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ABSTRACT

Large Language Model (LLM)-based recommender systems often rely on pref-
erence summaries to condense a user’s interaction history and help the model
better capture the user’s interests. The quality of downstream recommendations
depends heavily on how accurately the preference summaries align with true pref-
erences. However, prior work has overlooked popularity bias in these summaries,
which often over-represents popular items, and thus, recommendation quality de-
grades. Moreover, the inherent randomness of LLMs produces summaries with
varying fidelity and bias. To address this, we propose an online learning ap-
proach that identifies the most accurate and least biased preference summary. We
formulate the preference summary selection task as a Contextual Bayesian Op-
timization with Constrained Set problem and introduce the Semantic Popularity
Lift-based Preference Summary selecTion (SPLiT) framework. SPLiT incorpo-
rates a Semantic Popularity Lift penalty that quantifies how much a summary am-
plifies popularity bias. The penalty discourages selecting high-bias summaries
and guides the choice toward those that better reflect the user’s true preferences.
SPLIT significantly improves recommendation performance by mitigating popu-
larity bias, achieving 13.8% higher Normalized Discounted Cumulative Gain and
6.9% higher Hit Rate compared with the best baseline. This highlights the impor-
tance of popularity bias-aware summary selection for debiasing prompt optimiza-
tion, advancing fairness and accuracy in LLM-based recommender systems.

1 INTRODUCTION

Recommender systems play a key role in platforms, e.g., video streaming, e-commerce, and social
media, by helping users discover relevant content. Conventional approaches, however, often rely on
collaborative filtering or frequency-based methods (He et al., 2017), which exploit user-item inter-
action history patterns to generate recommendations. However, they face fundamental challenges
such as the cold-start problem, since these methods rely largely on observed user—item interactions
and struggle when such data are sparse (Lam et al.| [2008; |Li et al., |2010). To address these chal-
lenges, LLM-based recommender systems have emerged. Unlike traditional approaches, LLMs have
broad world knowledge and natural-language reasoning that can capture potential relevance beyond
observed interactions. This capability enables preference inference under sparse user—item interac-
tions and improves recommendation quality (Dai et al., [2023; |[Hou et al., [2024)). Building on these
capabilities, LLM-based recommender systems have recently emerged as a promising approach for
accurate and personalized recommendations (Liu et al.,[2023aj |Dai et al., 2023} |Gao et al.| [2025).

As shown in Figure [1] typical LLM-based recommender systems construct prompts that incorpo-
rate user profiles, interaction history, item metadata (e.g., genres or tags, where items refer to the
entities being recommended, such as movies in movie recommender systems), and other contextual
information. These prompts are then fed into the recommender LLM to generate recommendation
results (Dai et al.| [2023)). By integrating world knowledge with user context and item metadata, and
leveraging natural-language reasoning, LLMs can effectively utilize diverse information sources to
achieve higher recommendation quality than traditional methods (Liu et al., 2023c).

However, LLM-based recommender systems suffer from issues such as popularity bias, which tends
to over-recommend generally popular items or genres (Deldjool [2024), resulting in skewed rec-
ommendations and thus degraded recommendation performance (Lichtenberg et al., 2024). This
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popularity bias arises from the tendency of LLMs to memorize their training datasets|Di Palma et al.
(2025). When popular items dominate the data, this memorization skews recommendations toward
those popular items, underscoring the need for effective bias mitigation strategies.

To address this, prior work has proposed different approaches to improve recommendation perfor-
mance for LLM-based recommender systems (Hua et al.,[2023)). One effective approach is to intro-
duce debiasing instructions; this approach adds specific guidance into the input prompt template of
the recommender LLM to alleviate popularity bias (Lichtenberg et al.,2024)). Another approach is to
integrate a preference summary. Prior work shows that a natural-language summary of user context
(e.g., interaction history), which we refer to as a preference summary, can be generated through a
summarization LLM. This preference summary provides a condensed representation of user prefer-
ences. Incorporating the summary into the input prompt of the downstream recommender enables
the recommender LLM to better capture user preferences (Kusano et al.| 2024). Moreover, how
accurately the preference summary aligns with the true user context directly influences the perfor-
mance of downstream recommendations (Wang et al., |2025). While this preference summary oper-
ates orthogonally to debiasing instructions, both approaches share the same objective of improving
recommendation performance, and recent work further shows that combining preference summaries
with debiasing instructions can achieve additional gains (Hamad) 2025).

Although popularity bias can be alleviated in the recommender LLMs, we observe that the inherent
bias of LLMs can also affect the summarization process itself (see Section4.2). When generating a
preference summary using a summarization LLM, the preference summary may over-represent pop-
ular items or genres, thereby introducing popularity bias in the preference summary as well. This
biased summarization propagates into the recommender LLM, ultimately degrading recommenda-
tion performance. Crucially, existing works have overlooked this problem: while they focus on
alleviating popularity bias in the recommender LLM, they neglect the bias already embedded in the
preference summary produced by the summarization LLM. This reveals a key challenge: preference
summaries often over-represent popular items or genres, making it difficult to capture user-specific
preferences. This raises our main goal: how to mitigate the popularity bias in preference summary so
that it more stably captures true preferences of users and improves recommendation performance?

Prior work commonly generates a preference summary by using LLMs to summarize the user con-
text (e.g., interaction history) (Kusano et al.,[2024). However, we observe that the inherent random-
ness of LLMs leads to different preference summaries across runs (see Appendix Specifically,
these summaries vary both in how accurately they capture user preferences and in the extent to
which they amplify popularity bias. Motivated by this, we aim to identify and select higher-quality
preference summaries that better align with user context while exhibiting lower bias, thereby miti-
gating the popularity bias introduced during LLM-based generation and improving recommendation
performance. Compared with traditional prompt optimization methods, such as black-box optimiza-
tion using LLMs (Cheng et al.| 2023; Madaan et al., 2023), the selection approach takes a different
direction. It optimizes preference summary and mitigates its popularity bias in a more reliable and
numerically interpretable manner (Shi et al.|[2024; Ramnath et al., 2025} |Di Palma et al., 2025)).

In this paper, we formulate the preference summary selection as a new optimization problem, Con-
textual Bayesian Optimization with a Constrained Set (CBO-CS). Building on this formulation, we
propose SPLiT (Semantic Popularity Lift-based Preference Summary selecTion), a novel approach
that addresses this problem and mitigates popularity bias in LLM-based recommender systems. The
key idea is to optimize the preference summary through bias-aware selection. Beyond maximizing
reward (user feedback such as click-through rate or ratings, instantiated in our experiments with
metrics like Normalized Discounted Cumulative Gain and Hit Rate), we introduce Semantic Pop-
ularity Lift (SPL) to measure how much a candidate preference summary amplifies popularity bias
relative to the user’s history. By balancing predicted reward with the SPL, SPLIiT selects summaries
that both align with user context and reduce the tendency to over-recommend popular items. Unlike
prior works that address popularity bias by prompt tuning for the recommender LLM (Lichtenberg
et al.} 2024; |Gao et al., [2025), we focus on mitigating popularity bias within the preference sum-
mary, ensuring that the summary is less skewed before being fed into the recommender LLM. This
design introduces a new perspective on mitigating popularity bias to quantify the bias and guide the
selection of preference summaries, thereby providing a more interpretable debiasing mechanism in
LLM-based recommendations. Our main contributions can be summarized as follows:
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Figure 1: Baseline pipelines of LLM-based recommender systems. (1) Basic pipeline: the user
context (e.g., interaction history) and candidate items are directly fed into the recommender LLM to
produce recommendation results (Dai et al.,2023)). (2) Optimized pipeline: the prompt is augmented
with an additional component. (a) Preference summarization: a summarization LLM generates a
natural-language summary from the user context, which is appended to the prompt (Kusano et al.,
2024). (b) Popularity-bias mitigation: a debiasing instruction is added to the input prompt template
to reduce popularity bias (Lichtenberg et al., [2024)).

(i) We reveal that LLM-generated preference summaries tend to over-represent popular items and
genres, which degrades downstream recommendation quality and amplifies popularity bias. To an-
alyze this overlooked source of bias, we introduce the new SPL metric, which quantifies whether
preference summaries over-represent popular genres compared with user histories. Analysis with
SPL shows that preference summaries exhibit such bias, highlighting the need to address it when
improving recommendation performance and fairness.

(i) We formulate a new problem, CBO-CS, for optimizing preference summaries through selection
to better align with user context, and develop SPLIiT to solve it in LLM-based recommender systems.
SPLiT addresses popularity bias by introducing an SPL-based penalty into the selection process,
which discourages preference summaries that over-represent popular genres and guides the selection
away from summaries with popularity bias.

(iii) We evaluate SPLiT in real-world recommendation scenarios using the MovieLens-1M and
Last.fm dataset. The results show notable improvements over multiple baselines. First, compared
with other selection methods, SPLiT achieves the lowest cumulative regret and the smallest SPL
value, demonstrating higher accuracy in selecting the optimal preference summary while reduc-
ing popularity bias. Second, when applied to LLM-based recommender systems, SPLiT improves
NDCG by 13.8% and HR by 6.9% over the best baseline, which indicates substantial gains in rec-
ommendation performance.

2 RELATED WORK

In this section, we focus on recent work that solves the prompt selection and the popularity bias
problems. We further introduce the existing work on recommender systems and prompt optimization
methods in Appendix [A]

Prompt Selection. As an interpretable approach to prompt optimization (Chen et al.,[2023)) , prompt
selection makes the decision process transparent by explicitly evaluating candidate prompts, rather
than relying on traditional black-box optimization through LLMs (Lin et al.,|2024). Early methods
typically assumed a fixed set of candidate prompts for selection (Mao et al., 2025;|Wu et al., 2024b),
overlooking the process of generating prompts from contextual information. Recent studies address
this limitation by formulating prompt selection as an end-to-end optimization process, often mod-
eled as a Bayesian Optimization problem (Schneider et al., 2024} Shi et al., 2024). Despite these
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advancements, most existing works treat the prompt generation and selection stages as independent
problems (Do et al., [2025} [Lin et al., 2024). This separation overlooks the strong interdependence
between the two stages and their mutual influence on overall performance. In particular, when LLMs
are used as prompt generators, they often exhibit inherent limitations such as popularity bias (Licht-
enberg et al., |2024; |Spurlock et al., 2024; Zhang et al.| 2024), which can degrade the quality of
the chosen prompt. These observations highlight the need for unified approaches that jointly model
prompt generation and selection while accounting for such inherent limitations.

Popularity Bias. Popularity bias has been studied as a critical fairness issue in recommender sys-
tems (Klimashevskaia et al.,[2024)). In LLM-based recommender systems, recent studies have shown
that inherent limitations of LLMs make them tend to over-recommend popular items (Lichtenberg
et al., 2024; |Sakib & Das, 2024), primarily due to memorization effects in LLMs (Di Palma et al.,
2025)). When the training data is imbalanced across items, such memorization can lead to recom-
mendations skewed toward high-frequency items. A common metric for quantifying this bias is
popularity lift, which measures the gap between the popularity distribution of recommended items
and that of actual user interaction history (Abdollahpouri et al., [2020). Given the significance of
this issue, recent research has explored approaches such as prompt tuning to mitigate popularity
bias (Lichtenberg et al.l [2024; Bito et al.l |2025). However, prior work on popularity bias in LLM-
based recommenders has focused on recommendation results, leaving the bias embedded in pref-
erence summaries unexplored. Our work aims to identify, analyze, and mitigate this overlooked
source of popularity bias, thereby filling an important gap in the literature.

