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Abstract
While Transformers have been the main architecture
behind deep learning’s success in language modeling,
state-space models (SSMs) such as Mamba have
recently been shown to match or outperform
Transformers at small to medium scale. We show that
these families of models are actually quite closely
related, and develop a rich framework of theoretical
connections between SSMs and variants of attention,
connected through various decompositions of a well-
studied class of structured semiseparable matrices.
Our state space duality (SSD) framework allows us
to design a new architecture (Mamba-2) whose core
layer is an a refinement of Mamba’s selective SSM
that is 2-8× faster, while continuing to be competitive
with Transformers on language modeling.

1 Introduction
Transformers, in particular decoder-only models (e.g.
GPT (Brown et al., 2020), Llama (Touvron et al., 2023)) which
process input sequences in a causal fashion, are one of the
main drivers of modern deep learning’s success. Numerous
approaches attempt to approximate the core attention layer to
address its efficiency issues (Tay et al., 2022), such as scaling
quadratically in sequence length during training and requiring
a cache of size linear in sequence length during autoregressive
generation. In parallel, a class of alternative sequence models,
structured state-space models (SSMs), have emerged with linear
scaling in sequence length during training and constant state size
during generation. They show strong performance on long-range
tasks (e.g. S4 (Gu et al., 2022a)) and recently matched or beat
Transformers on language modeling (e.g. Mamba (Gu & Dao,
2023)) at small to moderate scale. However, the development
of SSMs have appeared disjoint from the community’s collective
effort to improve Transformers, such as understanding them
theoretically as well as optimizing them on modern hardware.
As a result, it is more difficult to understand and experiment with
SSMs compared to Transformers, and it remains challenging
to train SSMs as efficiently as Transformers from both an
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algorithmic and systems perspective.

Our main goal is to develop a rich body of theoretical connections
between structured SSMs and variants of attention. This will
allow us to transfer algorithmic and systems optimizations
originally developed for Transformers to SSMs, towards the goal
of building foundation models that perform better than Trans-
formers while scaling more efficiently in sequence length. A
milestone contribution in this direction was the Linear Attention
(LA) framework (Katharopoulos et al., 2020), which derived
a connection between autoregressive attention and linear RNNs
by showing the equivalence between “dual forms” of quadratic
kernelized attention and a particular linear recurrence. This
duality allows new capabilities such as the ability to have both
efficient parallelizable training and efficient autoregressive infer-
ence. In the same spirit, this paper provides multiple viewpoints
connecting linear-complexity SSMs with quadratic-complexity
forms to combine the strengths of SSMs and attention.1

State Space Duality. Our framework connecting structured
SSMs and variants of attention, which we call structured
state space duality (SSD), is made through the abstractions of
structured matrices: matrices with subquadratic parameters and
multiplication complexity. We develop two broad frameworks for
representing sequence models, one as matrix transformations and
one as tensor contractions, which each reveal different perspec-
tives of the duality. Our technical contributions include:

• We show an equivalence between state space models
and a well-studied family of structured matrices called
semiseparable matrices. This connection is at the heart our
framework, revealing new properties and algorithms for SSMs.
A central message of this paper is that different methods of
computing state space models can be reframed as various
matrix multiplication algorithms on structured matrices.

• We significantly improve the theory of linear atten-
tion (Katharopoulos et al., 2020). We first provide an incisive
proof of its recurrent form through the language of tensor
contractions, and then generalize it to a new family of
structured masked attention (SMA).

• We connect SSMs and SMA, showing that they have a large
intersection that are duals of each other, possessing both
SSM-like linear and attention-like quadratic forms.

1Technically speaking, these connections only relate to certain
flavors of attention; the title of this paper is an homage to Katharopoulos
et al. (2020) who first showed that “Transformers are RNNs”.
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Beyond its intrinsic theoretical value, our framework opens
up a broad set of directions for understanding and improving
sequence models.

Efficient Algorithms. First and most importantly, our framework
exposes new efficient and easily-implementable algorithms for
computing SSMs. We introduce a new SSD algorithm, based
on block decompositions of semiseparable matrices, that takes
advantage of both the linear SSM recurrence and quadratic dual
form, obtaining optimal tradeoffs on all main efficiency axes (e.g.
training and inference compute, memory usage, and ability to
leverage matrix multiplication units on modern hardware). A ded-
icated implementation of SSD is 2−8× faster than the optimized
selective scan implementation of Mamba, while simultaneously
allowing for much larger recurrent state sizes (8× the size of
Mamba or even higher, with minimal slowdown). SSD is highly
competitive with optimized implementations of softmax attention
(FlashAttention-2 (Dao, 2024)), crossing over at sequence length
2K and 6× faster at sequence length 16K.

Mamba-2. Additionally, inspired by the connection between
SSMs and Transformers, we slightly modify the neural network
architecture of Mamba by moving all data-dependent projections
to occur in parallel at the beginning of the block. The combina-
tion of the modified parallel Mamba block, together with using
SSD as the inner SSM layer, results in the Mamba-2 architecture.
We investigate Chinchilla scaling laws for Mamba-2 in the same
setting as Mamba, finding that it Pareto dominates Mamba and
Transformer++ in both perplexity and wall-clock time. We
additionally train a family of Mamba-2 models at varying sizes
on the Pile, showing that it matches or outperforms Mamba and
open source Transformers on standard downstream evaluations.
For example, Mamba-2 with 2.7B parameters trained on 300B
tokens on the Pile outperforms Mamba-2.8B, Pythia-2.8B and
even Pythia-6.9B trained on the same dataset.

Section 4 empirically validates Mamba-2 on language modeling,
training efficiency, and a difficult multi-query associative recall
task (Arora et al., 2024b). Finally, in Appendix A, we provide an
extended related work and discuss potential research directions
opened up by our framework.

Model code and pre-trained checkpoints are open-
sourced at https://github.com/state-spaces/
mamba.

2 Background and Overview
2.1 Structured State Space Models
Structured state space sequence models (S4) are a recent class
of sequence models for deep learning that are broadly related
to RNNs, CNNs, and classical state space models. They are
inspired by a particular continuous system (1) that maps a
1-dimensional sequence x∈RT 7→ y∈RT through an implicit
latent state h∈R(T,N). A general discrete form of structured
SSMs takes the form of equation (1).

ht=Aht−1+Bxt (1a)

yt=C
⊤ht (1b)

ht=Atht−1+Btxt (2a)

yt=C
⊤
t ht (2b)

whereA∈R(N,N),B∈R(N,1),C∈R(N,1). Structured SSMs are so
named because theAmatrix controlling the temporal dynamics
must be structured in order to compute this sequence-to-sequence
transformation efficiently enough to be used in deep neural
networks. The original structures introduced were diagonal plus
low-rank (DPLR) (Gu et al., 2022a) and diagonal (Gupta et al.,
2022; Gu et al., 2022b; Smith et al., 2023), which remains the
most popular structure.

In this work, we use the term state space model (SSM) to refer
to structured SSMs. There are many flavors of such SSMs,
with deep ties to several major paradigms of neural sequence
models such as continuous-time, recurrent, and convolutional
models (Gu et al., 2021).

Selective State Space Models. The form (2) where the param-
eters (A,B,C) can also vary in time was introduced in Mamba
as the selective SSM. Compared to the standard LTI formulation
(1), this model can selectively choose to focus on or ignore inputs
at every timestep. It was shown to perform much better than LTI
SSMs on information-dense data such as language, especially as
its state size N increases allowing for more information capacity.
However, it can only be computed in recurrent instead of convolu-
tional mode, and requires a careful hardware-aware implementa-
tion to be efficient. Even so, it is still less efficient than hardware-
friendly models such as CNNs and Transformers because it
does not leverage matrix multiplication units, which modern
accelerators such as GPUs and TPUs are specialized for.

While time-invariant SSMs are closely related to continuous,
recurrent, and convolutional sequence models, they are not
directly related to attention. In this paper, we show a deeper
relationship between selective SSMs and attention, and use
it to significantly improve the training speed of SSMs while
simultaneously allowing for much larger state sizes N.

Structured SSMs as Sequence Transformations.

Definition 2.1. We use the term sequence transformation to
refer to a parameterized map on sequences Y =fθ(X) where
X,Y ∈R(T,P) and θ is an arbitrary collection of parameters. T
represents the sequence or time axis; subscripts index into the
first dimension, e.g.Xt,Yt∈RP.

Sequence transformations (e.g. SSMs, or self-attention) are the
cornerstone of deep sequence models, where they are incorpo-
rated into neural network architectures (e.g. Transformers). The
SSM in (1) or (2) is a sequence transformation with P=1; it
can be generalized to P>1 by simply broadcasting across this
dimension (in other words, viewing the input as P independent
sequences and applying the SSM to each). One can think of
P as a head dimension.

Definition 2.2. We define the SSM operator SSM(A,B,C)=
SSM(A0:T , B0:T , C0:T ) as the sequence transformation
X∈R(T,P) 7→Y ∈R(T,P) defined by equation (2).

In SSMs, the N dimension is a free parameter called the state
size or state dimension. We also call it the state expansion
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factor, because it expands the size of the input/output by a factor
ofN , with implications for the computational efficiency of these
models.

Finally, we remark that many types of sequence transformations,
such as attention, can be represented as a single matrix
multiplication across the sequence dimension.

Definition 2.3. We call a sequence transformation Y =fθ(X) a
matrix transformation if it can be written in the form Y =MθX
whereM is a matrix depending on the parameters θ. We identify
the sequence transformation with the matrixM , and often drop
the dependence on θ when clear from context.

2.2 Attention
Attention broadly refers to a type of computation that assigns
scores to every pair of positions in a sequence, allowing each
element to “attend” to the rest. By far the most common and
important variant of attention is softmax self-attention, which
can be defined as

Y =softmax(QK⊤)·V
forQ,K,V ∈R(T,P). The mechanism of pairwise comparisons
(induced by materializing QK⊤) leads to the characteristic
quadratic training cost of attention.

Many variants of attention have been proposed, but all share the
underlying core of these attention scores, with various approx-
imations (Tay et al., 2022). The most important variant for this
work is linear attention (Katharopoulos et al., 2020). Roughly
speaking, this family of methods drops the softmax by folding
it into a kernel feature map, and uses associativity of matrix
multiplication to rewrite (QK⊤)·V =Q·(K⊤V ). Moreover, in
the important case of causal (autoregressive) attention, they show
that when the causal mask is incorporated into the left-hand side
as (L◦QK⊤) ·V , where L is the lower-triangular 1’s matrix,
then the right-hand side can be expanded as a recurrence. Several
recent and concurrent works such as RetNet (Sun et al., 2023) and
GateLoop (Katsch, 2023) strengthen this to more general forms
of L (Appendix A). In this work, our formulation of structured
masked attention will strongly generalize these ideas.

2.3 Structured Matrices
General matricesM∈R(T,T) require T2 parameters to represent
andO(T2) time to perform basic operations such as matrix-vector
multiplication. Structured matrices are those that

(i) can be represented in subquadratic (ideally linear)
parameters through a compressed representation, and

(ii) have fast algorithms (most importantly matrix mul-
tiplication) by operating directly on this compressed
representation.

Perhaps the most canonical families of structured matrices are
sparse and low-rank matrices. However, there exist many other
families, such as Toeplitz, Cauchy, Vandermonde, and butterfly
matrices, which have all been used in machine learning for
efficient models (Thomas et al., 2018; Dao et al., 2019; Gu
et al., 2022b; Fu et al., 2024). Structured matrices are a powerful

abstraction for efficient representations and algorithms. In this
work, we will show that SSMs are equivalent to another class
of structured matrices that have not previously been used in deep
learning, and use this connection to derive efficient methods and
algorithms.

2.4 Overview: Structured State Space Duality
While this paper develops a much richer framework of
connections between SSMs, attention, and structured matrices,
we provide a brief summary of the main method, which is
actually quite self-contained and simple algorithmically.

Recurrent (Linear) Form. The state space dual (SSD) layer
can be defined as a special case of the selective SSM (2). The
standard computation of an SSM as a recurrence (or parallel
scan) can be applied, which has linear complexity in sequence
length. Compared to the version used in Mamba, SSD has two
minor differences:

• The structure on A is further simplified from diagonal
to scalar times identity structure. Each At can also be
identified with just a scalar in this case.

• We use a larger head dimension P, compared to P=1 used
in Mamba. Typically P= {64,128} is chosen which is
similar to conventions for modern Transformers.

Compared to the original selective SSM, these changes can be
viewed as slightly decreasing the expressive power in return for
significant training efficiency improvements. In particular, our
new algorithms will allow the use of matrix multiplication units
on modern accelerators.

