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Abstract
Many radar applications require complex radar signature models that incorporate charac-
teristics of an object’s shape and dynamics as well as sensing effects. Even though high
fidelity, first-principles radar simulators are available, they tend to be resource intensive
and do not easily support the requirements of agile and large-scale AI development and
evaluation frameworks. Deep learning represents an attractive alternative to these numerical
methods, but can have large data requirements and limited generalization ability. In this
work, we present the Radar Equivariant Model (REM), the first SO(3)-equivariant model for
predicting radar responses from object meshes. By constraining our model to the symmetries
inherent to radar sensing, REM is able to achieve a high-level reconstruction of signals
generated by a first-principles radar model and shows improved performance and sample
efficiency.
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1. Introduction

Efficient physics-based radar models are needed to simulate complex objects and scene
variations for training and testing AI algorithms in data sparse or high consequence radar
applications. High-resolution simulators like radar ray tracing models (Andersh et al., 2000)
currently exist, but are computationally expensive to run as part of common AI engineering
and evaluation workflows. Other approaches rely on domain expertise to carefully design and
adapt object scatter locations or component representations (Jackson et al., 2008). However,
because such approaches are human intensive, they do not scale well.

While machine learning methods represent an attractive alternative to these traditional
methods, radar response data has several unique characteristics that make it challenging
for existing machine learning methods to model. It exhibits spatio-temporal symmetries
resulting from varying object shapes and the physical laws governing both the object dynamics
and radar itself. Additionally, radar data is extremely sensitive to multi-path reflections,
interference, ghost objects, clutter, and attenuation increasing the amount of variation in the
data and introducing discontinuities.Current machine learning methods for reconstructing
radar responses are limited and do not explicitly model the inherent geometric and physical
symmetries of objects and scenes, i.e. rotational and scaling symmetries (Wheeler et al.,
2017; Ouabi et al., 2021). Equivariant deep learning has emerged as a class of algorithms
that can address some of these challenges by directly encoding symmetry and other physical
priors into neural networks (Wang et al., 2021; Bronstein et al., 2021; Bogatskiy et al., 2020;
Kohler et al., 2023), but its application to radar-like data has been lacking.

In this work, we present the Radar Equivariant Model (REM), a novel method for
predicting the radar response from object meshes. REM compresses the input mesh down to
a set of SO(3)-equivariant features using equivariant graph convolutions (GCN). Then, a
series of spherical convolutions are performed on these features to decode this latent space
onto the 2-sphere, resulting in a signal that is equivariant to 3D rotations. By evaluating this
signal at the point on the 2-sphere specified by the radar line-of-sight, we can extract the
radar response for a specific mesh and orientation. In this way, our method can be trained
to simultaneously predict the full radar response for a given mesh in a fraction of the time of
other methods. Our contributions are as follows. First, we propose REM, the first SO(3)-
equivariant architecture for modeling radar signals. REM incorporates radar symmetries
using an SO(3)-equivariant GCN encoder and spherical CNN decoder. REM simultaneously
outputs the entire radar response over all viewing angles by encoding the response as a
signal over the 2-sphere, leading to more geometric structure and efficiency. Second, we
empirically demonstrate that our method is able to achieve a high-level reconstruction of
signals generated by a first-principles radar model and shows improved performance, sample
efficiency, and generalization to unseen viewing angles when compared to baselines. Finally,
we present two novel mesh-to-radar datasets, Basic Shapes and Frusta, each consisting of
2000 meshes and their radar responses.

2. Related Works

Radar Modeling. There are a number of first-principles radar simulation tools of varying fi-
delity, from full-wave computationally-intense methods solving the integral form of Maxwell’s
electromagnetic equations for exact currents (Rao et al., 1982; Song et al., 1997; Engheta
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et al., 1992; Taflove and Umashankar, 1987), to more simplified models such as physical optics
(PO) approximations (Balanis, 2012; Paknys, 2016; Gibson, 2021). However, these methods
are too computationally slow for many applications such as self-driving cars and weather
monitoring, motivating data-driven solutions. There has been recent interest in using neural
networks (Wheeler et al., 2017; Zheng and Wang, 2023) to replicate first-principles radar
models efficiently. Wheeler et al. (2017) use a conditional variational autoencoder method to
learn the radar response of automotive radars taking as input spatial raster representations
of objects and the environment, while Zheng and Wang (2023) use physically-informed neural
networks to solve the wave equation for the ground-penetrating radar. Our approach, in
addition to focusing on far-field radar models and mesh representations of objects, differs from
previous efforts by explicitly encoding symmetries of the radar function in the neural network.

