
Published as a conference paper at ICLR 2024

TRAINING UNBIASED DIFFUSION MODELS
FROM BIASED DATASET

Yeongmin Kim1∗, Byeonghu Na1, Minsang Park1, JoonHo Jang1, Dongjun Kim1,
Wanmo Kang1, Il-Chul Moon1,2

ABSTRACT

With significant advancements in diffusion models, addressing the potential risks
of dataset bias becomes increasingly important. Since generated outputs directly
suffer from dataset bias, mitigating latent bias becomes a key factor in improv-
ing sample quality and proportion. This paper proposes time-dependent impor-
tance reweighting to mitigate the bias for the diffusion models. We demonstrate
that the time-dependent density ratio becomes more precise than previous ap-
proaches, thereby minimizing error propagation in generative learning. While
directly applying it to score-matching is intractable, we discover that using the
time-dependent density ratio both for reweighting and score correction can lead
to a tractable form of the objective function to regenerate the unbiased data
density. Furthermore, we theoretically establish a connection with traditional
score-matching, and we demonstrate its convergence to an unbiased distribu-
tion. The experimental evidence supports the usefulness of the proposed method,
which outperforms baselines including time-independent importance reweighting
on CIFAR-10, CIFAR-100, FFHQ, and CelebA with various bias settings. Our
code is available at https://github.com/alsdudrla10/TIW-DSM.

1 INTRODUCTION

Recent developments on diffusion models (Song et al., 2020; Ho et al., 2020) make it possible to
generate high-fidelity images (Dhariwal & Nichol, 2021; Kim et al., 2023), and dominate generative
learning frameworks. The diffusion models deliver promising sample quality in various applications,
i.e. text-to-image generation (Rombach et al., 2022; Nichol et al., 2022), image-to-image translation
(Meng et al., 2021; Zhou et al., 2024), and counterfactual generation (Kim et al., 2022b; Wang et al.,
2023a). As diffusion models become increasingly prevalent, addressing the potential risks on its
dataset bias becomes more crucial, which had been less studied in the generative model community.

The dataset bias is pervasive in real world datasets, which ultimately affects the behavior of machine
learning systems (Tommasi et al., 2017). As shown in Figure 1a, there exists a bias in the sensitive
attribute in the CelebA (Liu et al., 2015) benchmark dataset. In generative modeling, the statistics
of generated samples are directly influenced or even exacerbated by dataset bias (Hall et al., 2022;
Frankel & Vendrow, 2020). The underlying bias factor is often left unannotated (Torralba & Efros,
2011), so it is a challenge to mitigate the bias in an unsupervised manner. Importance reweighting is
one of the standard training techniques for de-biasing in generative models. Choi et al. (2020) pro-
pose pioneering work in generative modeling by utilizing a pre-trained density ratio between biased
and unbiased distributions. However, the estimation of density ratio is notably imprecise (Rhodes
et al., 2020), leading to error propagation in training generative models.

We introduce a method called Time-dependent Importance reWeighting (TIW), designed for diffu-
sion models. This method estimates the time-dependent density ratio between the perturbed biased
distribution and the perturbed unbiased distribution using a time-dependent discriminator. We inves-
tigate the perturbation provides benefits for accurate estimation of the density ratio. We introduce
that the time-dependent density ratio can serve as a weighting mechanism, as well as a score cor-
rection. By utilizing these dual roles by density ratios, simultaneously; we render the objective
function tractable and establish a theoretical equivalence with existing score-matching objectives
from unbiased distributions.
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Figure 1: The samples that reflect the proportion of four latent subgroups. The proposed method
mitigates the latent bias statistics as shown in (b).

We test our method on the CIFAR-10, CIFAR-100 (Krizhevsky, 2009), FFHQ (Karras et al., 2019),
and CelebA datasets. We observed our method outperforms the time-independent importance
reweighting and naive baselines in various bias settings.

2 BACKGROUND

2.1 PROBLEM SETUP

The goal of generative modeling is to estimate the underlying true data distribution pdata : X → R≥0,
so this distribution enables likelihood evaluations and sample generations. In this process, we often
consider an observed sample dataset, Dobs =

{
x(1), ...,x(n)

}
with i.i.d. sampling of x(i), from

pdata to be unbiased with respect to the underlying latent factors, but this is not true if the sampling
procedure is biased. Dobs could be biased due to social, geographical, and physical factors resulting
in deviations from the intended purposes. Subsequently, the parameter θ of the modeled distribution
pθ : X → R≥0 also becomes biased, which won’t converge to pdata through learning on θ with Dobs.

Building upon prior research (Choi et al., 2020), we assume that the accessible data Dobs consists
of two sets: Dobs = Dbias ∪ Dref. The elements in Dbias are i.i.d. samples from an unknown biased
distribution pbias : X → R≥0. Note that pbias deviates from pdata because of its unknown sampling
bias. Each element of Dref is i.i.d. sampled from pdata, but |Dref| is relatively smaller than |Dbias|. We
also follow a weak supervision setting, which does not provide explicit bias in pbias; but we assume
that the origin of data instances is known to be either Dref or Dbias.

2.2 DIFFUSION MODEL AND SCORE MATCHING

This paper focuses on diffusion models to parameterize model distribution pθ. The diffusion model
is well explained by Stochastic Differential Equations (SDEs) (Song et al., 2020; Anderson, 1982).
For a data random variable x0 ∼ pdata, the forward process in eq. (1) perturbs it into a noise random
variable xT . The reverse process in eq. (2) transforms noise random variable xT to x0.

dxt = f(xt, t)dt+ g(t)dwt, (1)

dxt = [f(xt, t)− g2(t)∇ log ptdata(xt)]dt̄+ g(t)dw̄t, (2)

where wt denotes a standard Wiener process, f(·, t) : Rd → Rd is a drift term, and g(·) : R → R
is a diffusion term, w̄t denotes the Wiener process when time flows backward, and ptdata(xt) is
the probability density function of xt. To construct the reverse process, the time-dependent score
function is approximated through a neural network sθ(xt, t) ≈ ∇ log ptdata(xt). The score-matching
objective is derived from the Fisher divergence (Song & Ermon, 2019) as described in eq. (3).

LSM(θ; pdata) :=
1

2

∫ T

0

Eptdata(xt)[λ(t)||sθ(xt, t)−∇ log ptdata(xt)||22]dt, (3)

LDSM(θ; pdata) :=
1

2

∫ T

0

Epdata(x0)Ep(xt|x0)[λ(t)||sθ(xt, t)−∇ log p(xt|x0)||22]dt, (4)

where λ(·) : [0, T ] → R+ is a temporal weighting function. However, LSM is intractable because
computing ∇ log ptdata(xt) from a sample xt is impossible. To make score-matching tractable, LDSM
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is commonly used as an objective function. LDSM only needs to calculate ∇ log p(xt|x0), which
comes from the forward process. Note that LDSM is equivalent to LSM up to a constant with respect
to θ (Vincent, 2011; Song & Ermon, 2019).

2.3 DENSITY RATIO ESTIMATION

The density ratio estimation (DRE) through discriminative training (also known as noise contrastive
estimation) (Gutmann & Hyvärinen, 2010; Sugiyama et al., 2012) is a statistical technique that
provides the likelihood ratio between two probability distributions. This estimation assumes that
we can access samples from two distributions pdata and pbias. Afterwards, we set pseudo labels
y = 1 on samples from pdata, and y = 0 on samples from pbias. The discriminator dϕ : X →
[0, 1], which predicts such pseudo labels, can approximate the probability of label given x0 through
p(y = 1|x0) ≈ dϕ(x0). The optimal discriminator ϕ∗ = argminϕ

[
Epdata(x0)[− log dϕ(x0)] +

Epbias(x0)[− log(1− dϕ(x0))]
]

represents the density ratio from the following relation in eq. (5). We
define wϕ∗(x0) as the true density ratio.

wϕ∗(x0) :=
pdata(x0)

pbias(x0)
=

p(x0|y = 1)

p(x0|y = 0)
=

p(y = 0)p(y = 1|x0)

p(y = 1)p(y = 0|x0)
=

dϕ∗(x0)

1− dϕ∗(x0)
(5)

2.4 IMPORTANCE REWEIGHTING FOR UNBIASED GENERATIVE LEARNING

Choi et al. (2020) propose the importance reweighting to mitigate dataset bias. They originally
conducted an experiment on GANs (Goodfellow et al., 2014; Brock et al., 2018), and there is no
previous work on diffusion models with the same purpose.

Hence, the first approach would be utilizing the important reweighting for GANs in the diffusion
models. In detail, the previous work pre-trains the density ratio pdata(x0)

pbias(x0)
≈ wϕ(x0) as described in

Section 2.3. The density ratio assigns a higher weight to the sample that appears to be from pdata
as described in eq. (6). The optimally estimated density ratio makes it possible to compute eq. (7).
This can lead the pθ to converge to the true data distribution by utilizing the biased dataset. We
call this method time-independent importance reweighting, and the derived objective in eq. (7) as
importance reweighted denoising score-matching (IW-DSM).

LDSM(θ; pdata) =
1

2

∫ T

0

Epbias(x0)

[
pdata(x0)

pbias(x0)
ℓdsm(θ,x0)

]
dt (6)

=
1

2

∫ T

0

Epbias(x0)

[
wϕ∗(x0)ℓdsm(θ,x0)

]
dt, (7)

where ℓdsm(θ,x0) := Ep(xt|x0)[λ(t)||sθ(xt, t)−∇ log p(xt|x0)||22].

3 METHOD

In this section, we present our approach for training an unbiased diffusion model with a weak super-
vision setting. Section 3.1 explains the motivation behind time-dependent importance reweighting.
Section 3.2 explains the method in detail, which involves using a time-dependent density ratio for
both weighting and score correction. Furthermore, we explore the relationship between our proposed
objective and the previous score-matching objective.