3 SYSTEM MODEL

In this section, we present the overall architecture of an LLM-based recommender system with pref-
erence summary selection (see Figure E]) Following Kusano et al.|(2024)) and Guo et al.|(2024), how
accurately a preference summary captures the user’s context strongly influences recommendations.
This motivates us to focus on selecting the candidate preference summary most aligned with the
user’s true preferences to improve recommendation performances. Additional analysis supporting
our design choice of selecting among candidate preference summaries rather than final recommenda-
tion lists is provided in Appendix In our recommender system setting, the process unfolds over
a finite time horizon of T rounds. Eachround ¢ € {1,2,--- , T} corresponds to the recommendation
process for one user. At each round ¢, the following sequence of events occurs.

Context and Preference Summary Generation. The system first observes a user context c; (e.g.,
a user’s interaction history). It then uses a candidate summary generator GG, which takes c; as

input, to produce n preference summaries p¢ 1, pt,2, - - - , Pr,n, Where n is a fixed hyperparameter.
These summaries are natural-language descriptions of user preferences derived from the context.
Together, they form the candidate summary set A¢(c;) = {pe.1,P1.2, - ,Pt.n}- In practice, G is

typically implemented as an LLM-based generator (Do et al., [2024), with implementation details
for our setting provided in Appendix

Result and Reward Generation. After generating the candidate summary set A;(c;), the system
selects one preference summary p; € A;(c;) for the current round. The selected summary, together
with the context c;, is fed into a downstream recommender LLM, which we denote by a stochastic
function @, to output a recommendation result ¢; ~ Q(p¢, ¢;). A scalar reward r is then computed
by a function r(g¢, ¢;) that takes the recommendation result and the user context as input and outputs
reward. Importantly, only the reward of the chosen summary is observed, while the rewards of
unchosen candidates remain unknown.

While prior research on popularity bias in LLM-based recommender systems has mainly focused on
the recommender LLM, we highlight that the LLM-based candidate summary generator G can also
introduce popularity bias into the generated preference summaries. This overlooked source of bias
motivates the need to address popularity bias in the summarization phase.

4 SPL: METRIC AND PROBLEM FORMULATION

Building on the system model in Section [3] we now focus on the challenge of popularity bias in
preference summaries. To quantify this effect, we first introduce the Semantic Popularity Lift (SPL)
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Figure 2: Pipeline of an LLM-based recommender system with preference summary selection. The
figure contains two components: (i) the Basic prompting component, which incorporates an LLM-
generated summary without selection, following the Kusano et al.|(2024) pipeline; and (ii) the Pref-
erence summary selection component, which generates multiple candidate summaries and selects.

metric in Section 4.1} which measures the popularity bias of preference summaries. Leveraging this
metric, we present key observations in Section showing that preference summaries not only
exhibit popularity bias but also vary in fidelity due to the inherent randomness of LLMs. Finally,
in Section[4.3] we formulate the preference summary selection task as a new optimization problem,
Contextual Bayesian Optimization with Constrained Set (CBO-CS), and set the objective of learning
an online policy that mitigates popularity bias in order to improve recommendation performance.

4.1 SPL: POPULARITY B1AS METRIC

In this section, we design a new metric, SPL, to quantify the popularity bias embedded in preference
summaries. In prior work, the metric of popularity lift has been used to show the popularity bias
of recommendation items by measuring the extent to which recommended items include dispropor-
tionately more popular genres compared to a user’s interaction history (Abdollahpouri et al., [2020).
However, this metric does not directly apply to preference summaries, since it is defined based on
the frequency of genres in recommendation results. In contrast, a preference summary is a natural-
language description rather than a list of items, and such frequencies cannot be directly quantified.
To address this limitation, we propose SPL, which evaluates how much an LLM-generated prefer-
ence summary semantically amplifies popularity bias relative to the user’s history. To the best of our
knowledge, SPL is the first metric designed for capturing popularity bias in preference summaries.
To this end, we first introduce two expectations: E,,(p), the summary preference expectation in-
ferred from the preference summary p, and Ej,(c), the user history preference expectation inferred
from the user’s context c.

Global Genre Popularity. Following |Abdollahpouri et al.|(2020), let I" be the set of genres and
v € I" an index. We maintain global popularity counts { N, } ycr, where V., denotes the number of

times genre +y has appeared, and total Ny, = > ver INy. We define the global genre popularity as

0(y) := N., /N, which is updated online from newly observed contexts.

Semantic Textual Similarity Distributions.  For a round with context ¢ (a user’s interaction
history) and a preference summary p, We employ a Semantic Textual Similarity Model (STS), in-
stantiated with the nli-roberta-base model (Reimers & Gurevych, 2019), denoted as STS(:, ). The
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STS model takes as input a text (either the context c or the preference summary p) and a genre
label v € T, encodes both into sentence embeddings, and computes their similarity (e.g., cosine
similarity). A softmax normalization is then applied to obtain a probability distribution over genres:

wp(c,v) :=STS(¢,v), wpr(p,y) :=STS(p,7), (1)

with 3 pwn(c,y) = 32, cr wpr(p,7) = 1. Here wy, denotes the genre preference distribution
implied by the user’s history, while w,,, reflects the genre tendency of the preference summary.

User History Preference Expectation. Let ¢ denote the user context information; in our setting,
we use the interaction history as the context. The user history preference expectation, denoted as
En(c), is defined as

Bn(c) :=Y_ wi(c,7) 0(7) = By, (e [0(7)]. )

~yer

Here, wp(c, ) is the normalized weight that the STS model assigns to genre v given the user’s
context ¢, and 6() is the global popularity of genre . Thus, E},(c) is the average global popularity
value of genres according to the user’s historical preferences. Higher values of Ej,(c) mean their
preferred genres are popular overall, while lower values indicate a tendency toward niche genres.

Summary Preference Expectation. Let p denotes a preference summary. The summary prefer-
ence expectation, denoted as E,,(p), is defined as

Ep7' (p) = Z wp’r'(pv FY) 0(7) = E’yfva,.(p}-)[e('}/)} . 3)
~yel

Here, wy,(p, ) is the normalized weight that the STS model assigns to genre y given the preference
summary p, and 6(vy) is the global popularity of genre +y. Thus, E,,.(p) is the average global popu-
larity value of genres according to the preference summary’s genre-preference distribution. Higher
values of E,,(p) mean the preference summary biases toward popular genres, while lower values
indicate a tendency toward niche genres.

Semantic Popularity Lift (SPL). We define the SPL to quantify the popularity bias embedded in
preference summaries. Formally, SPL compares the relative difference between these two expecta-

tions:
Epr(p) — En(c)
Ep(c)

If SPL(p, ¢) > 0, the summary amplifies popularity bias; if SPL(p, ¢) < 0, it emphasizes popular
items less than the user history; and if SPL(p,c¢) = 0, no amplification occurs. Larger absolute
values indicate greater deviation in popularity bias relative to the history. As further discussed in
Appendix the SPL measured on preference summaries is consistent with the traditional popular-
ity lift measured on recommendation results. Moreover, based on the analysis in Appendix [C.2] we
observe that a large SPL value indicates stronger popularity bias in the preference summary, which
in turn leads to degraded recommendation performance. These correspondences validate SPL as an
appropriate metric for capturing the popularity bias of preference summaries.

SPL(p,c) = “)

4.2 KEY OBSERVATIONS AND MOTIVATION

We investigate the behavior of LLM-generated preference summaries and derive key observations
that motivate our problem formulation and algorithmic design. These observations reveal both the
presence of popularity bias and the variability introduced by LLM randomness, providing the foun-
dation for our selection-based approach to mitigate popularity bias of preference summaries.

Observation 1 (Popularity bias in LLM-generated preference summary).

The preference summary is designed to capture user history in a natural-language form. However,
LLM-generated preference summaries may often over-represent popular items or genres, thereby
introducing popularity bias. As illustrated in Figure[7](see Appendix [E.3), popular genres dominate
the generated summaries even when they are underrepresented in the user’s history. To evaluate
this effect, we employ the SPL metric introduced in Section [4.1]to calculate the popularity bias of
preference summaries across user groups. Figure [3] reports SPL values across user groups parti-
tioned by their history preference expectation Ej,(c), which measures the average global popularity
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of genres in a user’s interaction history. Across all groups, SPL values remain consistently above
zero, indicating that LLM-generated summaries tend to amplify popularity bias. The effect is par-
ticularly strong for users with niche tastes, which exhibit higher average SPL, while users with more
mainstream preferences show relatively smaller bias amplification. These findings show that popu-
larity bias is indeed present in LLM-generated preference summaries, underscoring the importance
of addressing it to improve both the performance and fairness of LLM-based recommendations.

g Semantic Popularity Lift across User Groups
Obeservation 2 (Variability induced by LLM 2 4
randomness). Beyond bias, another challenge 5 3]
arises from the inherent randomness of LLMs. 2
Even under the same user context, different Py
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dation performances. Some generated sum-
maries align closely with user history, while
others strongly amplify popular genres. The
examples of experimental results are shown in
the Appendix These observations suggest
that a selection-based approach can be used to
mitigate the popularity bias of preference sum-
maries and thereby improve recommendation
performance.

User History Preference Expectation Ex(c)

Figure 3: Popularity-bias amplification by pref-
erence summarization across user groups. SPL
values above zero indicate amplification, with
stronger effects for niche-taste groups (low user
history preference expectation).

4.3 PROBLEM FORMULATION

We now describe our online preference summary selection problem as a novel CBO-CS problem.
The goal is to improve recommendation performance by mitigating the popularity bias of preference
summaries through selection. Following the system model in Section [3] the process unfolds over
T rounds, indexed by ¢ € {1,2,---,T}. In each round ¢, the system observes a user context c;
and a set of candidate summaries .A;. An online policy 7 chooses one summary p; € A, based
on ¢; and past observations. Executing summary p; yields a recommendation from the downstream
recommender LLM and an observed reward r;. Let u(p, ¢) denote the (unknown) expected reward

when applying summary p under context c. For each round, the optimal achievable mean reward is

pi = maxpe A, 1(p, cr)-

Regret. The performance of a policy is evaluated using cumulative regret over 1" rounds, which
measures the gap between the policy and an oracle that always selects the best summary:

Zl (/‘: - Tt)‘| ’

Regret(T) = E

Objective. The goal is to find an online policy 7 from the space of admissible policies II that
minimizes regret:

in Regret(T
min Regret(T),

Intuitively, this objective ensures that the system quickly identifies the preference summary that
aligns with user interests, so that the overall recommendations approach the quality of those gener-
ated by an oracle with perfect knowledge.