SO(3)-Equivariance. Many neural networks have incorporated equivariance to SO(3)
for classifying shapes (Esteves et al., 2018; Cohen et al., 2018), classifying protein struc-
tures (Weiler et al., 2018), and predicting features of atomic systems (Thomas et al., 2018;
Brandstetter et al., 2021; Liao and Smidt, 2022). Similar to our method, all these approaches
use steerable kernel bases and perform equivariant operations such as convolutions or tensor
products. However, none of these have been applied to radar modeling. Esteves et al. (2018);
Cohen et al. (2018) model data over the sphere. For point cloud data, a commonly used
approach is to use equivariant graph convolutions with message passing (Thomas et al., 2018;
Fuchs et al., 2020), where the input features are representations of SO(3). Our approach
uses a combination of previous methods for the novel application of radar response modeling.
Our SO(3) equivariant GNN encoder maps mesh data onto SO(3) and the spherical CNN
decoder maps SO(3) features onto the 2-sphere to represent the spherical radar response.

3. Background

Equivariance. A function is equivariant if it respects the symmetries of its input and output
spaces. Specifically, a function f : X → Y is equivariant with respect to a symmetry group
G, if it commutes with all transformations g ∈ G, f(ρx(g)x) = ρy(g)f(x), where ρx and ρy
are the representations of the group G that define how the group element g ∈ G acts on
x ∈ X and y ∈ Y , respectively. An equivariant function is a mathematical way of expressing
that f is symmetric with respect to G; if we evaluate f for various transformed versions of
the same input, we should obtain transformed versions of the same output.

SO(3)-Equivariance. When dealing with physical systems in 3D, since the orientation of
the coordinate frame is arbitrary, many task functions f should be equivariant to SO(3), the
group of 3D rotations of the coordinates. In order to build neural networks that incorporate
this sort of geometric reasoning, it is necessary to parameterize signals f : X → R where
X = S2 or X = SO(3) in a way that is both computationally efficient and easy to apply to
rotations. Cohen et al. (2018) provide an effective solution using the truncated Fourier basis
for signals defined over S2 in terms of spherical harmonics Y l

k and Wigner D-matrix coefficients
Dl

mn. Writing f : SO(3) → R in terms of the Dl
mn and then truncating to a given frequency

l ≤ L, we arrive at the approximate representation f(g) ≈
∑L

l=0

∑2l+1
m=0

∑2l+1
n=0 clmnD

l
mn(g).

Using this approximation, the SO(3) group convolution can be efficiently computed point-wise
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in the Fourier domain using the convolution theorem. See Cohen et al. (2018) for additional
details on the SO(3) group convolution.

(a) SO(3)-Equivariance (b) SO(2)-Invariance

Figure 1: Symmetries of Radar Sensing. Two symmetries of radar sensing that we
incorporate into our equivariant model: (a) the SO(3)-equivariant mapping from
the 3D mesh to the spherical radar signal, and (b) the invariance of the far field
radar response to SO(2) rotations about the radar line-of-sight axis.

4. Symmetries of Radar Sensing

The radar signal prediction problem is a supervised learning task, where the goal is to predict
the radar response for a given mesh and radar orientation. The mesh is defined as o = (V, F ),
where V is the set of vertex coordinates in R3 and F defines the connectivity, and the radar
line-of-sight is given by e ∈ S2. The goal is to train a network fϕ to map fϕ : (o, e) 7→ r,
where r ∈ RNr is the radar response signal intensity over range discretized into Nr distances,
i.e., the range profile. In this work, we focus solely on far-field radar signal modeling, where
the objects are a large distance from the radar origin point and so the radar response at a
given time is a single scalar intensity with no spatial resolution.

The radar response for any given object is governed by Maxwell’s equations. Invariances
in Maxwell’s equations imply certain symmetries in the mapping from input mesh o to radar
response r, such as spatio-temporal shift or object rotations. We consider two symmetries
in this work: (1) the rotational symmetry of the mesh and radar response, and (2) the
invariance of the far-field radar response rotated about the radar line-of-sight axis.

The 3D rotational symmetries of the radar response function are illustrated in Figure 1(a).
When the mesh is transformed by R ∈ SO(3), then the radar signal is also transformed by
R. That is, the radar response function is SO(3)-equivariant, i.e., f(R(o)) = R(f(o)). The
symmetry about the radar line-of-sight axis is illustrated in Figure 1(b). For the far-field
radar signals in this work, the radar response does not have resolution across the plane
perpendicular to the line of sight. That is, it does not change as the object rotates about the
line-of-sight axis e of the radar. Formally, for some rotation g ∈ SO(2), f(o, g(e)) = f(o). By
computing the radar response using an SO(3)-equivariant model and encoding the output
signal to the sphere S2 = SO(3)/SO(2), we combine the SO(3)-equivariance of the object
system and the SO(2)-invariance of the far-field radar response.
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Figure 2: Radar Equivariant Model. High-level REM encoder-decoder architecture
comprised of an equivariant GNN encoder and a spherical CNN decoder.

