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ABSTRACT

Much of the knowledge encoded in transformer language models (LMs) may be ex-
pressed in terms of relations: relations between words and their synonyms, entities
and their attributes, etc. We show that, for a subset of relations, this computation is
well-approximated by a single linear transformation on the subject representation.
Linear relation representations may be obtained by constructing a first-order approx-
imation to the LM from a single prompt, and they exist for a variety of factual, com-
monsense, and linguistic relations. However, we also identify many cases in which
LM predictions capture relational knowledge accurately, but this knowledge is not
linearly encoded in their representations. Our results thus reveal a simple, inter-
pretable, but heterogeneously deployed knowledge representation strategy in LMs.

1 INTRODUCTION

How do neural language models (LMs) represent relations between entities? LMs store a wide variety
of factual information in their weights, including facts about real world entities (e.g., John Adams was
elected President of the United States in 1796) and common-sense knowledge about the world (e.g.,
doctors work in hospitals). Much of this knowledge can be represented in terms of relations between
entities, properties, or lexical items. For example, the fact that Miles Davis is a trumpet player can
be written as a relation (plays the instrument), connecting a subject entity (Miles Davis), with an
object entity (trumpet). Categorically similar facts can be expressed in the same type of relation, as
in e.g., (Carol Jantsch, plays the instrument, tuba). Prior studies of LMs (Li et al., 2021; Meng et al.,
2022; Hernandez et al., 2023) have offered evidence that subject tokens act as keys for retrieving
facts: after an input text mentions a subject, LMs construct enriched representations of subjects that
encode information about those subjects. Recent studies of interventions (Hase et al., 2023) and
attention mechanisms (Geva et al., 2023) suggest that the mechanism for retrieval of specific facts is
complex, distributed across multiple layers and attention heads. Past work establishes where relational
information is located: LMs extract relation and object information from subject representations. But
these works have not yet described what computation LMs perform while resolving relations.

In this paper, we show that LMs employ a simple system for representing a portion of their relational
knowledge: they implicitly implement (an affine version of) a linear relational embedding (LRE)
scheme (Paccanaro & Hinton, 2001). Given a relation r such as plays the instrument, a linear relational
embedding is an affine function LRE (s) = Wrs+ br that maps any subject representation s in the
domain of the relation (e.g., Miles Davis, Carol Jantsch) to the corresponding object representation
o (e.g., trumpet, tuba). In LMs, the inputs to these implicit LREs are hidden representations of
subjects at intermediate layers, and their outputs are hidden representations at late layers that can be
decoded to distributions over next tokens. Thus, a portion of transformer LMs’ (highly non-linear)
computation can be well-approximated linearly in contexts requiring relation prediction.

More specifically, we find that for a variety of relations: (a) transformer LMs decode relational
knowledge directly from subject entity representations (s in Figure 1); (b) for each such relation,
the decoding procedure is approximately affine (LRE); and (c) these affine transformations can be
computed directly from the LM Jacobian on a prompt expressing the relation (i.e. ∂o/∂s). However,
this is not the only system that transformer LMs use to encode relational knowledge, and we also
identify relations that are reliably predicted in LM outputs, but for which no LRE can be found.
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Figure 1: Within a transformer language model, (a) how it resolves many relations r, such as plays the
instrument, can be well-approximated by (b) a linear function R that maps subject representations s to object
representations o that can be directly decoded.

In GPT and LLaMA models, we search for LREs encoding 47 different relations, covering more than
10k facts relating famous entities (The Space Needle, is located in, Seattle), commonsense knowledge
(banana, has color, yellow), and implicit biases (doctor, has gender, man). In 48% of the relations
we tested, we find robust LREs that faithfully recover subject–object mappings for a majority of the
subjects. Furthermore, we find that LREs can be used to edit subject representations (Hernandez
et al., 2023) to control LM output.

Finally, we use our dataset and LRE-estimating method to build a visualization tool we call an
attribute lens. Instead of showing the next token distribution like Logit Lens (nostalgebraist, 2020)
the attribute lens shows the object-token distribution at each layer for a given relation. This lets us
visualize where and when the LM finishes retrieving knowledge about a specific relation, and can
reveal the presence of knowledge about attributes even when that knowledge does not reach the output.

Our results highlight two important facts about transformer LMs. First, some of their implicit knowl-
edge is representated in a simple, interpretable, and structured format. Second, this representation
system is not universally deployed, and superficially similar facts may be encoded and extracted in
very different ways.

2 BACKGROUND: RELATIONS AND THEIR REPRESENTATIONS

2.1 REPRESENTATIONS OF KNOWLEDGE IN LANGUAGE MODELS

For LMs to generate factually correct statements, factual information must be represented somewhere
in their weights. In transformer LMs, past work has suggested that most factual information is
encoded in the multi-layer perceptron layers (Geva et al., 2020). These layers act as key–value
stores, and work together across multiple layers to enrich the representation of an entity with relevant
knowledge (Geva et al., 2022). For instance, in the example from Figure 1, the representation s of
Miles Davis goes through an enrichment process where LM populates s with the fact that he plays
the trumpet as well as other facts, like him being born in Alton, IL. By the halfway point of the LM’s
computation, s contains all the information needed to predict a fact about the subject entity when the
LM is prompted to retrieve it.

Once s is populated with relevant facts, the LM must decode the fact most relevant to its current
prediction task. Formally, a language model is a distribution pLM(x) over strings x, so this information
must be retrieved when the LM is prompted to decode a specific fact, such as when it estimates pLM(· |
Miles Davis plays the). Internally, the object must be decoded and written into the final representation
o before the next word (trumpet) is predicted. Techniques like the logit lens (nostalgebraist, 2020)
and linear shortcut approaches (Belrose et al., 2023; Din et al., 2023) reveal that the LM’s final
prediction can be read off of o well before the final layer, and recent work (Geva et al., 2023) suggests
that this occurs because specific attention heads (before the final layer) specialize in reading specific
relations. Meanwhile, prior work studying the structure of s suggests that even though transformers
are complex, non-linear neural networks, attributes of entities can be linearly decoded from their
representations (Li et al., 2021; Hernandez et al., 2023).

But how transformer LMs themselves map from enriched entity representations to language-based
predictions has remained an open question. Here, we will show that for a subset of relations the
transformer LMs implement the learned readout operation in a near-linear fashion.
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2.2 NEURAL REPRESENTATIONS OF RELATIONS

Why might we expect a linear representation scheme for relational information in the first place?
Separate from (and largely prior to) work on neural language models, a long line of artificial
intelligence research has studied how to represent relational knowledge. A classic symbolic approach
is to encode relational knowledge triplets of the form (subject, relation, object). For example, one
might express the fact that Rome is the capital of Italy as (Rome, is-capital-of, Italy). This triplet
format is extremely flexible, and has been used for a variety of tasks (Richens, 1956; Minsky, 1974;
Lenat, 1995; Miller, 1995; Berners-Lee et al., 2001; Bollacker et al., 2008).

While representing relational triplets symbolically is straightforward, it is far less clear how to embed
these relational structures in deep networks or other connectionist systems. Surveys (Ji et al., 2021;
Wang et al., 2017) list more than 40 techniques. These variations reflect the tension between the
constraints of geometry and the flexibility of the triplet representation. In many approaches, subject
and object entities s and o are represented as vectors s ∈ Rm,o ∈ Rn; for a given relation r, we
define a relation function R : Rm → Rn, with the property that when (s, r, o) holds, we have
o ≈ R(s).