Dual (Quadratic) Form. The dual form of SSD is a quadratic
computation closely related to attention, defined as

(L◦QK⊤)·V Lij=

{
ai×···×aj+1 i≥j
0 i<j

where ai are input-dependent scalars bounded in [0,1].

Compared to standard softmax attention, there are two main
differences

• The softmax is dropped.

• The attention matrix is multiplied elementwise-wise by
an additional mask matrix L.

Both of these changes can be viewed as addressing problems
in vanilla attention. For example, the softmax has been recently
observed to cause problems in attention scores, such as the
“attention sink” phenomenon (Xiao et al., 2024; Darcet et al.,
2024). More importantly, the mask matrix L can be viewed as
replacing the heuristic positional embeddings of Transformers
with a different data-dependent positional mask that controls
how much information is transfered across time.

More broadly, this form is an instance of our structured
masked attention generalization of linear attention, defined in
Appendix B.

Matrix Form and SSD Algorithm. The various forms of
SSD are connected through a unified matrix representation, by
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showing that SSMs have a matrix transformation form Y =MX
for a matrix Mθ ∈ R(T,T) that depends on θ = (A,B,C).
In particular, the dual form of SSD is equivalent to naive
(quadratic-time) multiplication by the matrix M , and the
recurrent form is a particular efficient (linear-time) algorithm
that leverages the structure inM .

Going beyond these, any algorithm for multiplication by M
can be applied. Our proposed hardware-efficient SSD algorithm
(Appendix C) is a new structured matrix multiplication method
that involves block decompositions ofM , which obtains better
efficiency tradeoffs than either the pure linear or quadratic
forms. It is relatively simple and easy-to-implement compared
to general selective SSMs (Gu & Dao, 2023); Listing 1 provides
a complete implementation in a few lines of code.

2.5 Notation
Throughout this paper, we prefer using precise notation that can
be mapped to code.

Matrices and Vectors. We generally use lower case to denote
vectors (i.e. tensors with a single axis) and upper case to denote
matrices (i.e. tensors with more than one axes). We do not bold
matrices in this work. Sometimes, if a matrix is tied or repeated
along one axis (and hence can also be viewed as a vector), we
may use either upper or lower case for it.2 · denotes scalar or
matrix multiplication while ◦ denotes Hadamard (elementwise)
multiplication.

Indexing. We use Python-style indexing, e.g. i : j refers to
the range (i,i+1,...,j−1) when i < j and (i,i−1,...,j+1)
when i > j. For example, for any symbol v we let vj:i for
j ≥ i denote the sequence (vj, ... ,vi+1). [i] is equivalent to
0 : i=(0,...,i−1). For shorthand, we also let v×j:i denote the
product vj×···×vi+1.3

Dimensions. To distinguish from matrices and tensors, we
often use capital letters in typewriter fonts (e.g. D,N,T) to denote
dimensions and tensor shapes. Instead of the traditional notation
M ∈ RT×T we frequently use M ∈ R(T,T) to reflect tensor
shapes in code.

Tensor Contractions. We will heavily rely on tensor contrac-
tion or einsum notation both for clarity and as a central tool
in stating and proving our results. We assume the reader to be
familiar with this notation, which is commonly used in modern
tensor libraries such as numpy. For example, we can use
contract(MN,NK→MK) to denote the matrix-matrix multiplica-
tion operator, and in our notation contract(MN,NK→MK)(X,Y )
(which is equivalent to X · Y ) can be translated to code as
numpy.einsum(′mn,nk→mk′,X,Y).

2In this work, this happens only with the A parameter of SSMs.
3In some contexts, it is always clear that the notation ai:j or Ai:j

means a×i:j, and the superscript is omitted.

3 Structured State Space Duality
3.1 The Matrix Transformation Form of SSMs
Recall that our definition of an SSM is defined as a parameterized
map defined through (2). Our theoretical framework starts by
simply writing this transformation as a matrix multiplication
mapping the vectors x 7→y∈RT .

By definition, h0=B0x0. By induction,
ht=At...A1B0x0+At...A2B1x1+...

+AtAt−1Bt−2xt−2+AtBt−1xt−1+Btxt

=

t∑
s=0

A×
t:sBsxs.

Multiplying by Ct to produce yt and vectorizing the equation
over t ∈ [T ], we derive the matrix multiplication form of
SSMs.

yt=

t∑
s=0

C⊤
t A

×
t:sBsxs

y=SSM(A,B,C)(x)=Mx

Mji :=C
⊤
j Aj···Ai+1Bi.

(3)

3.2 Semiseparable Matrices
M in equation (3) is a particular representation of a class of
matrices known as semiseparable matrices. Semiseparable
matrices are a fundamental matrix structure. We first define
these matrices and their properties.

Definition 3.1. A (lower triangular) matrix M is N-
semiseparable if every submatrix contained in the lower
triangular portion (i.e. on or below the diagonal) has rank at
mostN . We callN the order or rank of the semiseparable matrix.

Definition 3.1, and other forms of related “separable” structure
(e.g. quasiseparable matrices and other definitions of semisep-
arable matrices) are sometimes called structured rank matrices
(or rank-structured matrices) because they are characterized by
rank conditions on their submatrices. Semiseparable matrices
have many structured representations including the hierarchical
semiseparable (HSS), sequential semiseparable (SSS), and
Bruhat forms (Pernet & Storjohann, 2018). We will primarily
use the SSS form.

The Sequentially Semiseparable Representation.

Definition 3.2. A lower triangular matrix M ∈RT×T has a
N-sequentially semiseparable (SSS) representation if it can
be written in the form

Mji=C
⊤
j Aj···Ai+1Bi (4)

for vectors B0, ... ,BT−1,C0, ... ,CT−1 ∈ RN and matrices
A0,...,AT−1∈RN×N .

We define the operator SSS so thatM=SSS(A0:T ,B0:T ,C0:T ).

A fundamental result of semiseparable matrices is that they
are exactly equivalent to matrices with SSS representations, a
well-established result in the literature.
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Proposition 3.3. The class of N-semiseparable matrices
(Definition 3.1) and the class of matrices with an N-SSS
representation coincide.

Therefore in the rest of this paper we will conflate the structured
matrix class (Definition 3.1) and a particular representation of
it (Definition 3.2); we will always use this representation instead
of other candidates. In turn we will use N-SS to refer to an
N-semiseparable matrix in SSS form.

Semiseparable matrices are a fundamental matrix structure
and have many important properties. They are deeply related
to recurrences at large, and can be defined by multiple
characterizations (e.g. Definitions 3.1 and 3.2) which reveal
different connections and efficient algorithms for them.

1-SS Matrices: the Scalar SSM Recurrence.

We will single out the special case of 1-semiseparable matrices.
Note that in this case, the Cj and Bi are scalars, and can be
factored out of the SSS representation (4)
SSS(a,b,c)=diag(c)Mdiag(b) where Mji=aj:i.

We also use lower-case to emphasize that the parameters are
scalars in this case.
Since diagonal matrices are easy to handle (e.g. multiplication
by a diagonal matrix is the same as elementwise scalar
multiplication), we can ignore these terms. Thus our basic
representation of a 1-SS matrix isMji=aj:i or

M=1SS(a0:T ):=


1
a1 1
a2a1 a2 1

...
...

. . .
. . .

aT−1...a1 aT−1...a2 ... aT−1 1

.
The importance of 1-SS matrices lies in their equivalence to the
minimal form of a scalar recurrence – the case of a degenerate
SSM with state dimension N = 1 and no (B,C) projections.
Note that multiplication y = Mx can be computed by the
recurrence

yt=at:0x0+···+at:txt
=at(at−1:0x0+···+at−1:t−1xt−1)+at:txt

=atyt−1+xt.

(5)

We thus also refer to matrix multiplication by 1-SS matrices as
the scalar SSM recurrence or the cumprodsum (cumulative
product sum; a generalization of cumulative productive and
cumulative sum) operator. As the fundamental form of
recurrence, multiplication by 1-SS matrices is important as a
building block for our main algorithms.

3.3 State Space Models are Semiseparable Matrices
Recall that our definition of an SSM is defined as a parameterized
map defined through Definition 2.1. The connection between
SSMs and semiseparable matrices follows from simply writing
this transformation as a matrix multiplication mapping the
vectors x 7→y∈RT .

Equation (3) directly establishes the link between state space
models and the sequentially semiseparable representation, which

in turn are equivalent to semiseparable matrices in general
(Proposition 3.3).

Theorem 3.4. The state space model transformation
y = SSM(A,B,C)(x) with state size N is identical to matrix
multiplication by an N-SS matrix in sequentially semiseparable
representation y=SSS(A,B,C)·x.

In other words the sequence transformation operator SSM
(Definition 2.2) coincides with the matrix construction operator
SSS (Definition 3.2), and we use them interchangeably (or
sometimes SS as shorthand). Furthermore—by a twist of fate—
structured state-space models and sequentially semiseparable
matrices have the same acronyms, underscoring their equiva-
lence! Conveniently we can use any of these acronyms SSM
(state-space model or semiseparable matrix), SSS (structured
state-space or sequentially semiseparable), or SS (state-space
or semiseparable) interchangeably to unambiguously refer to
either concept. However, we will generally use the convention
that SSM refers to state space model, SS refers to semiseparable,
and SSS refers to sequentially semiseparable.

3.4 Computing State Space
Models through Structured Matrix Algorithms

The reason Theorem 3.4 is important is that it will allow us to
reduce the problem of efficient computation of SSMs (and other
sequence models) into efficient algorithms for structured matrix
multiplication.

As defined in Section 2.3, semiseparable matrices are a classical
type of structured matrix:

(i) They have compressed representations such as the SSS
form which has onlyO(T) instead ofO(T2) parameters.

(ii) They have fast algorithms operating directly on the
compressed representation.

Furthermore, the parameterization and matrix multiplication cost
can be tight in the semiseparable order.

Proposition 3.5 (Pernet et al. (2023)). AnN-SS matrix of size T
can be represented inO(NT) parameters and has matrix-vector
multiplication in time and spaceO(NT).

Surprisingly, Theorem 3.4 and Proposition 3.5 immediately
imply that all SSMs have optimal asymptotic efficiency, even
whenA is unstructured.

Theorem 3.6. Any state space model (Definition 2.2) of state
sizeN on sequence length T can be computed in timeO(TN)
(not accounting for potential preprocessing).

We note that this result is new to the structured SSM literature
and not obvious. In particular, given dense unstructured At

matrices, the total representation alone is of size O(TN2).
Thus Theorem 3.6 states the non-trivial result that with a
pre-processing step, even an unstructured SSM can be computed
optimally efficiently, with upper bound matching the lower
boundO(TN) (the size ofB and C).
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3.5 SSD: The Linear (Recurrent) Mode
Proposition 3.5 can be easily seen in the case of diagonal struc-
tured SSMs (DSS,S4D,S5 (Gupta et al., 2022; Gu et al., 2022b;
Smith et al., 2023)), simply by leveraging the state space model
formulation (2) and unrolling the recurrence. We will focus on
the even more structured case whereAt is a scalar-times-identity
matrix; in this special case of a diagonal SSM,At can simply be
identified with a scalar. We provide the formal tensor-contraction
algorithm in (6), where the dimension S is equal to T (a different
symbol is required for the contraction notation).

Z=contract(SP,SN→SPN)(X,B) (S,P,N) (6a)
H=contract(TS,SPN→TPN)(L,Z) (T,P,N) (6b)
Y =contract(TN,TPN→TP)(C,H) (T,P) (6c)

Here, L ∈ R(T,T) is defined as 1SS(A), or in other words
L0:T,0:T=1SS(A0:T) for i∈ [N]. This algorithm involves three
steps corresponding to (2):

(i) expanding the inputX by the input matrixB (6a),

(ii) unrolling independent scalar SSM recurrences (6b), and

(iii) contracting the hidden stateH by the output matrix C (6c).

Note that we have used the equivalence between scalar SSMs
and 1-SS matrix multiplication in step (6b).

Remark 1. We note that (6) is a special case of the Mamba
(S6) model. However, a naive implementation is slow because
of the expanded tensors Z and H of size (T,P,N); Gu & Dao
(2023) introduced a hardware-aware implementation to avoid
materializing these tensors.