5. Method

We propose the Radar Equivariant Model (REM), an encoder-decoder architecture (Figure 2)
for predicting the radar response for meshes. Encoder-decoder architectures such as U-
Net (Zhou et al., 2018) and Transformers (Vaswani et al., 2017) are attractive methods
for prediction tasks with high-dimensional inputs due to latent space compression. By
compressing data into a compact, information-rich latent space, these models can efficiently
learn representations that are valuable for various tasks. At a high level, REM utilizes an
equivariant graph neural network to encode the mesh into an SO(3) latent space and then a
spherical convolutional decoder to decompose the signal into spherical harmonics, allowing us
to simultaneously predict the radar response for all possible viewing angles. REM utilizes the
e3nn framework (Geiger et al., 2022; Geiger and Smidt, 2022) to ensure that the symmetries
in Section 4 are respected. Additional details can be found in Appendix C.

5.1. Graph Construction

In order to utilize a graph-based encoder, we first must convert the object mesh into a
graph with the appropriate node and edge features. The node features are the 3D position
xi ∈ V , where V is the set of vertex coordinates indexed by i. Similarly to Brandstetter
et al. (2021), the edge features are the spherical harmonic embedding of the relative positions
eij = Y l(xj − xi), where Y l: R3 → R2l+1 are the spherical harmonics and i, j are vertices
connected by an edge. In this paper, we do not include additional properties of the meshes
such as texture, material, or sub-component types, leaving this for future work.

5.2. Encoder

In REM, we first use a geometric graph neural network to encode the local and global
information of the mesh into Fourier space, thereby ensuring Euclidean and permutation
transformations are correctly represented within our model. To accomplish this, we make
use of anisotropic convolutions (Wiersma et al., 2022), which modify the standard graph
convolution to take into account the mesh surface geometry. The kernel weights are different
for each neighbor, depending on the relative position vector between nodes. For a source
node i, the anisotropic convolution is f ′

i = σ
(∑

j∈N (i)K(xj − xi)fj

)
, where xi, xj are are
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the position coordinates for nodes i, j and N (i) denotes the neighborhood of node i. In
order for this operation to be SO(3)-equivariant, the kernel K must satisfy the steerability
constraint. We accomplish this by utilizing the e3nn library (Geiger et al., 2022), which uses
tensor products and Clebsch-Gordan coefficients to construct K.

We build the encoder by stacking several encoding blocks, each of which contains a
geometric graph convolution (GGCN) layer followed by a TopK pooling (Gao and Ji, 2019)
layer. The pooling layers progressively reduce the size of the graph to encode higher-order
features and the GGCN layers aggregate each node’s first-order information. Pooling also
greatly improves the computation efficiency of REM for large meshes. After each pooling
layer, we recompute the spherical harmonics for the edges in the new graph. A final average
global pooling layer reduces the entire mesh to a single node and outputs an SO(3)-equivariant
feature vector, which is then used as the latent code and passed on to the decoder. This
feature vector transforms as a direct sum of various irreducible representations of SO(3),
which are components of the Fourier decomposition of signals over SO(3). Thus this feature
vector may be viewed as a truncated Fourier space representation of a signal over SO(3).

5.3. Decoder

Once the input mesh has been projected into Fourier space using the encoder, we use
operations that preserve the SO(3) symmetry of the latent representation. Specifically, we
use SO(3)-equivariant group convolutions. Following Spherical CNN (Cohen et al., 2018),
we apply non-linearities between convolutional layers by mapping the signal to the spatial
domain, applying ReLU (Agarap, 2018), and then mapping back to the Fourier domain.

The output of the final layer of the decoder f(o) represents an N -channel signal over S2

in the Fourier domain. That is, f(o)n = (clnm(o))2l+1,L
m=0,l=0 are the coefficients of the spherical

harmonics up to frequency L for 1 ≤ n ≤ N . To extract the radar response for a specific
radar orientation, we apply the inverse Fourier transform and evaluate these N signals on
the 2-sphere, at a position specified by the radar line-of-sight vector e. That is,

f(o, e) =

(
L∑
l=0

2l+1∑
m=0

Y l
m(e)clnm(o)

)N

n=1

where o is the input mesh and Y l
m are the spherical harmonics of degree l.

6. Experiments

We perform a series of experiments to evaluate the performance and generalization of our
method. First, we benchmark the performance of REM against several alternative approaches
on two mesh-to-radar datasets. Second, we examine REM’s ability to generalize from sparse
radar response viewing angles to the full set of all possible radar orientations. Finally, we
study the effect of the maximum signal frequency used in REM on prediction.