5 ALGORITHM DESIGN

In this section, inspired by Observation 1 in Section[4.2] which shows that preference summaries ex-
hibit popularity bias, we build on the SPL metric introduced in Section[4.1|to develop our algorithm.
We then leverage this metric in introducing Semantic Popularity Lift-based Preference Summary
Selection (SPLiT), which serves as an algorithmic solution to the CBO-CS formulation presented
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in Section[d.3] SPLIiT addresses the constrained, context-dependent preference summary selection
problem while simultaneously mitigating the popularity bias induced by candidate preference sum-
maries. Building on Section [d.1] our key idea is to select the preference summary that maximizes
the expected reward while penalizing those that over-represent popular genres, i.e., the preference
summary with high SPL. The pseudocode of SPLIT is in Algorithm[T](see Appendix [B.3).

At each round t with context ¢; (the user’s interaction history at round ¢), the algorithm proceeds as
follows. The preference summary generator G first produces a candidate set A;(c;) of size n (line 3
of Algorithm . For every candidate preference summary p € A;(c;), the reward estimator M pre-
dicts the mean reward fi; (p) (line 5 of Algorithm (). The SPL penalty & (p) is then computed by Al-
gorithm 2] (line 6 of Algorithm [I)), which compares the preference summary preference expectation
E,(p) with the user history preference expectation Ej,(c,) as defined in Section Given these
components, SPLIT assigns each preference summary a penalized score s;(p) = fi:(p) — A& (p)
(line 7 of Algorithm [I)), where X is a tunable trade-off hyperparameter balancing the predicted re-
ward and the SPL penalty. The algorithm then selects the preference summary p; that maximizes this
score (line 8 of Algorithm I)). Through this step, we are able to optimize for summaries with higher
expected reward while simultaneously favoring those with lower popularity bias. The chosen pref-
erence summary p; is then passed to the downstream recommender () to produce a recommendation
¢: (line 9 of Algorithm|[T)). After receiving ¢;, the user reacts through an interaction such as clicking,
watching, or rating, which is converted into a scalar reward signal r; = r(g¢, ¢;) by the unknown
reward function r (line 9 of Algorithm|I). This reward r; serves as the explicit feedback for online
updates. The reward estimator M is subsequently updated using the observed context c;, reward 7,
selected preference summary p;, and the updated history ; (lines 10-11 of Algorithm[T), where ,
stores all past observations up to round ¢. The global popularity counts N, Ny are updated using
the observed context ¢; by Algorithm [3] (lines 12 of Algorithm [T). Together, Algorithms [2] and 3]
are invoked inside Algorithm[I](line 6 and the final line of Algorithm [I] respectively), ensuring that
SPL penalty and global popularity updates are integrated into the SPLiT algorithm.

6 EXPERIMENTS

In this section, we will evaluate our proposed SPLiT for LLM-based recommender systems and
compare it with other baselines. We assess performance along two aspects. (i) Optimization effec-
tiveness in Section we compare SPLIT against standard Bayesian-optimization baselines and
report cumulative regret under the CBO-CS problem. (ii) Recommendation quality in Section [6.2}
we compare SPLiT with LLM-based prompt-optimization methods, including approaches designed
to mitigate popularity bias in|Lichtenberg et al.|(2024), using standard ranking metrics.

Datasets and Tasks. We conduct experiments on two widely used datasets: MovieLens-1M (Harper
& Konstan, [2015) and Last.fm (Bertin-Mahieux et al.,[2011). We adopt the standard Top- K recom-
mendation task (Appendix and follow a leave-one-out evaluation strategy (Dai et al., 2023)
(Appendix @I) For each user, the most recent interaction is used as the test item, while the
2-6 preceding interactions form the interaction history. To construct the candidate set, we apply
BM25 (Robertson et al., [{1995) (Appendix to retrieve four candidate items from the corre-
sponding dataset (movies in MovieLens and tracks in Last.fm), which are then combined with the
held-out test item to form a five-item candidate set.

Model Specification. The recommender LLM is implemented using GPT-40-mini (OpenAl et al.,
2024), and generates a ranked list over the candidate set as the recommendation results for the target
user. For all experiments, we repeat the evaluation five times and report average results, where each
run randomly samples 100 users from the MovieLens-1M dataset. A recommendation to one user
corresponds to a single decision round.

Evaluation Metrics. We evaluate our framework with two types of metrics: (i) Selection metric:
To assess the effectiveness of preference summary selection, we report cumulative regret (Eq. (??)),
which measures the expected reward loss of the selection policy compared with an oracle policy
that always chooses the optimal summary at each round. This metric focuses on how efficiently the
selection algorithm identifies an optimal preference summary. (ii) Recommendation metrics: To as-
sess recommendation quality, we use two standard metrics following common practice: NDCG@Fk
(Normalized Discounted Cumulative Gain; (Jarvelin & Kekildinen, 2002)) and HR@k (Hit Rate),
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Table 1: Final cumulative regret and Semantic Popularity Lift (SPL) over 100 rounds.

Metric GP-UCB GP-EI BNN-UCB BNN-EI SPLiT (ours)
Cumulative Regret 4.521 4.569 4.326 4.505 3.726
SPL 0.455 0.462 0.456 0.453 0.438

which measures the proportion of users for whom the test item appears in the top-k positions of the
ranked list. Detailed definitions are provided in Appendix and[D.3]

6.1 OPTIMIZATION EFFECTIVENESS

In this section, we evaluate the effectiveness of SPLiT as a preference summary selection algorithm
for solving the CBO-CS problem in Section To assess its performance, we compare SPLiT
against baseline methods designed for Bayesian Optimization problems. We adopt the NDCG @3 as
the reward defined in Section [3] and we will calculate the cumulative regret for each algorithm.

Baselines. We compare SPLiT against several standard Bayesian optimization baselines: (i) GP-
UCB (Rasmussen, 2003} [Srinivas et al.l [2009), (ii) GP-EI (Rasmussenl 2003}, |Jones et al.l [1998)),
(iii) BNN-UCB (Springenberg et al., 2016), and (iv) BNN-EI (Springenberg et al., 2016). Further
details of the optimization baselines are provided in Appendix

Experimental results. We conduct experiments on the MovieLens-1M dataset and evaluate op-
timization performance using cumulative regret as the primary metric. A lower cumulative regret
indicates that the algorithm can more effectively identify a high-quality preference summary with
fewer suboptimal selections. Figure [§] shows the regret curves of our method and the baselines,
where our method achieves lower regret across rounds. We further summarize the final regret values
after 100 rounds in Table[T} SPLIT obtains the lowest final regret (3.726), outperforming GP-based
methods (4.521 for GP-UCB, 4.569 for GP-EI) and BNN-based methods (4.326 for BNN-UCB,
4.505 for BNN-EI). These results imply that our SPLiT converges more quickly to select an optimal
preference summary, requiring fewer suboptimal selections to approach the oracle performance.

Beyond cumulative regret, we also evaluate algorithms using the SPL metric introduced in Sec-
tion which quantifies how strongly the preference summary amplifies popularity bias. Table
shows that SPLiT again achieves the lowest SPL value (0.438), compared with 0.455-0.462 for the
baselines. This indicates that SPLiT more effectively mitigates the popularity bias while preserving
strong optimization performance. Taken together, these results highlight that SPLiT not only min-
imizes regret to guide preference summary optimization toward better-performing candidates, but
also provides fairer, less bias-skewed recommendations than existing methods.

6.2 RECOMMENDATION QUALITY

We further evaluate recommendation quality against representative LLM-based recommender sys-
tems (Dai et al.| 2023)) and methods designed to mitigate popularity bias (Lichtenberg et al., 2024).

Baselines. We evaluate SPLiT against representative LL.M-based recommenders and recent
popularity-bias-mitigation methods: (i) LLM4RS (Dai et al., [2023), (ii) LLMRank (Hou et al.|
2024), (iii) LLM4Rerank (Gao et al., 2025), and (iv) WOK (Lichtenberg et al., [2024). A detailed
description of all baseline methods is provided in Appendix

Experimental Results. We conduct experiments on the MovieLens-1M dataset and Last.fm dataset.
Following the experimental setup described in Section[6} we evaluate the proposed SPLiT algorithm
together with the baseline methods in the context of LLM-based recommender systems. The evalu-
ation is conducted using four standard ranking metrics: NDCG@1/3/5, and HR@3.

In Table[2]and [6] we report a comparison of SPLiT against the baselines on the MovieLens-1M and
Last.fm datasets respectively. The results show that SPLiT consistently outperforms all baselines. In
particular, on the MovieLens-1M dataset, SPLiT achieves an improvement on NDCG@1 (+13.82%)
and HR@3 (+6.85%), indicating its ability to place the most relevant items at the very top of the
ranking and increase the likelihood of recommending items that users actually engage with. The
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Table 2: Performance comparison of SPLiT and baseline methods on the MovieLens-1M dataset
with GPT-40-mini model. We report NDCG@ 1, NDCG@3, NDCG@5, and HR@3.

Method NDCG@1 NDCG@3 NDCG@5 HR@3
LLM4RS 0.2812 0.5171 0.6476 0.6875
LLMRank 0.2667 0.5008 0.6318 0.6800
LLM4Rerank-accuracy 0.3540 0.5446 0.6739 0.6880
LLM4Rerank-fairness 0.3300 0.5475 0.6658 0.7100
WOK-minimization 0.2433 0.4755 0.6188 0.6633
WOK-mitigate 0.3567 0.5612 0.6886 0.7367
SPLIT (ours) 0.4060 0.6175 0.7101 0.7806

Improvement over best baseline +13.82%  +10.03% +3.12%  +6.85%

gains on NDCG@3/5 further demonstrate that the advantage of SPLiT extends beyond the very top
ranks, yielding more accurate rankings overall. These results demonstrate that SPLiT better captures
user preferences and delivers higher-quality recommendations by mitigating popularity bias.

7  DISCUSSION

Our study highlights that popularity bias does not only manifest at the level of recommendation
outputs, but also at the level of LLM-generated prompts, which fundamentally shape downstream
recommendations. By explicitly quantifying this bias through the SPL, our proposed SPLiT algo-
rithm provides a transparent and interpretable mechanism for selecting prompts that better align
with users’ true preferences. This marks a shift from traditional prompt tuning or heuristic-based
approaches, which often operate as black boxes and lack explicit control over bias.

Nevertheless, several challenges remain. First, while SPLiT demonstrates effectiveness in mitigating
popularity bias, its reliance on semantic similarity models such as STS introduces dependencies that
may affect robustness across domains. Second, our experiments are conducted on two benchmark
datasets; extending the evaluation to larger-scale, real-world environments would further validate the
generalizability of the approach. Third, although SPL captures popularity bias at the prompt level,
other biases (e.g., exposure bias and position bias) may interact with it in complex ways, which our
framework does not address yet. Moreover, although the candidate preference summary generator
used in Appendix E], which follows a self-refine strategy (Madaan et al., 2023)), is effective in
improving recommendation performance, it can be costly and slow. Finally, while our experiments
focus on the movie and music recommendation scenario, the issue of popularity-skewed preference
summarization is general and can arise in other recommendation tasks such as news or e-commerce,
suggesting that SPLiT may be broadly applicable.