3.1 WHY TIME-DEPENDENT IMPORTANCE REWEIGHTING?

Density ratio estimation (DRE) provides significant benefits for probabilistic machine learn-
ing (Song & Kingma, 2021; Aneja et al., 2020; Xiao & Han, 2022; Goodfellow et al., 2014). How-
ever, DRE suffers from estimation errors due to the density-chasm problem. Rhodes et al. (2020)
state that the ratio estimation error increases when 1) the distance between two distributions is far,
and 2) the number of samples from two distributions is small. The pre-trained density ratio from
Section 2.4, wϕ, also suffers from this issue because 1) we handle real-world datasets that are in
high dimensions, and 2) the number of reference data |Dref| would be small. To address this prob-
lem, we investigate a method that involves using a time-dependent density ratio between perturbed
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(a) Dbias (b) Dref (c) t = 0, MSE=7.9 (d) t = 0.4, MSE=3.8 (e) MSE varying t

Figure 2: Accuracy of density ratio estimation between pbias and pdata under diffusion process. (a-b)
Samples from two distributions. (c-d) Density ratio statistics on the ground truth and the model,
at each diffusion time. (e) Density ratio estimation error according to t. The density ratio error
becomes significantly decreases as t becomes larger.

distributions ptbias(xt) and ptdata(xt). This has benefits: 1) The perturbation from the forward diffu-
sion process makes the two distributions closer as t becomes larger; and 2) the perturbation reduces
Monte Carlo error in a sampling of each distribution. These two advantages of forward diffusion
can contribute significantly to the accuracy of density ratio estimation.

The time-dependent density ratio wtϕ∗(xt) :=
ptdata(xt)
ptbias(xt)

is represented by a time-dependent discrim-
inator. We now parametrize the time-dependent discriminator dϕ : X × [0, T ] → [0, 1] which
separates the samples from ptdata(xt) and the samples from ptbias(xt). The time-dependent discrim-
inator is optimized by minimizing temporally weighted binary cross-entropy (T-BCE) objective as
described in eq. (8), where λ′(t) denotes a temporal weighting function. We represent the time-
dependent density ratio as wtϕ∗(xt) =

dϕ∗ (xt,t)

1−dϕ∗ (xt,t)
.

LT-BCE(ϕ; pdata, pbias) :=

∫ T

0

λ′(t)
[
Eptdata(xt)[− log dϕ(xt, t)] + Eptbias(xt)[− log(1− dϕ(xt, t))]

]
dt

(8)

Figure 2 shows the accuracy of density ratio estimation over the diffusion time interval t ∈ [0, T ],
where T = 1. We set the 2-D distributions as follows: p0bias(x0) := 9

10N (x0; (−2,−2)T , I) +
1
10N (x0; (2, 2)

T , I) and p0data(x0) :=
1
2N (x0; (−2,−2)T , I) + 1

2N (x0; (2, 2)
T , I). We sampled a

finite number of samples from each distribution as illustrated in Figures 2a and 2b. We perturb these
two distributions to ptbias(xt) and ptdata(xt) following the Variance Preserving (VP) SDE (Ho et al.,
2020; Song et al., 2020). Figures 2c and 2d illustrate the histograms of the ground truth density ratio:
wtϕ∗(xt), and the estimated density ratio: wtϕ(xt), with xt drawn from 1

2 (p
t
bias + ptdata). At t = 0,

the true ratio is determined by the choice of the mode. The discriminator tends to be overconfident
in favor of either pbias or pdata, exhibiting a skew toward either side (Figure 2c). This phenomenon is
mitigated as the diffusion time increases (Figure 2d). The mean squared error (MSE) is calculated
through E 1

2 (p
t
bias+p

t
data)

[||wtϕ∗(xt)−wtϕ(xt)||22] for each time step. Figure 2e illustrates that the density
ratio estimation error decreases rapidly as t increases.

Applying the time-independent importance reweighting, as described in Choi et al. (2020), utilizes
the density ratio only at t = 0 for loss computation, and this ratio becomes constant to t in the score-
matching. The previously discussed density-chasm creates the weight estimation error, illustrated
as a red line in Figure 2e; and this error propagates through the diffusion model training. Con-
sidering the time integrating nature of score-matching objectives, the integrated estimation error of
time-dependent density ratio

∫ 1

0
E 1

2 (p
t
bias+p

t
data)

[||wtϕ∗(xt)−wtϕ(xt)||22]dt is only 39.1%, compared to∫ 1

0
E 1

2 (pbias+pdata)[||w
0
ϕ∗(x0)−w0

ϕ(x0)||22]dt. We additionally discuss the benefits of time-dependent
discriminator training in Appendix A.2. The natural way to reduce this DRE error is to employ time-
dependent importance reweighting based on the time-dependent density ratio, as this paper suggests
for the first time in the line of work on diffusion models.

3.2 SCORE MATCHING WITH TIME-DEPENDENT IMPORTANCE REWEIGHTING

The objective LDSM utilizes the samples from the joint space of p(x0,xt), so applying time-
dependent importance reweighting is not straightforward. We start with LSM, which entails expec-
tations on marginal distribution. We apply time-dependent importance reweighting through eq. (9).
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(a)∇ log p0bias(x0) (b)∇ log p0data(x0) (c)∇ logw0
ϕ(x0) (d) w0
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Figure 3: (a-b) The score plots on p0bias and p0data defined in Figure 2. (c) The score plot on score cor-
rection term. (d) The reweighting value. The time-dependent density ratio simultaneously mitigates
the bias through (c) and (d).

LSM(θ; pdata) =
1

2

∫ T

0

Eptbias(xt)

[
wtϕ∗(xt)ℓsm(θ,xt)

]
dt, (9)

where ℓsm(θ,xt) := λ(t)||sθ(xt, t)−∇ log ptdata(xt)||22, and wtϕ∗(xt) =
ptdata(xt)
ptbias(xt)

.

Meanwhile, this objective is still intractable because we cannot evaluate ∇ log ptdata(xt) from a sam-
ple xt. Also, there is mismatching between the sampling distribution ptbias(xt) and the density func-
tion of target score ∇ log ptdata(xt). This difference interferes with the straightforward conversion to
a denoising score-matching approach.

To tackle this issue, we propose an objective function named time-dependent importance reweighted
denoising score-matching (TIW-DSM). There exists a new score correction term, ∇ logwtϕ∗(xt) :=

∇ log
ptdata(xt)
ptbias(xt)

, as a regularization in the L2 loss on score-matching.

LTIW-DSM(θ; pbias, w
t
ϕ∗(·)) (10)

:=
1

2

∫ T

0

Epbias(x0)Ep(xt|x0)

[
λ(t)wtϕ∗(xt)

[
||sθ(xt, t)−∇ log p(xt|x0)−∇ logwtϕ∗(xt)||22)

]]
dt

Here, we briefly explore the meaning of the newly suggested regularization term through eq. (11).

∇ logwtϕ∗(xt) = ∇ log ptdata(xt)−∇ log ptbias(xt) (11)

∇ logwtϕ∗(xt) forces the model scores to move away from ∇ log ptbias(xt) and head towards
∇ log ptdata(xt). Figure 3 interprets this score correction scheme on the 2-D distributions as de-
scribed in Figures 2a and 2b. Figure 3a shows that ∇ log ptbias(xt) incorporates a substantial portion
of the mode in the lower left. The correction term in Figure 3c exerts a force away from the biased
mode, allowing the model to target the ∇ log ptdata(xt) as shown in Figure 3b. Figure 3d illustrates
the reweighting values, which assigns small values to the points from the biased mode, and imposes
larger weights on the points from another mode. The time-dependent density ratio simultaneously
mitigates the bias through score correction and reweighting.

Moving beyond the conceptual explanations, the following theorem guarantees the mathematical
validity of the proposed objective function.

Theorem 1. LTIW-DSM(θ; pbias, w
t
ϕ∗(·)) = LSM(θ; pdata) + C, where C is a constant w.r.t. θ.

See Appendix A.1 for the proof. We declare that the proposed objective function is equivalent to
the classical score-matching objective with pdata. Despite the equivalence, implementing only LDSM
with Dref for our problem is not a viable option due to the limited amount of Dref from pdata. LDSM
will suffer from Monte Carlo approximation error from limited data (See Appendix C for more
details). In contrast, our objective allows for the use of biased data Dbias, which has many more data
points. Furthermore, the following corollary guarantees the optimality of the proposed objective.

Corollary 2. Let θ∗
TIW-DSM = argminθ LTIW-DSM(θ; pbias, w

t
ϕ∗(·)) be the optimal parameter. Then

sθ∗
TIW-DSM

(xt, t) = ∇ log ptdata(xt) for all xt, t.
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While we utilize biased datasets, the equivalence of the objective functions ensures the proper op-
timality. We also incorporate utilizing of Dref for practical implementation (See Appendix A.4). In
summary, we can converge our model distribution to the underlying true unbiased data distribution
by utilizing all observed data.

4 EXPERIMENTS

This section empirically validates that the proposed method effectively operates on real-world biased
datasets. We outline the experiment setups below.

Datasets We consider CIFAR-10, CIFAR-100, FFHQ, and CelebA datasets, which are commonly
used for generative learning. Note that we access the latent bias factor only for the data construction
and evaluations. To construct Dbias, we consider class as a latent bias factor in CIFAR-10 and
CIFAR-100. For human face datasets, we consider gender as a latent bias factor for FFHQ, and both
gender and hair color for CelebA. To construct Dref, we randomly sample a subset from the entire
unbiased dataset. We experiment with various numbers of |Dref| on each dataset. See Appendix D.1
for more detailed explanations of the dataset.

Metric Our goal is to make the model distribution converge to an unbiased distribution. To measure
this, we use the Fréchet Inception Distance (FID) (Heusel et al., 2017), which measures the distance
between the distributions. We calculate the FID between 1) 50k samples from the model distribution
and 2) all the samples from the entire unbiased dataset.