6.1. Datasets

Due to the expensive cost of collecting real-world radar data, we simulate radar responses for a
variety of different meshes using a physical optics method to approximate the electromagnetic
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(a) (b) (c) (d) (e)

Figure 3: Datasets. Example meshes used in our experiments. Meshes (a) and (b) come
from the Basic Shapes dataset and meshes (d) and (e) are from the Frusta dataset.

waves (Balanis, 2012). Additional details can be found in Appendix A. Specifically, we
generate two mesh datasets: Basic Shapes and Frusta. The Basic Shapes dataset can be
thought of as a collection of building block components that can be combined in various
ways to form more complex 3D shapes. We generate 1000 pyramid and 1000 cylinder meshes
that are composed of components like flat 2D plates and hemispheres in addition to the
underlying shape. We also randomly vary radius and length parameters of the underlying
shapes. The Frusta dataset represents a collection of complex 3D shapes, where each mesh
is a combination of several different basic components stacked together. This dataset also
consists of 2000 meshes. Each mesh is comprised of a mid-portion containing between one
to three connected frusta of various sizes, and two end-caps that are randomly selected
to be either a hemisphere or a flat plate. We also randomly vary the parameters used to
generate these components. For both the Basic Shapes and the Frusta datasets, every mesh
is evaluated over 360 orientations on the non-symmetric axes, θ ∈ [0, 2π], to acquire the
associated radar responses. We will refer to this collection of orientations as the static
pattern for a given mesh. We split both datasets into 1000 training and 1000 testing samples.
Example meshes can be seen in Figure 3.

6.2. Baselines

We compare our method against two competitive baselines for processing meshes, including
a non-equivariant graph convolutional network (GNN) and a transformer architecture. One
key difference between both baselines and REM, is that REM simultaneously predicts the full
radar response whereas the baselines predict a single response and therefor require multiple
evaluations to compute the full response.

GNN (Kipf and Welling, 2017). We consider the widely used graph convolution
architecture by Kipf and Welling (2017) using a similar graph input as the REM model.
This baseline shares a GNN structure with REM, but without SO(3) equivariance. The
node features are the concatenation of positions of the vertices and the radar line of sight,
ni = (xi, e) for vertex i. The edge features are the length of the edges.

Transformer (Feng et al., 2018). Based on the approach introduced in Feng et al. (2018),
we generate spatial and structural descriptors for each triangle in the mesh. We concatenate
these representations to form a single embedded representation for each triangle. These
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embeddings are combined with the line of sight and encoded with a transformer Vaswani
et al. (2017) and decoded with a MLP to generate the predicted response. See Appendix C
for additional baseline models and training details.

Figure 4: Static Radar Pattern. An illustrative example of the static radar predictions
from REM and the baselines compared to a ground truth static pattern generated
by the first-principles model. The static pattern shows the radar response for the
mesh as the radar rotates around the object. For each of these line-of-sights, the
radar response signal intensity, i.e. range profile, is discretized into 53 distances.

6.3. Radar Response Prediction

We report the performance of REM and baseline methods on the radar prediction task in
Table 1 (See Appendix B for metric details). REM outperforms the baselines in almost
all metrics for both the Basic Shapes and Frusta datasets. The transformer baseline does
slightly outperform REM in terms of accurately predicting the locations of maxima and top k
peaks (Maxima and Peak Bins). We attribute the increased performance of REM to both the
equivariant layers encoding the symmetry present in the radar prediction problem and REM’s
ability to simultaneously predict the full radar response, encouraging generalization between
viewing angles. Additionally, we see that both the GNN and REM models perform much
better on the Basic Shapes dataset (compared to Frusta), implying that the size of the mesh
has a large impact on the performance of a graph based encoder. Figure 4 displays the static
pattern generated by each model using a mesh from the Basic Shapes dataset. Brighter yellow
colors represent scattering responses resulting from the radar’s interaction with the object at
different line-of-sights. These responses stem from two types of scattering phenomena: highly
reflective specular scattering, notably intense on flat surfaces perpendicular to the radar
line-of-sight, and localized scattering originating from diffraction scattering at the object’s
edges. We observe that REM does a fairly good job in reconstructing the overall projected
shape characteristics and correctly capturing both types of radar scattering responses. See
Figure 8 and Figure 9 in Appendix E for additional qualitative results.

6.4. Generalization To Unseen Viewing Angles

In real world datasets, unlike our simulated datasets, it is much more common to have a
sparse radar response with only a few viewing angles. Data efficiency is thus very important,
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Table 1: Radar Response Prediction. Comparison of radar prediction performance on
the Basic Shapes and Frusta datasets.

Basic Shapes MSE Max Peak Value Max Peak Bin Peak Value Peak Bin Peak Region

GNN 0.35 ± 0.0 0.402 ± 0.0 1.17 ± 0.002 0.582 ± 0.0 1.08 ± 0.002 0.071 ± 0.002

Transformer 0.76 ± 0.335 0.418 ± 0.101 0.867 ± 0.012 0.558 ± 0.164 0.636 ± 0.014 0.073 ± 0.011

REM (ours) 0.31 ± 0.002 0.352 ± 0.002 1.056 ± 0.02 0.516 ± 0.004 0.787 ± 0.016 0.032 ± 0.001

Frusta MSE Maxima Value Maxima Bin Peak Value Peak Bin Peak Region

GNN 0.101 ± 0.0 0.256 ± 0.003 1.468 ± 0.001 0.369 ± 0.001 1.191 ± 0.001 0.046 ± 0.001

Transformer 0.099 ± 0.002 0.239 ± 0.004 1.246 ± 0.07 0.344 ± 0.004 0.97 ± 0.07 0.043 ± 0.002