One way to implement R is to use linear transformations to represent relations. For instance, in linear
relational embedding (Paccanaro & Hinton, 2001), the relation function has the form R(s) = Wrs
where Wr is a matrix depending on relation r. A modern example of this encoding can be seen in the
positional encodings of many transformers (Vaswani et al., 2017). More generally, we can write R
as an affine transformation, learning both a linear operator Wr and a translation br (Lin et al., 2015;
Yang et al., 2021). There are multiple variations on this idea, but the basic relation function is:

R(s) = Wrs+ br. (1)

3 FINDING AND VALIDATING LINEAR RELATIONAL EMBEDDINGS

3.1 FINDING LRES

Consider a statement such as Miles Davis plays the trumpet, which expresses a fact (s, r, o) connecting
a subject s to an object o via relation r (see Figure 1). Within the transformer’s hidden states, let s
denote the representation5 of the subject s (Miles Davis) at layer ℓ, and let o denote the last-layer
hidden state that is directly decoded to get the prediction of the object’s first token o (trumpet). The
transformer implements a calculation that obtains o from s within a textual context c that evokes the
relation r, which we can write o = F (s, c).

Our main hypothesis is that F (s, c) can be well-approximated by a linear projection, which can be
obtained from a local derivative of F . Denote the Jacobian of F as W = ∂F/∂s. Then a first-order
Taylor approximation of F about s0 is given by:

F (s, c) ≈ F (s0, c) +W (s− s0)

= W s+ b, (2)
where b = F (s0, c)−W s0

This approximation would only be reasonable if F has near-linear behavior when decoding the
relation from any s. In practice, we estimate W and b as the mean Jacobian and bias at n examples
si, ci within the same relation, which gives an unbiased estimate under the assumption that noise in
F has zero value and zero Jacobian in expectation (see Appendix B). That is, we define:

W = Esi,ci

[
∂F

∂s

∣∣∣∣
(si,ci)

]
and b = Esi,ci

[
F (s, c)− ∂F

∂s
s

∣∣∣∣
(si,ci)

]
(3)

This simple formulation has several limitations that arise due to the use of layer normalization
(Ba et al., 2016) in the transformer: for example, s is passed through layer normalization before
contributing to the computation of o, and o is again passed through layer normalization before leading

5Following insights from Meng et al. (2022) and Geva et al. (2023), we read s at the last token of the subject.
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to token predictions, so in both cases, the transformer does not transmit changes in scale of inputs to
changes in scale of outputs. That means that even if Equation 2 is a good estimate of the direction of
change of F , it may not be an accurate estimate of the magnitude of change.

In practice, we find that the magnitude of change in F (s, c) is underestimated in our calculated
W (see Appendix C for empirical measurements). To remedy this underestimation we make W
in Equation (2) steeper by multiplying with a scalar constant β (> 1). So, for a relation r we
approximate the transformer calculation F (s, cr) as an affine transformation LRE on s:

F (s, cr) ≈ LRE(s) = βWrs+ br (4)

3.2 EVALUATING LRES

When a linear relation operator LRE is a good approximation of the transformer’s decoding algorithm,
it should satisfy two properties:

Faithfulness. When applied to new subjects s, the output of LRE(s) should make the same
predictions as the transformer. Given the LM’s decoder head D, we define the transformer prediction
o and LRE prediction ô as:

o = argmax
t

D(F (s, c))t and ô = argmax
t

D(LRE(s))t

And we define faithfulness as the success rate of o ?
= ô, i.e., the frequency with which predictions

made by LRE from only s match next-token predictions made by the full transformer:

argmax
t

D(F (s, c))t
?
= argmax

t
D(LRE(s))t (5)

Causality. If a learned LRE is a good description of the LM’s decoding procedure, it should be
able to model causal influence of the relational embedding on the LM’s predictions. If it does, then
inverting LRE tells us how to perturb s so that the LM decodes a different object o′. Formally, given
a new object o′, we use LRE to find an edit direction ∆s that satisfies:

LRE(s+∆s) = o′ (6)

With β = 1, we can edit s as follows:6

s̃ = s+∆s, where ∆s = W−1
r (o′ − o) (7)

We obtain o′ from a different subject s′ that is mapped by F to o′ under the relation r. s̃ here is
essentially an approximation of s′. Figure 2 illustrates this procedure.

r = plays  instrument
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the

s
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the
trumpet guitar(a) (b)

s'

o o' W†(o'- o) = Δs
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s + Δs=(W  , b  )r r
(e)
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Figure 2: Illustration of the representation editing used to measure causality. Under the relation r = plays
the instrument, and given the subject s =Miles Davis, LM will predict o = trumpet (a); and given the subject
s′ = Cat Stevens, the output is o′ = guitar (b). If the computation from s to o is well-approximated by LRE
parameterized by Wr and br (c), then ∆s (d) should tell us the direction of change from s to s′. Thus, s̃ = s+∆s
would be an approximation of s′ and patching s̃ in place of s should change the prediction to o′ = guitar (f).

Note that Equation (7) requires inverting Wr, but the inverted matrix might be ill-conditioned. To
make edits more effective, we instead use a low-rank pseudoinverse W †

r , which prevents the smaller
singular values from washing out the contributions of the larger, more meaningful singular values.
See Appendix D.2 for details.

6Full derivation in Appendix D.1
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We call the intervention a success if o′ is the top prediction of the LM after the edit:

o′
?
= argmax

t
D(F (s, cr | s := s+∆s)) (8)

Note that for both faithfulness and causality we only consider the first token of the object when
determining success. Limitations of this approach are discussed in Appendix I.

4 EXPERIMENTS

We now empirically evaluate how well LREs, estimated using the approach from Section 3, can
approximate relation decoding in LMs for a variety of different relations.

Models. In all of our experiments, we study autoregressive language models. Unless stated
otherwise, reported results are for GPT-J (Wang & Komatsuzaki, 2021), and we include additional
results for GPT-2-XL (Radford et al., 2019) and LLaMA-13B (Touvron et al., 2023) in Appendix H.

Dataset. To support our evaluation, we manually curate a dataset of 47 relations spanning four
categories: factual associations, commonsense knowledge, implicit biases, and linguistic knowledge.
Each relation is associated with a number of example subject–object pairs (si, oi), as well as a prompt
template that leads the language model to predict o when s is filled in (e.g., [s] plays the). When
evaluating each model, we filter the dataset to examples where the language model correctly predicts
the object o given the prompt. Table 1 summarizes the dataset and filtering results. Further details on
dataset construction are in Appendix A.

Table 1: Information about the dataset of relations used
to evaluate LM relation decoding in LMs. These rela-
tions are drawn from a variety of sources. Evaluation
is always restricted to the subset of (s, r, o) triples for
which the LM successfully decodes o when prompted
with (s, r).

Category # Rel. # Examples # GPT-J Corr.

Factual 26 9696 4652
Commonsense 8 374 219
Linguistic 6 806 507
Bias 7 213 96

Implementation Details. We estimate LREs
for each relation using the method discussed in
Section 3 with n = 8. While calculating W
and b for an individual example we prepend the
remaining n− 1 training examples as few-shot
examples so that the LM is more likely to gen-
erate the answer o given a s under the relation r
over other plausible tokens. Then, an LRE is es-
timated with Equation (3) as the expectation of
W s and b s calculated on n individual examples.

