st)])]. (12)

Re-writing the above equation after expanding KL divergence:

= max
πU

EπU
[

T∑
t=0

(rs(s, g∗, g)− β log
πH(gt|st)
πreg(gt|st)

)] (13)

= max
πU

EπU
[

T∑
t=0

(rs(s, g∗, g)− β log πH(gt|st) + β log πreg(gt|st))]. (14)

Here, we substitute πreg from Eqn 8, and m = α
β in Equation 14,

= max
πU

EπU
[

T∑
t=0

(rs(s, g∗, g)− β log πH(gt|st) + β log exp(m(VπL(st, gt)))− β log
∑
gt

exp(m(VπL(st, gt))))] (15)

= max
πU

EπU
[

T∑
t=0

(rs(s, g∗, g)− β log πH(gt|st) + α(VπL(st, gt))− β log
∑
gt

exp(m(VπL(st, gt))))] (16)

= min
πU

EπU
[

T∑
t=0

(log πH(gt|st)−
1

β
(rs(s, g∗, g) + α(VπL(st, gt))) + log

∑
gt

exp(m(VπL(st, gt))))] (17)

= min
πU

EπU
[

T∑
t=0

(log(
πH(gt|st)

exp(1β (r
s(s, g∗, g) + α(VπL(st, gt))))

) + log
∑
gt

exp(m(VπL(st, gt))))] (18)

= min
πU

EπU
[

T∑
t=0

(log(
πH(gt|st)

1
Z(st)

exp(1β (r
s(s, g∗, g) + α(VπL(st, gt))))

) + log
∑
gt

exp(m(VπL(st, gt)))− logZ(st))], (19)

where, Z(st) =
∑

gt
exp(1β (r

s(s, g∗, g) + α(VπL(st, gt)))) is the partition function.

Note that the partition function Z(st) and the term log
∑

gt
exp(m(VπL(st, gt))) do not depend on policy πU . We define

πH∗
(gt|st) =

1

Z(st)
exp(

1

β
(rs(s, g∗, g) + α(VπL(st, gt)))), (20)

which is a valid probability distribution, as πH∗
(gt|st) ≥ 0 and

∑
gt
πH∗

(gt|st) = 1. We can re-organize the equation as

12

PIPER

= min
πU

EπU
[

T∑
t=0

(DKL[π
H(gt|st)∥πH∗

(gt|st)]− log
∑
gt

exp(m(VπL(st, gt)))− logZ(st))], (21)

where πH∗
(gt|st) is minimized when the KL-divergence is 0, according to Gibbs’ inequality. Hence, we get the optimal

solution

πH(gt|st) = πH∗
(gt|st) =

1

Z(st)
exp(

1

β
(rs(s, g∗, g) + α(VπL(st, gt)))). (22)

A.2. Additional Implementation details

In addition, we compare our approach with Discriminator Actor-Critic (Kostrikov et al., 2018), which is provided a
single expert demonstration. Although not explored in this work, combining preference-based learning and learning from
demonstrations is an interesting research avenue (Cao et al., 2020).

A.2.1. ADDITIONAL HYPER-PARAMETERS

Here, we enlist the additional hyper-parameters used in PIPER:

activation: tanh [activation for reward model]
layers: 3 [number of layers in the critic/actor networks]
hidden: 512 [number of neurons in each hidden layers]
Q lr: 0.001 [critic learning rate]
pi lr: 0.001 [actor learning rate]
buffer size: int(1E7) [for experience replay]
tau: 0.8 [polyak averaging coefficient]
clip obs: 200 [clip observation]
n cycles: 1 [per epoch]
n batches: 10 [training batches per cycle]
batch size: 1024 [batch size hyper-parameter]
reward batch size: 50 [reward batch size for PEBBLE and RFLAT]
random eps: 0.2 [percentage of time a random action is taken]
alpha: 0.05 [weightage parameter for SAC]
noise eps: 0.05 [std of gaussian noise added to not-completely-random actions]
norm eps: 0.01 [epsilon used for observation normalization]
norm clip: 5 [normalized observations are cropped to this values]
adam beta1: 0.9 [beta 1 for Adam optimizer]
adam beta2: 0.999 [beta 2 for Adam optimizer]

A.3. Environment details

A.3.1. MAZE NAVIGATION TASK

In this environment, a 7-DOF robotic arm gripper navigates across random four room mazes. The gripper arm is kept closed
and the positions of walls and gates are randomly generated. The table is discretized into a rectangular W ∗H grid, and the
vertical and horizontal wall positions WP and HP are randomly picked from (1,W − 2) and (1, H − 2) respectively. In the
four room environment thus constructed, the four gate positions are randomly picked from (1,WP − 1), (WP + 1,W − 2),
(1, HP − 1) and (HP + 1, H − 2). The height of gripper is kept fixed at table height, and it has to navigate across the maze
to the goal position(shown as red sphere).