REM (ours) 0.094 ± 0.002 0.231 ± 0.004 1.248 ± 0.08 0.327 ± 0.013 1.033 ± 0.07 0.042 ± 0.001

as it is necessary to be able to train a radar model with fewer samples. To evaluate how
well REM is able learn with fewer samples and to generalize to unseen angles, we train our
models on subsets of the radar response. Specifically, we train on 1%, 10%, 25%, 50%, and
100% of the full response, where we sample at regular intervals from [0, 2π]. Figure 5 plots
the peak region prediction error against percentage of observability. We utilize the peak
region prediction error as our metric for this experiment, as the main effect of reducing object
observability is a decrease in prediction fidelity. A common failure mode is that instead of
predicting two peaks in the response, the model might predict a single peak between the two
true peaks, which is captured by a high peak region prediction error. Our results show that
REM almost always outperforms the baseline methods with the only exception being on the
Frusta dataset trained on 1% of the viewing angles, where the REM and the Transformer
perform about the same.

(a) Basic Shapes (b) Frusta

Figure 5: Viewing Angle Ablation. Peak region prediction error when trained on datasets
with restricted viewing angles. Shading shows standard error over 3 random seeds.

6.5. Effect of Maximum Frequency on Response Prediction

One important design choice of SO(3)-equivariant models is the maximum frequency, L, of
the model. This maximum frequency limits the angular resolution of our model and effects
the granularity of the predicted radar signal on the 2-sphere. Table 2 shows the effect of L
on the model prediction metrics, when trained on the Basic Shapes dataset. We see that
L = 10 has the best performance and the performance degrades as we decrease L and the
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model is forced to infer more and more due to the restricted angular resolution1. We also
note that the performance gap is greatest between L = 4 and L = 6. At higher frequencies,
we see that maxima and peak metrics continue to improve, whereas the MSE starts to level
off. This implies that the model can capture the general shape of the response even with
lower L values, but higher L values are beneficial in order to accurately capture the peaks.

Table 2: Maximum Frequency (L) Ablation. Study examining the effect of the maximum
frequency utilized in the REM model on the Basic Shapes dataset.

L MSE Max Peak Value Max Peak Bin Peak Value Peak Bin Peak Region

2 0.41 ± 0.007 0.453 ± 0.004 1.63 ± 0.12 0.81 ± 0.010 0.982 ± 0.035 0.082 ± 0.024

4 0.38 ± 0.003 0.425 ± 0.001 1.55 ± 0.10 0.72 ± 0.003 0.951 ± 0.034 0.071 ± 0.013

6 0.32 ± 0.005 0.401 ± 0.005 1.41 ± 0.04 0.65 ± 0.005 0.934 ± 0.025 0.045 ± 0.009

8 0.32 ± 0.004 0.382 ± 0.003 1.42 ± 0.07 0.63 ± 0.004 0.923 ± 0.021 0.035 ± 0.018

10 0.31 ± 0.002 0.357 ± 0.002 1.12 ± 0.02 0.52 ± 0.004 0.847 ± 0.016 0.032 ± 0.001

7. Limitations and Discussion

In this work, we present the Radar Equivariant Model, the first SO(3)-equivariant model
for predicting radar responses from object meshes. By constraining our model to both
equivariant input and output spaces, REM is able to achieve a high level reconstruction of
signals generated by a first-principles radar model and shows improved performance and
sample efficiency over other encoder-decoder models. Additionally, we present two novel
mesh-to-radar datasets containing 2000 meshes, each alongside their full radar responses.

There are three primary limitations to this work. First, although REM’s equivariant
properties extend to the full SO(3) space, we currently have only evaluated REM on roll-
symmetric objects. Additionally, the datasets considered in this work consist of primarily
simpler shapes than one would encounter in the real world. Extending this work to non-roll
symmetric object datasets, such as in ShapeNet (Chang et al., 2015), should better take
advantage of our spherical representation and offer improved performance gains. Second, we
utilize simulated radar response data in both datasets. While this simulated data should be
comparative to real-world data due to our use of high-fidelity radar simulation software to
generate the responses, there are complicating factors in real world data, such as material
properties and multi-bounce effects that should be investigated. Finally, REM uses a high
maximum frequency, L, in both the encoder and the decoder. Because the number of
parameters is quadratic in L, both the depth of our model and the size of the input meshes
are restricted.

8. Acknowledgements

This work is supported by the Under Secretary of Defense for Research and Engineering
under Air Force Contract No. FA8702-15-D-0001 and NSF grants 2107256 and 2134178. We
acknowledge the MIT SuperCloud, the Lincoln Laboratory Supercomputer Center, and the
NEU Discovery HPC cluster for providing resources that have contributed to the research
results in this work.

1. We limited to a maximum frequency of L = 10 due to limitations of the e3nn package.



Symmetric Models for Radar Response Modeling

References

Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv preprint
arXiv:1803.08375, 2018.