8 CONCLUSION

We investigated preference summary selection for LLM-based recommender systems, focusing on
the central challenge of popularity bias, which distorts fairness and limits the capture of user prefer-
ences. To address this, we formulate the task as the CBO-CS problem and propose SPLiT . By intro-
ducing the SPL penalty, SPLiT offers a transparent mechanism to quantify how candidate prompts
amplify popularity bias, discouraging over-recommendation of popular genres while better aligning
with niche user preferences. Experiments show that SPLiT reduces cumulative regret and mitigates
bias, ultimately leading to improved recommendation performance. These results highlight bias-
aware preference summary selection as a promising direction for LLM-based recommendation.

In future work, we will extend SPLiT to incorporate multiple forms of bias simultaneously, creat-
ing a unified framework for bias-aware prompt optimization. Furthermore, it would be interesting
to integrate user feedback more dynamically, allowing the system to adaptively refine the trade-off
between reward and bias mitigation in response to changes in user preferences. Finally, investi-
gating cross-domain and multimodal recommendation scenarios may reveal broader applicability,
especially in settings where textual prompts interact with images, audio, or structured metadata.

10
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ETHICS STATEMENT

This work does not involve human subjects, personally identifiable information, or sensitive at-
tributes. All datasets used are publicly available and widely adopted in prior research. We are aware
that large language models may amplify popularity bias in recommendation tasks. To mitigate such
risks, we explicitly analyze bias in our experiments.

REPRODUCIBILITY STATEMENT

We take reproducibility seriously and provide extensive details to facilitate replication: (i) dataset
descriptions are given in Appendix [D.2} (ii) full hyperparameter settings and training details are
listed in Appendix (iii) pseudocode of the core algorithm is included in Appendix and An
anonymous repository with code and scripts will be released with the camera-ready version.

LLM USAGE

Large Language Models (LLMs) were integral to the methodology of this paper. Specifically, we
used GPT-40-mini as the summarization model to generate candidate preference summaries and as
the downstream recommender model to produce ranked lists over candidate items (see Appendix [B.1]
for implementation details). These models were treated purely as experimental components within
our framework, and all algorithmic contributions, including the SPLiT method and the Semantic
Popularity Lift (SPL) metric, were developed by the authors. In addition, LLMs (e.g., GPT-4) were
used in a limited capacity to polish the writing of the paper. All scientific content, experimental
design, and analysis are entirely the authors’ own work, and all LLM outputs were reviewed and
verified by the authors.
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A  SUPPLEMENTARY RELATED WORK

In this appendix, we provide additional related work to complement the discussion in Section[2] We
summarize prior research on LLM-based recommender systems and on prompt optimization, both
of which form the foundation of our study.
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LLM-Based Recommender Systems. Large Language Models (LLMs) have recently been
adopted as the core reasoning engines in recommender systems (Geng et al.,[2022; |Liu et al.,[2023a}
Lin et al., 2025; |Zhao et al.;, |2024). These systems can be adapted to various recommendation
tasks (Li et al.l 2023), including rating prediction (Geng et al., 2022 [Liu et all [2023b)), top-N
recommendation (Dai et al., [2023} [Hou et al.l 2024; |Luo et al.l 2024), and sequential recommen-
dation (Zhang et al.l 2021} |Liao et al., 2024). By leveraging the reasoning ability of LLMs and
their access to vast amounts of background knowledge, LLM-based recommender systems can im-
prove recommendation performance while also providing explicit, human-readable explanations for
recommendations (Wu et al.,|2024a;|Da’u & Salim, 2020).

Prompt Optimization. The quality of input prompts, particularly their ability to accurately cap-
ture user preferences, plays a critical role in determining the effectiveness of LLM-based recom-
mender systems (Mao et al., [2025} [Wang et al., [2025). Early studies focused on manually designing
better instructions, examples, or templates (Mirza et al.,[2024; Madaan et al.} 2023). However, such
manual approaches are often inefficient and lack generalizability across different tasks. The advent
of Automatic Prompt Optimization (APO) has alleviated these limitations by introducing automated
procedures that generate optimized prompts, thus reducing manual effort while improving optimiza-
tion effectiveness (Pryzant et al., 2023; Ramnath et al., 2025; Kong et al.l|2025). Nevertheless, the
quality of the optimized prompts is heavily dependent on the performance of the additional gener-
ation model. Inherent limitations of such models, such as popularity bias, can adversely affect the
performance of the optimized prompts (Lichtenberg et al.,[2024; Di Palma et al., [2025).

B IMPLEMENTATION DETAILS

B.1 CANDIDATE PREFERENCE SUMMARY GENERATOR

In this section, we describe how candidate prompts are generated in our system for subsequent
selection. The baseline prompt template follows the design in|Dai et al.|(2023)) and specifies the fixed
input structure, including the user’s interaction history and candidate items, for the recommendation
LLM. The instance of this template can be seen in Appendix [F.1] The LLMs used to generate these
prompts are implemented by GPT-40-mini (OpenAl et al., 2024). Building on this baseline, and
inspired by both our experimental findings and the results in [Kusano et al.| (2024), we introduce
an additional preference summary component, a structured textual segment summarizing the user’s
interaction history to infer potential preferences. An instance for the preference summary is in
Appendix [F.2] This component explicitly conveys to the recommendation LLM the genres or items
the user is most likely to favor, thereby guiding it toward producing recommendations that better
align with user preferences. Because the other parts of the baseline prompt template remain fixed,
our optimization focuses exclusively on improving this component.

To further enhance the preference summary’s ability to reflect user preferences, we adopt the self-
refine approach from Madaan et al.|(2023) to generate multiple semantically diverse candidate pref-
erence summaries for each user. This method iteratively refines prompts using self-feedback from
the LLM, potentially improving the alignment with user preferences. We provide the implemen-
tation details of the self-refine generation strategy of our experiments in Appendix However,
performance improvements are not consistent across all candidate prompts. Some variants even lead
to degraded recommendation performance. This variability motivates the use of a prompt selection
method to identify the most effective preference summary from the generated set.

The optimized prompt template is constructed by combining the baseline prompt template with the
selected preference summary component. The detailed design of preference summary generation,
experimental validation of its effectiveness, and the complete final input to the recommendation
LLM are provided in the Appendix [F.§]

B.2 IMPLEMENTATION DETAILS OF SELF-REFINE GENERATION STRATEGY

We adopt the self-refine strategy of Madaan et al.|(2023)) to build the final preference summary. The
method uses two LLM roles: a feedback LLM and a refine LLM. We proceed in three steps:
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1. We first produce a candidate preference instruction from the user’s interaction history using
the template in Section

2. The feedback LLM critiques this instruction with the template in Section an example
appears in Section [F.3]

3. The refine LLM revises the instruction using the prompt in Section [F.6] Applying the
revised instruction to the same history yields the refined preference summary shown in
Section[E7]

We can repeat Steps 2 and 3 for more rounds if needed. The refined preference summary is then
inserted into the optimized prompt template in Appendix [F.8]

B.3 BM25-BASED CANDIDATE RETRIEVAL

We adopt a standard BM25 lexical retriever to construct the candidate set for each user before
prompting the downstream LLM. For a given user, we hold out the most recent interaction as the test
item and define the candidate pool as all items in the dataset that the user has not interacted with.
Each item in the pool is represented as a short text document formed by concatenating its title and
genres, followed by lowercasing, basic punctuation removal, and whitespace tokenization. To rep-
resent the user’s preferences, we build a user query by concatenating the titles and genres from the
user’s interaction history using the same preprocessing steps. We then initialize the BM250kap1 re-
triever, following the BM25 formulation in Beaulieu et al.| (1997), on the tokenized pool documents
and compute a relevance score for every item in the candidate pool with respect to the user query.
Items are ranked by their BM25 scores in descending order, and the top K —1 items are selected as
candidates. Together with the held-out test item, this yields K items in total, which are used by the
downstream LLM for recommendation and NDCG computation. This procedure is consistent with
the conventional BM25 pipeline for candidate generation and serves as an appropriate first-stage
retrieval mechanism.

B.4 REWARD ESTIMATOR DETAILS

In our experiments, we adopt a Bayesian Neural Network (BNN) as the reward estimator M in
Section[5] The BNN is trained to predict the expected reward of a preference summary given the
user context. We set the balancing parameter £ = 0.5, and optimize the model using mean squared
error (MSE) loss.

B.5 ALGORITHM PSEUDOCODE

For completeness, we provide the pseudocode of our proposed SPLiT algorithm and its auxiliary
components. Algorithm |I| presents the main SPLiT procedure for preference summary selection.
Algorithm [2] details the computation of the Semantic Popularity Lift (SPL) penalty for a candidate
preference summary, and Algorithm 3]describes how the global genre popularity counts are updated
online from user contexts. These components jointly implement the SPLiT framework introduced
in Section

C SPL METRIC ANALYSIS

C.1 CONSISTENCY BETWEEN SEMANTIC POPULARITY LIFT AND POPULARITY LIFT

In this section, we provide additional evidence that in terms of showing popularity bias, the Semantic
Popularity Lift (SPL) introduced in Section 4.1]is consistent with the standard Popularity Lift (PL)
defined on recommendation results (Abdollahpouri et al., [2020). This consistency supports the use
of SPL as an appropriate metric for capturing popularity bias at the preference summary level.

Experimental setup. We use 100 users from the MovieLens-1M dataset. For each user, SPL is
computed from the generated preference summary, and PL is computed from the recommendation
list by taking the top-3 items from the re-ranked list of 5.
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Algorithm 1: Semantic Popularity Lift-based Preference Summary Selection (SPLiT)

Require : rounds T' € N ; candidate size n; candidate summary generator G; recommender
LLM @Q); unknown reward function r; tradeoff A > 0; reward estimator M with
PREDICT/UPDATE functions; genre set I'; global popularity counts { N} cr and
total Ny

Initialize: history H <— ; initialize M; set N, <— 0 forall v € I', Nyt < 0

for roundt =1,2,...,T do

Observe current user context ¢; ;

Draw candidate set A¢(c;) < G(cp) with [Ai(ct)| = n;

foreach p € A;(c;) do

fi¢(p) <= M.PREDICT(ct, p; He—1);
L &.(p) <~ COMPUTE_SPL_PENALTY(cy, p, { Ny, Niot}) ;
st(p) < he(p) — A& (p);

Pt 4 argmaXye 4, (c,) 5t(p);

Sample q; + Q(p¢, ct) and set ry < r(gs, ¢t);

He — Hie1 U{(ctspe,m0) } s // feedback for chosen p; only
M UPDATE(¢t, pt, 1t; Hi);

UPDATE_GLOBAL_POPULARITY _FROM_CONTEXT({ NNy, Nio }, ¢t);

Algorithm 2: Compute_SPL_Penalty(c, p, { Ny }yer, Niot)
Require : context c; candidate preference summary p; semantic textual similarity model

STS : text — A(T'); global popularity counts { NV, },cr and total Ny
wp(c,7y) < STS(c) ; // genre distribution from context
Wpr(p,y) < STS(p) ; // genre distribution from preference summary
foreach v € I do

Ny
L 0(v) < max(1, Ny)

En(c) = 2 erwnle, 1) 0(7);  Epr(p) ¢ 2 er wpr(p,7) 0(7);
SPL « Epr(p)—En(c).