The following implementation details refer to both the higher and lower level polices, unless otherwise explicitly stated. The
state and action spaces in the environment are continuous. The state is represented as the vector [p,M], where p is current

13

PIPER

gripper position andM is the sparse maze array. The higher level policy input is thus a concatenated vector [p,M, g], where
g is the target goal position, whereas the lower level policy input is concatenated vector [p,M, sg], where sg is the sub-goal
provided by the higher level policy. The current position of the gripper is the current achieved goal. The sparse maze array
M is a discrete 2D one-hot vector array, where 1 represents presence of a wall block, and 0 absence. In our experiments,
the size of p andM are kept to be 3 and 110 respectively. The upper level predicts subgoal sg , hence the higher level policy
action space dimension is the same as the dimension of goal space of lower primitive. The lower primitive action a which is
directly executed on the environment, is a 4 dimensional vector with every dimension ai ∈ [0, 1]. The first 3 dimensions
provide offsets to be scaled and added to gripper position for moving it to the intended position. The last dimension provides
gripper control(0 implies a fully closed gripper, 0.5 implies a half closed gripper and 1 implies a fully open gripper).

A.3.2. PICK AND PLACE, PUSH AND HOLLOW ENVIRONMENTS

In the pick and place environment, a 7-DOF robotic arm gripper has to pick a square block and bring/place it to a goal
position. We set the goal position slightly higher than table height. In this complex task, the gripper has to navigate to the
block, close the gripper to hold the block, and then bring the block to the desired goal position. In the push environment,
the 7-DOF robotic arm gripper has to push a square block towards the goal position. In hollow task, the 7-DOF robotic
arm gripper has to pick a square hollow block and place it such that a fixed vertical structure on the table goes through
the hollow block. The state is represented as the vector [p, o, q, e], where p is current gripper position, o is the position of
the block object placed on the table, q is the relative position of the block with respect to the gripper, and e consists of
linear and angular velocities of the gripper and the block object. The higher level policy input is thus a concatenated vector
[p, o, q, e, g], where g is the target goal position. The lower level policy input is concatenated vector [p, o, q, e, sg], where sg
is the sub-goal provided by the higher level policy. The current position of the block object is the current achieved goal. In
our experiments, the sizes of p, o, q, e are kept to be 3, 3, 3 and 11 respectively. The upper level predicts subgoal sg , hence
the higher level policy action space and goal space have the same dimension. The lower primitive action a is a 4 dimensional
vector with every dimension ai ∈ [0, 1]. The first 3 dimensions provide gripper position offsets, and the last dimension
provides gripper control (0 means closed gripper and 1 means open gripper). While training, the position of block object and
goal are randomly generated (block is always initialized on the table, and goal is always above the table at a fixed height).

A.4. Additional experiments

In this section, we provide additional experiments, comparing PIPER with additional baselines.

A.4.1. EXPERIMENTS WITH DENSE REWARDS BASELINES

We compare the performance of these baselines with PIPER in Figure 6. We find that single level SAC implementation with
explicitly hand-designed and fine-tuned dense rewards (which we call SAC-Dense baseline) outperforms PIPER in easier
tasks like Maze navigation and Push environments. However, we find that as the task complexity increases, the performance
of SAC-Dense degrades and PIPER is able to outperform SAC-Dense in Pick and Place and kitchen environments. In the
kitchen environment, SAC-Dense fails to solve the task. We believe this to is due to two reasons:

• hand-designing a suitable reward in complex environments is comparatively hard, and may lead to sub-optimal
performance, and

• the advantages of various design choices in PIPER (exploration and task abstraction due to hierarchical structure,
mitigating non-stationarity using preference based RL, reward densification using hindsight relabeling, feasible subgoal
generation using primitive regularization, and added training stability due to target networks) out-weigh the presence of
dense rewards in SAC-Dense baseline.

We also implemented PEBBLE with actual human preferences (rather than primitives), but find that this baseline is unable
to show good performance in any of the tasks. This shows that although PEBBLE shows impressive performance in simple
environments, it needs further improvements to make it work in complex robotic manipulation tasks like the ones explored
in this work.

A.5. Environment visualizations

Here, we provide some visualizations of the agent successfully performing the task.

14

PIPER

Figure 7: Maze navigation task visualization: The visualization is a successful attempt at performing maze navigation task

Figure 8: Pick and place task visualization: This figure provides visualization of a successful attempt at performing pick
and place task

Figure 9: Push task visualization: The visualization is a successful attempt at performing push task

Figure 10: Hollow task visualization: The visualization is a successful attempt at performing hollow task

Figure 11: Kitchen task visualization: The visualization is a successful attempt at performing kitchen task

15