We fix the scalar term β (from Equation (4))
once per LM. We also have two hyperparameters specific to each relation r; ℓr, the layer after which
s is to be extracted; and ρr, the rank of the inverse W † (to check causality as in Equation (7)). We
select these hyperparameters with grid-search; see Appendix E for details. For each relation, we
report average results over 24 trials with distinct sets of n examples randomly drawn from the dataset.
LREs are evaluated according to faithfulness and causality metrics defined in Equations (5) and (8).

4.1 ARE LRES FAITHFUL TO RELATIONS?

We first investigate whether LREs accurately predict the transformer output for different relations,
that is, how faithful they are. Figure 3 shows faithfulness by relation. Our method achieves over 60%
faithfulness for almost half of the relations, indicating that those relations are linearly decodable from
the subject representation.

We are also interested in whether relations are linearly decodable from s by any other method.
Figure 4 compares our method (from Section 3) to four other approaches for estimating linear
relational functions. We first compare with Logit Lens (nostalgebraist, 2020), where s is directly
decoded with the LM decoder head D. This essentially tries to estimate F (s, c) as an Identity
transformation on s. Next, we try to approximate F as TRANSLATION(s) = s + b, where b is
estimated as E[o − s] over n examples. This TRANSLATION baseline, inspired by Merullo et al.
(2023) and traditional word embedding arithmetic (Mikolov et al., 2013), approximates F from the
intermediate representation of the last token of s until o is generated (Figure 1). Then we compare
with a linear regression model trained with n examples to predict o from s. Finally, we apply LRE
on the subject embedding es before initial layers of the LM get to enrich the representation.

Figure 4 shows that our method LRE captures LM behavior most faithfully across all relation types.
This effect is not explained by word identity, as evidenced by the low faithfulness of LRE(es). Also,
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Figure 3: Relation-wise LRE faithfulness to LM computation F . Horizontal red lines per relation indicate
accuracy of a random-guess baseline. LRE is consistenly better than random guess and is predictive of the
behavior of the transformer on most relations. However, for some relations such as company CEO or task done
by tool, the transformer LM deviates from LRE, suggesting non-linear model computation for those relations.
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Linguistic

0.00 0.25 0.50 0.75 1.00
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(e) Identity

(d) TRANSLATION

(c) LinearRegression

(a) Our method, LRE(s)

(b) LRE(es)
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Figure 4: Faithfulness comparison of different linear approximations of LM decoding stratified across different
relation types. (a) Our method, LRE, applied on s extracted after ℓr (b) LRE applied on the subject embedding
es. The performance different between (a) and (b) shows the importance of the enrichment process s goes through
in the earlier layers. (c) shows the performance of a linear regression model trained with n = 8 examples, which
is outperformed by a LRE calculated with similar number of examples, n. (d) is TRANSLATION(s) = s+ b,
where b is estimated as E[o− s] over n samples. The performance drop in (d) compared to (a) emphasizes the
necessity of the projection term W . In (e) s is directly decoded with the decoder head D.

low performance of the TRANSLATION and Identity baselines highlight that both the projection and
bias terms of Equation (4) are necessary to approximate the decoding procedure as LRE.

However, it is also clear (from Figure 3) that some relations are not linearly decodable from inter-
mediate representations of the subject, despite being accurately predicted by the LM. For example,
no method reaches over 6% faithfulness on the Company CEO relation, despite GPT-J accurately
predicting the CEOs of 69 companies when prompted. This is true across layers (Figure 11 of Ap-
pendix E.2) and random sampling of n examples for approximating LRE parameters. This indicates
that some more complicated, non-linear decoding approach is employed by the model to make those
predictions. Interestingly, the relations that exhibit this behavior the most are those where the range is
the names of peoples or companies. One possible explanation is that these ranges are so large that the
LM cannot reliably linearly encode them at a single layer, and relies on a more complicated encoding
procedures possibly involving multiple layers.

4.2 DO LRES CAUSALLY CHARACTERIZE MODEL PREDICTIONS?

We now have evidence that some relations are linearly decodable from LM representations using
a first-order approximation of the LM. However, it could be that these encodings are not used by
the LM to predict the next word, and instead are correlative rather than causal. To show that LREs
causally influence LM predictions, we follow the procedure described in Figure 2 to use the inverse
of LRE to change the LM’s predicted object for a given subject.
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Figure 5: LRE causality compared with different baselines. (a) LRE causality on best performing hyperparam-
eters (layer ℓr and rank ρr) for each relation r. (b) is our oracle baseline, inserting the representation s′ of target
subject s′ in place of s. (c) in place of s inserting eo′ , the row in the decoder head matrix D corresponding to o′,
and (d) inserting o′, the output of F (s′, cr).

In Figure 5 we compare our causality intervention with 3 other approaches of replacing s such that
LM outputs o′. If the model computation F from s to o is well-approximated by the LRE, then our
intervention should be equivalent to inserting s′ in place of s. This direct substitution procedure thus
provides an oracle upper-bound. Besides the oracle approach we include 2 more baselines; in place
of s, (1) inserting o′, the output of F (s′, cr) (2) inserting eo′ , the row in the decoder head matrix D
corresponding to o′ as the embedding of o′. These two additional baselines ensure that our approach
is not trivially writing the answer o′ on the position of s.
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Figure 6: Faithfulness is strongly correlated with
causality (R = 0.84) when hyperparameters are
selected to achieve best causal influence (in GPT-J
β = 2.25). Each dot represents LRE performance
for one relation. Bold dots indicate relations for
which LRE is evaluated on ≥ 30 test examples.

Figure 14 of Appendix G.2 compares our method
with the baselines for selected relations and across
layers. The graphs illustrate how our method matches
the oracle’s performance and differs from the other
two baselines. This provides causal evidence that
LRE approximates these relations well.

Figure 6 depicts a strong linear correlation between
our metrics when the hyperparameters were selected
to achieve best causal influence. This means that
when an LRE causally influences the LM’s predic-
tions, it is also faithful to the model.7 Also from
Figure 6, for almost all relations LRE causality score
is higher than its faithfulness score. This suggests
that, even in cases where LRE can not fully capture
the LM’s computation of the relation, the linear ap-
proximation remains powerful enough to perform a
successful edit.

While our focus within this work is on the linearity of
relation decoding and not on LM representation edit-
ing, a qualitative analysis of the post-edit generations
reveals that the edits are nontrivial and preserve the LM’s fluency; see Table 8 of Appendix G.2.

4.3 WHERE IN THE NETWORK DO REPRESENTATIONS EXHIBIT LRES?

In the previous experiments, for each relation we had fixed ℓr (the layer after which s is to be extracted)
to achieve the best causal influence on the model. However, there are considerable differences in
LRE faithfulness when estimated from different layers. Figure 7 highlights an example relation
that appears to be linearly decodable from representations in layer 7 until layer 17, at which point
faithfulness plummets. Figure 11 of Appendix E.2 shows similar plots for other relations.