3.6 SSD: The Quadratic (Attention) Mode
We note that there is another way to compute an SSM exposed
by our new matrix point of view. A naive computation of the
matrix SSM representation (3) involves simply materializing the
matrixM=SSM(A,B,C). This is a (T,T) matrix, and therefore
this naive algorithm will scale quadratically in sequence length.
However, when the sequence length T is short, this can actually
be more efficient than the linear algorithm due to constant factors
and the hardware-friendliness of the computation pattern (e.g.
leveraging matrix-matrix multiplications). Furthermore, for the
case of scalar-identity structured SSMs above, this turns out to
look very similar to a quadratic attention computation.

Note that in this case we can rearrange the matrix
M = SSM(A,B,C) (equation (3)) as Mji = Aj:i · (C⊤

j Bi),
and this can be vectorized into M = L ◦ (CB⊤), where
B,C∈RT×N and L :=1SS(A).

Using this formulation, the full output Y = MX can be
computed by materializingM :

G=contract(TN,SN→TS)(C,B) (T,S) (7a)
M=contract(TS,TS→TS)(G,L) (T,S) (7b)
Y =contract(TS,SP→TP)(M,X) (T,P) (7c)

In equations, we can write this in the form Y =(L◦CB⊤)·X.
But by renaming (C,B,X)→ (Q,K,V ), note that this is just
Linear Attention (Section 2.2) with more general L!

3.7 Structured Masked Attention (SMA)
We have shown that a particular SSM computation (6) is
equivalent to an attention-like computation (7). We can similarly
derive the reduction in the other direction, starting from linear
attention. We observe that this is a result of a deeper fact:

• They both compute the same function which is simply a
particular tensor contraction on four terms.

• The quadratic and linear algorithms are simply two different
pairwise reduction orders.

Linear attention starts from (7), and observes that for the special
case where L is the causal mask, it can be rewritten into (6),
which can be computed in linear time.

However, we observe that all that is necessary for (6) to be fast
is for L to be any structured matrix, which by definition are
those that have fast matrix multiplication (Section 2.3). This
motivates our definition of SMA, a strong generalization of
linear attention.

Definition 3.7. Structured masked attention (SMA) is defined
as a function on queries/keys/values Q,K,V as well as any
structured matrix L, through the 4-way tensor contraction

y=contract(TN,SN,SP,TS→TP)(Q,K,V,L).

The SMA quadratic mode algorithm is the sequence of pairwise
contractions defined by (7), which corresponds to the standard
(masked) attention computation.

The SMA linear mode algorithm is the sequence of pairwise
contractions defined by (6), where step (6b) is optimized through
the subquadratic structured matrix multiplication.

The SSD linear/quadratic duality is a special case of SMA; this
duality holds for any structured matrix L. SSD corresponds to
the case when L is a 1-SS matrix, whence the linear form takes
the form of an SSM recurrence.

The full SMA framework is developed in Appendix B.

3.8 Structured State-Space Duality
Structured state-space duality is summarized in Figure 1. Note
that we use SSD to refer to both a model, and a theoretical
framework. The SSD model is the intersection of state space
models and structured masked attention, which can be described
as either the class of scalar-identity SSMs or the class of 1-SS
masked attention. The SSD framework refers to the rich interplay
between our main objects of interest—state space models,
structured masked attention, and structured matrices—and
particularly the duality between recurrences and attention
induced by two different tensor contraction orders.

3.9 State Space Duality: The Hybrid Mode
The power of developing the theoretical SSD framework
between SSMs, attention, and structured matrices lies in using
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Structured State Space Model Structured Masked Attention

C (output matrix) Q (queries)
B (input matrix) K (keys)
X (input sequence) V (values)
Aj:i (state matrix) Lji (mask)
N (state expansion dim.) N (kernel feature dim.)

H (hidden states (6b)) SMA linear dual (6)
=L·XB (linear mode)

SSM quadratic dual (7) G (Gram matrix (7a))
=Q·K⊤ (quadratic mode)

Structured State Space Model (SSM)

Diagonal State Space Model

Scalar-Identity SSM

Structured Masked Attention (SMA)

Semiseparable SMA

1-Semiseparable SMA

S4D

S5

S6 Linear Attention

Efficient Autoregressive Attention

RetNet

TransNormer
GateLoop

Structured 
State Space 

Duality (SSD)

DSS

S4

Figure 1: (Structured State-Space Duality.) This paper explores the rich relationships between state space models and attention
through the bridge of structured matrices.

the connections to improve the models and algorithms. Our
main computational result is an algorithm for computing SSD
models that combines both the linear (primary, recurrent) mode
and quadratic (dual, attention) mode. This algorithm is as
computation efficient as SSMs (linear scaling in sequence length)
and as hardware-friendly as attention (primarily uses matrix
multiplications).

Theorem 3.8. Consider an SSD model with state expansion
factor N and head dimension P=N. There exists an algorithm
for computing the model on any input X ∈R(T,P) which only
requiresO(TN2) training FLOPs,O(TN) inference flops,O(N2)
memory, and whose work is dominated by matrix multiplications.

Note that all of these bounds are tight, because a state space
model with state expansion N operating on a head size of N
has total state size N2 (yielding the lower bounds for training
and inference FLOPs of O(TN2) and O(N2) respectively).
Furthermore the input X itself has TN elements, yielding the
memory lower bound.

The main idea behind Theorem 3.8 is once again viewing the
problem of computing a state space model as a semiseparable
matrix multiplication, but leveraging its structure in a new
way. Instead of computing the whole matrix in either recurrent
or attention mode, we perform a block decomposition of the
matrix. The diagonal blocks can be computed using the dual
attention mode, which can be efficiently done with matrix
multiplications, while the off-diagonal blocks can be factored
by the rank-structure of semiseparable matrices and reduced to a
smaller recurrence. Appendix C contains details of the algorithm
which proves Theorem 3.8. We highlight that Listing 1 provides a
self-contained implementation of the SSD algorithm. Compared
to the general selective SSM of Gu & Dao (2023), this imple-
mentation is much simpler, and relatively efficient even in native
PyTorch without requiring special low-level kernels.

3.10 The Mamba-2 Architecture
The Mamba-2 architecture makes small changes to the Mamba
architecture, inspired by the connection between SSMs and

X
B CX

B C

Parallel Mamba Block

Linear projection

Sequence transformation

Nonlinearity (activation, 
normalization, multiplication)

X

!!

Conv

SSM X

!

Conv

SSMA
A

N
Y

Y

Sequential Mamba Block

!

Figure 2: (Architecture.) The Mamba-2 block simplifies the
Mamba block by removing sequential linear projections; the
SSM parameters A,B,C are produced at the beginning of the
block instead of as a function of the SSM inputX. An additional
normalization layer is added as in NormFormer (Shleifer et al.,
2021), improving stability. TheB and C projections only have a
single head shared across theX heads, analogous to multi-value
attention (MVA).

attention (Figure 2). In Mamba, the selective SSM layer is
viewed as a map from X 7→ Y ; the parameters A,B,C are
viewed as subsidiary and are functions of the SSM input
X. Thus these linear projections occur after the initial linear
projection to createX.

Since SSD is viewed as a map fromA,X,B,C 7→Y , it therefore
makes sense to produce A,X,B,C in parallel with a single
projection at the beginning of the block. Note the analogy to
standard attention architectures, where X,B,C correspond to
theQ,K,V projections that are created in parallel.

4 Empirical Validation
We empirically evaluate Mamba-2 on synthetic recall tasks
that have been challenging for recurrent models (Section 4.1),
and standard language modeling pre-training and downstream
evaluations (Section 4.2). We validate that our SSD algorithm is
much more efficient than Mamba-1 (Section 4.3) and comparable
to optimized attention for moderate sequence lengths.
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Figure 3: (Multi-Query Associative Recall (MQAR)). Associative recall tasks are challenging for SSMs, which must memorize
all relevant information into their recurrent state. The SSD layer combined with improved architecture allows for much larger state
sizes in Mamba-2, which performs significantly better than Mamba-1 and even vanilla attention.

Table 1: (Zero-shot Evaluations.) Best results for each size in bold, second best unlined. We compare against open source LMs with various
tokenizers, trained for up to 300B tokens. Pile refers to the validation split, comparing only against models trained on the same dataset and tokenizer
(GPT-NeoX-20B). For each model size, Mamba-2 outperforms Mamba, and generally matches Pythia at twice the model size. Full results in Table 3.

MODEL TOKEN. PILE LAMBADA LAMBADA HELLASWAG PIQA ARC-E ARC-C WINOGRANDE OPENBOOKQA AVERAGE
PPL ↓ PPL ↓ ACC ↑ ACC ↑ ACC ↑ ACC ↑ ACC ↑ ACC ↑ ACC ↑ ACC ↑

Pythia-1B NeoX 7.82 7.92 56.1 47.2 70.7 57.0 27.1 53.5 31.4 49.0
Mamba-790M NeoX 7.33 6.02 62.7 55.1 72.1 61.2 29.5 56.1 34.2 53.0
Mamba-2-780M NeoX 7.26 5.86 61.7 54.9 72.0 61.0 28.5 60.2 36.2 53.5

Hybrid H3-1.3B GPT2 — 11.25 49.6 52.6 71.3 59.2 28.1 56.9 34.4 50.3
Pythia-1.4B NeoX 7.51 6.08 61.7 52.1 71.0 60.5 28.5 57.2 30.8 51.7
RWKV4-1.5B NeoX 7.70 7.04 56.4 52.5 72.4 60.5 29.4 54.6 34.0 51.4
Mamba-1.4B NeoX 6.80 5.04 65.0 59.1 74.2 65.5 32.8 61.5 36.4 56.4
Mamba-2-1.3B NeoX 6.66 5.02 65.7 59.9 73.2 64.3 33.3 60.9 37.8 56.4

Hybrid H3-2.7B GPT2 — 7.92 55.7 59.7 73.3 65.6 32.3 61.4 33.6 54.5
Pythia-2.8B NeoX 6.73 5.04 64.7 59.3 74.0 64.1 32.9 59.7 35.2 55.7
RWKV4-3B NeoX 7.00 5.24 63.9 59.6 73.7 67.8 33.1 59.6 37.0 56.4
Mamba-2.8B NeoX 6.22 4.23 69.2 66.1 75.2 69.7 36.3 63.5 39.6 59.9
Mamba-2-2.7B NeoX 6.09 4.10 69.7 66.6 76.4 69.6 36.4 64.0 38.8 60.2

1019 1020

FLOPs (log scale)
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le
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Scaling Laws on The Pile (Sequence Length 8192)

Transformer++
Mamba
Mamba-2

Figure 4: (Scaling Laws.) Models of size ≈125M to ≈1.3B
parameters, trained on the Pile. Mamba-2 matches or exceeds
the performance of Mamba as well as a strong “Transformer++”
recipe. Compared to our Transformer baseline, Mamba-2 is
Pareto dominant on performance (perplexity), theoretical FLOPs,
and actual wall-clock time.

4.1 Synthetics: Associative Recall
Synthetic associative recall tasks have been popular for testing the
ability of language models to look up information in their context.
Broadly, they involve feeding autoregressive models pairs of
key-value associations, and then prompting the model to produce

the correct completion upon being shown a previously-seen key.
The multi-query associative recall (MQAR) task is a particular
formulation of this task that requires the model to memorize
multiple associations (Arora et al., 2024a).

We compare on a challenging version of the MQAR setup
from (Arora et al., 2024b), using a harder task, longer sequences,
and smaller models. Our baselines include standard multi-head
softmax attention as well as the Based architecture which
combines convolutions, local attention, and a linear attention
variant.

Results are shown in Figure 3. While Mamba-1 struggles on
this task, Mamba-2 performs well across all settings.

4.2 Language Modeling
Following standard protocols in LLMs, we train and evaluate
the Mamba-2 architecture on standard autoregressive language
modeling against other architectures. We compare both
pretraining metrics (perplexity) and zero-shot evaluations. The
model sizes (depth and width) follow GPT3 specifications, from
125m to 2.7B. We use the Pile dataset (Gao et al., 2020), and
follow the training recipe described in Brown et al. (2020). This
follows the same setup as reported in Mamba (Gu & Dao, 2023);

8



Transformers are SSMs: Generalized Models and Efficient Algorithms Through Structured State Space Duality

512 1k 2k 4k 8k 16k 32k 64k 128k 256k 512k
Sequence length

0.1

1

10

100

1000

Ti
m

e 
(m

s)
SSD, Scan, Convolution vs Attention time (A100 80GB PCIe)

FlashAttention-2
Convolution
Scan (PyTorch), state dim 64
Scan (Mamba), state dim 64
SSD (ours), state dim 64

48 16 32 64 128 256
State dim

0

1

2

3

4

5

6

7

Ti
m

e 
(m

s)

SSD vs Scan time (A100 80GB PCIe)
FlashAttention-2
Scan (Mamba)
SSD (ours)

Figure 5: (Efficiency Benchmarks.) (Left) Our SSD is 2−8× faster than a Mamba fused scan for large state expansion (N=64) and
faster than FlashAttention-2 for sequence length 2k and above. (Right) Sequence length 4K: Increasing state expansion slows down
the Mamba optimized scan implementation linearly. SSD can handle much larger state expansion factors without much slowdown.

training details are in Appendix E.