Baselines We establish three baselines for our main comparison. DSM(ref) and DSM(obs) denote
the naive training of diffusion model with Dref and Dobs, respectively. IW-DSM denotes a method
using time-independent importance reweighting in eq. (7), and TIW-DSM denotes our method in
eq. (10). Note that both IW-DSM and TIW-DSM also incorporate the use of Dref for our experiment
(See Appendix A.4 for more details), and we always use the same experimental setting across the
baselines by only varying objective functions (See Appendix D.2 for the detailed training configu-
rations).

4.1 LATENT BIAS ON THE CLASS

Table 1: Experimental results on CIFAR-10 and CIFAR-100 datasets with various reference size.
The reference size indicates |Dref|

|Dbias| . All the reported values are the FID (↓) between the generated
samples from each method and all the samples from the entire unbiased dataset.

D
at

a Bias set CIFAR-10 (LT) CIFAR-100 (LT)
Reference size 5% 10% 25% 50% 5% 10% 25% 50%

M
et

ho
d DSM(ref) 16.47 11.56 10.77 5.19 21.27 17.17 15.84 8.57

DSM(obs) 12.99 10.75 8.45 7.35 15.20 11.06 8.36 6.17

IW-DSM 15.79 11.45 8.19 4.28 20.44 15.87 12.81 8.40
TIW-DSM 11.51 8.08 5.59 4.06 14.46 10.02 7.98 5.89

(a) DSM(ref)
(16.47 / 0.16)

(b) IW-DSM
(15.79 / 0.18)

(c) DSM(obs)
(12.99 / 0.42)

(d) TIW-DSM
(11.51 / 0.40) (e) Training Curve

Figure 4: Analysis on CIFAR-10 (LT / 5%) experiments. (a-d) Samples that reflect the diversity and
latent statistics with (FID / Recall). (e) Training curves for each method.
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We construct Dbias following the Long Tail (LT) dataset (Cao et al., 2019) for CIFAR-10 and CIFAR-
100. Table 1 shows the results with various reference sizes. First of all, the performance gets
better as the reference size gets larger for all methods. Secondly, when comparing DSM(ref) and
DSM(obs), we find that the naive use of Dbias yields better results when the reference size is too
small, or the strength of bias is weak (case of CIFAR-100). However, DSM(obs) exhibits poor
performance when the reference size becomes larger in the CIFAR-10 dataset. Since DSM(obs)
does not guarantee to converge on the unbiased distribution, the performance is also not guaranteed
under such an extreme bias setting. Third, IW-DSM consistently exhibits slightly better performance
compared to DSM(ref). IW-DSM utilizes Dref as well as Dbias with the weighted value. However,
we observed that the reweighting value for Dbias is too small (will be discussed in section 4.4), which
makes the effect of the Dbias marginal. In many cases, the performance of IW-DSM is even worse
than the naive use of Dbias. Finally, the proposed method TIW-DSM outperforms all the baseline
models in every case we tested by a large margin. The comparison of IW-DSM and TIW-DSM
directly indicates the effect of time-dependent importance reweighting. IW-DSM and TIW-DSM
optimize two equivalent objective functions up to a constant under optimal density ratio functions
(See Appendix A.3 for explanation), so the performance gain is purely from the accurate estimation
of the time-dependent density ratio.

Figure 4 shows the samples in (a)-(d) and the convergence curve on each method in (e). DSM(ref)
and IW-DSM illustrate extremely low sample diversity, which results in many samples being iden-
tical. DSM(obs) displayed a variety of samples, but it is heavily biased. Out of 10 latent classes, 2
latent classes accounted for 40% of the total proportion that is being calculated by a pre-trained clas-
sifier. TIW-DSM shows the diverse samples with unbiased proportions. We provide a quantitative
measure of bias intensity in Figure 7. Additionally, Figure 4e shows that DSM(ref) and IW-DSM
suffer from overfitting, which often occurs when training with limited data (See Appendix C for
explanation). This could be evidence that IW-DSM cannot fully utilize the information from Dbias.

4.2 LATENT BIAS ON SENSITIVE ATTRIBUTES

Table 2: Experimental results on FFHQ with various bias settings
& reference size. The reference size indicates |Dref|

|Dbias| . All the
reported values are the FID (↓).

D
at

a Bias set FFHQ (80%) FFHQ (90%)
Reference size 1.25% 12.5% 1.25% 12.5%

M
et

ho
d DSM(ref) 12.69 6.22 12.69 6.22

DSM(obs) 7.29 4.88 8.59 5.75

IW-DSM 11.30 5.50 11.68 5.60
TIW-DSM 7.10 4.49 8.06 4.83

Figure 5: The convergence of
TIW-DSM on various bias level &
reference size.

(a) FFHQ (Gender 90% / 1.25%) (b) CelebA (Benchmark / 5%)

Figure 6: Majority to minority conversion through our objective. The first row illustrates the samples
from DSM(obs), and the second row illustrates the samples from TIW-DSM under the same random
seeds. (a) indicates the female to male conversion. (b) indicates the (female & non-black hair) to
(male& black hair) conversion.

We construct Dbias by making the portion of females as 80% and 90% in FFHQ experiments. Ta-
ble 2 demonstrates the performance on each bias setting and various reference sizes. TIW-DSM
shows superior results similar to the results from Table 1. This experiment includes a scenario with
an extremely small reference set size, which is 1.25%. TIW-DSM still works well on very lim-
ited reference sizes. While TIW-DSM aims to estimate the unbiased data distribution regardless
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of the intensity of bias in Dbias, a lower bias intensity led to better adherence to the unbiased data
distribution. Figure 5 provides the stable training curves for various experiment settings.

Table 3: Mitigating the bias exists in the CelebA
benchmark dataset with 5% reference size.

Method FID Latent Statistics (%)
zF,NB zM,NB zF,B zM,B

DSM(ref) 2.82 28.0 29.8 19.3 22.9
DSM(obs) 3.55 42.8 30.0 13.0 14.2

IW-DSM 2.43 34.6 29.7 17.1 18.6
TIW-DSM 2.40 31.0 27.8 20.1 21.1

We also tackle the bias that actually exists
in the common benchmark. We observe
CelebA benchmark has suffered from bias
with respect to gender and hair color. If we
consider four subgroups: female without
black hair (zF,NB), male without black hair
(zM,NB), female with black hair (zF,B), and
male with black hair (zM,B), each group
has the following proportion: p(zF,NB) =
46.5%, p(zM,NB) = 29.6%, p(zF,B) =
11.5%, p(zM,B) = 12.4%. We construct
the |Dref| as a 5% of CelebA datasets, which random samples from the unbiased dataset. Table 3
shows the experiment results for the CelebA dataset. To examine the effectiveness of weak supervi-
sion itself, we train DSM(obs) without using the information of Dref in this experiment, which shows
poor results from bias. TIW-DSM also outperforms the other baselines in terms of FID, implying
that it is the best approach to address real-world bias under weak supervision. Additionally, we
examine the latent statistics on generated samples using a pre-trained classifier (See Appendix D.3
for details). Figure 1b shows the generated samples from the proposed method that reflects such
proportions. Figure 6 explicitly shows the reason why the bias was mitigated. Some of the sam-
ples looked in the majority latent group from DSM(obs) transformed into a minority group from
TIW-DSM. These changes helped to adjust toward the equal portion in each subgroup.

4.3 ABLATION STUDIES

Table 4: Component ablation on the pro-
posed method. W indicates the time-dependent
reweighting term, C indicates the score correc-
tion term. All reported values are FID (↓).

Component Reference size

W C 5% 10% 25% 50%

✗ ✗ 12.99 10.57 8.45 7.35
✓ ✗ 13.27 10.80 8.26 7.28
✗ ✓ 11.62 8.15 5.43 4.14
✓ ✓ 11.51 8.08 5.59 4.06

Loss component The proposed loss function
utilizes the time-dependent density ratio for two
purposes, which is the reweighting (W) and the
score correction (C). We conduct ablation stud-
ies in Table 4 to assess the effectiveness of each
role. Note that if we do not use both, the objec-
tive becomes the same as DSM(obs). Using only
reweighting without score correction does not
guarantee that the model distribution will con-
verge to an unbiased data distribution, so the per-
formance does not improve. While using only
score correction establishes a missing link to the
traditional score-matching objective, it ensures
that the model converges to an unbiased data dis-
tribution (See Appendix A.5 for mathematical explanation), which showed quite good results. The
use of these two components simultaneously performs best in most cases.

(a) CIFAR-10 (LT / 5%) (b) CIFAR-100 (LT / 5%)

Figure 7: Bias - FID tradeoffs on the methods. We sweep α ∈ {0.25, 0.5, 1, 2, 2.5} for TIW-DSM,
and α ∈ {0.125, 0.5, 0.25, 1} for IW-DSM.
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Density ratio scaling The density ratio or confidence of the classifier can be scaled through a
hyperparameter after training (Dhariwal & Nichol, 2021). We generalize our objective utilizing the
α-scaled density ratio: LTIW-DSM(θ; pbias, w

t
ϕ∗(·)α). Note that α = 1 indicates the original objective

function and α = 0 becomes equivalent to DSM(obs), which is explained in Appendix A.6. We con-
sider the experiments on CIFAR-10 and CIFAR-100 with a 5% reference set size. We also conduct
α scaling on the IW-DSM baseline. For quantitative analyses, we also measure the strength of bias
through Bias := Σz||Ex∼Dref [p(z|x)] − Ex∼pθ [p(z|x)]||2 (See Appendix D.3 for more detail about
this metric). Figure 7 illustrates that DSM(ref) shows a poor FID because it only trains on a small
amount of Dref while being free from the bias. DSM(obs) achieves better FID from a larger amount
of data but suffers from bias. IW-DSM almost linearly trade-off these two metrics by adjusting α.
TIW-DSM showed improvements in both metrics within the alpha range of 0 to 1. Furthermore,
TIW-DSM outperforms IW-DSM significantly in terms of FID at the same bias strength.

4.4 DENSITY RATIO ANALYSIS

(a) σ(t) = 0 (b) σ(t) = 0.34 (c) σ(t) = 0.72 (d) σ(t) = 80

Figure 8: Reweighting value analysis on Dbias and Dref of FFHQ (Gender 80% / 12.5%) according
to diffusion time σ(t). (a) Most of the reweighting value on Dbias is extremely small. (d) Most of
the reweighting value is 1 on both Dbias, and Dref. (b-c) smooth interpolation between (a) and (c).