Why might this happen? One hypothesis is that a transformer’s hidden representations serve a dual
purpose: they contain both information about the current word (its synonyms, physical attributes,
etc.), and information necessary to predict the next token. At some point, the latter information
structure must be preferred to the former in order for the LM to minimize its loss on the next-word
prediction task. The steep drop in faithfulness might indicate that a mode switch is happening in the

7However, when the hyperparameters are chosen to achieve best faithfulness we did not notice such strong
agreement between faithfulness and causality. Discussion on Appendix E.
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LM’s representations at later layers, where the LM decisively erases relational embeddings in support
of predicting the next word.

Table 2: Example of prompts with and without
relation-specific context.

With relation-specific context

LeBron James plays the sport of basketball
Roger Federer plays the sport of tennis
Lionel Messi plays the sport of

Without relation-specific context

LeBron James basketball
Roger Federer tennis
Lionel Messi

em
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Figure 7: Later layers switching roles from enriching s
to predicting next token. LRE performance across differ-
ent layers of GPT-J for the factual relation plays the sport
of with and without relation-specific prompt (Table 2).
Faithfulness does not decrease in later layers when o im-
mediately follows the s in the prompt.

We indeed see in Figure 7 that LRE faithful-
ness keeps improving in later layers when we
remove relation specific texts from our prompt,
meaning the o immediately follows s in the
prompt (Table 2).

5 APPLICATION: THE ATTRIBUTE LENS

We apply the LRE to create a novel probing method we call the attribute lens that provides a view
into a LM’s knowledge of an attribute of a subject with respect to a relation r. Given a linear function
LRE for the relation r, the attribute lens visualizes a hidden state h by applying the LM decoder
head D to decode D(LRE(h)) into language predictions. The attribute lens specializes the Logit
Lens (nostalgebraist, 2020) (which visualizes next token information in a hidden state h by decoding
D(h)) and linear shortcut approaches (Belrose et al., 2023; Din et al., 2023) (where an affine probe
Aℓ is trained to skip computation after layer ℓ, directly decoding the next token as D(Aℓ(hℓ)), where
hℓ is the hidden state after ℓ). However, unlike these approaches concerned with the immediate
next token, the attribute lens is motivated by the observation that each high-dimensional hidden
state h may encode many pieces of information beyond predictions of the immediate next token.
Traditional representation probes (Belinkov & Glass, 2019; Belinkov, 2022) also reveal specific
facets of a representation, but unlike probing classifiers that divide the representation space into a
small number of output classes, the attribute lens decodes a representation into an open-vocabulary
distribution of output tokens. Figure 8 illustrates the use of one attribute lens to reveal knowledge
representations that contain information about the sport played by a person, and another lens about
university affiliation.

Table 3: The performance of the attribute lens on
repetition-distracted prompts and instruction-distracted
prompts that (almost) never produce the correct state-
ment of a fact. Each row tests 11,891 prompts on GPT-J.

Condition R@1 R@2 R@3

Repetition-distracted prompt 0.02 0.33 0.41
Attribute lens on RD prompts 0.54 0.65 0.71

Instruction-distracted prompt 0.03 0.17 0.25
Attribute lens on ID prompts 0.63 0.73 0.78

This attribute lens can be applied to analyze LM
falsehoods: in particular, it can identify cases
where an LM outputs a falsehood that contra-
dicts the LM’s own internal knowledge about a
subject. To quantify the attribute lens’s ability
to reveal such situations, we tested the attribute
lens on a set of 11,891 “repetition distracted”
(RD) and the same number of “instruction dis-
tracted” (ID) prompts where we deliberately bait
the LM to output a wrong o, but the LM would
have predicted the correct o without the distrac-
tion. For example, in order to bait an LM to
predict that The capital city of England is... Oslo, a RD prompt states the falsehood The capital city
of England is Oslo twice before asking the model to complete a third statement, and an ID prompt
states the falsehood followed by the instruction Repeat exactly. Although in these cases, the LM will
almost never output the true fact (it will predict Oslo instead of London), the attribute lens applied to
the last mention of the subject (England) will typically reveal the true fact (e.g., London) within the
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 Bill  Bradley  was  a
h.0 

h.3 

h.6 

h.9 

h.12 

h.15 

h.18 

h.21 

h.24 

h.27 

ows  arrived hes  heated

  Jr  born  founding

  Jr  born  pioneer

  Jr  born  pioneer

  Jr  born  congressman

  Jr  born  politician

  Jr  elected  congressman

  Jr  elected  Democrat

 �  elected  senator

 Clinton ,  a  member

Loading [MathJax]/extensions/MathMenu.jsFigure 8: The attribute lens applied to the hidden states of GPT-J processing Bill Bradley was a. First two grids
visualize the same set of hidden states under the attribute lens for two different relations. The word in each
rectangle is the most-likely token in the distribution D(LRE(h)), where D applies the transformer decoder
head; darker boxes correspond to higher probabilities of the top prediction. In (a) the relation is plays sport, and
in (b) attended university, and both these cases reveal high-scoring predictions for attributes on the subject. For
comparison, (c) sets LRE = I which produces the Logit Lens (nostalgebraist, 2020) visualization, in which the
visualized relation can be thought of as next token. (Senator Bill Bradley was formerly a basketball player who
went to school at Princeton.)

top 3 predictions. In Table 3 we show performance of the attribute lens to reveal latent knowledge
under this adversarial condition.

6 RELATED WORK

Representation probes. The structure of the information represented within a neural network is a
foundational problem that has been studied from several perspectives. One approach is to identify
properties encoded representations by training a probing classifier to predict properties from the
representations (Ettinger et al., 2016; Shi et al., 2016; Hupkes et al., 2018; Conneau et al., 2018;
Belinkov et al., 2017; Belinkov & Glass, 2019). However, such approaches can overestimate the
knowledge contained in a network if the classifier learns to solve a task on its own (Belinkov, 2022);
the problem can be mitigated by comparing to a control task (Hewitt & Liang, 2019) or by limiting
the training of the probe (Voita & Titov, 2020). Our method differs from probing by avoiding the
introduction of a training process entirely: we extract the LRE from the LM itself rather than training
a new model.

Knowledge representation. Ever since emergent neural representations of relations were first
observed in the original backpropagation paper (Rumelhart et al., 1986), neural representations of
knowledge and relations have been a central problem in artificial intelligence. Section 2 surveys
work in this area including knowledge graph embedding (Wang et al., 2017; Yang et al., 2021) and
emergent knowledge representations within a transformer language model (Li et al., 2021; Meng
et al., 2022; Hase et al., 2023; Hernandez et al., 2023; Geva et al., 2023). This paper builds on past
work in by showing that relational aspects of this knowledge are encoded linearly.

Knowledge extraction. The most direct way to characterize knowledge in LMs is to prompt or
query them directly (Petroni et al., 2019; Roberts et al., 2020; Jiang et al., 2020; Shin et al., 2020;
Cohen et al., 2023). However, recent work has suggested that model knowledge and knowledge
retrieval may be localized within small parts of a language model (Geva et al., 2020; Dai et al., 2021;
Meng et al., 2022; Geva et al., 2023). In this paper we further investigate the localized retrieval of
knowledge and ask whether knowledge about relations and objects can be separated, and whether
relations are represented as a linear relational embedding.