4.2.1 SCALING LAWS

For baselines, we compare against both Mamba and its
Transformer++ recipe (Gu & Dao, 2023), which is based on
the PaLM and LLaMa architectures (e.g. rotary embedding,
SwiGLU MLP, etc.). As Mamba has already demonstrated
that it outperforms the standard Transformer architecture
(GPT3 architecture) as well as recent subquadratic architectures
(H3 (Dao et al., 2023), Hyena (Poli et al., 2023), RWKV-4 (Peng
et al., 2023), RetNet (Sun et al., 2023)), we omit those in the
plot for clarity (see Gu & Dao (2023) for comparisons).

4.2.2 DOWNSTREAM EVALUATIONS

Table 1 shows the performance of Mamba-2 on a range of
popular downstream zero-shot evaluation tasks, compared to
the most well-known open source models at these sizes, most
importantly Pythia (Biderman et al., 2023) which were trained
with the same tokenizer, dataset, and training length (300B
tokens) as our models.

4.3 Speed Benchmarks
We benchmark the speed of the SSD algorithm against Mamba’s
scan implementation and FlashAttention-2 (Figure 5). SSD,
thanks to its reformulation to use matrix multiplication as
a subroutine, can exploit specialized matrix multiplication
(matmul) units on GPUs, also known as tensor cores. As a
result, it is 2-8× faster than Mamba’s fused associative scan,
which does not leverage matmul units. Due to its linear scaling
in sequence length, SSD is faster than FlashAttention-2 starting
at sequence length 2K.

However, we note that the Mamba-2 model as a whole might not
be as efficient to train as Transformer at short sequence length (e.g.
at 2K), since a Transformer with L layers would have L

2 MLP
layers and L

2 attention layers, while a Mamba-2 model would
haveL SSD layers for the same number of parameters. Generally
the MLP layers are very hardware efficient since they consist of
simple matrix multiplication and pointwise linearity.

5 Conclusion
We proposed a theoretical framework based on well-studied
classes of structured matrices that bridges the conceptual gap

between SSMs and attention variants. This framework yields
insights on how recent SSMs (e.g. Mamba) perform as well as
Transformers on language modeling. Moreover, our theoretical
tools provide new ideas to improve SSMs (and potentially
Transformers) by connecting the algorithmic advances on both
sides. As a demonstration, the framework guides our design of
a new architecture (Mamba-2) at the intersection of SSMs and
structured attention.
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state space models. In The International Conference on Learning Representations (ICLR), 2023.

Darcet, T., Oquab, M., Mairal, J., and Bojanowski, P. Vision transformers need registers. In The International Conference on Learning
Representations (ICLR), 2024.

De, S., Smith, S. L., Fernando, A., Botev, A., Cristian-Muraru, G., Gu, A., Haroun, R., Berrada, L., Chen, Y., Srinivasan, S., et al.
Griffin: Mixing gated linear recurrences with local attention for efficient language models. arXiv preprint arXiv:2402.19427, 2024.
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A Related Work and Discussion
The state space duality framework bridges connections between SSMs, structured matrices, and attention. We discuss in more depth
the relations between SSD and these concepts more broadly. Using ideas from each of the viewpoints, we also suggest some directions
that the SSD framework can be extended in future work.

A.1 State Space Models
Structured state space models can be characterized along the axes

(i) whether it is time-invariant or time-varying.

(ii) the dimensionality of the system.

(iii) the structure on the recurrent transitionsA.

SSD can be described as a selective SSM with SISO dimensions and scalar-identity structure.

Time Variance (Selectivity). The original structured SSMs (S4) were linear time-invariant (LTI) systems (Gu, 2023; Gu et al., 2022a)
motivated by continuous-time online memorization (Gu et al., 2020; 2021; 2023). Many variants of structured SSMs have been pro-
posed (Gupta et al., 2022; Gu et al., 2022b; Smith et al., 2023; Ma et al., 2023; Dao et al., 2023), including several that drop the recurrence
and focus on the convolutional representation of LTI SSMs (Li et al., 2023; Poli et al., 2023; Fu et al., 2023; Qin et al., 2023a).

SSD is a time-varying structured SSM, also known as a selective SSM introduced in Mamba (Gu & Dao, 2023). Selective SSMs
are closely related to gating mechanisms of RNNs, including classical RNNs such as the LSTM (Hochreiter & Schmidhuber, 1997)
and GRU (Chung et al., 2014) as well as more modern variants such as the QRNN (Bradbury et al., 2016), SRU (Lei et al., 2017;
Lei, 2021), RWKV (Peng et al., 2023), HGRN (Qin et al., 2023c), and Griffin (De et al., 2024; Botev et al., 2024). These RNNs
differ in their parameterizations in various ways, most importantly in the lack of a state expansion.

Dimensionality and State Expansion. An important characteristic of SSD, shared by previous SSMs in its lineage (S4, H3,
Mamba), is that it is a single-input single-output (SISO) system where input channels are processed independently. This leads
to a much larger effective state size of ND where N is the SSM state size (also called state expansion factor) and D is the standard
model dimension. Traditional RNNs either have N=1 or are multi-input multi-output (MIMO) with dense B,C matrices, either
of which leads to a smaller state. While MIMO SSMs have been shown to work well in some domains (Smith et al., 2023; Orvieto
et al., 2023; Lu et al., 2023), Mamba showed that state expansion is crucial for information-dense domains such as language. One
of the main advantages of SSD is allowing for even larger state expansion factors without slowing down the model. Many subsequent
works have since adopted state expansion (Appendix A.4).

Structure. Compared to previous structured SSMs, the main restriction of SSD is on the expressivity of the state transitions
At. We note that more general SSMs, such as the case of diagonal At, have the same theoretical efficiency as SSD, but are less
hardware-friendly. This is because the dual quadratic form loses its attention-like interpretation and becomes more difficult to compute.
Thus compared to Mamba, SSD differs only in a slightly more restrictive form of diagonalAt, and trades off this expressivity for
improved hardware efficiency (and ease of implementation).

We hypothesize that it may be possible to refine our structured matrix algorithms to improve to the general diagonal SSM case
as well.

A.2 Structured Matrices
The first viewpoint of the state space duality adopts the viewpoint of these models as matrix sequence transformations or “matrix
mixers”: sequence transformations (Definition 2.1) that can be represented as matrix multiplication (by a T×T matrix) along the
sequence dimension T.

Several such matrix mixers have been proposed before, where the primary axis of variation is the representation of the matrix. These
include MLP-Mixer (Tolstikhin et al., 2021) (unstructured matrix), FNet (Lee-Thorp et al., 2021) (Fourier Transform matrix), M2 (Dao
et al., 2019; 2020; 2022; Fu et al., 2024) (butterfly/monarch matrix), Toeplitz matrices (Poli et al., 2023; Qin et al., 2023a), and
even more exotic structures (De Sa et al., 2018; Thomas et al., 2018).

An important characterization is that efficient (sub-quadratic) matrix sequence transformations are exactly those which have structured
matrix mixers. A core result of the SSD framework is viewing SSMs as matrix mixers with a particular structure – semiseparable
matrices (Section 3.3). The linear vs. quadratic duality then takes the form of structured matrix multiplication vs. naive matrix
multiplication.

The structure matrix representation led to our efficient SSD algorithm through block decompositions of particular semiseparable
matrices (Appendix C). We note that semiseparable matrices are well-studied in the scientific computing literature, and incorporating
those ideas may be a promising avenue for more improvements to state space models. We also suggest that focusing on the matrix
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mixer viewpoint can lead to more fruitful directions for sequence models, such as designing principled non-causal variants of Mamba,
or finding ways to characterize and bridge the gap between softmax attention and sub-quadratic models through analyzing their
matrix transformation structure.

A.3 (Linear) Attention
Compared to standard (causal) attention, SSD has only two main differences.

First, SSD does not use the softmax activation of standard attention (Bahdanau et al., 2015; Vaswani et al., 2017), which is what
gives attention its quadratic complexity. When the softmax is dropped, the sequence can be computed with linear scaling through
the linear attention framework (Katharopoulos et al., 2020).

Second, SSD multiplies the logits matrix by an input-dependent 1-semiseparable mask. Thus this mask can be viewed as replacing
the softmax in standard attention.

This semiseparable mask can also be viewed as providing positional information. The elements at act as “gates” in the RNN sense,
or a “selection” mechanism (see discussion in Mamba paper), and their cumulative products aj:i control how much interaction
is allowed between positions i and j. Positional embeddings (e.g. sinusoidal (Vaswani et al., 2017), AliBi (Press et al., 2022), and
RoPE (Su et al., 2021)) are an important component of Transformers that are often viewed as heuristics, and the 1-SS mask of SSD
can be seen as a more principled form of relative positional embeddings. We note that this view was also posited concurrently by
GateLoop (Katsch, 2023).

The second viewpoint of state space duality is a special case of our more general structured masked attention (SMA) framework,
where the duality is revealed as different contraction orderings on a simple 4-way tensor contraction. SMA is a strong generalization
of linear attention that is much more general than SSD as well; other forms of structured masks may lead to more variants of efficient
attention with different properties than SSD.

Beside leading to new models, these connections to attention can lead to other directions for understanding SSMs. For example,
we are curious whether the phenomenon of attention sinks (Darcet et al., 2024; Xiao et al., 2024) exist for Mamba models, and
more broadly whether interpretability techniques can be transferred to SSMs (Ali et al., 2024).

Finally, many other variants of linear attention have been proposed (Schlag et al., 2021; Peng et al., 2021; Choromanski et al., 2021;
Qin et al., 2022a;b; Zheng et al., 2022; Zhang et al., 2024; Arora et al., 2024a;b) (see Appendix B.1.3 for descriptions of several
of these), and we expect that many techniques can be transferred to SSMs.

We emphasize that SSD does not generalize standard softmax attention, or any other transformation on the attention kernel matrix that
does not have a finite feature map ψ. Compared to general attention, SSD’s advantage is having a controllable state expansion factor N
that compresses the history, compared to quadratic attention’s cache of the entire history scaling with sequence length T≫N. Concurrent
work has starting studying the tradeoffs of these representations, for example on copying and in-context learning tasks (Akyürek
et al., 2024; Jelassi et al., 2024; Grazzi et al., 2024; Park et al., 2024). We note that Mamba-2 significantly improves on Mamba
on some of these capabilities (e.g., as demonstrated by MQAR results in Section 4.1), but more remains to be understood.

A.4 Related Models
We finally highlight a growing body of recent and concurrent work that have developed sequence models very similar to Mamba
and Mamba-2.

• RetNet (Sun et al., 2023) and TransNormerLLM (Qin et al., 2023b) generalize Linear Attention using decay terms instead of
a cumulative sum, and propose dual parallel/recurrent algorithms as well as a hybrid “chunkwise” mode. These algorithms can
be seen as an instantiation of SSD whereAt is time-invariant (constant for all t); in the SMA interpretation, the mask matrix L
would be a decay matrix Li,j=γ

i−j. These models also differ architecturally in various ways. For example, since they were derived
from an attention-centric perspective they preserve the multi-head attention (MHA) pattern; since Mamba-2 was derived from an
SSM-centric pattern it preserves the multi-value attention (MVA) or multi-expand SSM (MES) pattern, which we show to be better.

• GateLoop (Katsch, 2023) concurrently proposed using input-dependent decay factorsAt, and developed the same dual quadratic
form as in SSD which they call a “surrogate attention” form.

• Gated Linear Attention (GLA) (Yang et al., 2024) proposed a variant of linear attention with data-dependent gates, along with
efficient algorithms to compute a chunkwise mode and hardware-aware implementations.

• HGRN (Qin et al., 2023c) introduced an RNN with input-dependent gates, which was improved to incorporate state expansion
in HGRN2 (Qin et al., 2024).

• Griffin (De et al., 2024) and RecurrentGemma (Botev et al., 2024) showed that an RNN with input-dependent gating, combined
with local attention, can be very competitive with strong modern Transformers. Jamba also showed that combining Mamba with
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a few layers of attention performs very well on language modeling (Lieber et al., 2024).