Ep(c) >
return SPL

Algorithm 3: Update_Global Popularity From_Context({ Ny }er, N, ¢)

Require : genre set I'; current counts {NW}Wep and total Vy,(; context ¢ with per-genre
occurrence counts Count.(y) (the number of times genre «y appears over all
interactions in c¢)

Se <= 22 er Counte(v) ; // total genre occurrences in ¢
foreach ~ € I with Count.(y) > 0 do

| Ny < N, + Count.(y) ; // if ¢ contains < d times, add d
Niot  Niot + 5S¢ 5 // total number of genre labels

Popularity Lift (PL). This definition is consistent with/Abdollahpouri et al.[(2020), as it show the
popularity bias of recommendation results.

Semantic Popularity Lift (SPL). SPL is defined in Section by comparing the global-
popularity-weighted genre distributions of the preference summary and the user history:

Lpr(p) — En(c)

SPL(p,c) = D)

(&)

Results. To test consistency, we bin users into deciles by their SPL values and compute the mean
PL with standard error of the mean (SEM) in each bin. As shown in Figure ] PL increases mono-
tonically with SPL, indicating that a higher SPL in preference summaries corresponds to more
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popularity-skewed recommendation results. At the user level, we also compute correlations: SPL
and PL exhibit a Pearson correlation of » = 0.64 and a Spearman rank correlation of p = 0.43.
These significant correlations further validate the consistency between the two measures.

Consistency: PL vs SPL deciles

0.51

0.44

0.3

0.2

PL (mean per SPL decile)

0.0

0.0 0.1 0.2

0.3 0.4 0.5 0.6 0.7

Mean SPL (deciles)

Figure 4: Consistency of SPL and PL. Users are binned into deciles of SPL, and the mean PL
with SEM is reported for each bin (recommendation set: top-3 of top-5 genres). The monotonic
trend demonstrates that higher SPL values in preference summaries correspond to higher PL in

recommendation results.

Conclusion. These findings demonstrate that SPL and PL are strongly consistent: if a preference
summary exhibits popularity bias as measured by SPL, the corresponding recommendation results
are also very likely to display popularity bias as reflected by PL, with the strength of the bias closely
aligned across the two measures. Therefore, SPL serves as a suitable and reliable metric for quan-
tifying popularity bias in preference summaries, complementing PL. measured on recommendation

results.

C.2 ANALYSIS OF SEMANTIC POPULARITY LIFT (SPL) ON THE RECOMMENDATION

PERFORMANCE

To further investigate the impact of popular-
ity bias on recommendation quality, we ana-
lyze the relationship between Semantic Pop-
ularity Lift (SPL) and the ranking accuracy
of the downstream LLM-based recommender.
Figure [5] reports the average NDCG@3 across
prompts grouped by their SPL values.

Experimental setup. We randomly sampled
360 users from the dataset and generated three
prompts per user using the procedure described
in Section [5] Each prompt was evaluated by
feeding it into the downstream recommender
LLM and computing the NDCG@3 of the re-
sulting recommendation list following the eval-
uation protocol in Section [6] We then associ-
ated each prompt with its computed SPL value
and the corresponding NDCG@3 score. To vi-
sualize the trend, all 1080 prompts were sorted
by SPL and partitioned into ten quantile bins.
Within each bin, we report the mean SPL on the
x-axis, the mean NDCG@3 on the y-axis, and
the standard error of the mean (SEM) as error
bars.

SPL vs NDCG@3

©
~

Mean NDCG@3 = SEM
©
o

o
U

00 05 10 15 20
Mean SPL (decile bins)

Figure 5: Relationship between Semantic Popu-
larity Lift (SPL) and recommendation accuracy.
The figure reports mean NDCG@3 across 1080
prompts (360 users x 3 prompts), grouped into
ten quantile bins by SPL. Error bars indicate the
standard error of the mean (SEM). Higher SPL
values are associated with lower NDCG@3, re-
vealing the negative impact of popularity bias.
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Results. As shown in Figure[5] we observe a clear negative correlation between SPL and recom-
mendation performance. Prompts with the lowest SPL values (close to zero) achieve the highest
NDCG@3, approximately 0.70-0.75. As SPL increases, the average NDCG@3 consistently de-
creases. In the mid-range (0.5-1.0), the performance drops to around 0.55-0.60, and at the highest
SPL levels (near 2.0), the scores converge close to 0.53. While minor fluctuations exist in interme-
diate bins, the downward trajectory is monotonic. The SEM bars further indicate that the trend is
statistically robust.

Discussion. These results demonstrate that prompts with higher SPL, which are more semantically
aligned with popular items, tend to produce worse recommendation outcomes. In contrast, prompts
with low SPL preserve novelty and user-specific relevance, thereby achieving superior NDCG@3.
This analysis provides empirical evidence that popularity bias directly undermines the ranking accu-
racy of LLM-based recommender systems and underscores the importance of SPL-aware debiasing
mechanisms in prompt optimization.

D EXPERIMENTAL SETUP

D.1 RECOMMENDATION TASK: TOP-K RECOMMENDATION

In this work, we focus on the top-K recommendation task (He et al., [2023). The goal is to rec-
ommend a ranked list of K items that a user is most likely to interact with, given their browsing
history, profile, and other contextual information. Here, K is a hyperparameter specifying the num-
ber of items recommended to each user. We adopt the widely used leave-one-out evaluation strategy
in|He et al|(2017) to assess recommendation performance. The detailed evaluation protocol of the
leave-one-out strategy is provided in Appendix [D.3]

D.2 DATASET DESCRIPTION

We conduct experiments on two widely used benchmark datasets for recommender systems:

MovieLens-1M (Harper & Konstanl 2015)). This dataset contains approximately 1 million explicit
ratings from 6,000 users on 4,000 movies. Each movie is associated with metadata such as title and
genres, which we use to analyze popularity bias.

Last.fm (Bertin-Mahieux et al., [2011). This dataset records implicit feedback in the form of music
listening histories from Last.fm users. We process the user—artist interaction data to build preference
histories and use artist tags (e.g., genres) as side information.

Both datasets provide rich user—item interaction histories along with genre-level metadata, enabling
evaluation of recommendation performance and analysis of popularity bias.

D.3 LEAVE-ONE-OUT EVALUATION

We adopt the leave-one-out strategy as our evaluation protocol for item recommendation. The mo-
tivation is to simulate the realistic scenario of predicting a user’s next interaction while avoiding
information leakage. By holding out only the most recent interaction as the test item, the protocol
preserves the temporal order of user behavior and ensures that the model is evaluated on a genuine
prediction task.

Procedure. For each user, we treat the most recent interaction as the test item, and use the few
preceding interactions (2-6 when available) as the user’s history context. To construct a candidate
set, we retrieve four negative items that the user has not interacted with, typically selected by a
retrieval method such as BM25 to provide challenging distractors. These negatives are combined
with the held-out test item to form a candidate set of five items. The recommender is then required
to rank the entire candidate list conditioned on the user history, and evaluation is based on whether
the true test item is ranked highly.
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Evaluation. We compute Hit Ratio (HR) and Normalized Discounted Cumulative Gain (NDCG)
as evaluation metrics. HR measures whether the test item appears within the top-k results (with k£ =
5 in our setup), while NDCG further considers the exact rank position, rewarding higher placements.

Benefits. This protocol is particularly suitable for our setting because it closely mimics the real-
world task of next-item recommendation and, at the same time, ensures fairness by assigning each
user exactly one test case that is both comparable and consistent across the dataset.

D.4 NDCG

Normalized Discounted Cumulative Gain (NDCG@k) In recommender system evaluation, we
assume that for each user u there exists a ranked list R(u), which represents the ordered sequence
of items produced by the recommendation algorithm. Formally, R(u) = (i1, 12, .. .,i|7|), Where i;
is the item at position j and || is the size of the candidate item set. Since only a limited number
of items are displayed to the user in practice, we truncate this list to the top-k results, denoted as
Topk(u) = (41,42, ... ,ik)-

The relevance score 7, ; indicates whether item ¢ is truly relevant for user u. In implicit-feedback
scenarios, we typically adopt a binary definition: r,, ; = 1 if user u actually interacted with item %
(e.g., clicked, watched, or purchased), and 7, ; = 0 otherwise.

Based on this definition, the discounted cumulative gain at cutoff % for user u is given by
DCG@k(u) = Z u (6)
= By i

where i; denotes the j-th item in Topk(u). This formulation captures the fact that relevant items
appearing at higher ranks contribute more to the recommendation quality. To characterize the ideal
ranking, we define the ideal DCG at cutoff k as

k T
2 "% —1
IDCGQk(u) = —_— (7)
; log, (1 + )
where (¢7,...,1}) represents the ideally sorted list with all relevant items ranked before irrelevant
1 k) I€p y

ones. In the case of binary relevance, if user v has multiple relevant items, then

min(k,|Ry|) 1
IDCG@K(u) = )
=

— 3
log, (1 + 7)

where | R, | denotes the number of relevant items for user u, i.e., the number of items ¢ such that
rys = 1 (user u has actually interacted with item 7). If no relevant items exist, IDCG is set

to 1 to avoid division by zero. If no relevant items exist, we define IDCGQFk(u) = 0 and set
NDCG@k(u) = 0 accordingly.

The normalized metric is then defined as

DCG@k(u)/IDCG@I@(u)7 IDCGQ@E(u) > 0,
NDCGQk(u) = ©))
0, otherwise.
Finally, we compute the average performance across all users:
1
NDCG@k = il > NDCG@k(u). (10)
uelU

Therefore, NDCG @k reflects the ranking quality of the top-k recommended items, taking into ac-
count both the relevance of the items and their positions in the list. This makes it one of the most
widely adopted evaluation metrics in recommender systems.
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Table 3: Baseline algorithms used for evaluating optimization effectiveness

Baseline Surrogate Model Acquisition Function
GP-UCB Gaussian  Process (GP) (Ras-| Upper Confidence Bound
mussen, [2003) (UCB) (Srinivas et al., 2009)
GP-EI Gaussian Process (GP) Expected Improvement (EI) (Jones
et al.l |1998)

BNN-UCB Bayesian Neural Network  Upper Confidence Bound (UCB)
(BNN) (Springenberg et al.l
2016)

BNN-EI Bayesian Neural Network (BNN) Expected Improvement (EI)

D.5 HIT RATE

Hit Rate (HR) is a widely used metric to evaluate the effectiveness of a recommender system in
terms of whether the relevant items appear in the top-k recommended list. Formally, suppose we
have a ranked list R(u) generated for user u, and we denote the top-k items in this list as Topk ().
We also define the set of relevant items for user v as R,, = {i | r,,; = 1}, where r,, ; = 1 if user u
has interacted with item 7, and r,, ; = 0 otherwise.