Figure 9: The density ratio changes
according to the diffusion time.

This section investigates the importance reweighting value ac-
cording to the diffusion time in our experiment. Figure 8 illus-
trates the histrogram of reweighting values on Dbias in FFHQ
(Gender 80% / 12.5%). When the diffusion time σ(t) = 0,
the trained discriminator predicts overconfidently, resulting in
more than 75% of Dbias being assigned weights less than 0.01.
Since IW-DSM only uses the weight value on σ(t) = 0, it
does not utilize most of the information from Dbias. This is the
reason why the performance of IW-DSM is only marginally
better than DSM(ref). While the perturbation undergoes, the
reweighting value grows rapidly, which TIW-DSM leads to
utilizing more information from Dbias. Note that the minor-
ity latent group (or, the males in this setting) tends to get a
higher value of reweighting value than the major group (fe-
male group) in each diffusion time step, which is the reason
for bias mitigation. Figure 9 shows point-wise examples that
change the importance weights in Dbias. x(2) and x(3) have
extremely low reweighting values at σ(t) = 0, but these weights increase as time progresses, pro-
viding valuable information for TIW-DSM training.

5 CONCULSION

In this paper, we address the problem of dataset bias for the diffusion models. We highlight the
previous time-independent importance reweighting undergoes error propagation from density ratio
estimation, and the proposed time-dependent importance reweighting alleviates such problems. We
derive the proposed weighting objective to become tractable by utilizing the time-dependent den-
sity ratio for reweighting as well as score correction. The proposed objective is connected to the
traditional score-matching objective with unbiased distribution, which guarantees convergence to
an unbiased distribution. Our experimental results on various kinds of datasets, weak supervision
settings, and bias settings validate the proposed method’s notable benefits.
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A PROOFS AND MATHEMATICAL EXPLANATIONS

A.1 PROOF OF THEOREM 1

Theorem 1. LTIW-DSM(θ; pbias, w
t
ϕ∗(·)) = LSM(θ; pdata) + C, where C is a constant w.r.t. θ.

Proof. First, the score-matching objective LSM(θ; pdata) can be derived as follows.

LSM(θ; pdata) =
1

2

∫ T

0

Eptbias(xt)

[
wtϕ∗(xt)ℓsm(θ;xt)

]
dt (12)

=
1

2

∫ T

0

Eptbias(xt)

[
wtϕ∗(xt)λ(t)||sθ(xt, t)−∇ log pdata(xt)||22

]
dt (13)

=
1

2

∫ T

0

Eptbias(xt)

[
wtϕ∗(xt)λ(t)

[
||sθ(xt, t)||22 − 2∇ log pdata(xt)

T sθ(xt, t)

+ ||∇ log pdata(xt)||22
]]
dt (14)

We further derive the inner product term in the above equation using eq. (11).

Eptbias(xt)

[
∇ log pdata(xt)

T sθ(xt, t)

]
(15)

=

∫
ptbias(xt)

[[
∇ log pbias(xt) +∇ logwϕ∗(xt)

]T
sθ(xt, t)

]
dxt (16)

=

∫
ptbias(xt)

[
∇ log pbias(xt)

T sθ(xt, t)

]
dxt +

∫
ptbias(xt)

[
∇ logwϕ∗(xt)

T sθ(xt, t)

]
dxt (17)

We obtain the derivation for the first term of eq. (17) using the log derivative trick.

∫
ptbias(xt)∇ log pbias(xt)

T sθ(xt, t)dxt (18)

=

∫
∇ptbias(xt)

T sθ(xt, t)dxt (19)

=

∫ [
∇
∫

pbias(x0)p0t(xt|x0)dx0

]T
sθ(xt, t)dxt (20)

=

∫ [ ∫
pbias(x0)∇p0t(xt|x0)dx0

]T
sθ(xt, t)dxt (21)

=

∫ ∫
pbias(x0)∇p0t(xt|x0)

T sθ(xt, t)dxtdx0 (22)

=

∫ ∫
pbias(x0)p0t(xt|x0)∇ log p0t(xt|x0)

T sθ(xt, t)dxtdx0 (23)

= Epbias(x0)Ep0t(xt|x0)

[
∇ log p0t(xt|x0)

T sθ(xt, t)
]

(24)

17



Published as a conference paper at ICLR 2024

Applying eqs. (17) and (24) to eq. (14), we have:

LSM(θ; pdata) (25)

=
1

2

∫ T

0

Eptbias(xt)

[
wtϕ∗(xt)λ(t)

[
||sθ(xt, t)||22 − 2∇ log pdata(xt)

T sθ(xt, t)

+ ||∇ log pdata(xt)||22
]]
dt (26)

=
1

2

∫ T

0

Epbias(x0)Ep0t(xt|x0)

[
wtϕ∗(xt)λ(t)

[
||sθ(xt, t)||22 − 2∇ log pdata(xt)

T sθ(xt, t)
]]
dt+ C1

(27)

=
1

2

∫ T

0

Epbias(x0)Ep0t(xt|x0)

[
wtϕ∗(xt)λ(t)

[
||sθ(xt, t)||22 − 2∇ log p0t(xt|x0)

T sθ(xt, t)
]]
dt

− 1

2

∫ T

0

Epbias(x0)Ep0t(xt|x0)[2w
t
ϕ∗(xt)λ(t)∇ logwϕ∗(xt)

T sθ(xt, t)
]
dt+ C1 (28)

=
1

2

∫ T

0

Epbias(x0)Ep0t(xt|x0)

[
wtϕ∗(xt)λ(t)

[
||sθ(xt, t)−∇ log p0t(xt|x0)||22

]]
dt+ C2

− 1

2

∫ T

0

Epbias(x0)Ep0t(xt|x0)[2w
t
ϕ∗(xt)λ(t)∇ logwϕ∗(xt)

T sθ(xt, t)
]
dt+ C1 (29)

=
1

2

∫ T

0

Epbias(x0)Ep(xt|x0)

[
λ(t)wtϕ∗(xt)

[
||sθ(xt, t)−∇ log p(xt|x0)||22

− 2sθ(xt, t)
T∇ logwtϕ∗(xt)

]]
dt+ C1 + C2 (30)

=
1

2

∫ T

0

Epbias(x0)Ep(xt|x0)

[
λ(t)wtϕ∗(xt)

[
||sθ(xt, t)−∇ log p(xt|x0)||22

− 2sθ(xt, t)
T∇ logwtϕ∗(xt) + 2∇ log p(xt|x0)

T∇ logwtϕ∗(xt)

+ ||∇ logwtϕ∗(xt)||22
]]
dt+ C1 + C2 + C3 (31)

=
1

2

∫ T

0

Epbias(x0)Ep(xt|x0)

[
λ(t)wtϕ∗(xt)

[
||sθ(xt, t)−∇ log p(xt|x0)−∇ logwtϕ∗(xt)||22

]]
dt+ C

(32)

=LTIW-DSM(θ; pbias, w
t
ϕ∗(·)) + C (33)

where C1, C2, C3, C be constants that do not depend on θ. Thus, LTIW-DSM(θ; pbias, w
t
ϕ∗(·)) is

equivalent to LSM(θ; pdata) with respect to θ.
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A.2 THEORETICAL ANALYSIS ON TIME-DEPENDENT DISCRIMINATOR TRAINING.

We further discuss the training objective of a time-dependent discriminator in eq. (34). We inves-
tigate whether optimizing at each time step of the density ratio would have a beneficial impact on
other times. Theorem 3 provides some indirect answer. The minimization of log ratio estimation
error at t guarantees the smaller upper bound of the estimation error at t = 0 for a point.

LT-BCE(ϕ; pdata, pbias) :=

∫ T

0

λ′(t)
[
Eptdata(xt)[log dϕ(xt, t)] + Eptbias(xt)[log(1− dϕ(xt, t))]

]
dt

(34)

Theorem 3. Suppose the model density ratio wtϕ and ptdata
ptbias

are continuously differentiable on their

supports with respect to t, for any x. Assume p0data
p0bias

is nonzero at any [0, 1]d, then we have∣∣∣∣ logw0
ϕ(x)− log

p0data(x)

p0bias(x)

∣∣∣∣ ≤ ∣∣∣∣ logwtϕ(x)− log
ptdata(x)

ptbias(x)

∣∣∣∣+ tC(x, t;ϕ) +O(t2),

where C(x, t;ϕ) =
∣∣ ∂
∂t logw

t
ϕ(x) − ∂

∂t log
ptdata(x)
ptbias(x)

∣∣. For any ϵ > 0, set ϕ∗
t =

argminϕ E[t,t+ϵ)

[
Eptdata(xt)[log dϕ(xt, t)] + Eptbias(xt)[log (1− dϕ(xt, t))]

]
. Then, the following

properties hold:

• logwtϕ∗
t
(x) = log

ptdata(x)
ptbias(x)

.

• C(x, t;ϕ∗
t ) = 0,

for any x. Therefore, at optimal ϕ∗
t , the following inequality holds:∣∣∣∣ logw0

ϕ∗
t
(x)− log

p0data(x)

p0bias(x)

∣∣∣∣ ≤ O(t2).