• xLSTM (Beck et al., 2024) improves the xLSTM by adopting the idea of state expansion and other gating, normalization, and
stabilization techniques.

• RWKV(-4) (Peng et al., 2023) is an RNN based on a different linear attention approximation (the attention-free Transformer (Zhai
et al., 2021)). It has recently been improved to the RWKV-5/6 (Eagle and Finch) architectures (Peng et al., 2024) by adopting
the ideas of selectivity and state expansion.

B Structured Masked Attention: Generalizing Linear Attention
with Structured Matrices
In this section we revisit the linear attention framework from first principles. The main results in this section are a simple
tensor-contraction-based proof of linear attention (Proposition B.1), and our generalized abstraction of structured masked attention
in Definition B.2.

• Appendix B.1 sets up our framework for variants of attention, with a particular focus on kernel attention and masked kernel
attention.

• Appendix B.2 provides our first main attention result, a simple proof of linear attention through the lens of tensor contractions.

• Appendix B.3 defines structured masked attention, our generalization of prior attention variants through structured matrices.

B.1 The Attention Framework
B.1.1 ATTENTION

The basic form of (single-head) attention is a map on three sequences of vectors (Q,K,V ) 7→Y .

Q= input (T,N)

K= input (S,N)

V = input (S,P)

G=QK⊤ (T,S)

M=f(G) (T,S)

Y =GV (T,P)

(8)

We use “shape annotations” to indicate the dimensions of tensors, e.g. Q∈R(T,N). In this general form, S and T represent source
and target sequence lengths, N represents the feature dimension, and P represents the head dimension.

The most common variant of softmax attention uses a softmax activation f=softmax to normalize the rows of theGmatrix.

B.1.2 SELF-ATTENTION

Our treatment is motivated by the most important case of self-attention, where

(i) the source and target sequences are the same (i.e. S=T),

(ii) usually the feature and head dimensions are the same (i.e. N=P),

(iii) andQ,K,V are generated by linear projections on the same input vector (Q=WQ·X,K=WK ·X,V =WV ·X).

However, our presentation abstracts away these choices and begins from theQ,K,V matrices.

Remark 2. Our focus is on the self-attention case with equal head and feature dimensions (i.e. S=T and N=P), which should
be used as the running example. We define the general formulation of attention not only so that our framework captures variants
such as cross-attention, but also because separating the notation for dimensions (e.g. S and T) makes the contraction notation proofs
of our main results in this section more clear.

Remark 3. While attention is usually framed as an operation on these three inputs Q,K,V which are viewed symmetrically, the
input and output dimensions in (8) indicate otherwise. In particular, the feature dimension N is not present in the output; therefore
in the case when S=T (e.g. self-attention), we view V as the main input, so that (8) defines a proper sequence transformation V 7→Y
(Definition 2.1).

B.1.3 KERNEL ATTENTION

The step where the softmax function is applied to the Gram matrixG can be decomposed into two parts:
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1. Exponentiating theGmatrix.

2. Normalizing theGmatrix on the S axis.

We can ignore the normalization term for now, as it amounts to simply passing in V =1 and dividing. The exponentiation term
can be viewed as a kernel transformation: there is an (infinite-dimensional) feature map φ such that exp(QK⊤)=φ(Q)φ(K)⊤.
By abstracting away the feature map into the definition ofQ andK itself (i.e. defineQ,K as the post-transformed versions), we can
ignore the softmax transformation, and assume thatQ,K are arbitrarily generated by kernel feature maps and potentially N≠P.

Many instantiations of kernel attention have been proposed, including:

• The original Linear Attention (Katharopoulos et al., 2020) defines the kernel feature map as an arbitrary pointwise activation
function, such as x 7→1+elu(x).

• Random Feature Attention (RFA) (Peng et al., 2021) chooses the kernel feature map to approximate softmax attention (i.e.
the exp feature map) using the random Fourier feature approximation of Gaussian kernels (Rahimi & Recht, 2007). This involves
random projections (i.e. multiplyingQ andK by a random projectionW and applying the activation x 7→(cos(x),sin(x)).

• Performer (Choromanski et al., 2021) proposes the fast attention via positive orthogonal random features (FAVOR+). The
positive random features (PRF) part chooses the kernel feature map to be a random projection followed by the feature map
x 7→2−1/2(exp(x),exp(−x)). This choice is motivated so that the kernel elements are positive-valued and provably approximates
the softmax attention. [It also proposes choosing the random projections in orthogonal directions, which we do not consider.]

• cosFormer (Qin et al., 2022b) augment RFA with a cosine reweighting mechanism that incorporates positional information
to emphasize locality. This effectively passesQt,Kt through the feature map x 7→(xcos(πt/2T),sin(πt/2T)).

• Linear Randomized Attention (Zheng et al., 2022) generalize RFA from the perspective of importance sampling, and generalize
it to provide better estimates of the full softmax kernel (rather than just the exp-transformed numerator).

Other related attention variants include Linformer (Wang et al., 2020) and Nyströformer (Xiong et al., 2021), which both use
low-rank approximations of the attention matrix M (and are thus compatible with equation (8)), through random projections
(Johnson-Lindenstrauss) and kernel approximation (the Nyström method) respectively.

B.1.4 MASKED (KERNEL) ATTENTION

Let L be a mask of shape (T,S). Most commonly, in the autoregressive self-attention case when S=T, Lmay be a lower-triangular
matrix of 1’s representing a causal mask. Besides enforcing causality, many other types of masks can be applied – in particular various
sparsity patterns such as banded, dilated, or block diagonal – which are motivated by reducing the complexity of dense attention.

Masked attention is usually written in matrix notation as

y=(L◦(QK⊤))·V. (9)

More precisely, with shape annotations and breaking this down into the precise sequence of computations:

G=QK⊤ (T,S)

M=G◦L (T,S)

Y =MV (T,P)

(10)

Our improved derivation of attention variants in this section starts by noticing that this formula can be written as a single
contraction:

Y =contract(TN,SN,SP,TS→TP)(Q,K,V,L) (11)

and the algorithm in (10) can be reframed as computing (11) by a particular ordering of pairwise contractions

G=contract(TN,SN→TS)(Q,K) (T,S) (12a)
M=contract(TS,TS→TS)(G,L) (T,S) (12b)
Y =contract(TS,SP→TP)(M,V ) (T,P) (12c)

B.2 Linear Attention
Linear attention, and many other variants of efficient attention, is often motivated by changing the order of matrix associativity in the
core attention computation (QK⊤)V =Q(K⊤V ). However when the mask is added, the derivation is somewhat less straightforward
(for example, the original paper (Katharopoulos et al., 2020) and variants (Sun et al., 2023) state the formula without proof).
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Roughly, the linear attention method claims that the following formula is equivalent to (9), which must be verified by expanding
the sum and tracking indices carefully.

Y =Q·cumsum(K⊤V ) (13)

Proposition B.1 ((Katharopoulos et al., 2020)). Autoregressive kernel attention, i.e. masked kernel attention with the causal mask,
can be computed inO(T) time by a recurrence taking constant time per step.

B.2.1 A TENSOR CONTRACTION PROOF OF LINEAR ATTENTION

We present a simple and rigorous derivation of linear attention that will also immediately reveal how to generalize it. The main
idea is to perform the contraction (11) in an alternate order. We avoid ambiguous matrix notation and work directly with contraction
notation:

Z=contract(SP,SN→SPN)(V,K) (S,P,N) (14a)
H=contract(TS,SPN→TPN)(L,Z) (T,P,N) (14b)
Y =contract(TN,TPN→TP)(Q,H) (T,P) (14c)

Intuitively, we interpret this contraction order as follows.

The first step (14a) performs an “expansion” into more features, by a factor of the feature dimension N. The third step (14c) contracts
the expanded feature dimension away. IfK is viewed as the input (Remark 3), then V andQ perform the expansion and contraction,
respectively.

The second step is the most critical, and explains the linear part of linear attention. First notice that (14b) is just a direct matrix
multiplication by L (since the (P,N) axes can be flattened). Also note that this is the only term that involves both T and S axes, hence
should have Ω(TS) complexity (i.e. quadratic in sequence length). However, when the mask L is the standard causal attention mask
(lower triangular 1’s), matrix-vector multiplication by L is identical to a feature-wise cumulative sum

y=

1... . . .
1 ... 1

x ⇐⇒
y0=x0

yt=yt−1+xt
.

B.3 Structured Masked Attention
With the tensor contraction perspective of masked attention (14), we can immediately see that the crux of the original linear attention
is the fact that matrix-vector multiplication by the causal mask is equivalent to the cumulative sum operator.

However, we observe that there is no reason the attention mask has to be all 1’s. All that is necessary for linear attention to be fast
is for L to be a structured matrix, which by definition are those that have fast matrix multiplication. In particular, we can use any
mask matrix L that has sub-quadratic (ideally linear) matrix-vector multiplication, which would have the same complexity as standard
linear attention by speeding up the bottleneck equation (14b).

Definition B.2. Structured masked attention (SMA) (or structured attention for short) is defined as a function on queries/keys/values
Q,K,V as well as any structured matrix L (i.e. has sub-quadratic matrix multiplication), through the 4-way tensor contraction

Y =contract(TN,SN,SP,TS→TP)(Q,K,V,L).

The SMA quadratic mode algorithm is the sequence of pairwise contractions defined by (12), which corresponds to the standard
(masked) attention computation.

The SMA linear mode algorithm is the sequence of pairwise contractions defined by (14), where step (14b) is optimized through
the subquadratic structured matrix multiplication.

We can instantiate structured masked attention to any given class of matrix structure. Some examples include (Figure 6):

• Linear attention uses a causal mask.

• RetNet (Sun et al., 2023) uses a decay mask Lij=γ
i−j ·I[j≥i] for some decay factor γ∈ [0,1].

• The decay mask could be generalized to a Toeplitz matrix Lij=αi−j for some learnable (or input-dependent) set of parameters
α∈RT. This can be interpreted as a form of relative positional encoding, reminiscent of other methods such as AliBi (Press
et al., 2022) but multiplicative instead of additive.

• Another variant could use a Fourier matrix Lij=ω
ij/T to encode positional structure a different way.
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Figure 6: (Structured Masked Attention.) SMA constructs a masked attention matrix M=QK⊤◦L for any structured matrix
L, which defines a matrix sequence transformation Y =MV . All instances of SMA have a dual subquadratic form induced by
a different contraction ordering, combined with the efficient structured matrix multiplication by L. Previous examples include Linear
Attention (Katharopoulos et al., 2020) and RetNet (Sun et al., 2023). Beyond SSD (1-semiseparable SMA), the focus of this paper,
many other potential instantiations of structured attention are possible.

B.3.1 SUMMARY: THE DUAL FORMS OF MASKED ATTENTION

Standard (masked kernel) attention is often conflated between a function and an algorithm. Separating this distinction presents a
clear way to understand different variants of attention.

• We view masked attention as a particular function (11).

• The standard quadratic attention computation (12) can be viewed as an algorithm to compute the function.

• Linear attention (14) is an alternate algorithm to compute the same function.

Moreover, in this case

• The masked attention function is simply a particular contraction on four terms.

• The quadratic and linear attention algorithms are simply two different orders to perform the contractions.

It is known that contraction orderings can make large differences in computation complexity, leading to the quadratic vs. linear
split. Just as state space models are a transformation that can be computed in multiple ways, with dual quadratic vs. linear forms
(Section 3.4), linear attention has a similar duality that results from two contraction orders.

C A Hardware-Efficient Algorithm for SSD Models
The benefits of developing the theoretical SSD framework between SSMs, attention, and structured matrices lies in using the
connections to improve the models and algorithms. In this section, we show how various algorithms for computing SSD models
efficiently can be derived from various algorithms for computing structured matrix multiplication.

Remark 4 (1-SS matrix multiplication). Before the defails of the algorithm, we recommend also reading Appendix D, which covers
a variety of efficient algorithms for the scalar SSM setting (in other words, 1-semiseparable matrix multiplication) from the perspective
of matrix decompositions. These algorithms not only provide an alternative perspective on classical algorithms and support one
of our main themes—efficient algorithms through structured matrix factorizations—but 1-semiseparable matrix multiplication is
also necessary as an intermediate step in the full SSD algorithm.
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C.1 Block Decomposition of Semiseparable Matrices
To begin, we partition the matrixM into a T

Q
× T

Q
grid of submatrices of size Q×Q, for some block size Q. Note that the off-diagonal

blocks are low-rank by the defining property of semiseparable matrices (Definition 3.1).4

(Block Decomposition) M=


M(0,0)

M(1,0) M(1,1)

...
...