The Hit Rate for user u is then defined as:

HR@K(u) =

{1 if R, N Topk(u) # 0 (11)

0 otherwise

In other words, HR@Fk(u) checks whether at least one of the items that user u actually interacted
with (i.e., relevant items) appears in the top-k recommended list. The overall HR is computed by
averaging over all users:

HR@F = Wll > HR@k(u) (12)
uelU

This metric captures the ability of the recommender system to successfully place at least one relevant
item within the top-k results. A higher HR indicates that users are more likely to find items they
actually care about among the first few recommendations, which is especially important in practice
where users usually only browse the top-ranked results.

D.6 BASELINES OF OPTIMIZATION EFFECTIVENESS

To evaluate the effectiveness of our optimization framework, we compare it against several baseline
algorithms that combine different surrogate models and acquisition functions in the Bayesian op-
timization paradigm. Specifically, we compare our SPLiT algorithm with four common Bayesian
optimization baselines (see Table: (1) GP-UCB, which uses a Gaussian Process (GP) (Rasmussen,
2003)) as the surrogate model with the Upper Confidence Bound (UCB) acquisition function (Srini-
vas et al.,[2009); (ii) GP-EI, which also uses a GP but with the Expected Improvement (EI) acqui-
sition function (Jones et al., |1998); (iii) BNN-UCB, which employs a Bayesian Neural Network
(BNN) (Springenberg et al., [2016) together with UCB; and (iv) BNN-EI, which uses a BNN with
the EI acquisition function.

D.7 BASELINES OF RECOMMENDATION QUALITY

We compare our method against a set of representative baselines to evaluate the effectiveness of
SPLiT in LLM-based recommender systems. These baselines include (i) standard LLM-based rec-
ommender systems that directly optimize prompts, and (ii) recently proposed approaches designed
to mitigate popularity bias in LLM-based recommendation. However, it is important to note that
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none of these methods explicitly address the popularity bias that arises in preference summary. This
distinction highlights the novelty of SPLiT , which directly incorporates bias-awareness into the
prompt selection process.

(i) LLM4RS (Dai et al.| 2023): This work constructs prompt templates in Appendix [F.I]and directly
feeds them into the LLM to obtain recommendation results.

(ii) LLMRank (Hou et al [2024): This work formulates recommendation as a conditional ranking
task and shows that LLMs can act as zero-shot rankers. It further reveals challenges such as order
sensitivity, position bias, and popularity bias, and proposes prompting strategies to alleviate them.

(iili) LLM4Rerank-accuracy (Gao et al.| 2025): This method guides the LLM to focus on accuracy
during reranking by designing prompt instructions that emphasize the semantic match between user
preferences and candidate items, ensuring that the final list prioritizes relevance.

(iv) LLM4Rerank-fairness (Gao et al., [2025): This method introduces prompt instructions that ex-
plicitly enforce fairness during reranking, encouraging balanced exposure of different item groups
and mitigating disparities across categories.

(v) WOK-minimization (Lichtenberg et al.| 2024): While WOK-mitigate provides only limited ef-
fectiveness, WOK-minimization explores a stronger strategy that explicitly pushes the recommender
towards long-tail content. To this end, WOK-minimization replaces the mitigate-instruction with:
“Recommend indie, niche, or less well-known movies, avoiding mainstream blockbusters.” This
model is designed to study the extreme case of forcing recommendations away from popular items.

(vi) WOK-mitigate (Lichtenberg et al.,|2024): Building upon the LLM-based recommendation set-
ting, this work addresses the popularity bias commonly observed in LLM-generated recommen-
dations. It introduces an additional instruction into the prompt template through prompt tuning,
guiding the Recommendation LLM to mitigate popularity bias. The detailed instruction is provided

in Appendix

E ADDITIONAL ANALYSIS AND ABLATION STUDIES

E.1 POPULAR GENRES IN MOVIELENS-1M

Figure [0] illustrates the distribution of movie genres in the MovieLens-1M dataset. For clarity, we
only show the four most frequent and four least frequent genres among the top 20 categories, with
an ellipsis indicating the omitted middle ones. This figure highlights the distinction between popular
and less popular genres. Prior work has shown that LLMs are more likely to memorize frequently
occurring genres or items in MovieLens-1M, which makes their recommendation results more prone
to popularity bias (D1 Palma et al., |2025).

E.2 VARIABILITY OF PREFERENCE SUMMARIZATION INDUCED BY LLM RANDOMNESS

To empirically validate Insight 2 (Variability induced by LLM randomness) in Section[4.2] we con-
duct an experiment where the same user context is provided to the summarization LLM multiple
times. We generate different preference summaries due to the inherent randomness of LLM genera-
tion. While the experimental setup follows the protocol described in Section [6] here we specifically
examine the variability of summarization outputs and their downstream impact.

Table [ reports the case studies across multiple preference summaries for each representative users.
We observe that:

1. The content of the generated preference summaries vary, even for the same user history.

2. The degree of popularity bias, measured by the Semantic Popularity Lift (SPL), also differs
substantially.

3. Consequently, the recommendation performance (measured by NDCG@3 and HR@3)
fluctuates depending on which summarization is used.

Large-Scale Controlled Study on Causal Mechanism. Building on the variability analysis in
Appendix E.2, where we observed substantial fluctuations across independently generated prefer-
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Frequencies of Some Movie Genres in MovieLens-1M
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Figure 6: Frequencies of selected movie genres from the MovieLens-1M Metadata. Only the four
most frequent and four least frequent genres (among the top 20) are shown, with an ellipsis indicating
the omitted middle categories. This figure highlights popular genres and less popular genres in the
MovieLens-1M dataset. Prior work shows that LLMs are more likely to memorize genres or items
that appear more frequently in MovieLens-1M, which makes their recommendation results more
prone to popularity bias (D1 Palma et al., [2025).

Table 4: Variability of preference summarization across multiple LLM runs for different users.
SPL and recommendation metrics NDCG @3 / HR @3) show substantial variation across preference
summaries.

User / Preference Summary NDCG@3 HR@3 SPL

User A - Preference Summary 1 0.00 0.00 0.45
User A - Preference Summary 2 0.00 0.00 0.39
User A - Preference Summary 3 1.00 1.00 0.38
User B - Preference Summary 1 1.00 1.00 0.29
User B - Preference Summary 2 0.63 1.00 0.35
User B - Preference Summary 3 0.63 1.00 0.32
User C - Preference Summary 1 0.50 1.00 0.40
User C - Preference Summary 2 1.00 1.00 0.38
User C - Preference Summary 3 0.50 1.00 0.43

ence summaries, we further conduct a large-scale controlled experiment to more rigorously isolate
the causal effect of LLM stochasticity. Specifically, we fix all components of the pipeline, includ-
ing user histories, candidate items, prompt templates, and evaluation protocol, and vary only the
stochastic outputs of the summarization LLM. For each of the N = 100 users, we independently
generate M = 50 preference summaries from the same interaction history, ensuring that any varia-
tion in popularity bias or recommendation quality arises solely from LLM randomness rather than
differences in summary quality or semantic correctness.

The results in Table [5]reveal strong intrinsic instability in LLM-generated summaries. The average
within-user standard deviation of NDCG@3 is 0.1831, and 58.0% of users exhibit a best-worst gap
exceeding 0.5. Popularity bias varies even more sharply: SPL shows an average standard deviation
of 0.4242, with 92.0% of users having SPL ranges larger than 0.5. These results demonstrate that
even under identical conditions, LLM-generated preference summaries introduce large and system-
atic fluctuations in both accuracy and popularity bias.

These findings highlight that randomness in LLM outputs can lead to unstable and sometimes highly
biased summarizations, which motivates the need for a selection-based strategy like SPLiT to iden-
tify higher-quality summarizations.

E.3 CASE STUDY: POPULARITY BIAS IN PREFERENCE SUMMARIZATION

The illustration example of popularity bias in LLM-genereated preference summary is in Figure 7}
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Table 5: Large-scale controlled experiment demonstrating the variability of LLM-generated prefer-
ence summaries under identical conditions. All variability shown arises solely from LLM stochas-
ticity.

Metric Avg. Within-User Std.  Users with Range > 0.5
NDCG@3 0.1831 58.0%
SPL 0.4242 92.0%
/ Popularity Bias in LLM-Generated User Preference Summary
Dirty Dozen, The (['Action‘, " ’]) The user’s earlier selections indicate a strong affinity for intense,
action-driven dramas that explore the complexities of war and
. Apocalypse Now (['Drama ' 1) human resilience.
Recently, however, there is a notable shift towards films that blend
. Platoon (['Drama,’ 1) dramatic depth with emotional romance, suggesting an increased

. . . o o , appreciation for character-driven stories set against historical
. English Patient, The (['Drama, 'Romance’,"War’]) bockirops, 8
They are likely to enjoy emotionally dramatic movies that balance

action with profound human experiences.

[< I ISR RSN

. Braveheart (['Action!, 'Drama,’ 1)

(less popular)

(a) User Interaction History I prama (popular) (b) LLM d User F Si y

Figure 7: Illustration of popularity bias in LLM-generated user preference summary. (a) User inter-
action history with associated genre labels (e.g., Drama, War). (b) Preference summary generated
by the LLM based on the interaction history. Although the user shows consistent interest in both
Drama and War, the generated summarization tends to overemphasize Drama because it is a more
popular genre in the MovieLens-1M dataset, as illustrated in Figure [ while underrepresenting the
less popular War. This imbalance highlights the tendency of LLM-based summarizations to amplify
popularity bias, which can distort the downstream recommendation.

To further illustrate popularity bias in LLM-generated preference summaries, we provide a comple-
mentary example using only genre information from the interaction history, without movie titles.
The input prompt follows the template in Appendix [F.3] with the user history represented as:

Interaction History (Only Genres)

. (Action, War)

. (Drama, War)

. (Drama, War)

. (Drama, Romance, War)
. (Action, Drama, War)

[ O S R

Given this input, the LLM-generated preference summary is:

Generated Preference Summary

The user demonstrates a strong overall preference for drama-focused films, particularly
those that delve into the themes of war and human resilience. Their earlier selections
highlight an affinity for intense action-driven narratives. Recently, there has been a shift
towards films that incorporate elements of romance, suggesting a growing appreciation
for character-driven stories that maintain dramatic depth while exploring emotional
connections against historical contexts. Overall, they favor movies that blend action
with profound human experiences, with a strong emphasis on drama throughout their
viewing history.

This example highlights how the summarization process tends to overemphasize Drama, a globally
popular genre, while underrepresenting War, which appears consistently in the history but is rel-
atively niche in the dataset. Moreover, Romance (also a global popular genre in MovieLens), only
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appearing once, is amplified in the summary. This demonstrates that even when titles are removed
and only genres are used as input, the summarization LLM exhibits popularity bias. Such behavior
justifies the need for bias-aware preference summary selection, as formalized in our SPL metric.

E.4 ADDITIONAL RESULTS ON REGRET CURVES

In addition to the summary results in Table [I] Figure [§] provides a detailed view of the optimiza-
tion process by plotting cumulative regret over 100 decision rounds. The curves show that SPLiT
consistently maintains lower regret compared with all baselines, indicating that it converges more
quickly to high-quality preference summaries and makes fewer suboptimal selections throughout the
process. This figure complements the table by illustrating not only the final regret values but also
the convergence dynamics of different algorithms.