Proof. From the Taylor expansion with respect to t variable, we have

logw0
ϕ(x)− log

p0data(x)

p0bias(x)
= logwtϕ(x)− log

ptdata(x)

ptbias(x)

+ t

(
∂

∂t
logwtϕ(x)−

∂

∂t
log

ptdata(x)

ptbias(x)

)
+O(t2),

which derives∣∣∣∣ logw0
ϕ(x)− log

p0data(x)

p0bias(x)

∣∣∣∣ ≤ ∣∣∣∣ logwtϕ(x)− log
ptdata(x)

ptbias(x)

∣∣∣∣+ tC(x, t;ϕ) +O(t2),

by triangle inequality. Now, if ϕ∗
t = argminϕ E[t,t+ϵ)

[
Eptdata(xt)[log dϕ(xt, t)] + Eptbias(xt)[log (1− dϕ(xt, t))]

]
,

then wuϕ∗
t
(x) =

dϕ∗
t
(x,u)

1−dϕ∗
t
(x,u) =

pudata(x)
pubias(x)

for any x and u ∈ [t, t+ ϵ). Therefore, we get∣∣∣∣ logwtϕ∗
t
(x)− log

ptdata(x)

ptbias(x)

∣∣∣∣ = 0

by plugging t to u. Also, we get

∂

∂t
logwtϕ∗

t
(x) = lim

u↘t

logwuϕ∗
t
(x)− logwtϕ∗

t
(x)

u− t

= lim
u↘t

log
pudata(x)
pubias(x)

− log
ptdata(x)
ptbias(x)

u− t

=
∂

∂t
log

ptdata(x)

ptbias(x)
,

since ptdata(x)
ptbias(x)

is continuously differentiable with respect to t. Therefore, C(x, t;ϕ∗
t ) = 0.
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A.3 RELATION BETWEEN TIME-INDEPENDENT IMPORTANCE REWEIGHTING AND
TIME-DEPENDENT IMPORTANCE REWEIGHTING

This section explains further equivalence between the objective functions of IW-DSM and TIW-
DSM. We rewrite the objective function of time-independent importance reweighting as follows:

LIW-DSM(θ; pbias,wϕ∗(·)) (35)

:=
1

2

∫ T

0

Epbias(x0)wϕ∗(x0)Ep(xt|x0)

[
λ(t)

[
||sθ(xt, t)−∇ log p(xt|x0)||22)

]]
dt,

where wϕ∗(x0) := pdata(x0)
pbias(x0)

. LIW-DSM(θ; pbias, wϕ∗(·)) is equivalent to LDSM(θ; pdata) as de-
rived in eq. (6) and eq. (7). We also know the equivalence between LTIW-DSM(θ; pbias, w

t
ϕ∗(·))

and LSM(θ; pdata) from Theorem 1. Since LSM(θ; pdata) and LDSM(θ; pdata) are equiva-
lent (Song & Ermon, 2019), we conclude that the objectives LIW-DSM(θ; pbias, wϕ∗(·)) and
LTIW-DSM(θ; pbias, w

t
ϕ∗(·)) are equivalent w.r.t. θ up to a constant.

This equivalence implies the empirical performance between IW-DSM and TIW-DSM is purely
from the error propagation from the estimated time-independent density ratio wϕ(·) and the time-
dependent density ratio wtϕ(·).

A.4 OBJECTIVE FOR INCORPORATING DREF

The objective functions of TIW-DSM and IW-DSM in the main paper explain how to treat Dbias
for unbiased diffusion model training, but we actually have Dobs = Dref ∪ Dbias. The objective that
incorporates Dref is necessary for better performance of the implementation.

To do this, we define the mixture distribution ptobs := 1
2p
t
bias +

1
2p
t
data, and plug ptobs into ptbias in

each objective. Note that the density ratio between ptdata and ptobs also can be represented by the
time-dependent discriminator we explained in the main paper.

w̃tϕ∗(xt) :=
ptdata(xt)

ptobs(xt)
=

ptdata(xt)
1
2p
t
bias(xt) +

1
2p
t
data(xt)

=
2
ptdata(xt)
ptbias(xt)

1 +
ptdata(xt)

ptbias(xt)

=
2wtϕ∗(xt)

1 + wtϕ∗(xt)
=

2
dϕ∗(xt,t)

1−dϕ∗ (xt,t)

1 +
dϕ∗ (xt,t)

1−dϕ∗ (xt,t)

= 2dϕ∗(xt, t) (36)

By plugging pobs and w̃tϕ∗ into our objective function, we can get the objective function that incor-
porates all the samples in Dobs.

LTIW-DSM(θ; pobs, w̃
t
ϕ∗(·)) (37)

:=
1

2

∫ T

0

Epobs(x0)Ep(xt|x0)

[
λ(t)w̃tϕ∗(xt)

[
||sθ(xt, t)−∇ log p(xt|x0)−∇ log w̃tϕ∗(xt)||22)

]]
dt

In the same spirit, the time-independent importance reweighting objective that incorporates Dref
represented as follows:

LIW-DSM(θ; pobs,w̃ϕ∗(·)) (38)

:=
1

2

∫ T

0

Epobs(x0)w̃ϕ∗(x0)Ep(xt|x0)

[
λ(t)

[
||sθ(xt, t)−∇ log p(xt|x0)||22)

]]
dt,

where w̃ϕ∗(x0) =
p0data(x0)

p0obs(x0)
.

The DSM(obs) in our experiment optimize the following objective in eq. (39).

LDSM(θ; pobs) =
1

2

∫ T

0

Epobs(x0)Ep(xt|x0)

[
λ(t)

[
||sθ(xt, t)−∇ log p(xt|x0)||22

]]
dt (39)
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A.5 LOSS COMPONENT ABLATIONS

The proposed objective function, eq. (40), utilizes wϕ∗ as two roles in our method: 1) reweighting
and 2) score correction. We discuss what if each component did not exist.

LTIW-DSM(θ; pbias, w
t
ϕ∗(·)) (40)

:=
1

2

∫ T

0

Epbias(x0)Ep(xt|x0)

[
λ(t)wtϕ∗(xt)

[
||sθ(xt, t)−∇ log p(xt|x0)−∇ logwtϕ∗(xt)||22)

]]
dt

First, we consider the objective function that only takes the score correction:

1

2

∫ T

0

Epbias(x0)Ep(xt|x0)

[
λ(t)

[
||sθ(xt, t)−∇ log p(xt|x0)−∇ logwtϕ∗(xt)||22)

]]
dt. (41)

If we define newly parameterized distribution s′θ(xt, t) := sθ(xt, t)−∇ logwtϕ∗(xt) as the model
distribution (the adjusting parameter is still only θ), the objective becomes like eq. (42).

1

2

∫ T

0

Epbias(x0)Ep(xt|x0)

[
λ(t)

[
||s′θ(xt, t)−∇ log p(xt|x0)||22)

]]
dt (42)

This objective is same as LDSM with pbias, so s′θ(xt, t) will converge to ∇ log pbias(xt). By the re-
lation from sθ(xt, t) = s′θ(xt, t) + ∇ logwtϕ∗(xt), sθ(xt, t) will converges to ∇ log pbias(xt) +

∇ log pdata(xt)
pbias(xt)

= ∇ log pdata(xt). This means that only applying score correction guarantees opti-
mality, so this is the reason for the quite good performance.

Second, we consider the objective function that only takes the time-dependent reweighting:

1

2

∫ T

0

Epbias(x0)Ep(xt|x0)

[
λ(t)wtϕ∗(xt)

[
||sθ(xt, t)−∇ log p(xt|x0)||22)

]]
dt. (43)

We can derive that eq. (43) is equivalent to following objective in eq. (44).

1

2

∫ T

0

Eptbias(xt)

[
λ(t)wtϕ∗(xt)

[
||sθ(xt, t)−∇ log pbias(xt)||22)

]]
dt, (44)

which implies that sθ(xt, t) will converge to ∇ log pbias(xt). This is the reason that the objective
without score correction performs similarly to DSM(obs).

A.6 GENERALIZED OBJECTIVE FUNCTION BY ADJUSTING DENSITY RATIO

We generalize our objective for the ablation study in Section 4.3 by adjusting the density ratio, which
is represented as eq. (45).

LTIW-DSM(θ; pbias, w
t
ϕ∗(·)α) (45)

:=
1

2

∫ T

0

Epbias(x0)Ep(xt|x0)

[
λ(t)wtϕ∗(xt)

α
[
||sθ(xt, t)−∇ log p(xt|x0)− α∇ logwtϕ∗(xt)||22)

]]
dt

As α → 0, LTIW-DSM(θ; pbias, w
t
ϕ∗(·)α) becomes LDSM(θ; pbias), i.e.,

LTIW-DSM(θ; pbias, w
t
ϕ∗(·)0) (46)

=
1

2

∫ T

0

Epbias(x0)Ep(xt|x0)

[
λ(t)

[
||sθ(xt, t)−∇ log p(xt|x0)||22)

]]
dt = LDSM(θ; pbias)

To adopt this scaling to our objective with incorporate Dref, we utilize the relation in eq. (47), and
define w̃tϕ∗(xt, α) through eq. (48).

w̃tϕ∗(xt) =
2wtϕ(xt)

1 + wtϕ∗(xt)
(47)
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w̃tϕ∗(xt, α) :=
2wtϕ(xt)

α

1 + wtϕ∗(xt)α
(48)

Then, the α-generalized objective that incorporates Dref can be expressed as follows.

LTIW-DSM(θ; pobs, w̃
t
ϕ∗(·, α)) (49)

:=
1

2

∫ T

0

Epobs(x0)Ep(xt|x0)

[
λ(t)w̃tϕ∗(xt, α)

[
||sθ(xt, t)−∇ log p(xt|x0)−∇ log w̃tϕ∗(xt, α)||22)

]]
dt

As α → 0, w̃tϕ∗(xt, α) becomes 1, which leads ∇ log w̃tϕ∗(xt, α) be 0.