. . .
M(T/Q−1,0) M(T/Q−1,1) ... M(T/Q−1,T/Q−1)


(Diagonal Block) M(j,j)=SSM(AjQ:(j+1)Q,BjQ:(j+1)Q,CjQ:(j+1)Q)

(Low-Rank Block) M(j,i)=

 C⊤
jQAjQ:jQ−1

...
C⊤
(j+1)Q−1A(j+1)Q−1:jQ−1

AjQ−1:(i+1)Q−1

 B⊤
iQA(i+1)Q−1:iQ

...
B⊤

(i+1)Q−1A(i+1)Q−1:(i+1)Q−1


⊤

This is easiest illustrated through an example, e.g. for T=9 and decomposing into chunks of length Q=3. The shaded cells are
low-rank factorizations of the off-diagonal blocks of the semiseparable matrix.

C⊤
0 A0:0B0

C⊤
1 A1:0B0 C⊤

1 A1:1B1

C⊤
2 A2:0B0 C⊤

2 A2:1B1 C⊤
2 A2:2B2

C⊤
3 A3:0B0 C⊤

3 A3:1B1 C⊤
3 A3:2B2 C⊤

3 A3:3B3

C⊤
4 A4:0B0 C⊤

4 A4:1B1 C⊤
4 A4:2B2 C⊤

4 A4:3B3 C⊤
4 A4:4B4

C⊤
5 A5:0B0 C⊤

5 A5:1B1 C⊤
5 A5:2B2 C⊤

5 A5:3B3 C⊤
5 A5:4B4 C⊤

5 A5:5B5

C⊤
6 A6:0B0 C⊤

6 A6:1B1 C⊤
6 A6:2B2 C⊤

6 A6:3B3 C⊤
6 A6:4B4 C⊤

6 A6:5B5 C⊤
6 A6:6B6

C⊤
7 A7:0B0 C⊤

7 A7:1B1 C⊤
7 A7:2B2 C⊤

7 A7:3B3 C⊤
7 A7:4B4 C⊤

7 A7:5B5 C⊤
7 A7:6B6 C⊤

7 A7:7B7

C⊤
8 A8:0B0 C⊤

8 A8:1B1 C⊤
8 A8:2B2 C⊤

8 A8:3B3 C⊤
8 A8:4B4 C⊤

8 A8:5B5 C⊤
8 A8:6B6 C⊤

8 A8:7B7 C⊤
8 A8:8B8



=



C⊤
0 A0:0B0

C⊤
1 A1:0B0 C⊤

1 A1:1B1

C⊤
2 A2:0B0 C⊤

2 A2:1B1 C⊤
2 A2:2B2

C⊤
3 A3:3B3

C⊤
4 A4:3B3 C⊤

4 A4:4B4

C⊤
5 A5:3B3 C⊤

5 A5:4B4 C⊤
5 A5:5B5

C⊤
6 A6:6B6

C⊤
7 A7:6B6 C⊤

7 A7:7B7

C⊤
8 A8:6B6 C⊤

8 A8:7B7 C⊤
8 A8:8B8

C⊤
3 A3:2

C⊤
4 A4:2

C⊤
5 A5:2

A2:2

B⊤
0 A2:0

B⊤
1 A2:1

B⊤
2 A2:2

⊤

C⊤
6 A6:5

C⊤
7 A7:5

C⊤
8 A8:5

A5:2

B⊤
0 A2:0

B⊤
1 A2:1

B⊤
2 A2:2

⊤ C⊤
6 A6:5

C⊤
7 A7:5

C⊤
8 A8:5

A5:5

B⊤
3 A5:3

B⊤
4 A5:4

B⊤
5 A5:5

⊤


From here we can reduce the problem into these two parts. These can also be interpreted as dividing the output of a “chunk” yjQ:(j+1)Q

into two components: the effect of inputs within the chunk xjQ:(j+1)Q, and the effect of inputs before the chunk x0:jQ.

C.2 Diagonal Blocks
The diagonal blocks are easy to handle, because they are simply self-similar problems of a smaller size. The j-th block represents
computing the answer SSM(AR,BR,CR)(xR) for the rangeR=jQ :(j+1)Q=(jQ,jQ+1,...,jQ+Q−1). The key is that this block
can be computed using any desired method. In particular, for small chunk lengths Q, this problem is computed more efficiently
using the dual quadratic SMA form. Additionally, the chunks can be computed in parallel.

These subproblems can be interpreted as: what is the output per chunk supposing that the initial state (to the chunk) is 0. In other
words for chunk j, this computes the correct outputs taking into account only the chunk inputs xjQ:(j+1)Q.

4Note that the block decomposition is valid even with partitions of varying size, e.g. if Q |̸T, but we assume even divisibility for simplicity.
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Low-Rank Block: Input → State

Low-Rank Block: State → Output

Low-Rank Block: State → State

Semiseparable Matrix 
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𝑀

Figure 7: (SSD Algorithm.) By using the matrix transformation viewpoint of state space models to write them as semiseparable
matrices (Section 3.3), we develop a more hardware-efficient computation of the SSD model through a block-decomposition matrix
multiplication algorithm. The matrix multiplication also has an interpretation as a state space model, where blocks represent chunking
the input and output sequence. Diagonal blocks represent intra-chunk computations and the off-diagonal blocks represent inter-chunk
computations, factored through the SSM’s hidden state.

C.3 Low-Rank Blocks
The low-rank factorizations consist of 3 terms, and there are correspondingly three pieces of the computation. In this factorization,
we will use the terminology

• The terms like

B⊤
0 A2:0

B⊤
1 A2:1

B⊤
2 A2:2

⊤

are called the right factors orB-block-factors.

• The terms likeA5:2 are called the center factors orA-block-factors.

• The terms like

C⊤
6 A6:5

C⊤
7 A7:5

C⊤
8 A8:5

 are called the left factors or C-block-factors.

Right Factors. This step computes the multiplication by the right B-block-factors of the low-rank factorization. Note that for
each chunk, this is a (N,Q) by (Q,P) matrix multiplication, where N is the state dimension and P is the head dimension. The result
is a (N,P) tensor for each chunk, which has the same dimensionality as the expanded hidden state h.

This can be interpreted as: what is the final state per chunk supposing that the initial state (to the chunk) is 0. In other words this
computes hjQ+Q−1 assuming that x0:jQ=0.

Center Factors. This step computes the effect of the center A-block-factors terms in the low-rank factorization. In the
previous step, the final states per chunk have total shape (T/Q,N,P). This is now multiplied by a 1-SS matrix generated by
A×

2Q−1:Q−1,A
×
3Q−1:2Q−1,...,A

×
T−1:T−Q−1.

This step can be computed by any algorithm for computing 1-SS multiplication (also known as the scalar SSM scan or cumprodsum
operator).

This can be interpreted as: what is the actual final state per chunk taking into account all previous inputs; in other words, this computes
the true hidden state hjQ taking into account all of x0:(j+1)Q.

Left Factors. This step computes the multiplication by the left C-block-factors of the low-rank factorization. For each chunk,
this can be represented by a matrix multiplication contract(QN,NP→QP).

This can be interpreted as: what is the output per chunk taking into account the correct initial state hjQ−1, and supposing the inputs
xjQ:(j+1)Q are 0. In other words for chunk j, this computes the correct outputs taking into account only the prior inputs x0:jQ.
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Listing 1 Full PyTorch example of the state space dual (SSD) model.
def segsum(x):

"""Naive segment sum calculation. exp(segsum(A)) produces a 1-SS matrix,
which is equivalent to a scalar SSM."""

T = x.size(-1)
x_cumsum = torch.cumsum(x, dim=-1)
x_segsum = x_cumsum[..., :, None] - x_cumsum[..., None, :]
mask = torch.tril(torch.ones(T, T, device=x.device, dtype=bool), diagonal=0)
x_segsum = x_segsum.masked_fill(˜mask, -torch.inf)
return x_segsum

def ssd(X, A, B, C, block_len=64, initial_states=None):
"""
Arguments:

X: (batch, length, n_heads, d_head)
A: (batch, length, n_heads)
B: (batch, length, n_heads, d_state)
C: (batch, length, n_heads, d_state)

Return:
Y: (batch, length, n_heads, d_head)

"""
assert X.dtype == A.dtype == B.dtype == C.dtype
assert X.shape[1] % block_len == 0

# Rearrange into blocks/chunks
X, A, B, C = [rearrange(x, "b (c l) ... -> b c l ...", l=block_len) for x in (X, A, B, C)]

A = rearrange(A, "b c l h -> b h c l")
A_cumsum = torch.cumsum(A, dim=-1)

# 1. Compute the output for each intra-chunk (diagonal blocks)
L = torch.exp(segsum(A))
Y_diag = torch.einsum("bclhn,bcshn,bhcls,bcshp->bclhp", C, B, L, X)

# 2. Compute the state for each intra-chunk
# (right term of low-rank factorization of off-diagonal blocks; B terms)
decay_states = torch.exp((A_cumsum[:, :, :, -1:] - A_cumsum))
states = torch.einsum("bclhn,bhcl,bclhp->bchpn", B, decay_states, X)

# 3. Compute the inter-chunk SSM recurrence; produces correct SSM states at chunk boundaries
# (middle term of factorization of off-diag blocks; A terms)
if initial_states is None:

initial_states = torch.zeros_like(states[:, :1])
states = torch.cat([initial_states, states], dim=1)
decay_chunk = torch.exp(segsum(F.pad(A_cumsum[:, :, :, -1], (1, 0))))
new_states = torch.einsum("bhzc,bchpn->bzhpn", decay_chunk, states)
states, final_state = new_states[:, :-1], new_states[:, -1]

# 4. Compute state -> output conversion per chunk
# (left term of low-rank factorization of off-diagonal blocks; C terms)
state_decay_out = torch.exp(A_cumsum)
Y_off = torch.einsum('bclhn,bchpn,bhcl->bclhp', C, states, state_decay_out)

# Add output of intra-chunk and inter-chunk terms (diagonal and off-diagonal blocks)
Y = rearrange(Y_diag+Y_off, "b c l h p -> b (c l) h p")
return Y, final_state

C.4 Computational Cost
We define the notation BMM(B,M,N,K) to define a batched matrix multiplication contract(MK,KN→MN) with batch dimension B.
From this notation we can infer three aspects of the efficiency:

• Computation cost: total ofO(BMNK) FLOPs.

• Memory cost: total ofO(B(MK+KN+MN)) space.
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• Parallelization: larger M,N,K terms can leverage specialized matrix multiplication units on modern accelerators.

Center Blocks. The cost of the quadratic SMA computation consists of three steps (equation (7)):

• Computing the kernel matrix C⊤B, which has cost BMM(T/Q,Q,Q,N).

• Multiplying by the mask matrix, which is an elementwise operation on tensors of shape (T/Q,Q,Q).

• Multiplying by theX values, which has cost BMM(T/Q,Q,P,N)

Low-Rank Blocks: Right Factors. This step is a single matrix multiplication with cost BMM(T/Q,N,P,Q).

Low-Rank Blocks: Center Factors. This step is a scalar SSM scan (or 1-SS multiplication) of length T/Q on (N,P) independent
channels. The work of this scan is TNP/Q, which is negligible compared to the other factors.

Note that because of the blocking which reduces the length of the sequence from T to T/Q, this scan has Q times smaller cost than
a pure SSM scan (e.g. the selective scan of Mamba). Thus we observe that on most problem lengths, other algorithms (Appendix D)
may be more efficient or much easier to implement without a significant slowdown. For example, a naive implementation of this
via 1-SS matrix multiplication has cost BMM(1,T/Q,NP,T/Q), which is much easier to implement and can be more efficient than
a naive recurrence/scan implementation.

Low-Rank Blocks: Left Factors. This step is a single matrix multiplication with cost BMM(T/Q,Q,P,N).

Total Cost. If we set N=P=Q (in other words the state dimension, head dimension, and chunk length are equal), then all BMM
terms above become BMM(T/N,N,N,N). The computational chacteristics of this are:

• Total FLOP count ofO(TN2).

• Total memory ofO(TN).

• The work consists primarily of matrix multiplications on matrices of shape (N,N).

Notice that the memory consumption is tight; the inputs and outputs x,y have shape (T,P)=(T,N). Meanwhile the flop count reflects
an extra factor of N, which is cost incurred by the autoregressive state size and is common to all models.