Preference Summary Selection: Cumulative Regret
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0 20 40 60 80 100
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Figure 8: Optimization performance of preference summary selection algorithms. Cumulative regret
of different preference summary selection algorithms over 100 decision rounds. Lower regret values
indicate better optimization performance.

E.5 ADDITIONAL EXPERIMENTAL RESULTS ON LAST.FM

To complement the main results reported in Section [6.2] we provide additional evaluation on the
Last.fm dataset. As shown in Table [6] our proposed SPLiT consistently outperforms all baseline
methods across NDCG@ 1, NDCG@3, NDCG@5, and HR@3. In particular, SPLiT improves over
the strongest baseline by 7.70% in NDCG@1, 5.52% in NDCG@3, 3.13% in NDCG @5, and 1.54%
in HR@3. These results demonstrate that the effectiveness of SPLiT generalizes beyond MovieLens-
1M and holds across different domains.

Table 6: Performance comparison of SPLiT and baseline methods on the Last.fm dataset with GPT-
40-mini model. We report NDCG@1, NDCG@3, NDCG@5, and HR@3.

Method NDCG@1 NDCG@3 NDCG@5 HR@3
LLM4RS 0.5152 0.6105 0.6809 0.6768
LLMRank 0.5979 0.7419 0.8057 0.8453
LLM4Rerank-accuracy 0.7273 0.8240 0.8700 0.8889
LLM4Rerank-fairness 0.6667 0.8114 0.8454 0.9192
WOK-minimization 0.3939 0.5552 0.6834 0.6768
WOK-mitigate 0.7273 0.8200 0.8452 0.8889
SPLIT (ours) 0.7833 0.8695 0.8972 0.9333

Improvement over best baseline — +7.70% +5.52% +3.13%  +1.54%

E.6 ABLATION STUDY ON SUMMARIZATION INSTRUCTIONS
To further investigate whether modifying the instructions of the summarization LLM can improve

recommendation performance, we conducted an ablation study without preference summary selec-
tion. Specifically, we replaced the default summarization instruction with several alternatives (the
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details of each instruction are provided in Appendix [F.12] with corresponding code snippets). Each
variant was used to generate preference summarizations, which were then fed into the downstream
recommender LLM under the same setup described in Section [6]

Table [/ summarizes the results in terms of NDCG@3 and HR@3. We observe that changing the
summarization instruction yields only marginal differences across variants. Importantly, popularity
bias persists across all cases, indicating that simply modifying instructions is insufficient to substan-
tially improve recommendation performance or mitigate bias.

Table 7: Ablation study on different summarization instructions. The results are reported in terms
of NDCG@3 and HR@3.

Instructions NDCG@3 HR@3

Instruction 1 0.5523 0.7200
Instruction 2 0.5473 0.7100
Instruction 3 0.5514 0.7200

E.7 REASONS FOR NOT SELECTING FINAL RECOMMENDATION RESULTS

To address the concern, we implemented a two-stage variant that adds list-level selection on top
of preference-summary selection. Specifically, we first select a preference summary, then use this
summary to generate multiple recommendation lists, and finally apply the same selection strategy to
choose the best-performing list. On MovieLens-1M, this summary+list approach did not outperform
summary-only selection (NDCG@3 = 0.6155 vs. 0.6175). This result indicates that the selector
behaves near-random, with limited learnability in this setting. As an ablation, we also evaluate
selection only of the recommendation lists (without summaries), which performs substantially worse
(NDCG @3 = 0.5087) since it lacks preference summaries to improve. These findings highlight that
recommendation-list selection is not as effective, and support our design choice of focusing selection
at the preference-summary level.

E.8 ADDITIONAL LARGE-SCALE EVALUATION.

To further verify the scalability of our approach, we conduct an expanded evaluation on 500 ran-
domly sampled MovieLens-1M users, a five-fold increase from the 100-user setup in Section[6.2]
As shown in Table [8] SPLiT continues to outperform all LLM-based recommender system base-
lines. In particular, SPLIiT achieves 12.40% improvement on NDCG@1 and 8.48% improvement
on NDCG @3 over the best baseline. The improvement magnitude closely matches the experiments
with 100 users shown in Section [6.2] demonstrating that SPLiT remains stable and effective under
larger evaluation scales. These results confirm the robustness and generalization ability of SPLiT.

E.9 ADDITIONAL RESULTS ON THE ANIME RECOMMENDATIONS DATASET

We additionally evaluated our method on the Anime Recommendations Database (Kaggle, Cooper
Union) dataset (Cooper Union,2016). We sampled 100 users and kept all other experimental settings
identical to those in Section[6.2] The dataset is publicly available and widely used in prior works on
anime recommendation.

Across all metrics, our proposed SPLiT algorithm achieves consistent improvements over all LLM-
based recommender system baselines. In particular, SPLiT improves NDCG@1 by 8.60% and
NDCG@3 by 6.77% over the best-performing baseline, demonstrating strong effectiveness on this
new dataset and showing that SPLiT generalizes well across domains. These results lead to two
observations. First, even in a different domain such as anime recommendation, LLM-based summa-
rization still exhibits variability and optimization headroom. Second, SPLiT continues to outperform
all existing LLM baselines, indicating robust cross-dataset generalization.
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Table 8: Performance comparison on 500 randomly sampled MovieLens-1M users. All experi-
mental settings follow Section [6.2]

Method NDCG@1 NDCG@3 NDCG@5 HR@3
LLM4RS 0.3246 0.5185 0.6225 0.6603
LLMRank 0.2959 0.5103 0.6183 0.6633
LLM4Rerank-accuracy 0.3487 0.5586 0.6571 0.7134
LLM4Rerank-fairness 0.3507 0.5563 0.6757 0.7074
WOK-minization 0.2605 0.4699 0.5805 0.6273
WOK-mitigate 0.3367 0.5650 0.6647 0.7315
SPLiT (ours) 0.3940 0.6135 0.7054 0.7750
Improvement over best baseline  12.40% 8.48% 4.39% 5.95%

Table 9: Results on the Anime Recommendations dataset.

Method NDCG@1 NDCG@3 NDCG@5 HR@3
LLM4RS 0.3232 0.5259 0.6586 0.6768
LLMRank 0.3469 0.5289 0.6624 0.6735
LLM4Rerank-Accuracy 0.3535 0.5491 0.6743 0.6970
LLM4Rerank-Fairness 0.3333 0.5517 0.6691 0.7172
WOK-Minimization 0.3030 0.5392 0.6491 0.6869
WOK-Mitigate 0.3131 0.5543 0.6621 0.7071
SPLIT (ours) 0.3839 0.5918 0.6962 0.7315
Improvement over best baseline 8.60% 6.77% 3.25% 1.99%

F PROMPT TEMPLATES

F.1 BASELINE PROMPT TEMPLATE

We reproduce the baseline prompt template used in LLM4RS (Dai et al., [2023). We use it as is in
all baseline runs. The prompt takes a user’s viewing history and a list of candidate movies as input.
The model ranks the candidates and outputs the index of the items. The full template is below.

Baseline Prompt Template

You are a movie recommender system now.

Input: Here is the watching history of a user: {User History}. Based on this history,
please rank the following candidate movies:

(A) {Candidate Item 1} (B) {Candidate Item 2} (C) {Candidate Item 3} (D) {Candidate
Item 4} (E) {Candidate Item 5} ...

Output: The answer index is

F.2 INSTANCE OF PREFERENCE SUMMARY

This section shows an example of the preference summary. The first code block lists the user’s
interaction history. The text in parentheses gives the movie genres. The second code block is the
preference summary generated from that history by the generator in Appendix
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User Interaction History

1. Virgin Suicides, The ([’Comedy’, ’'Drama’]).

2. Goya in Bordeaux (Goya en Bodeos) ([’Drama’]).
3. Snow Falling on Cedars ([’Drama’]).

4. Gladiator ([’Action’, ’Drama’]).

5. Hamlet ([’Drama’]).

Instance of Preference Summary

The user’s earlier selections indicate a strong affinity for introspective, character-driven
narratives infused with emotional complexity and artistic nuance. Recently, there has
been a noticeable pivot towards more structured historical dramas that delve into moral
ambiguity and grand themes of honor and sacrifice. They are likely to enjoy films that
blend profound emotional depth with rich period settings and dramatic stakes—while
light-hearted comedies or superficial narratives may no longer resonate.

F.3

OPTIMIZED INSTRUCTION PROMPT TO GENERATE PREFERENCE SUMMARY

Optimized Instruction Prompt to Generate Preference Summary

Your task is to write an optimized instruction that summarizes a user’s movie prefer-
ences based on their viewing history. The history is provided in chronological order,
indexed from 1 (earliest) to the most recent.

Your output should follow this three-part structure: 1. Summarize the user’s overall
long-term preferences based on the earlier part of the history. 2. Emphasize the user’s
recent preferences, with a focus on any noticeable shifts in tone, theme, or narrative
style. 3. Predict the kind of film the user is most likely to enjoy next—considering
narrative pacing, emotional depth, stylistic features, or storytelling structure.
Guidelines: — Use expressive and descriptive language (e.g., “philosophical period
piece”, “emotionally charged character study”) rather than listing genres. — Highlight
dominant themes or tonal patterns, especially those that have emerged recently. — You
may briefly mention what types of films should be avoided, particularly if they contrast
with recent interest. — Keep the final output under 150 tokens, structured as a single
coherent paragraph.

Example:

User History (indexed from 1 = earliest to last = most recent): 1. The Virgin Suicides
2. Goya in Bordeaux 3. Snow Falling on Cedars 4. Gladiator 5. Hamlet

Optimized Prompt Example: “The user’s earlier selections suggest a preference for in-
trospective, emotionally rich storytelling with poetic or artistic undertones. More re-
cent viewings reflect a shift toward structured historical narratives grounded in classical
themes and moral complexity. They are now likely to enjoy period films that emphasize
restrained emotional intensity, elegant visual design, and philosophical depth—while
fast-paced or stylistically fragmented stories may feel misaligned.”

Now, using the following viewing history: User History Recordings: {history}

Write an optimized instruction following the 3-part structure: overall preference —
recent preference — recommendation direction. Return only the final instruction para-
graph, with no extra explanation.
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F.4 FEEDBACK PROMPT TEMPLATE

Feedback Prompt Template

Your task is to evaluate the quality of a refined preference instruction generated from a
user’s movie viewing history. The history is provided in chronological order, indexed
from 1 (earliest) to the most recent, and the current prompt attempts to summarize the
user’s evolving taste.

Your evaluation should address the following aspects: 1. Does the prompt capture
the user’s overall long-term preferences as reflected in earlier titles? 2. Does it clearly
identify the user’s recent preferences, especially any shifts in tone, theme, or narrative
style? 3. Is the recommendation direction well aligned with recent viewing patterns?
4. Does the language use expressive and specific descriptions (e.g., “whimsical satire”,
“philosophical historical epic”) instead of vague or overly broad terms? 5. Does the new
prompt represent a meaningful refinement, not just minor rewording?