D. Andersh, J. Moore, S. Kosanovich, D. Kapp, R. Bhalla, R. Kipp, T. Courtney, A. Nolan,
F. German, J. Cook, and J. Hughes. Xpatch 4: the next generation in high frequency electro-
magnetic modeling and simulation software. In Record of the IEEE 2000 International Radar
Conference [Cat. No. 00CH37037], pages 844–849, 2000. doi: 10.1109/RADAR.2000.851945.

Constantine A Balanis. Advanced engineering electromagnetics. John Wiley & Sons, 2012.

Alexander Bogatskiy, Brandon Anderson, Jan Offermann, Marwah Roussi, David Miller, and
Risi Kondor. Lorentz group equivariant neural network for particle physics. In International
Conference on Machine Learning, pages 992–1002. PMLR, 2020.

Johannes Brandstetter, Rob Hesselink, Elise van der Pol, Erik J. Bekkers, and Max Welling.
Geometric and physical quantities improve E(3) equivariant message passing. CoRR,
abs/2110.02905, 2021. URL https://arxiv.org/abs/2110.02905.

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep
learning: Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478,
2021.

E.C. Burt and T.G. Moore. High frequency rcs prediction theory, 1991.

Z. Chance, A. Kern, A. Burch, and J. Goodwin. Differentiable point scattering models for
efficient radar target characterization, 2022. URL https://arxiv.org/abs/2206.02075.

Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang,
Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An
information-rich 3d model repository. arXiv preprint arXiv:1512.03012, 2015.

Taco Cohen, Mario Geiger, Jonas Kohler, and Max Welling. Spherical cnns. In International
Conference on Learning Representations, 2018.

Nader Engheta, William D Murphy, Vladimir Rokhlin, and Marius S Vassiliou. The fast
multipole method (fmm) for electromagnetic scattering problems. IEEE Transactions on
Antennas and Propagation, 40(6):634–641, 1992.

Carlos Esteves, Christine Allen-Blanchette, Ameesh Makadia, and Kostas Daniilidis. Learning
so (3) equivariant representations with spherical cnns. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 52–68, 2018.

Yutong Feng, Yifan Feng, Haoxuan You, Xibin Zhao, and Yue Gao. Meshnet: Mesh neural
network for 3d shape representation, 2018.

Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max Welling. Se (3)-transformers: 3d
roto-translation equivariant attention networks. Advances in neural information processing
systems, 33:1970–1981, 2020.

https://arxiv.org/abs/2110.02905
https://arxiv.org/abs/2206.02075


Kohler Vaska Muthukrishnan Choi Park Goodwin Caceres Walters

Hongyang Gao and Shuiwang Ji. Graph u-nets. In international conference on machine
learning, pages 2083–2092. PMLR, 2019.

Mario Geiger and Tess Smidt. e3nn: Euclidean neural networks, 2022. URL https:
//arxiv.org/abs/2207.09453.

Mario Geiger, Tess Smidt, Alby M., Benjamin Kurt Miller, Wouter Boomsma, Bradley
Dice, Kostiantyn Lapchevskyi, Maurice Weiler, Michał Tyszkiewicz, Simon Batzner, Dylan
Madisetti, Martin Uhrin, Jes Frellsen, Nuri Jung, Sophia Sanborn, Mingjian Wen, Josh
Rackers, Marcel Rød, and Michael Bailey. Euclidean neural networks: e3nn, April 2022.
URL https://doi.org/10.5281/zenodo.6459381.

Walton C. Gibson. Integral and Physical Optics Methods for RCS Computation. CRC Press,
2021. doi: 10.1201/9781315161402-15.

Julie Ann Jackson, Brian D. Rigling, and Randolph L. Moses. Parametric scattering models
for bistatic synthetic aperture radar. 2008 IEEE Radar Conference, pages 1–5, 2008. URL
https://api.semanticscholar.org/CorpusID:5787687.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.
URL https://openreview.net/forum?id=SJU4ayYgl.

Colin Kohler, Anuj Shrivatsav Srikanth, Eshan Arora, and Robert Platt. Symmetric models
for visual force policy learning. arXiv preprint arXiv:2308.14670, 2023.

Yi-Lun Liao and Tess Smidt. Equiformer: Equivariant graph attention transformer for 3d
atomistic graphs. In The Eleventh International Conference on Learning Representations,
2022.

Othmane-Latif Ouabi, Radmila Pribić, and Sorin Olaru. Stochastic complex-valued neural
networks for radar. In 2020 28th European Signal Processing Conference (EUSIPCO),
pages 1442–1446, 2021. doi: 10.23919/Eusipco47968.2020.9287425.