7 CONCLUSION

Reverse-engineering the full mechanism of an LLM is a daunting task. In this work, we have found
that a certain kind of computation, relation decoding, can often be well-approximated by linear
relational embeddings. We have also found that some relations are better-approximated as LREs than
others; relations that have an easier or harder random baseline fall on either end of the spectrum. We
have shown that LREs estimated from a small set of examples lead to faithful representations that are
causally linked to the LM’s behavior. Furthermore, LRE can be used to provide specialized attribute
lens on the LM’s intermediate computation, even revealing cases of LM falsehoods.
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ETHICS STATEMENT

By revealing and decoding internal model relations before they are explicitly expressed in model
output, LREs can potentially be used to provide information about internal biases or errors, and the
causal effects could provide a way to mitigate undesired biases. However, such representation-level
representation might be only superficial without correcting internal biases in the model; exploring
such applications is a natural step for future work.
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curation in Appendix A. In addition to the experiment details at the beginnings of Sections 4 and 5,
we describe hyperparameter sweeps in Appendix E. We ran all experiments on workstations with
80GB NVIDIA A100 GPUs or 48GB A6000 GPUs using HuggingFace Transformers (Wolf et al.,
2019) implemented in PyTorch (Paszke et al., 2019).
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A RELATIONS DATASET

The dataset consists of 47 relations stratified across 4 groups; factual, linguistic, bias, and common-
sense. Six of the factual relations were scraped from Wikidata while the rest were drawn from the
COUNTERFACT dataset by Meng et al. (2022). linguistic, bias, and commonsense relations were
newly curated by the authors. See Table 4 for details.
Table 4: Number of examples per relation and the count of accurate predictions by different LMs. Each of
the examples were tested using n = 8 ICL examples (n = 5 for LLaMA-13B). Results presented as mean (±
std) of the counts across 24 trials with different set of ICL examples. For cases where the count of examples
accurately predicted by the LM is less then n, it was replaced with "—". LRE estimation was not calculated
for such cases. ∗∗We also do not calculate LRE for LLaMA-13B where o is a year (president birth year and
president election year) as LLaMA tokenizer splits years by digits (see Table 9).

Category Relation # # Correct
GPT-J GPT2-xl LLaMA-13B

factual

person mother 994 182.8± 5.8 83.5± 12.3 613.5± 1.5
person father 991 206.1± 7.6 109.2± 6.1 675.5± 5.5
person sport position 952 243.3± 94.1 199.9± 67.9 200.0± 0.0
landmark on continent 947 797.5± 74.7 421.9± 85.3 200.0± 0.0
person native language 919 720.2± 31.3 697.3± 16.1 200.0± 0.0
landmark in country 836 565.2± 14.2 274.1± 58.2 200.0± 0.0
person occupation 821 131.5± 28.5 42.0± 10.3 404.0± 25.5
company hq 674 316.0± 10.4 148.8± 36.6 200.0± 0.0
product by company 522 366.4± 8.1 262.4± 23.8 421.3± 6.2
person plays instrument 513 237.6± 30.7 144.2± 27.6 249.0± 67.7
star constellation name 362 276.3± 3.4 210.3± 16.7 200.0± 0.0
plays pro sport 318 244.2± 10.8 195.1± 13.1 294.8± 1.2
company CEO 298 90.2± 7.2 15.4± 6.1 155.5± 4.7
superhero person 100 49.8± 2.0 36.6± 2.4 71.9± 2.3
superhero archnemesis 96 21.5± 2.6 12.7± 2.2 40.8± 2.7
person university 91 41.0± 1.6 35.4± 1.9 44.8± 2.2
pokemon evolution 44 28.7± 3.9 30.3± 1.1 35.7± 0.5
country currency 30 19.4± 0.9 20.2± 0.8 22.0± 0.0
food from country 30 16.4± 1.1 11.2± 1.4 18.8± 1.4
city in country 27 18.0± 0.9 18.0± 1.1 18.1± 0.7
country capital city 24 16.0± 0.0 15.5± 0.6 15.3± 0.5
country language 24 15.4± 0.6 14.9± 0.6 15.8± 0.4
country largest city 24 15.5± 0.5 14.0± 0.8 15.3± 0.5
person lead singer of band 21 13.0± 0.2 10.1± 0.9 13.0± 0.0
president birth year 19 11.0± 0.0 — ∗∗
president election year 19 9.5± 0.5 9.9± 0.6 ∗∗

commonsense

object superclass 76 52.7± 1.5 51.5± 2.2 54.4± 1.7
word sentiment 60 47.2± 4.1 42.8± 5.1 50.5± 2.0
task done by tool 52 30.6± 1.5 25.8± 1.9 33.7± 1.8
substance phase of matter 50 30.4± 6.8 34.2± 3.3 40.5± 1.9
work location 38 18.2± 2.6 19.7± 2.6 24.7± 2.3
fruit inside color 36 10.2± 1.0 9.0± 0.0 17.3± 1.6
task person type 32 18.0± 1.2 16.1± 1.5 19.2± 2.1
fruit outside color 30 11.7± 2.1 9.6± 0.7 14.6± 1.4

linguistic

word first letter 241 223.9± 4.5 199.1± 9.8 233.0± 0.0
word last letter 241 28.2± 8.2 21.2± 5.3 188.3± 6.7
adjective antonym 100 64.0± 2.3 57.5± 2.4 68.5± 1.5
adjective superlative 80 70.5± 0.9 64.4± 3.3 70.5± 0.7
verb past tense 76 61.0± 4.6 54.0± 3.0 65.8± 3.9
adjective comparative 68 59.5± 0.6 57.6± 0.9 60.0± 0.2

bias

occupation age 45 25.7± 2.6 22.9± 3.8 32.8± 2.6
univ degree gender 38 — 21.5± 2.4 24.2± 2.4
name birthplace 31 17.1± 2.6 18.0± 1.4 21.4± 1.1
name religion 31 17.0± 2.3 15.1± 2.2 19.8± 1.5
characteristic gender 30 15.9± 2.7 15.8± 2.2 19.7± 1.2
name gender 19 11.0± 0.0 10.7± 0.6 10.8± 0.4
occupation gender 19 9.6± 0.8 9.8± 0.7 10.8± 0.4
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B ASSUMPTIONS UNDERLYING THE LRE APPROXIMATION

Our estimate of the LRE parameters is based on an assumption that the transformer LM implements
relation decoding F (s, c) in a near-linear fashion that deviates from a linear model with a non-
linear error term ε(s) where both ε and ε′ are zero in expectation over s, i.e., Es[ε(s)] = 0 and
Es[ε

′(s)] = 0.

F (s, c) = b+W s+ ε(s) (9)

Then passing to expectations over the distribution of s we can estimate b and W :

b = F (s, c)−W s− ε(s) (10)
b = Es[F (s, c)−W s]−����Es[ε(s)] (11)

W = F ′(s, c)− ε′(s) (12)

W = Es[F
′(s, c)]−����Es[ε

′(s)] (13)

Equations 11 and 13 correspond to the bias term b and and projection term W of Equation (3) in the
main paper.

C IMPROVING THE ESTIMATE OF F ′(s, c) AS βW

Empirically we have found that βW (with β > 1) yields a more accurate linear model of F than W .
In this section we measure the behavior of F ′ in the region between subject representation vectors to
provide some evidence on this.