LTIW-DSM(θ; pobs, w̃
t
ϕ∗(·, 0))

=
1

2

∫ T

0

Epobs(x0)Ep(xt|x0)

[
λ(t)w̃tϕ∗(xt, 0)

[
||sθ(xt, t)−∇ log p(xt|x0)−∇ log w̃tϕ∗(xt, 0)||22)

]]
dt

=
1

2

∫ T

0

Epobs(x0)Ep(xt|x0)

[
λ(t)

[
||sθ(xt, t)−∇ log p(xt|x0)||22)

]]
dt

= LDSM(θ; pobs) (50)

This implies that α interpolates the objective function between DSM(obs) and TIW-DSM. We can
observe the quantitative results also interpolated in the range of α ∈ [0, 1] as shown in Figure 7.
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B RELATED WORK

B.1 FAIRNESS IN ML & GENERATIVE MODELING

Fairness is widely studied in the fields of classification tasks (Dwork et al., 2012; Feldman et al.,
2015; Heidari et al., 2018; Adel et al., 2019), representation learning (Zemel et al., 2013; Louizos
et al., 2015; Song et al., 2019), and generative modeling (Um & Suh, 2023; Sattigeri et al., 2019;
Xu et al., 2018; Teo et al., 2023). In terms of classification tasks, the objective for fairness is mainly
to handle a classifier to be independent of the sensitive attributes such as gender with different mea-
surement metrics (Hardt et al., 2016; Feldman et al., 2015). Fair representation learning is defined
as equal representation which is a uniform distribution of samples with respect to the sensitive at-
tributes (Hutchinson & Mitchell, 2019).

The task we address in this paper is also called fair generative modeling (Xu et al., 2018; Choi et al.,
2020; Teo et al., 2023), which aims to estimate a balanced distribution of samples with respect to
sensitive attributes. With regard to data generation, there are relevant works such as Fair-GAN (Xu
et al., 2018) and FairnessGAN (Sattigeri et al., 2019). These methods have been advanced to gener-
ate data instances characterized by fairness attributes, with their respective labels. These generated
data instances are utilized as a preprocessing step. On the other hand, Teo et al. (2023) introduces
transfer learning to learn a fair generative model. They adapt the pre-trained generative model
trained by large, biased datasets via leveraging the small, unbiased reference dataset to finefune the
model. Choi et al. (2020); Um & Suh (2023) treat fair generative modeling under a weak supervi-
sion setting so utilize the small amount of reference dataset. Most of the fair generative models have
progressed using GANs. In the diffusion models, we propose, that the concept relevant to fairness
& dataset bias has not yet received significant attention.

Friedrich et al. (2023) is a concurrent study that explores the theme of fairness in diffusion models,
but their work is distinctly differentiated from our paper in terms of problem setting and methodol-
ogy. Our paper focuses on a weak supervision setting, which is a cost-effective scenario in terms
of dataset collection. Conversely, Friedrich et al. (2023) leverage information in the joint space of
(text, image) using a pre-trained text conditional diffusion model. This implies that their approach
relies on point-wise text supervision to mitigate bias. There is also a distinguishable difference in the
methods. Friedrich et al. (2023) is based on the guidance method, which requires 2 to 3 times more
NFEs for sampling. Our paper proposes the objective function for unbiased score network training,
so we only need 1 NFE of score network at every denoising step. Please refer to Appendix E.6 for
quantitative comparison.

B.2 IMPORTANCE REWEIGHTING

There are many approaches to reweighting data points for their purpose, which is common in the
fields of noisy label learning (Liu & Tao, 2015; Wang et al., 2017a), class imbalanced learning (Ren
et al., 2018; Guo et al., 2022; Duggal et al., 2021; Park et al., 2021), and fairness (Chai & Wang,
2022; Hu et al., 2023; Krasanakis et al., 2018; Iosifidis & Ntoutsi, 2019). In the context of learn-
ing with noisy labels, importance reweighting aims to adjust the loss function by assigning reduced
weights to instances with noisy labels and elevated weights to instances with clean labels, thereby
mitigating the impact of noisy labels on the learning process Liu & Tao (2015). Similar to the con-
cept from the noisy label, research from class imbalanced learning utilizes an importance reweight-
ing scheme to prevent the model from being biased to the majority classes while amplifying the
effects of minority classes (Wang et al., 2017b; Ren et al., 2018; Guo et al., 2022). In terms of fair-
ness, there are researches for importance reweighting (Chai & Wang, 2022; Hu et al., 2023). These
works on fairness aim to mitigate representation bias which is caused by insufficient and imbalanced
data instances in a fair perspective. Consequently, they propose instance reweighting as a means to
facilitate fair representation learning within the model.

The reweighting related to time t is considered in diffusion models (Nichol & Dhariwal, 2021; Song
et al., 2021; Kim et al., 2022a). However, these studies focus on resampling and reweighting the
random variable t itself, while we focus on the reweighting xt.
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B.3 SCORE CORRECTION IN DIFFUSION MODEL

The sampling process of the diffusion model involves an iterative update process using a score direc-
tion, typically approximated by the score network. When there is a specific purpose for generating
data, score correction becomes necessary. There are several methods to adjust this score direction,
each tailored to specific purposes. From a technical standpoint, these methods can be divided into
two groups: guidance methods and score-matching regularization methods.

Guidance methods introduce additional gradient signals to adjust the update direction. Classifier
guidance (Song et al., 2020; Dhariwal & Nichol, 2021) utilizes a gradient signal from a classifier
to generate samples that satisfy a condition. Classifier-free guidance (Ho & Salimans, 2021) also
aims at conditional generation but relies on both unconditional and conditional scores. Furthermore,
various methods have been proposed to enable controllable generation using auxiliary models with
a pre-trained unconditional score model (Graikos et al., 2022; Song et al., 2023). On the other hand,
discriminator guidance (Kim et al., 2023) serves a different purpose by enhancing the sampling
performance of a diffusion model through the use of a discriminator that distinguishes between
real images and generated images. EGSDE (Zhao et al., 2022) leverages guidance signals based
on energy functions, enhancing unpaired image-to-image translation. Guidance methods have the
advantage of utilizing pre-trained score networks without the need for additional training. However,
they require separate network training for guidance and additional network evaluation during the
sampling process.

There is a body of work on score-matching regularization for better likelihood estimation (Lu et al.,
2022; Zheng et al., 2023b; Lai et al., 2023). Na et al. (2024) propose a regularized conditional score-
matching objective to mitigate label noise. The unique benefit of score-matching regularization is
that it does not require an additional network at the inference stage.

B.4 TIME-DEPENDENT DENSITY RATIO IN GANS

Density ratio is closely associated with the training of GANs (Goodfellow et al., 2014; Nowozin
et al., 2016; Uehara et al., 2016). The discrimination between perturbed real data and perturbed gen-
erated data is often mentioned in GAN literature. This is because the discriminator of a GAN also
suffers from a density-chasm problem, and a noise injection trick could resolve it. Arjovsky & Bot-
tou (2017) propose a method to perturb real data and fake data with a small gaussian noise scale for
discriminator input, but the practical choice of noise scale in high-dimension is not easy (Roth et al.,
2017). Wang et al. (2023b) propose a multi-scale noise injection using a forward diffusion process
and introduced an adaptive diffusion technique, achieving significant performance improvements
in high-dimensional datasets. Xiao et al. (2022); Zheng et al. (2023a) utilize GAN’s generator to
achieve fast sampling in the reverse diffusion process, and they also naturally conduct discrimination
between perturbed distribution. However, the time-dependent discriminator in GANs fundamentally
differs in its use case from the proposed method that serves the roles of reweighting and score cor-
rection.

C OVERFITTING WITH LIMITED DATA

We observe the FID overfitting phenomenon when we train diffusion models with too small a subset
of data. In GANs, the origin of overfitting is well elucidated by Karras et al. (2020). However, in
diffusion models, the origin of overfitting is not well explored but often reported from the litera-
ture (Nichol & Dhariwal, 2021; Moon et al., 2022; Song & Ermon, 2020). Training configurations,
such as network architecture, EMA, and diffusion noise scheduling, affect this phenomenon. One
thing explicitly observed from Figure 10 is that overfitting becomes serious when the number of data
becomes smaller. Our experiment sometimes considers a small amount of data, so we periodically
measure the FID and choose the best one.
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(a) Training curve on various numbers of data (b) FID under various # of data with early stopping

Figure 10: Overfitting in FID with a limited number of training data in training diffusion model with
CIFAR-10.

D IMPLEMENTATION DETAIL

D.1 DATSETS

We explain the details of the dataset construction for our experiment. Table 5 shows the information
about Dbias, Dref and the entire unbiased dataset. To construct Dbias, we define the bias statistics
in each latent subgroup (See Figure 11 for the proportion), and we randomly sampled from each
subgroup. Once we established Dbias, we conducted experiments using the same set for all baselines.
The ground truth bias information on each data point is provided from the official dataset in CIFAR-
10, CIFAR-100, and CelebA. We use bias information for FFHQ from https://github.com/
DCGM/ffhq-features-dataset. The entire unbiased dataset is used to construct Dref and
evaluation. We set the entire unbiased dataset as almost the maximum number of samples that are
balanced under latent statistics. The reference dataset Dref is randomly sampled from the entire
unbiased dataset. Note that we do not intentionally balance the latent statistics in Dref, and we use
the same Dref for all baselines.

Table 5: Dataset configurations

CIFAR-10 CIFAR-100 FFHQ CelebA

Resolution 3 × 32 × 32 3 × 32 × 32 3 × 64 × 64 3 × 64 × 64

Bias dataset Dbias
Number of instances 10000 10000 40000 162770
Bias factor Class Class Gender (Gender, Hair color)
Bias subgroup 10 100 2 (2, 2)
Bias type Long tail Long tail 80%, 90% Benchmark

Entire unbiased dataset
Number of instances 50000 50000 50000 75136
Number of instances in each bias group 5000 500 25000 18784

Reference dataset Dref
Number of instances 500, 1000, 2500, 5000 500, 1000, 2500, 5000 500, 5000 8140
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(a) CIFAR-10 (LT) (b) CIFAR-100 (LT) (c) CelebA (benchmark)

Figure 11: The latent statistics in each Dbias.