Robert Paknys. Physical Theory of Diffraction, pages 317–334. 09 2016. ISBN 9781118940563.
doi: 10.1002/9781119127444.ch9.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learning
library. In Advances in Neural Information Processing Systems 32, pages 8024–
8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

https://arxiv.org/abs/2207.09453
https://arxiv.org/abs/2207.09453
https://doi.org/10.5281/zenodo.6459381
https://api.semanticscholar.org/CorpusID:5787687
https://openreview.net/forum?id=SJU4ayYgl
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf


Symmetric Models for Radar Response Modeling

S. M. Rao, A. W. Glisson, and D. R. Wilton. Electromagnetic scattering by surfaces of
arbitrary shape. IEEE Transactions on Antennas and Propagation, 30:409–418, May 1982.
doi: 10.1109/TAP.1982.1142818.

J. Song, Cai-Cheng Lu, and Weng Cho Chew. Multilevel fast multipole algorithm for
electromagnetic scattering by large complex objects. IEEE Transactions on Antennas and
Propagation, 45(10):1488–1493, October 1997. doi: 10.1109/8.633855.

A Taflove and KR Umashankar. The finite-difference time-domain (fd-td) method for
electromagnetic scattering and interaction problems. Journal of Electromagnetic Waves
and Applications, 1(3):243–267, 1987.

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and
Patrick Riley. Tensor field networks: Rotation-and translation-equivariant neural networks
for 3d point clouds. arXiv preprint arXiv:1802.08219, 2018.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. In Adv. in Neural Info. Proc. Sys., volume 30.
Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Rui Wang, Robin Walters, and Rose Yu. Incorporating symmetry into deep dynamics models
for improved generalization. In International Conference on Learning Representations
(ICLR), 2021.

Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, and Taco S Cohen. 3d
steerable cnns: Learning rotationally equivariant features in volumetric data. Advances in
Neural Information Processing Systems, 31, 2018.

Timothy A. Wheeler, Martin Holder, Hermann Winner, and Mykel J. Kochenderfer. Deep
stochastic radar models. 2017 IEEE Intelligent Vehicles Symposium (IV), pages 47–53,
2017.

Ruben Wiersma, Ahmad Nasikun, Elmar Eisemann, and Klaus Hildebrandt. Deltaconv:
anisotropic operators for geometric deep learning on point clouds. ACM Transactions on
Graphics (TOG), 41(4):1–10, 2022.

Yikang Zheng and Yibo Wang. Ground-penetrating radar wavefield simulation via physics-
informed neural network solver. Geophysics, 88(2):KS47–KS57, 02 2023.

Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh, and Jianming Liang.
Unet++: A nested u-net architecture for medical image segmentation. In Deep Learning
in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th
International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018,
Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings
4, pages 3–11. Springer, 2018.

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf


Kohler Vaska Muthukrishnan Choi Park Goodwin Caceres Walters

Appendix A. First-Principles RF Model

Due to the scarcity of available real-world and simulated radar data for training radar models,
we simulate our own benchmark dataset. To generate ground truth data, we use the physical
optics approximation method (Balanis, 2012), which provides a linear approximation of the
more general and highly non-linear scattering formulation for electromagnetic waves. A
simple operator that describes physical optics response across the illuminated section of an
object for perfectly reflecting material as,

F (x, k) =
ik

2π

∫
R3

e−i2k⟨x,y⟩dy,

where the incident wave number is k = 2π/λ, λ is the wavelength, and the observation unit
vector is,

x = (sin θ cosϕ, sin θ sinϕ, cos θ),

for θ ∈ [0, π] and ϕ ∈ [0, 2π]. We note that the approximation is valid only in high frequency
regions such that k << 2π/D, where D is the length of the longest side of the object.

As we are particularly interested in far-field sensing, the physical optics approximation
is useful as a fairly accurate and flexible simulation tool for training data generation.
The simulation input is a parameterized mesh object (an example cross section shown in
Figure 6(a)). The simulation calculates the the physical optics response for given observation
line-of-sight and frequency and the total radar response of the object is equal to the sum of the
individual triangle responses that are visible to the radar. Simulations for this work required
generating the response across a linear set of frequencies to emulate a Linear Frequency
Modulated (LFM) waveform, where the center frequency is 3e9Hz and bandwidth is 4e8Hz
using circular polarized waves with orientation RL.

The Radar Cross Section (RCS) for each triangle is calculated using legacy software (Burt
and Moore, 1991). The simulation produces a radar observation, r ∈ RNr (Figure 6(b)) for a
given viewing angle. The observation is the normalized magnitude of the range-profile as
described in Section III of Chance et al. (2022). All the normalized range profiles are then
stacked across varying radar viewing angles to generate what is referenced as a radar static
pattern (Figure 6(c)). Note that fixing the radar line-of-sight and rotating the object would
generate the same radar static response.