Take two subject representation vectors s1 and s2. The projection term of our LRE model W , based
on the mean Jacobian of F calculated at subjects si, yields this estimate of transformer’s behavior
when traversing from one to the other

F (s2)− F (s1) ≈ W (s2 − s1). (14)

We can compare this to an exact calculation: the fundamental theorem of line integrals tells us that
integrating the actual Jacobian along the path from s1 to s2 yields the actual change:

F (s2)− F (s1) =

∫ s2

s1

F ′(s)ds (15)

||F (s2)− F (s1)|| =
∫ s2

s1

uTF ′(s)ds (16)

Here we reduce it to a one-dimensional problem, defining unit vectors u ∝ F (s2) − F (s1) and
v ∝ s2 − s1 in the row and column space respectively, so that

||F (s2)− F (s1)|| ≈ uTW v||s2 − s1|| (17)

Table 5: Ratio between the right hand sides of Equa-
tion (16) and (17) for some of the relations.

Relation Underestimation Ratio

plays pro sport 2.517 ± 1.043
country capital city 4.198 ± 0.954
object superclass 3.058 ± 0.457
name birthplace 4.328 ± 0.991

By taking the ratio between the sides of (17) we
can see how the actual rate of change from s1 to
s2 is underestimated by W . Table 5 reports this
value for some selected relations.

In practice we find that setting β as a constant
for an LM (instead of setting it per relation)
is enough to attain good performance across a
range of relations. Refer to Appendix E for
further details.

D CAUSALITY

D.1 DERIVATION OF EQN 7

Under the same relation r = person plays instrument, consider two different (s, o) pairs: (s = Miles
Davis, o = trumpet) and (s′ = Cat Stevens, o′ = guitar). If an LRE defined by the projection term W
and translation term b is an well-approximation of the model calculation F (s, c), then
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o = βW (s) + b and o′ = βW (s′) + b

Subtracting o′ from o

o′ − o = βW s′ − βW s

= βW (s′ − s) [since W is linear]

∆s = s′ − s =
1

β
W−1(o′ − o) (18)

We observe that the edit direction ∆s needs to be magnified to achieve good edit efficacy. In our
experiments we magnify ∆s by β (or set β = 1.0 in Equation (18)).

∆s = W−1(o′ − o) (19)

D.2 WHY LOW-RANK INVERSE W † INSTEAD OF FULL INVERSE W−1 IS NECESSARY?

In practice, we need to take a low rank approximation W † instead of W−1 for the edit depicted in
Figure 2 to be successful. With β set to 1.0,

o′ − o = W (s′ − s)

∆o = W∆s

If we take UΣV T as the SVD of W , then

∆o = UΣV T∆s

UT∆o = ΣV T∆s

Considering UT∆o as ou and V T∆s as sv ,

ou = Σsv or Σ−1ou = sv (20)

Here, Σ maps sv to ou. This Σ is a diagonal matrix that contains the non-negative singular values in
it’s diagonal and zero otherwise. The greater the singular value the more its effect on sv . However, if
we take the full rank inverse of Σ while mapping ou to sv then the inverse becomes dominated by
noisy smaller singular values and they wash out the contribution of meaningful singular values. Thus,
it is necessary to consider only those singular values greater than a certain threshold τ or take a low
rank inverse W † instead of a full inverse W−1.

The significance of different ranks on causality is depicted on Figure 9. We see that the causality
increases with a rank up to some point and starts decreasing afterwards. This suggests that, we are
ablating important singular values from Σ before an optimal rank ρr is reached, and start introducing
noisy singular values afterwards.

E SELECTING HYPERPARAMETERS (β , ℓr , AND ρr)

We need to select a scalar value β per LM since the slope W of the first order approximation underes-
timates the slope of F (s, c) (Appendix C). Additionally, we need to specify two hyperparameters per
relation r; ℓr, the layer after which s is to be extracted and ρr, the rank of the low-rank inverse W †.

We perform a grid search to select these hyperparameters. For a specific β, hyperparameters ℓr and
ρr are selected to achieve the best causal influence as there is a strong agreement between faithfulness
and causality when the hparams are selected this way. However, when ℓr and ρr are selected to
achieve best faithfulness there is a weaker agreement between our evaluation metrics (Figure 10).
Appendix E.2 provides an insight on this.
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Figure 9: Initially, faithfulness and causality of LRE
improve with higher rank. However, after rank = 28

causality starts declining whereas faithfulness remains
stable.
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Figure 10: When hparams are selected to achieve
best faithfulness there is a weaker correlation of 0.74
between our evaluation metrics unlike in Figure 6
where hparams were selected to achieve best causality.
For both this figure and Figure 6 the LM is GPT-J and
β = 2.25.

In sweep over layers we notice that LRE perfor-
mance per relation increases up to a certain layer
and drops afterwards, suggesting a mode-switch in later layers (Figure 11). And, in the sweep over
ranks we notice that both edit efficacy and faithfulness increases up to a certain rank. After that edit
efficacy starts dropping while faithfulness remains stable. The reasoning behind how causality is
affected by higher rank is discussed in Appendix D.2.

E.1 SELECTING β
Table 6: Scores achieved by LRE on different values
of β on GPT-J. β = 2.25 shows the best correlation
between our evaluation metrics. Faithfulnessµ means
the average faithfulness across all the relations (same for
Causalityµ).

β Faithfulnessµ Causalityµ Corr

0.00 0.17 ± 0.20

0.81 ± 0.22

0.30
0.25 0.21 ± 0.22 0.33
0.50 0.28 ± 0.24 0.38
0.75 0.36 ± 0.25 0.48
1.00 0.43 ± 0.26 0.58
1.25 0.50 ± 0.26 0.67
1.50 0.54 ± 0.25 0.76
1.75 0.57 ± 0.25 0.80
2.00 0.59 ± 0.25 0.83
2.25 0.59 ± 0.25 0.84
2.50 0.59 ± 0.25 0.84
2.75 0.59 ± 0.25 0.84
3.00 0.59 ± 0.25 0.83
3.25 0.58 ± 0.25 0.81
3.50 0.57 ± 0.25 0.80
3.75 0.56 ± 0.25 0.78
4.00 0.55 ± 0.25 0.76
4.25 0.54 ± 0.25 0.75
4.50 0.53 ± 0.25 0.74
4.75 0.53 ± 0.25 0.72
5.00 0.52 ± 0.25 0.71

Table 6 represents how performance scores of
LRE change with respect to different values of
β for GPT-J. In our experiments, causality is
always calculated with β set to 1.0. So, the
average causality score remain constant. β is
selected per LM to achieve the best agreement
between our performance metrics faithfulness
and causality. For GPT-J optimal value of β is
2.25.

E.2 LAYER-WISE LRE PERFORMANCE
ON SELECTED RELATIONS (GPT-J)

If LRE remains faithful to model up to layer
ℓfaith it is reasonable to expect that LRE will re-
tain high causality until ℓfaith as well. However,
an examination of the faithfulness and causal-
ity performances across layers reveals that the
causality scores drop before ℓfaith (Fig. 11). In
fact Fig. 14 from Appendix G.2 indicates that
all the intervention baselines exhibit a decrease
in performance at deeper layers, particularly our
method and the oracle method at similar layers.
This might be a phenomenon associated with
this type of intervention in general, rather than
a fault with our approximation of the target s′.
Notice that, in all of our activation patching ex-
periments we only patch a single state (at the
position of the last subject token after a layer ℓ).
If the activation after layer ℓ is patched, layers till ℓ− 1 retains information about the original subject
s and they can leak information about s to later layers because of attention mechanism. The deeper
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we intervene the more is this leakage from previous states and it might reduce the efficacy of these
single state activation patching approaches.