Example:

User History (indexed from 1 = earliest to last = most recent): 1. The Virgin Suicides
2. Goya in Bordeaux 3. Snow Falling on Cedars 4. Gladiator 5. Hamlet

Refined Prompt Example: “The user’s earlier selections suggest a preference for in-
trospective, emotionally rich storytelling with poetic or artistic undertones. More re-
cent viewings reflect a shift toward structured historical narratives grounded in classical
themes and moral complexity. They are now likely to enjoy period films that emphasize
restrained emotional intensity, elegant visual design, and philosophical depth—while
fast-paced or stylistically fragmented stories may feel misaligned.”

Feedback Format: — (Positive aspect) — (Weakness or omission) — (Suggestion for
improvement)

Now evaluate the following refined prompt: User Interaction History: {user interac-
tion history } Optimized Prompt: {prompt}

Return only the bullet-point feedback under 200 tokens, with no additional commentary.

F.5 INSTANCE OF FEEDBACK

Instance of Feedback

1. The prompt effectively captures the user’s long-term enjoyment of Comedy and
Drama genres, emphasizing character-driven narratives.

2. It highlights the shift toward youthful and romantic comedies in recent selections.

3. The mention of earlier films like ”Confidentially Yours” and ”Rocky III”’ does not
accurately reflect their declining relevance in the user’s recent viewing history.

4. Genre specificity could be improved; terms like “lighthearted” and “playful” are
vague—more precise descriptors (e.g., ’coming-of-age romantic comedies”) would en-
hance clarity.

5. Suggest: Revise the prompt to focus more on recent favorites and use specific genre
expressions that reflect the user’s current tastes, such as “charming teen comedies” or
“humorous romantic dramas.”
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F.6

REFINE INSTRUCTION PROMPT

Refine Instruction Prompt

Your task is to refine an instruction summarizing a user’s movie preferences, based on
their viewing history, an earlier version of the prompt, and feedback. The history is
presented in chronological order (1 = earliest to most recent).

Your refined output should follow this three-part structure: 1. Summarize the user’s
overall long-term preferences based on the earlier part of the history. 2. Emphasize
the user’s recent preferences, with attention to tonal or narrative shifts. 3. Predict the
type of film the user is most likely to enjoy next—based on emotional tone, pacing, and
storytelling structure.

Guidelines: — Apply the feedback directly—do not simply rephrase the previous
prompt. — Use expressive and descriptive phrasing (e.g., “understated moral drama”,
“animated emotional fable”) instead of naming genres. — Focus more on recent pat-
terns than on overall preferences. — You may briefly note what types of films should
be avoided if they conflict with recent trends. — Keep the final instruction under 150
tokens, written as a single flowing paragraph.

Example:

User History (indexed from 1 = earliest to last = most recent): 1. The Virgin Suicides
2. Goya in Bordeaux 3. Snow Falling on Cedars 4. Gladiator 5. Hamlet

Previous Prompt: “The user enjoys introspective and emotionally complex films that
lean toward artistic and dramatic expression. Their recent interest in large-scale narra-
tives suggests they may appreciate epic or classical themes.”

Feedback: — Identifies early introspective taste. — Recent shift toward structured pe-
riod storytelling is not clearly emphasized. — Suggest: Emphasize the user’s interest in
emotionally restrained but visually rich historical films.

Refined Prompt Example: “The user’s earlier preferences point to a fondness for lyrical,
emotionally nuanced storytelling with subtle visual tone. More recent titles reveal a
shift toward structured, classical narratives with restrained emotional arcs and moral
themes. They are now most likely to enjoy period dramas that combine quiet intensity
with philosophical weight, while disjointed or fast-cut narratives may not align with
their evolving taste.”

Now, using the following input: User History Recordings: {history} Last Optimized
Prompt: {initial_prompt} Evaluation Feedback: {feedback}

Refine the instruction following the 3-part structure. Return only the revised paragraph.

F.7

Instance of Refined Prompts

INSTANCE OF REFINED PROMPTS

"The user’s viewing history reveals a strong affinity for character-driven narratives
within the Comedy and Drama genres, particularly favoring charming teen comedies
and humorous romantic dramas. Their recent selections, such as ”American Pie” and
"My Tutor,” showcase a clear preference for lighthearted stories that blend romance
with humor, emphasizing youthful experiences and personal growth. Recommenda-
tions should focus on contemporary films that deliver engaging and witty storytelling,
ideally featuring coming-of-age themes and an uplifting tone, to align with their current
tastes in comedy and romance.’

F.8

This section shows an instance of the optimized prompt template. It keeps the baseline input—output
format. We insert a Preference Summary into the input to summarize the user’s tastes. We generate
this text from the user’s interaction history using the generator in Appendix and an example

INSTANCE OF OPTIMIZED PROMPT TEMPLATE

appears in Appendix The full template with the optimized prompt template is shown below.
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Optimized Prompt Template

You are a movie recommender system now.

Input: Here is the watching history of a user: {User History}. Based on this history,
please rank the following candidate movies:

(A) {Candidate Item 1} (B) {Candidate Item 2} (C) {Candidate Item 3} (D) {Candidate
Item 4} (E) {Candidate Item 5} ...

{Preference Summary}

Output: The answer index is

F.9 ADDITIONAL INSTRUCTION OF WOK-MITIGATE

This subsection presents the additional instruction used by WOK-Mitigate (Lichtenberg et al.,[2024).
The instruction asks the model to match the average popularity level in the user’s past viewing. We
append this instruction to the baseline prompt template in Section The inputs are the user’s
interaction history and a list of candidate movies. The instruction and the resulting prompt template
appear below.

Additional Instruction of WOK-Mitigate

Recommend movies that match the average popularity level of the movies the user
watched in the past. For instance, if the user mostly watched blockbusters, you should
recommend movies that are also blockbusters. If, on the other hand, the user watched
less well-known movies, you should recommend niche movies.

Prompt Template of WOK-Mitigate

You are a movie recommender system now.

Input: Here is the watching history of a user: {User History}. Based on this history,
please rank the following candidate movies:

(A) {Candidate Item 1} (B) {Candidate Item 2} (C) {Candidate Item 3} (D) {Candidate
Item 4} (E) {Candidate Item 5} ...

{Preference Summary}

{Additional Instruction}

Output: The answer index is

F.10 ADDITIONAL INSTRUCTION OF WOK-MINIMIZATION

This subsection presents the additional instruction used by WOK-Minimize (Lichtenberg et al.,
2024). The instruction asks the model to actively avoid recommending highly popular or main-
stream items and instead focus on indie, niche, or less well-known ones. We append this instruction
to the baseline prompt template in Section[F.1} The inputs are the user’s interaction history and a list
of candidate movies. The instruction and the resulting prompt template appear below.

Additional Instruction of WOK-Minimization

Recommend indie, niche, or less wellknown movies, avoiding mainstream blockbusters.
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Prompt Template of WOK-Minimization

You are a movie recommender system now.

Input: Here is the watching history of a user: {User History}. Based on this history,
please rank the following candidate movies:

(A) {Candidate Item 1} (B) {Candidate Item 2} (C) {Candidate Item 3} (D) {Candidate
Item 4} (E) {Candidate Item 5} ...

{Preference Summary}

{Additional Instruction}

QOutput: The answer index is

F.11

The first box shows a user’s interaction history and the associated genre labels (e.g., Drama, Ro-
mance). Based on these interactions, the LLM generates a natural-language preference summary
summarizing the user’s tastes (the second box). Although the user exhibits consistent interest in
both Drama and Romance, the generated summarization overemphasizes the more popular genre
(Drama) while underrepresenting the less popular one (Romance). This imbalance highlights the
tendency of LLM-based summarizations to amplify popularity bias, which can distort the down-

INSTANCE OF POPULARITY BIAS IN THE PREFERENCE SUMMARY

stream recommendation process.

User Interaction History

1.Star Wars: Episode VI - Return of the Jedi ([’ Action’, *Adventure’, "Romance’, ’Sci-
Fi’, "War’))

2.Ninotchka ([’Comedy’, ’Romance’])

3.Algiers ([’Drama’, ’Romance’])

4.Man and a Woman, A (Un Homme et une Femme) ([’Drama’, ’Romance’])

5.Piano, The ([’Drama’, ’Romance’])

Preference Summary Generated by LLMs

The user’s earlier choices reveal a strong inclination towards romantic narratives infused
with elements of drama, often set against grand or historical backdrops.

Recently, their focus has shifted toward intimate dramas that explore complex relation-
ships and emotional nuances.

Consequently, they are likely to appreciate films that blend rich emotional depth with
stylistic sophistication, perhaps favoring poignant character studies or lyrical dra-
mas—while escapist action-packed blockbusters may feel less appealing.

F.12 SUMMARIZATION INSTRUCTIONS

In this section, we present the summarization instructions used in Appendix The Summa-
rization Instruction I is the same as the one in Appendix [F8] The Summarization Instruction II is

from |[Kusano et al.[(2024), and the Summarization Instruction III is from |Wang & Lim)| (2023))
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Summarization Instruction I

Your task is to write an optimized instruction that summarizes a user’s movie prefer-
ences based on their viewing history. The history is provided in chronological order,
indexed from 1 (earliest) to the most recent.

Your output should follow this three-part structure: 1. Summarize the user’s overall
long-term preferences based on the earlier part of the history. 2. Emphasize the user’s
recent preferences, with a focus on any noticeable shifts in tone, theme, or narrative
style. 3. Predict the kind of film the user is most likely to enjoy next—considering
narrative pacing, emotional depth, stylistic features, or storytelling structure.
Guidelines: — Use expressive and descriptive language (e.g., “philosophical period
piece”, “emotionally charged character study”) rather than listing genres. — Highlight
dominant themes or tonal patterns, especially those that have emerged recently. — You
may briefly mention what types of films should be avoided, particularly if they contrast
with recent interest. — Keep the final output under 150 tokens, structured as a single
coherent paragraph.

Example:

User History (indexed from 1 = earliest to last = most recent): 1. The Virgin Suicides
2. Goya in Bordeaux 3. Snow Falling on Cedars 4. Gladiator 5. Hamlet

Optimized Prompt Example: “The user’s earlier selections suggest a preference for in-
trospective, emotionally rich storytelling with poetic or artistic undertones. More re-
cent viewings reflect a shift toward structured historical narratives grounded in classical
themes and moral complexity. They are now likely to enjoy period films that emphasize
restrained emotional intensity, elegant visual design, and philosophical depth—while
fast-paced or stylistically fragmented stories may feel misaligned.”

Now, using the following viewing history: User History Recordings: {User Interaction
History }

Write an optimized instruction following the 3-part structure: overall preference —
recent preference — recommendation direction. Return only the final instruction para-
graph, with no extra explanation.

Summarization Instruction II

Please summarize the characteristics of this user concisely and informatively. DO NOT
recommend any items, DO provide a user description. The length of the output text
SHOULD be within 100 words (indexed from 1 = earliest to last = most recent): {User
Interaction History}

Summarization Instruction III

Based on my history interaction {User Interaction History} (indexed from 1 = earliest
to last = most recent), what features are most important to me when selecting movies
(summarize my preferences briefly)?
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