D.2 TRAINING CONFIGURATION

We follow the procedures outlined in EDM (Karras et al., 2022) to implement the diffusion mod-
els only by changing the learning batch size and objective functions. For the time-dependent
discriminator, we follow DG (Kim et al., 2023). Table 6 presents the details of our experi-
ment. We utilize the model architecture, and training configuration of diffusion model from
https://github.com/NVlabs/edm. For CIFAR-10 and CIFAR-100 experiments, we fol-
low the best setting that is used for CIFAR-10 in EDM. For FFHQ and CelebA experiments, we
follow the best setting that is used for FFHQ in EDM, except for batch size. For time-dependent
discriminator, we utilize the setting from https://github.com/alsdudrla10/DG. The
time-dependent discriminator consists of two U-Net encoder architectures. We use a pre-trained
U-Net encoder from ADM https://github.com/openai/guided-diffusion which is
as a feature extractor. We train the shallow U-Net encoder that transforms from the feature to the
logit. For sampling, we utilize EDM deterministic sampler. To implement a time-independent dis-
criminator for IW-DSM, we utilize the same discriminator architecture but only feed-forward t = 0
for time inputs.

Table 6: Training and sampling configurations.

CIFAR-10 CIFAR-100 FFHQ CelebA

Score Network Architecture
Backbone U-net DDPM++ DDPM++ DDPM++ DDPM++
Channel multiplier 128 128 128 128
Channel per resolution 2-2-2 2-2-2 1-2-2-2 1-2-2-2
Score Network Training
Learning rate ×104 10 10 2 2
Augment probability 12% 12% 15% 15%
Dropout probability 13% 13% 5% 5%
Batch size 256 256 128 128

Discriminator Architecture
Feature extractor ADM ADM ADM ADM
Backbone U-Net encoder U-Net encoder U-Net encoder U-Net encoder
depth 2 2 2 2
width 128 128 128 128
Attention Resolutions 32,16, 8 32,16, 8 32,16, 8 32,16, 8
Model channel 128 128 128 128
Discriminator Training
Batch size 128 128 128 128
Perturbation VP VP Cosine VP Cosine VP
Time sampling Importance Importance Importance Importance
Learning rate ×103 4 4 4 4
Iteration 10k 10k 10k 10k

Sampling
Solver type ODE ODE ODE ODE
Solver order 2 2 2 2
NFE 35 35 79 79
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D.3 METRIC

FID measures the distance between the sample distributions. Each group of samples is projected into
the pre-trained features space and approximated through Gaussian distribution. So, FID measures
both sample fidelity and diversity. We consider this to be the metric to indicate how well the model
distribution approximates an unbiased data distribution. We utilize https://github.com/
NVlabs/edm for FID computation.

For the analysis purpose, we use the metrics recall. The recall describes how well the generated
samples in the feature space cover the manifold of unbiased data. We utilize this metric to highlight
the reason why IW-DSM shows so poor FID performance in . We utilize https://github.
com/chen-hao-chao/dlsm for recall computation.

Bias (Choi et al., 2020) is also utilized for the analysis. This metric measures how similar la-
tent statistics are to the reference data. This metric requires a pre-trained classifier pψ that distin-
guishes the latent subgroups. The classifier trained on the entire unbiased dataset. We use a pre-
trained vgg13-bn model from https://github.com/huyvnphan/PyTorch_CIFAR10 for
CIFAR-10, pre-trained DenseNet-BC (L=190, k=40) from https://github.com/bearpaw/
pytorch-classification for CIFAR-100. This latent classifier is also used to compute the
portion of the latent group for sample visualization. For FFHQ and CelebA, we utilize our discrim-
inator architecture with only feed-forward t = 0, and adjust the output channels.

Bias := Σz||Ex∼Dref [p(z|x)]− Ex∼pθ [p(z|x)]||2 (51)

D.4 ALGORITHM

Algorithm 1: Discriminator Training algorithm
Input: Reference data Dref, biased data Dbias, perturbation kernel pt|0, temporal weights λ
Output: Discriminator dϕ

1 while not converged do
2 Sample x1, ...,xB/2 from Dref
3 Sample xB/2+1, ...,xB from Dbias
4 Sample time t1, ..., tB/2, tB/2+1, ..., tB from [0, T ]

5 Diffuse xt1
1 , ...,xB/2,xB/2+1, ...,x

tB
B using the transition kernel pt|0

6 l← −
∑B/2

i=1 λ(ti) log dϕ(xi, ti)−
∑B

i=B/2+1 λ(ti) log(1− dϕ(xi, ti))

7 Update ϕ by l using the gradient descent method
8 end

Algorithm 2: Score Training algorithm with TIW-DSM
Input: Observed data Dobs, discriminator ϕ∗, perturbation kernel pt|0, temporal weights λ
Output: Score network sθ

1 while not converged do
2 Sample x0 from Dobs, and time t from [0, T ]
3 Sample xt from the transition kernel pt|0
4 Evaluate w̃t

ϕ∗(xt) using eq. (36)
5 l← λ(t)w̃t

ϕ∗(xt)||sθ(xt, t)−∇ log p(xt|x0)−∇ log w̃t
ϕ∗(xt)||22

6 Update θ by l using the gradient descent method
7 end
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D.5 COMPUTATIONAL COST

In this section, we compare the TIW-DSM and IW-DSM regarding computational costs. Both meth-
ods require the evaluation of the discriminator during the training phase, but the evaluation proce-
dures are somewhat different. IW-DSM only requires the feed-forward value of the discriminator.
On the other hand, TIW-DSM requires the value ∇ logwtϕ∗(·), which necessitates auto gradient op-
eration in PyTorch. This slightly increases both training time and memory usage. Once the training
is complete, the discriminator is not used for sampling, so the sampling time and memory remain the
same. Table 7 shows the computational costs measured using RTX 4090 × 4 cores in the CIFAR-10
experiments. Note that the training time-dependent discriminator is negligibly cheap, converging
around 10 minutes with 1 RTX 4090.

Table 7: The computational cost comparison between IW-DSM and TIW-DSM.

IW-DSM TIW-DSM

Training time 0.26 Second / Batch 0.34 Second / Batch
Training memory 13,258 MiB × 4 Core 15,031 MiB × 4 Core

Sampling time 7.5 Minute / 50k 7.5 Minute / 50k
Sampling memory 4,928 MiB × 4 Core 4,928 MiB × 4 Core

E ADDITIONAL EXPERIMENTAL RESULT

E.1 COMPARISON TO GAN BASELINES

The reason we developed a methodology with a focus on the diffusion model is because it demon-
strates superior sample quality compared to other generative models like GANs. To validate this,
we conducted experiments with a GAN baselines. Table 8 compare the performance with GAN.
GAN(ref) and GAN(obs) indicates the GAN training with Dref and Dobs, repectively. IW-GAN
is applying importance reweighting on GAN training (Choi et al., 2020). We observed train-
ing GAN with limited data resulted in failure, which is often discussed in the literatures (Karras
et al., 2020). IW-GAN also exhibited a similar phenomenon, as it hardly utilized the informa-
tion from Dbias, as discussed in Section 4.4. The issue with limited data actually led to better
performance when we used all the observed data. Due to these issues, the quantitative metrics
did not perform well, so we removed them from our considerations. We utilize the code from
https://github.com/ermongroup/fairgen and modify the resolution for CIFAR-10.
Figure 12 shows the samples from GANs.

Table 8: Comparision to GAN baselines on CIFAR-10 (LT) experiment. The reported value is FID
(↓).

Reference size
5% 10% 25% 50%

GAN(ref) 284.11 246.75 144.32 56.29
GAN(obs) 42.09 36.45 35.67 34.42
IW-GAN 260.32 235.22 120.23 50.32

IW-DSM 15.79 11.45 8.19 4.28
TIW-DSM 11.51 8.08 5.59 4.06

E.2 TRAINIG CURVE

We provide more training curves on CIFAR-10 and CIFAR-100 experiments. We measured the FID
in increments of 2.5K images during the early stages of training and then in increments of 10K
images after reaching 20K images for all our experiments. See Figure 13 for training curves, which
demonstrate the training stability of TIW-DSM.
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(a) IW-GAN (5%) (b) IW-GAN (10%) (c) IW-GAN (25%) (d) IW-GAN (50%)

(e) GAN(obs) (5%) (f) GAN(obs) (10%) (g) GAN(obs) (25%) (h) GAN(obs) (50%)

Figure 12: Samples from GAN baselines according to the method and reference sizes.

(a) CIFAR-10 (LT, 5%) (b) CIFAR-100 (LT, 5%) (c) CIFAR-10 (LT, 50%) (d) CIFAR-100 (LT, 50%)

Figure 13: Training curves on CIFAR-10 / CIFAR-100 experiments.

E.3 SAMPLE COMPARISON

We further provide the samples from each experiment in Figures 15 to 18. We examine the pro-
portion of each latent group on samples through Appendix D.3, and reflect the latent statistics on
each generated sample. Figure 14 shows more examples that the conversion from majority group to
minority group through the proposed method in CelebA experiment.

(a) (male & non-black hair) to (male& black hair) (b) (female & non-black hair) to (female& black hair)

Figure 14: Majority to minority conversion through our objective in CelebA (Benchmark, 5%)
experiment. The first row illustrates the samples from DSM(obs), and the second row illustrates the
samples from TIW-DSM under the same random seed.

E.4 DENSITY RATIO ANALYSIS

We provide more density ratio statistics according to diffusion time in various experiments which
are discussed in Section 4.4. Figures 20 to 23 shows the case in FFHQ, and CelebA. Appendix E.4
shows the reweighting value on the 2-D cases.
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(a) DSM(ref) (b) IW-DSM

(c) DSM(obs) (d) TIW-DSM

Figure 15: Samples that reflect latent statistics from CIFAR-10 (LT / 5%) experiment.
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(a) DSM(ref)

(b) IW-DSM

(c) DSM(obs)

(d) TIW-DSM

Figure 16: Samples that reflect latent statistics from CelebA (Benchmark, 5%) experiment
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(a) DSM(ref)

(b) IW-DSM

(c) DSM(obs)

(d) TIW-DSM

Figure 17: Samples that reflect latent statistics from FFHQ (Gender 80%, 1.25%) experiment
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(a) FFHQ (Gender 90%, 1.25%)

(b) FFHQ (Gender 90%, 12.5%)

(c) FFHQ (Gender 80%, 1.25%)

(d) FFHQ (Gender 80%, 12.5%)

Figure 18: Samples that reflect latent statistics from TIW-DSM according to bias strength & refer-
ence size in FFHQ experiments.
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(a) t = 0.0 (b) t = 0.1 (c) t = 0.2 (d) t = 0.3 (e) t = 0.4

(f) t = 0.5 (g) t = 0.6 (h) t = 0.7 (i) t = 0.8 (j) t = 0.9

Figure 19: Density ratio analysis on 2-D example on various diffusion time (VP).