It is not reasonable to expect high causality after ℓfaith, and causality can drop well before ℓfaith
because of this leakage. This also partly explains the disagreement between the two metrics when the
hyperparameters are chosen to achieve the best faithfulness (Figure 10).
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Figure 11: LRE performance for selected relations in different layers of GPT-J. The last row features some of
the relations where LRE could not achieve satisfactory performance indicating a non-linear decoding process
for them.

F VARYING n AND PROMPT TEMPLATE

Figure 12 shows how lre performance changes based on number of examples n used for approxima-
tion. For most of the relations both faithfulness and efficacy scores start plateauing after n = 5. In
our experiment setup we use n = 8 as that is the largest number we could fit for a GPT-J model on a
single A6000. However, Figure 12 suggests that a good LRE estimation may be obtained with less
number of examples.
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Figure 12: LRE performance across different n.

We also test how LRE performance on a relation r changes when the same relation r is contextualized
with different prompt templates. Table 7 shows minimal change in faithfulness and causality scores
when LRE is calculated with different prompt templates.
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Table 7: LRE performance on different prompt templates. The subject s is inserted in place of {}. Performance
scores presented as mean and standard deviation across 24 trials with different sets of training examples.

Relation Prompt Template Faithfulness Causality

country capital city

The capital of {} is 0.84± 0.09 0.94± 0.04
The capital of {} is the city of 0.87± 0.08 0.94± 0.04
The capital city of {} is 0.84± 0.08 0.94± 0.04
What is the capital of {}? It is the city of 0.87± 0.07 0.92± 0.05

plays pro sport
{} plays the sport of 0.78± 0.07 0.90± 0.03
{} plays professionally in the sport of 0.78± 0.09 0.90± 0.03
What sport does {} play? They play 0.81± 0.06 0.90± 0.03

person occupation
{} works professionally as a 0.41± 0.08 0.55± 0.09
{} works as a 0.44± 0.11 0.58± 0.07
By profession, {} is a 0.46± 0.14 0.58± 0.08

adjective superlative The superlative form of {} is 0.93± 0.02 0.97± 0.02
What is the superlative form of {}? It is 0.92± 0.02 0.96± 0.03

G BASELINES

G.1 FAITHFULNESS

In Figure 13 we examine whether our method can be applied to s extracted from zero-shot prompts
that contain only the subject s and no further context. It appears that even when LRE is trained
with few-shot examples, it can achieve similar results when applied to s that is free of any context
specifying the relation.
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Figure 13: LRE faithfulness on GPT-J compared with different linear functions baselines(same as Figure 4).
Each of the functions were approximated with n = 8 samples, each prepended with n− 1 few-shot examples
(Table 2). Dark blue bars indicate faithfulness when evaluated on s extracted in a similar setup. Light blue
bars represent how LRE (trained on few-shot examples) generalize when applied on s extracted from zero-shot
prompts that contain only the subject and no further context.

G.2 CAUSALITY

Figure 14 shows the LRE causality performance in comparison to other baselines for selected
relations and across different layers. If LRE is a good approximation of the model computation, then
our causality intervention should be equivalent to the oracle baseline, which replaces s with s′. The
graphs demonstrate the similarity between our method performance and oracle performance across
all layers. This provides causal evidence that LRE can reliably recover s′ for these relations.

While model editing is not the primary focus of this work, it is still worth examining how our
intervention may affect multiple token generation, since it may reveal unexpected side effects of the
method. Based on a qualitative analysis of the post-edit generations, it appears that the edits preserve
the fluency of the model. Table 8 presents examples of generated texts after intervention.
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Figure 14: LRE causality across different layers of GPT-J. The causality curve closely matches the peaks and
valleys of the oracle baseline, replacing s with s′, suggesting that LRE is a good approximation of the model
computation F .

Table 8: Generated texts, before and after our causal intervention on GPT-J to change its prediction
to o′.

Prompt o → o′ Before After
Miles Davis plays the trumpet → guitar trumpet in his band. guitar live with his band.
Siri was created by Apple → Google Apple as a personal as-

sistant.
Google and it has be-
come a huge success
within Google Maps.

Chris Martin is the
lead singer of

Coldplay → Foo
Fighters

Coldplay and a man of
many talents.

Foo Fighters, one of the
most successful and pop-
ular rock bands in the
world.

What is the past tense
of close? It is

closed → walked closed. It means it gets
closed or is closed.

walked. What is the past
tense of read?

H LRE ON GPT2-XL AND LLAMA-13B

We provide further results for GPT2-xl and LLaMA-13b to show that autoregressive LMs of different
sizes employ this linear encoding scheme for a range of different relations. Figure 15 present LRE
performances for each of the three models grouped by relation category.
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Figure 15: LRE performance in different relation categories on different LMs.

Figures 16a and 16a illustrate the high correlation between our two metrics on GPT2-xl and LLaMA-
13b respectively. These findings are consistent with the results reported for GPT-J (Figure 6).

Similarly, Figures 17a and 17b, compare the faithfulness of our method with other approaches of
achieving a linear decoding scheme for GPT2-xl and LlaMA.

19



Published as a conference paper at ICLR 2024

0.0 0.2 0.4 0.6 0.8 1.0
Faithfulness

0.0

0.2

0.4

0.6

0.8

1.0

C
au

sa
lit

y

name gender

person occupation

word first letter

(a) GPT2-xl (β = 2.25, corr = 0.85)
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Figure 16: High correlation between faithfulness and causality in both GPT2-xl (R=0.85) and LLaMa-
13B (R=0.83). Each of the dots represent LRE performance for a relation. Bold dots indicate relations
for which LRE is evaluated on ≥ 30 test examples.
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Figure 17: LRE faithfulness on GPT2-xl and LLaMA-13B compared with different baselines. Refer to Figure
Figure 4 for details on these baseline approaches of achieving a linear decoding function.

Lastly, Figure 18 depicts LRE faithfulness in GPT2-xl and LLaMA-13b for each of relations in
our dataset. According to Spearman’s rank-order correlation, GPT-J’s relation-wise performance is
strongly correlated with both GPT2-xl (R = 0.85) and LLaMa-13B (R = 0.71), whereas GPT2-xl
and LLaMa-13B are moderately corelated (R = 0.58).
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Figure 18: Relation-wise LRE faithfulness to the LM relation decoding function F . Horizontal red lines per
relation indicate accuracy of a random-guess baseline. Relations are ordered according to their LRE faithfulness
in GPT-J. We do not calculate LRE estimation for GPT2-xl on the relation president birth year as GPT2-xl can
not accurately answer for that relation (Table 4). We also do not calculate LRE of LLaMa-13B for the relations
where the o is a year (i.e. president birth year and president election year) as tokenizer of LLaMA models splits
the digits of a year. Such behavior of LLaMA tokenizer makes the relation decoding function trivial, since most
of the answers start with "1" for these relations. Those cases were included in this plot (grayed out) to align LRE
faithfulness of different LMs by relations.
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I LIMITATIONS

Our analysis of linear relational embeddings has several core limitations.