Aside from the matmuls, there is a scalar SSM scan on NP=N2 features and sequence length T/Q. This has costO(T/QN2) FLOPs
andO(log(T/Q)) depth. Although it does not use matrix multiplications, it is still parallelizable and the total work done is negligible
compared to the other steps; this has a negligible cost in our GPU implementation.

Comparison to Pure SSM and Attention Models. Quadratic attention is also very hardware efficient by only leveraging matrix
multiplications, but has T2N total FLOPs. Its slower computation speed at both training and inference can directly be seen as a
consequence of having a larger state size – standard attention has a state size scaling with sequence length T because it caches its
history and does not compress its state.

Linear SSMs have TNP=TN2 total FLOPs, which is the same as SSD. However, a naive implementation requires a state expansion
(14a) that materializes extra memory, and a scalar operation (14b) that does not leverage matrix multiplications.

Attention SSM SSD

State size T N N
Training FLOPs T2N TN2 TN2

Inference FLOPs TN N2 N2

(Naive) memory T2 TN2 TN
Matrix multiplication ✓ ✓

We note that many other matrix decompositions are possible (for example, see Appendix D for a compendium of algorithms for
1-SS multiplication through different structured matrix decompositions) which may lead to more algorithms for SSDs that could
be better for other specialized settings. Even more broadly, we note that semiseparable matrices have a rich literature and many
more representations besides the SSS form that we use (Definition 3.2), and even more efficient algorithms may be possible.

D Efficient Algorithms for the Scalar SSM Scan (1-SS Multiplication)
In this section we flesh out various algorithms for computing the scalar SSM scan, through the lens of structured matrix decompositions.
The scalar SSM scan is defined as computing the recurrent part of the discrete SSM (5), in the case whenN=1 (i.e.A is a scalar).
This is commonly used to compute SSMs recurrently; in particular, the case of structured SSMs whereA is diagonally structured
reduces down to this operation, such as in the S5 (Smith et al., 2023) and S6 (Gu & Dao, 2023) models.
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The goal of this section is to support a central theme of this paper that efficient algorithms for sequence models can be viewed as
structured matrix multiplication algorithms. The various matrix decomposition ideas we show here are related to ideas used to
derive fast SSM algorithms (Appendix C), as well as directly used as a subroutine.

D.1 Problem Definition
Let a :(T) and b :(T) be sequences of scalars. The scalar SSM scan is defined as

ht=atht−1+bt. (15)

Here h−1 can be an arbitrary value representing the previous hidden state to the SSM recurrence; unless otherwise specified, we
assume h−1=0.

We also call equation (15) the cumprodsum (cumulative product sum). Note that the cumprodsum reduces to the cumprod
(cumulative product) when b = 0 is the additive identity and it reduces to the cumsum (cumulative sum) when a = 1 is the
multiplicative identity.

Finally, note that in vectorized form we can write

h=Mb

M=


1
a1 1
a2a1 a2 1

...
...

. . . . . .
aT−1...a1 aT−1...a2 ... aT−1 1


In other words, this is simply the matrix-vector product by a 1-SS matrixM .

Therefore we have three ways of viewing this fundamental primitive operation that are all equivalent:

• A (scalar) SSM scan.

• A cumprodsum.

• A 1-SS matrix-vector multiplication .

D.2 Classical Algorithms
We first describe the two classical ways of computing the SSM scan (15), previously used by prior work.

D.2.1 SEQUENTIAL RECURRENCE

The recurrent mode simply computes (15) one timestep t at a time. From the perspective of 1-SS multiplication, this was also
described in Section 3.5.

D.2.2 PARALLEL ASSOCIATIVE SCAN

Second, an important observation is that this recurrence can be turned into an associative scan (Martin & Cundy, 2018; Smith et al.,
2023). This fact is not completely obvious. For example, S5 defined the correct associative scan operator and then showed associativity
of the operator through rote calculation.

A slightly cleaner way to see that this is computable with an associative scan is to turn the multi-term recurrence into a single-term
recurrence on a hidden state of size 2 instead of 1:

ht=atht−1+bt[
ht
1

]
=

[
at bt
0 1

][
ht−1

1

]
.

Then computing all the ht is the same as taking the cumulative products of these 2×2 matrices. Since matrix multiplication is
associative, this can be computed with an associative scan. The associative binary operator is simply matrix multiplication on these
particular matrices: [

at bt
0 1

][
as bs
0 1

]
=

[
atas atbs+bt
0 1

]
.
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Equating the top row yields the same associative scan operator as defined by S5:

(at,bt)⊗(as,bs)=(atas,atbs+bt). (16)

The reason why associative scans are important is that they can be parallelized using a divide-and-conquer algorithm (Blelloch,
1990). We omit the details of this algorithm, and instead show that the entire associative SSM scan algorithm can be derived from
scratch through matrix decompositions (Appendix D.3.5).

D.3 Efficient Algorithms via Structured Matrix Decompositions
We discuss several algorithms for computing the SSM scan, all through the lens of finding structured matrix decompositions of
the 1-SS matrixM . These algorithms or computation modes include

• A dilated mode where information is propagated 1,2,4,8,... steps at a time.

• A state-passing mode where information is propagated forward in chunks.

• A fully recurrent mode that increments one step at a time, which is a special case of the state-passing mode.

• A block decomposition parallel mode whereM is divided into hierarchical blocks.

• A scan mode whereM is divide into equal size blocks and reduced recursively.

D.3.1 DILATED MODE

This mode factors the 1-SS matrix in a particular way involving increasing “strides”. This is best illustrated through a concrete
example:

M=



a0:0
a1:0 a1:1
a2:0 a2:1 a2:2
a3:0 a3:1 a3:2 a3:3
a4:0 a4:1 a4:2 a4:3 a4:4
a5:0 a5:1 a5:2 a5:3 a5:4 a5:5
a6:0 a6:1 a6:2 a6:3 a6:4 a6:5 a6:6
a7:0 a7:1 a7:2 a7:3 a7:4 a7:5 a7:6 a7:7



=



a0:0
a1:1

a2:2
a3:3

a4:0 a4:4
a5:1 a5:5

a6:2 a6:6
a7:3 a7:7





a0:0
a1:1

a2:0 a2:2
a3:1 a3:3

a4:2 a4:4
a5:3 a5:5

a6:4 a6:6
a7:5 a7:7





a0:0
a1:0 a1:1

a2:1 a2:2
a3:2 a3:3

a4:3 a4:4
a5:4 a5:5

a6:5 a6:6
a7:6 a7:7



Note that this closely resembles the computation of dilated convolutions.

We also note that this factorization shows that 1-SS matrices are a special case of butterfly matrices, another broad and fundamental
type of structured matrix (Dao et al., 2019; 2020).

Remark 5. This algorithm is sometimes described as a “work-inefficient but more parallelizable” prefix sum algorithm (Hillis
& Steele Jr, 1986), becauses it usesO(TlogT) operations but has half the depth/span as the work-efficient associative scan algorithm.

D.3.2 STATE-PASSING (CHUNKWISE) MODE

This mode can be viewed as a generalization of the standard recurrent mode where instead of passing forward the recurrent state
h one step at a time, we compute the answer on chunks of arbitrary length k and pass the state through the chunk. This can also
be derived from a simple block decomposition of the 1-SS matrix.

Remark 6. While we call this “state-passing” to refer to how states are passed from one local segment to another, this is related
to the “chunkwise” algorithms proposed by related models (Sun et al., 2023; Yang et al., 2024).

Consider computing h=Mb in “chunks”: for some index k∈ [T], we want to compute h0:k or the output up to index k, and have
a way to reduce the problem to a smaller problem on indices [k :T].
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We writeM as

M=



a0:0
a1:0 a1:1

...
. . .

ak−1:0 ... ... ak−1:k−1

ak:0 ... ... ak:k−1 ak:k
...

...
...

. . .
aT−1:0 ... ... aT−1:k−1 aT−1:k ... aT−1:T−1


Let the upper-left triangle beML, lower-right beMR (left and right subproblems), and lower-left beMC . Divide up b into bL=b0:k
and bR=bk:T in the same way. Note that

Mb=

[
MLbL

MRbR+MCbL

]
Also,MC has the rank-1 factorization (this is essentially the defining property of semiseparable matrices)

MC=

 ak:k
...

aT−1:k

ak[ak−1:0 ··· ak−1:k−1

]

Thus

MCbL=

 ak:k
...

aT−1:k

ak ·(Mb)k−1.

Here we think of (Mb)k−1=hk−1 as the “final state” of the left chunk, because the row vector inMC’s factorization is the same as the
final row ofML. Furthermore, note that the column vector inMC’s factorization is the same as the final column ofMR.Thus

MRbR+MCbL=MR


akhk−1+bk

bk+1

...
bT−1


Finally, we use the observation thatML andMR are self-similar to the original matrixM ; the answers for these two smaller 1-SS
matrix multiplications can be performed arbitrarily using any algorithm. In total, the algorithm proceeds as follows:

1. Compute the left half of the answer h0:k using any desired method (i.e. any of the methods for 1-SS multiplication from this
section).

2. Compute the final state hk−1.

3. Increment the state by one step to modify bk.

4. Compute the right half of the answer hk:T using any desired method.

In other words, we compute the left subproblem as a black box, pass its final state on to the right problem, and compute the right
subproblem as a black box.

The utility of this method comes from more complicated settings, such as in the generalN-semiseparable case, and when the input b has
an additional “batch” dimension (or in other words this is a matrix-matrix instead of matrix-vector multiplication). In this case, we can use
an alternate algorithm for the chunks (corresponding to MM byML andMR) that does not materialize the full hidden states h. Instead,
we skip the hidden states and directly compute the final state hk−1 in an alternate way, then “pass” the state to the next chunk.

Complexity. This method can be very work-efficient because steps 2-3 takes only constant time. Therefore assuming the two
subproblems (steps 1 and 4) are linear time, the whole method takes linear time.

The downside is that this is also sequential.
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D.3.3 FULLY RECURRENT MODE

Note that the fully recurrent mode, where the recurrence is evolved one step at a time (15), is simply an instantiation of the state-passing
mode with chunk size k=1.

D.3.4 (PARALLEL) BLOCK DECOMPOSITION MODE

This uses the same matrix decomposition as the state-passing mode, but computes subproblems in a different order that trades off
computation for parallelization.

As usual, we writeM as

M=


1
a1 1
a2a1 a2 1

...
...

. . . . . .
aT−1...a1 aT−1...a2 ... aT−1 1

=


1

−a1 1
0 −a2 1
...

...
. . . . . .

0 0 ... −aT−1 1


−1

The key observation is again that the bottom-left quadrant of M is rank-1. Aside from inspection, another way to see this is by
using the RHS, observing that the bottom-left quadrant of it is a trivial rank-1 matrix (it is all 0 except the top-right corner is −aT/2),
and using the Woodbury inversion formula to see that the bottom-left corner of the LHS must also be rank 1. This also provides
a way to deduce the rank-1 factorization, which can be verified through inspection:

Mlower-left-quadrant=

 (aT/2...a1) ... aT/2
...

. . .
...

(aT−1...aT/2aT/2−1...a1) ... (aT−1...aT/2)


=

 aT/2
...

aT−1...aT/2

[(aT/2−1...a1) ... aT/2−1 1
]
.

A second observation is that this matrix is self-similar: any principle submatrix has the same form. In particular, the top-left and
bottom-right quadrants are both 1-SS matrices.

This provides an easy way to perform the matrix multiplication by M : recurse on the two halves (i.e. top-left and bottom-right)
in parallel, and then account for the bottom-left submatrix. This “combination” step in the divide-and-conquer algorithm is easy
since the submatrix is rank 1. This leads to a parallel algorithm.

Complexity. Like the state-passing algorithm, this method uses the same block decompositions of the rank-structured semiseparable
matrices. The difference is that we recurse on both subproblems in parallel, while the state-passing algorithm handles the left and then
right subproblems. This lowers the depth/span of the algorithm from linear to log(T). The tradeoff is that the combination step (account-
ing for the rank-1 bottom-left submatrix) requires linear instead of constant work, so the total work isO(TlogT) instead of linear.

Note also that in the recursion, we can stop at any time and compute the subproblems in any other way. This is a main idea behind
the SSD algorithm (Appendix C), where we switch to the dual quadratic attention formulation on small subproblems.

D.3.5 ASSOCIATIVE SCAN MODE

The state passing (chunkwise) algorithm has linear work, but also involves sequential operations.

The block matrix reduction and dilated modes are parallelizable: they have logT depth/span. However, they do extra work
(O(TlogT).