(a) σ(t) = 0 (b) σ(t) = 0.34 (c) σ(t) = 0.72 (d) σ(t) = 1.2

(e) σ(t) = 2.0 (f) σ(t) = 3.4 (g) σ(t) = 6.0 (h) σ(t) = 12 ∼ 80

Figure 20: Density ratio analysis on FFHQ (Gender 80%, 12.5%) on various diffusion time for Dbias

(a) σ(t) = 0 (b) σ(t) = 0.34 (c) σ(t) = 0.72 (d) σ(t) = 1.2

(e) σ(t) = 2.0 (f) σ(t) = 3.4 (g) σ(t) = 6.0 (h) σ(t) = 12 ∼ 80

Figure 21: Density ratio analysis on FFHQ (Gender 90%, 12.5%) on various diffusion time for Dbias.
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(a) σ(t) = 0 (b) σ(t) = 0.34 (c) σ(t) = 0.72 (d) σ(t) = 1.2

(e) σ(t) = 2.0 (f) σ(t) = 3.4 (g) σ(t) = 6.0 (h) σ(t) = 12 ∼ 80

Figure 22: Density ratio analysis on CelebA (Benchmark, 5%) on various diffusion times. This
figure only consider female in Dbias.

(a) σ(t) = 0 (b) σ(t) = 0.34 (c) σ(t) = 0.72 (d) σ(t) = 1.2

(e) σ(t) = 2.0 (f) σ(t) = 3.4 (g) σ(t) = 6.0 (h) σ(t) = 12 ∼ 80

Figure 23: Density ratio analysis on CelebA (Benchmark, 5%) on various diffusion times. This
figure only consider male in Dbias.

(a) σ(t) = 0, α = 1 (b) σ(t) = 0, α = 0.5 (c) σ(t) = 0, α = 0.25 (d) σ(t) = 0, α = 0.125

Figure 24: Density ratio analysis on FFHQ (Gender 80%, 12.5%) on zero diffusion time with ratio
scaling for Dbias (box plot) and Dref (density plot).
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E.5 EFFECTS OF DISCRIMINATOR ACCURACY

(a) Time-integrated accuracy of discriminator (b) Time-integrated loss of discriminator

(c) Discriminator accuracy according to the time (d) FID according to discriminator learning progress

Figure 25: Effects of discriminator accuracy on diffusion model training in CIFAR-10 (LT / 5%)
experiments. The maturity of the time-dependent discriminator directly influences the performance
of the diffusion model.

We analyze the learning progress of the time-dependent discriminator and its correlation with the
diffusion model’s performance. Figures 25a and 25b show the time-integrated accuracy and time-
integrated loss value according to the discriminator training iteration. Note that perfect discrimina-
tion in terms of accuracy is impossible at a large perturbation scale. Figure 25c shows the accuracy
according to σ(t). As the training of time-dependent discriminator matures, accuracy improves for
all perturbation scales.

Our objective, LTIW-DSM(θ; pbias, w
t
ϕ∗(·)) assumes an optimal time-dependent discriminator, so anal-

ysis on maturity of the discriminator is important. Figure 25d shows the performance when training
TIW-DSM using a less-trained discriminator. In the very early stages, the discriminator provides
signals that are completely off, resulting in worse performance compared to DSM(obs). However,
as it undergoes some level of training, it progressively enhances the performance of the diffusion
model. The time-dependent discriminator with 1.5k iterations shows an FID of 11.52, which is
nearly close to the reported value in the Table 1 of 11.51 obtained with 10k iterations. Note that the
training 10k iterations of the discriminator only takes 30 minutes with 1 RTX 4090.
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E.6 COMPARISON TO THE GUIDANCE METHOD

A direct quantitative comparison with Friedrich et al. (2023) is infeasible because their approach is
not based on a weak supervision setting. However, their method is based on the commonly used
guidance method in the diffusion model, and it is possible to adapt the spirit of that method to our
weak supervision scenario.

The unbiased data score ∇ log pdata(xt) can be represented by eq. (52), and it can be approximated
with two neural networks as in eq. (53). α = 1 for an ideal scenario, but it is usually adjusted
for better performance. This is a similar mechanism in Section 4.3: Density ratio scaling. Table 9
and Figure 26 compare the guidance method and proposed method by adjusting α. Note that the
guidance method requires the evaluation of 2 neural networks for one denoising step, resulting in
slow sampling.

∇ log pdata(xt) = ∇ log pbias(xt) +∇ log
pbias(xt)

pdata(xt)
(52)

≈ sθ(xt, t) + α∇ log
dϕ(xt, t)

1− dϕ(xt, t)
(53)

Table 9: The comparison between the guidance method (Fair-Diffusion) and TIW-DSM for CIFAR-
10 (LT / 5%) experiments.

DSM(obs) Fair-Diffusion TIW-DSM

FID (α = 1) 12.99 12.55 11.51
FID (optimal α) 12.99 12.15 11.51
Sampling time 7.5 Minute / 50k 20.85 Minute / 50k 7.5 Minute / 50k

Figure 26: Comparison to guidance method (Fair-Diffusion) by adjusting α for CIFAR-10 (LT / 5%)
experiments.
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E.7 OBJECTIVE FUNCTION INTERPOLATION

The time-dependent density ratio used in TIW-DSM is more precise than the time-independent den-
sity ratio, in the integration sense. However, the time-marginal density ratio from wtϕ∗(·) remains in-
accurate for small diffusion time. One attractive direction is utilizing vanilla objective LDSM(θ; pbias)
for small diffusion time. Small diffusion time is known to be oriented towards denoising rather than
addressing semantic information (Rombach et al., 2022; Xu et al., 2023), so objective interpolation
is worth exploring.

We experimented with the preliminary approach, which interpolates the objectives as eq. (54). Note
that σ(τ) = 0 indicates the original TIW-DSM objective, and σ(τ) = 80 indicates the vanilla DSM
objective.

LInterpolate(θ; pbias, w
t
ϕ∗(·), τ) (54)

:=
1

2

∫ τ

0

Epbias(x0)Ep(xt|x0)

[
λ(t)

[
||sθ(xt, t)−∇ log p(xt|x0)||22)

]]
dt

+
1

2

∫ T

τ

Epbias(x0)Ep(xt|x0)

[
λ(t)wtϕ∗(xt)

[
||sθ(xt, t)−∇ log p(xt|x0)−∇ logwtϕ∗(xt)||22)

]]
dt

Contrary to intuition, the result in Figure 27 shows that it does not improve the performance but
rather smoothly interpolates between two objectives. We suspect that a hard truncation between the
objectives may not be the best choice. We consider the gradual change of the objective according to
time as a future work.

Figure 27: Objective interpolation according to σ(τ) in CIFAR-10 (LT / 5%) experiments.
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E.8 FINE TUNING STABLE DIFFUSION

The existing large-scale text-to-image diffusion model suffers from serious bias (Maggio, 2022).
For example, if you type “nurse” in the prompt, only female nurses appear, as shown in Figure 28.
Our method involves mitigating latent bias, so we can consider a scenario where we mitigate gender
as a latent bias. We obtained a reference dataset of approximately 50 images and fine-tuned Stable
Diffusion (Rombach et al., 2022) for the “nurse” prompt using the framework in Ruiz et al. (2023)
with our objective TIW-DSM. The fine-tuned Stable Diffusion successfully generated a male nurse
as shown in Figure 29.

We consider this to be the primary result of applying our objective to text-to-image diffusion mod-
els. In addition to fine-tuning, this approach can be applied to training a text-to-image model from
scratch. Constructing a reference set for (prompt, bias) pairs deemed important by society and ap-
plying our objective during training, should enable a relatively fair generation.

Figure 28: Samples from Stable Diffusion with prompt “nurse”

Figure 29: Samples from fine-tuned Stable Diffusion on prompt “nurse” with TIW-DSM.
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E.9 DATA AUGMENTATION WITH STABLE DIFFUSION

The baseline DSM(ref) does not exhibit good performance, because it suffers from a limited number
of Dref, leading to poor diversity of generated samples. One consideration is to request Stable
Diffusion to generate unbiased samples and use them in conjunction with Dref. We request Stable
Diffusion to generate 500 samples with the prompt “a photo of man” and another 500 samples with
the prompt “a photo of woman” and resizing them to fit our experiment setting in FFHQ as shown
in Figures 30 and 31.

Figure 30: Samples from Stable Diffusion with prompt “a photo of man”

Figure 31: Samples from Stable Diffusion with prompt “a photo of woman”

Table 10 presents indirect results quantifying the data augmentation method using Stable Diffusion.
The method SD represents the performance of directly generated samples from Stable Diffusion. It’s
noteworthy that SD exhibits poor performance at 95.63, primarily because unannotated biases such
as age, and race are not controlled. On the other hand, DSM(ref) and TIW-DSM utilize statistics
from balanced reference data, which is free from unannotated bias without point-wise supervision.
This result underscores the reason why we should not rely solely on a large-scale foundation model.
DSM(ref) + SD indicates the half of generated samples from DSM(ref) and the other half of the
samples from SD. This can be considered as a performance similar to vanilla DSM training with
Dref and generated samples from SD. The performance of DSM(ref)+SD is poor due to a serious
bias in Stable Diffusion samples.

Table 10: The effects of data augmentation with Stable Diffusion for FFHQ (80% / 12.5%) experi-
ments.

Method FID 50k FID 1k

DSM(ref) 6.22 21.87
SD - 95.63

DSM(ref) + SD - 43.57

TIW-DSM 4.49 20.39
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