Dataset size We have only tested a small set of 47 relations; although we have covered several
categories of relations, there are many types of relations we have not explored, such as numerical or
physical relations, or logical inferences or multi-hop reasoning.

First-token correctness criterion During all of our experiments, we consider a predicted object
correct if the first predicted token matches the first token of the true object. This introduces a risk
for false positives: if multiple different objects share a first token, we might erroneously label a
prediction as correct. For example, in the relation person university, many of the university names
start with "University of" and such cases would inflate our measurements. We quantify the risk for
such false positives in Table 9 and find that many relations have few to no collisions. Nevertheless,
the first-token evaluation scheme limits the relations that can be reliably evaluated for linear decoding
using this approach.

Table 9: Relation-wise range (count of unique o) in our dataset along with the percentage of o s
uniquely identified by their first token when tokenized with different LM tokenizers. The number
inside parenthesis is the actual count of unique first tokens.
∗ Tokenizer for LLaMA models splits numeric words by digits. For the relation president birth year it only finds
one unique first token {1}, since all the years in this relation start with 1. For president election year LLaMA
tokenizer finds only two unique first tokens {1, 2}. Counts for these relations were ignored while calculating
average first token coverage for LLaMA-13B,

Relation |ranger| GPT-J GPT2-xl LLaMA-13B

adjective antonym 95 100.0% (95) 100.0% (95) 98.9% (94)
adjective comparative 57 100.0% (57) 100.0% (57) 93.0% (53)
adjective superlative 79 97.5% (77) 97.5% (77) 98.7% (78)
city in country 21 95.2% (20) 95.2% (20) 95.2% (20)
company CEO 287 72.5% (208) 72.5% (208) 67.6% (194)
company hq 163 100.0% (163) 100.0% (163) 93.3% (152)
country currency 23 100.0% (23) 100.0% (23) 91.3% (21)
landmark in country 91 100.0% (91) 100.0% (91) 97.8% (89)
person father 968 41.3% (400) 41.3% (400) 38.9% (377)
person lead singer of band 21 85.7% (18) 85.7% (18) 85.7% (18)
person mother 962 39.5% (380) 39.5% (380) 31.9% (307)
person occupation 31 100.0% (31) 100.0% (31) 93.5% (29)
person university 69 53.6% (37) 53.6% (37) 50.7% (35)
pokemon evolution 44 90.9% (40) 90.9% (40) 81.8% (36)
president birth year 15 60.0% (9) 60.0% (9) 6.7% (1)∗

president election year 18 77.8% (14) 77.8% (14) 11.1% (2)∗

product by company 30 100.0% (30) 100.0% (30) 86.7% (26)
star constellation name 31 93.5% (29) 93.5% (29) 87.1% (27)
superhero archnemesis 90 84.4% (76) 84.4% (76) 81.1% (73)
superhero person 100 89.0% (89) 89.0% (89) 84.0% (84)
task done by tool 51 98.0% (50) 98.0% (50) 90.2% (46)

Relation where all o is
uniquely identified by
the first token (×26)

— 100% 100% 100%

Average — 93.17% 93.17% 92.17%

Single object assumption In some relations, there may be more than one correct answer (e.g.,
fruits often take many different outside colors). Our dataset only catalogs one canonical related object
in each case. This does not impact our results because for each subject we focus on the single object
that the LM predicts, but future work could extend our evaluation scheme to measure how well LREs
estimate the LM’s distribution of candidate objects.
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Table 10: Relation-wise LRE performance on GPT-J, and respective hyperparameters.

relation, r |ranger| ℓr β ρr Faithfulness Causality

adjective antonym 95 8

2.25

243 0.69 ± 0.07 0.86 ± 0.04
adjective comparative 57 10 121 0.98 ± 0.01 0.94 ± 0.04
adjective superlative 79 10 143 0.93 ± 0.02 0.99 ± 0.01
characteristic gender 2 1 74 0.77 ± 0.11 0.97 ± 0.04
city in country 21 2 115 0.44 ± 0.10 0.89 ± 0.09
company CEO 287 6 173 0.06 ± 0.03 0.31 ± 0.05
company hq 163 6 126 0.21 ± 0.06 0.49 ± 0.04
country capital city 24 3 68 0.88 ± 0.07 0.99 ± 0.02
country currency 23 3 88 0.58 ± 0.08 0.98 ± 0.03
country language 14 1 63 0.88 ± 0.09 0.99 ± 0.03
country largest city 24 10 74 0.92 ± 0.05 0.99 ± 0.02
food from country 26 3 113 0.51 ± 0.12 0.97 ± 0.05
fruit inside color 6 7 107 0.65 ± 0.15 0.93 ± 0.07
fruit outside color 9 5 160 0.78 ± 0.15 0.83 ± 0.12
landmark in country 91 6 97 0.36 ± 0.06 0.68 ± 0.02
landmark on continent 5 4 158 0.56 ± 0.13 0.91 ± 0.02
name birthplace 8 7 91 0.92 ± 0.05 0.96 ± 0.07
name gender 2 emb 17 0.80 ± 0.16 0.94 ± 0.04
name religion 5 4 57 0.80 ± 0.10 0.99 ± 0.02
object superclass 10 7 91 0.85 ± 0.05 0.93 ± 0.03
occupation age 2 5 34 0.68 ± 0.03 1.00 ± 0.00
occupation gender 2 4 34 0.98 ± 0.04 1.00 ± 0.00
person father 968 8 217 0.07 ± 0.03 0.28 ± 0.04
person lead singer of band 21 8 163 0.64 ± 0.09 0.84 ± 0.09
person mother 962 6 170 0.14 ± 0.04 0.39 ± 0.05
person native language 30 6 92 0.65 ± 0.16 0.87 ± 0.03
person occupation 31 8 131 0.49 ± 0.08 0.66 ± 0.06
person plays instrument 6 9 198 0.59 ± 0.10 0.76 ± 0.04
person sport position 14 5 97 0.42 ± 0.15 0.74 ± 0.05
person university 69 4 153 0.64 ± 0.11 0.91 ± 0.04
plays pro sport 5 6 117 0.76 ± 0.06 0.94 ± 0.01
pokemon evolution 44 7 206 0.15 ± 0.05 0.25 ± 0.08
president birth year 15 6 106 0.54 ± 0.14 0.84 ± 0.08
president election year 18 emb 84 0.52 ± 0.20 0.91 ± 0.09
product by company 30 4 158 0.31 ± 0.14 0.54 ± 0.05
star constellation name 31 8 152 0.41 ± 0.08 0.27 ± 0.04
substance phase of matter 3 7 60 0.87 ± 0.09 0.97 ± 0.03
superhero archnemesis 90 11 192 0.30 ± 0.08 0.60 ± 0.10
superhero person 100 8 228 0.44 ± 0.06 0.71 ± 0.07
task done by tool 51 5 145 0.29 ± 0.10 0.76 ± 0.07
task person type 32 8 109 0.49 ± 0.10 0.77 ± 0.10
verb past tense 76 11 182 0.95 ± 0.03 0.97 ± 0.02
word first letter 25 7 121 0.58 ± 0.09 0.91 ± 0.02
word last letter 18 6 61 0.57 ± 0.13 0.83 ± 0.10
word sentiment 3 4 94 0.63 ± 0.16 0.93 ± 0.03
work location 24 5 112 0.55 ± 0.09 0.94 ± 0.06
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