As noted in Appendix D.2.2, there is an algorithm that achieves bothO(logT) depth andO(T) work by leveraging the associative
scan (also called prefix scan) algorithm (Baker et al., 1996). This algorithm is most easily seen from the SSM scan or
cumprodsum view, and even then is not obvious: it requires separately deriving an associative operator (16), and then leveraging
the parallel/associative/prefix scan algorithm as a black box (Blelloch, 1990).

Here we show that it is actually possible to derive this parallel scan from leveraging a different matrix decomposition:
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M=



a0:0
a1:0 a1:1
a2:0 a2:1 a2:2
a3:0 a3:1 a3:2 a3:3
a4:0 a4:1 a4:2 a4:3 a4:4
a5:0 a5:1 a5:2 a5:3 a5:4 a5:5
a6:0 a6:1 a6:2 a6:3 a6:4 a6:5 a6:6
a7:0 a7:1 a7:2 a7:3 a7:4 a7:5 a7:6 a7:7



=



a0:0

a1:0 a1:1

a2:2

a3:2 a3:3

a4:4

a5:4 a5:5

a6:6

a7:6 a7:7

[
a2:2
a3:2

]
a2:1

[
a1:0
a1:1

]⊤
[
a4:4
a5:4

]
a4:1

[
a1:0
a1:1

]⊤ [
a4:4
a5:4

]
a4:3

[
a3:2
a3:3

]⊤
[
a6:6
a7:6

]
a6:1

[
a1:0
a1:1

]⊤ [
a6:6
a7:6

]
a6:3

[
a3:2
a3:3

]⊤ [
a6:6
a7:6

]
a6:1

[
a5:4
a5:5

]⊤


Now we proceed in three stages.

Stage 1. First we compute the answers for each of the diagonal blocks in the multiplication Mb. This produces two numbers,
but the first element is unchanged. For example, the second block is going to compute b2 and a3b2+b3
Stage 2. Now consider each of the 2×2 blocks factored as a rank-1 matrix in the strictly lower triangular part of the matrix. Note
that each of the right side row vectors is the same as the bottom row vector in the diagonal block in its column: in particular the
[a1:0a1:1], [a3:2a3:3], and [a5:4a5:5] rows.

Therefore we already have the answers to these from Stage 1, which is the second element of all T/2 subproblems in Stage 1. If we call
this array of elements b′ (of half the size of b), then we need to multiply b′ by the 1-SS matrix generated by a3:−1,a3:1,a5:3,a7:5.

Stage 3. Finally, each of the answers to Stage 2 can be broadcast into two final answers by multiplying by the left-side column
vectors: in particular the [a2:2a3:2]⊤, [a4:4a5:4]⊤, and [a6:6a7:6]

⊤ vectors.

Note that this can be slightly modified with some off-by-one shifting of the indices. An equivalent way to view this algorithm is
as the three-step matrix factorization

M=



a0:0
a1:0 a1:1
a2:0 a2:1 a2:2
a3:0 a3:1 a3:2 a3:3
a4:0 a4:1 a4:2 a4:3 a4:4
a5:0 a5:1 a5:2 a5:3 a5:4 a5:5
a6:0 a6:1 a6:2 a6:3 a6:4 a6:5 a6:6
a7:0 a7:1 a7:2 a7:3 a7:4 a7:5 a7:6 a7:7



=



a0:0
a1:1
a2:1 a2:2

a3:3
a4:3 a4:4

a5:5
a6:5 a6:6

a7:7





a0:0
a1:1

a2:2
a3:1 a3:3

a4:4
a5:1 a5:3 a5:5

a6:6
a7:1 a7:3 a7:5 a7:7





a0:0
a1:0 a1:1

a2:2
a3:2 a3:3

a4:4
a5:4 a5:5

a6:6
a7:6 a7:7


Note that Stage 1 and Stage 3 requireO(T) work, while Stage 2 reduces to a self-similar problem of half the size. It is easy to check
that this requiresO(T) total work andO(logT) depth/span.
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Table 2: (Scaling Law Model Sizes.) Our model sizes and hyperparameters for scaling experiments. (Model dimension and number
of heads applies only to Transformer models.)

PARAMS n layers d model n heads / d head TRAINING STEPS LEARNING RATE BATCH SIZE TOKENS

125M 12 768 12 / 64 4800 6e-4 0.5M tokens 2.5B
350M 24 1024 16 / 64 13500 3e-4 0.5M tokens 7B
760M 24 1536 16 / 96 29000 2.5e-4 0.5M tokens 15B
1.3B 24 2048 32 / 64 50000 2e-4 0.5M tokens 26B

Remark 7. In fact, it is possible to see that the computation graph of this algorithm is identical to that of the associative scan
algorithm described in Appendix D.2.2. The key takeaway is that instead of the steps of (1) recognizing thatM defines a recurrence
(2) observing that the recurrence can be defined with an associative binary operator; there is a completely different perspective
of simply finding a structured matrix decomposition algorithm forM .

E Experimental Details
E.1 MQAR Details
We use a harder version of the task introduced in Based (Arora et al., 2024b) where tokens that are not query/key/values are replaced
with random tokens. We also use more key-value pairs, longer sequences, and smaller model sizes than the usual variant of MQAR
used by prior work; all of these changes make the task harder.

For each sequence length T∈{256,512,1024}, we use T/4 key-value pairs. The total vocab size is 8192.

We use a form of curriculum training where training cycles through datasets using (T/32,T/16,T/8,T/4) key-value pairs, where
each dataset has 218≈250000 examples, for a total of 8 epochs through each dataset (total of 228≈270M examples). The total
batch size is 218≈0.25M tokens (e.g. for T=1024, the batch size is 256).

All methods use 2 layers with default settings; the attention baseline additionally receives positional embeddings. For each method,
we sweep over model dimensions D={32,64,128,256} and learning rates {10−3.5,10−2,10−2.5}. We use a linear decay schedule
that drops on every epoch (e.g. the last epoch would have a learning rate 1/8 of the maximum/starting learning rate).

E.2 Scaling Law Details
All models were trained on the Pile. For the scaling law experiments, we use the GPT2 tokenizer.

Model Sizes. Table 2 specifies the model sizes we use for scaling laws following GPT3 (Brown et al., 2020), First, we changed
the batch size of the 1.3B model from 1M tokens to 0.5M tokens for uniformity. Second, we changed the number of training steps
and total tokens to roughly match Chinchilla scaling laws (Hoffmann et al., 2022), which specify that training tokens should increase
proportionally to model size.

Training Recipes. All models used the AdamW optimizer with

• gradient clip value 1.0

• weight decay 0.1

• no dropout

• linear learning rate warmup with cosine decay

By default, the peak learning rate is the GPT3 specification.

Compared to GPT3 recipe, we use an “improved recipe”, inspired by changes adopted by popular large language models such as
PaLM (Chowdhery et al., 2023) and LLaMa (Touvron et al., 2023). These include:

• linear learning rate warmup with cosine decay to 1e−5, with a peak value of 5× the GPT3 value

• no linear bias terms

• RMSNorm instead of LayerNorm

• AdamW hyperparameter β=(.9,.95) (the GPT3 value) instead of the PyTorch default of β=(.9,.999)

E.3 Downstream Evaluation Details
To evaluate downstream performance of fully trained, we train Mamba-2 on 300B tokens on the Pile, using the GPT-NeoX (Black
et al., 2022) tokenizer.

We use the same hyperparameters as the scaling experiments, except with batch size 1M for the 1.3B and 2.7B model. For the
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2.7B model, we also follow GPT3 specification (32 layers, dimension 2560).

For all models, we use 5x the learning rate of the corresponding GPT3 model.

For downstream evaluation, we use the LM evaluation harness from EleutherAI (Gao et al., 2021), on the same tasks as Mamba (Gu
& Dao, 2023) with one additional one:

• LAMBADA (Paperno et al., 2016)

• HellaSwag (Zellers et al., 2019)

• PIQA (Bisk et al., 2020)

• ARC-challenge (Clark et al., 2018)

• ARC-easy: an easy subset of ARC-challenge

• WinoGrande (Sakaguchi et al., 2021)

• OpenBookQA (Mihaylov et al., 2018)

Table 3: (Zero-shot Evaluations.) Best results for each size in bold, second best unlined. We compare against open source LMs with various
tokenizers, trained for up to 300B tokens. Pile refers to the validation split, comparing only against models trained on the same dataset and tokenizer
(GPT-NeoX-20B). For each model size, Mamba-2 outperforms Mamba, and generally matches Pythia at twice the model size.

MODEL TOKEN. PILE LAMBADA LAMBADA HELLASWAG PIQA ARC-E ARC-C WINOGRANDE OPENBOOKQA AVERAGE
PPL ↓ PPL ↓ ACC ↑ ACC ↑ ACC ↑ ACC ↑ ACC ↑ ACC ↑ ACC ↑ ACC ↑

Hybrid H3-130M GPT2 — 89.48 25.8 31.7 64.2 44.4 24.2 50.6 27.0 38.2
Pythia-160M NeoX 29.64 38.10 33.0 30.2 61.4 43.2 24.1 51.9 29.2 39.0
Mamba-130M NeoX 10.56 16.07 44.3 35.2 64.5 48.0 24.2 51.9 28.8 42.4
Mamba-2-130M NeoX 10.48 16.86 43.9 35.3 64.9 47.4 24.2 52.1 30.6 42.6

Hybrid H3-360M GPT2 — 12.58 48.0 41.5 68.1 51.4 24.7 54.1 31.6 45.6
Pythia-410M NeoX 9.95 10.84 51.4 40.6 66.9 52.1 24.6 53.8 30.0 45.6
Mamba-370M NeoX 8.28 8.14 55.6 46.5 69.5 55.1 28.0 55.3 30.8 48.7
Mamba-2-370M NeoX 8.21 8.02 55.8 46.9 70.5 54.9 26.9 55.7 32.4 49.0

Pythia-1B NeoX 7.82 7.92 56.1 47.2 70.7 57.0 27.1 53.5 31.4 49.0
Mamba-790M NeoX 7.33 6.02 62.7 55.1 72.1 61.2 29.5 56.1 34.2 53.0
Mamba-2-780M NeoX 7.26 5.86 61.7 54.9 72.0 61.0 28.5 60.2 36.2 53.5

GPT-Neo 1.3B GPT2 — 7.50 57.2 48.9 71.1 56.2 25.9 54.9 33.6 49.7
Hybrid H3-1.3B GPT2 — 11.25 49.6 52.6 71.3 59.2 28.1 56.9 34.4 50.3
OPT-1.3B OPT — 6.64 58.0 53.7 72.4 56.7 29.6 59.5 33.2 51.9
Pythia-1.4B NeoX 7.51 6.08 61.7 52.1 71.0 60.5 28.5 57.2 30.8 51.7
RWKV4-1.5B NeoX 7.70 7.04 56.4 52.5 72.4 60.5 29.4 54.6 34.0 51.4
Mamba-1.4B NeoX 6.80 5.04 65.0 59.1 74.2 65.5 32.8 61.5 36.4 56.4
Mamba-2-1.3B NeoX 6.66 5.02 65.7 59.9 73.2 64.3 33.3 60.9 37.8 56.4

GPT-Neo 2.7B GPT2 — 5.63 62.2 55.8 72.1 61.1 30.2 57.6 33.2 53.2
Hybrid H3-2.7B GPT2 — 7.92 55.7 59.7 73.3 65.6 32.3 61.4 33.6 54.5
OPT-2.7B OPT — 5.12 63.6 60.6 74.8 60.8 31.3 61.0 35.2 55.3
Pythia-2.8B NeoX 6.73 5.04 64.7 59.3 74.0 64.1 32.9 59.7 35.2 55.7
RWKV4-3B NeoX 7.00 5.24 63.9 59.6 73.7 67.8 33.1 59.6 37.0 56.4
Mamba-2.8B NeoX 6.22 4.23 69.2 66.1 75.2 69.7 36.3 63.5 39.6 59.9
Mamba-2-2.7B NeoX 6.09 4.10 69.7 66.6 76.4 69.6 36.4 64.0 38.8 60.2

GPT-J-6B GPT2 – 4.10 68.3 66.3 75.4 67.0 36.6 64.1 38.2 59.4
OPT-6.7B OPT – 4.25 67.7 67.2 76.3 65.6 34.9 65.5 37.4 59.2
Pythia-6.9B NeoX 6.51 4.45 67.1 64.0 75.2 67.3 35.5 61.3 38.0 58.3
RWKV4-7.4B NeoX 6.31 4.38 67.2 65.5 76.1 67.8 37.5 61.0 40.2 59.3
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