Appendix B. Evaluation Metrics

A radar response at a given viewing angle or a range profile consists of a series of real-valued
magnitudes corresponding to different detection ranges. Mean squared error can be used
to determine the accuracy of a predicted response with respect to a first-principles model
response. In addition, since many downstream signal processing and learning tasks are more
dependent on the position and magnitude of the peaks than the overall shape of the range
profile, we also assess the following more domain- and task-specific metrics:

• k-Peak Value Error: Given a predicted response and a ground truth object response,
calculate the locations of up to k local maxima with the highest overall magnitude in
each response. Associate individual local maxima between the two responses using
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Figure 6: (a) Cross section of random 3D object mesh. (b) The range profile for 20◦ viewing
angle. (c) The corresponding static radar pattern.

distance in number of range bins, and calculate the mean squared error between the
magnitudes of associated local maxima.

• k-Peak Range Bin Error: Given a predicted response and a ground truth response,
calculate the locations of the k local maxima with the highest overall magnitude.
Associate individual local maxima between the two responses using distance in number
of range bins, and calculate the mean squared error between the range bins of the
associated local maxima.

• Max Peak Value Error: Same as k-Peak Magnitude Error, but instead of identifying
k local maxima, select the highest overall magnitude.

• Max Peak Range Bin Error: Same as k-Peak Range Bin Error, but select the range
bin of the highest magnitude point.

• Max Peak Region Error: Given a predicted object response and the corresponding
ground truth response, select the highest magnitude range bin in the ground truth
object response as the center of the region of interest. Extract the magnitude of the
ground truth and predicted response at this range bin and the l range bins on either
side of the center range bin. Compute the mean squared error between the magnitude
of the ground truth and predicted response in each of the l range bins in the region,
and average across the bins to get the total error.

The peak error metrics measure the model’s ability to simulate responses with multiple
peaks, while the maxima error metrics measure performance around the largest peak. Using
these metrics allows us to more clearly identify significant performance improvements relative
to common radar downstream tasks, where non-peak regions of the range profile are usually
smoothed out. For our experiments, we ran these metrics with k = 2 and l = 10.
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Figure 7: REM Model Architecture. Low-level model schematics for the REM model.
DeL represents the natural decomposition of a signal in SO(3) for DL, where DL

are the Wigner D-matrices with a maximum frequency of L.

Appendix C. Network and Training Details

REM. REM’s encoder architecture consists of 3 GGCN layers and 2 TopK pooling layers
with k = 0.5. The same maximum frequency (L = 10) is used to compute the spherical
harmonics for the edge features for all datasets. The latent code is 16 vectors representing the
natural decomposition for a signal over SO(3), z = 16×L2 SO(3), with L = 10. The decoder
consists of 2 SO(3) convolutions with the same maximum frequency of the latent space
(L = 10). REM is implemented in PyTorch (Paszke et al., 2019) and the e3nn library (Geiger
et al., 2022). We train using the Adam optimizer(Kingma and Ba, 2014) with the best
learning rate and its decay chosen to be 10−3 and 0.95 respectively. On the Basic Shapes
dataset, we use a batch size of 64 and on the Frusta dataset we use a batch size of 8. The re-
duction in batch size is primarily due to the increased size of the meshes in the Frusta dataset.

GNN. The GNN consists of 4 layers, each with a graph convolution followed by batch
normalization and a ReLU non-linearity. All graph convolutions use kernel size 5 and have
32 output channels. Thus, the GCN outputs a 32-dimensional embedding for every node.
Node embeddings are max-pooled to form a global graph embedding, which is then processed
by a 2-layer MLP with 64 hidden channels to predict the radar response for the shape.
We train using the Adam optimizer(Kingma and Ba, 2014) with the best learning rate and
its decay were chosen to be 10−4 and 0.95 respectively. For the GCN architecture, we use a
batch size of 256 for both datasets.

Transformer. The Transformer architecture consists of a series of embedding layers, a
multi-headed transformer, and a MLP decoder. First, a MLP layer is used to generate a
line of sight embedding representing the viewing geometry of the model, and an additional
trainable embedding is generated to represent a classification embedding. The classification,
orientation, and triangle representation embeddings are placed in sequence, and a standard
transformer encoder architecture as introduced in Vaswani et al. (2017) is applied to the
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sequence of embeddings to generate an encoded representation. The encoded classification
token is then fed to a final MLP layer to generate the predicted response corresponding to the
input. We train using the Adam optimizer(Kingma and Ba, 2014) with the best learning rate
and its decay were chosen to be 50−5 and 0.95 respectively. For the transformer architecture,
we use a batch size of 4 for both datasets.

C.1. Loss Function

Most downstream signal processing steps using radar observation data are more concerned
with the position and magnitude of the peaks in the range profile than the overall shape
of this profile. However, the majority of the range profile is dominated by sidelobe values
(lower magnitude values different from the peaks (see Figure 6(b))for an illustration). This
can cause adverse effects on peak predictions. For example, utilizing a naive MSE loss can
cause poor performance due to the majority of the loss coming from the sidelobe effects. In
practice, this results in uninformative low magnitude signals that can impact performance of
downstream applications. In this work, for all NN models, we use a weighted-softmax MSE
to produce higher losses at the peaks and lower losses at the sidelobe values to encourage
the model to learn the more important features,

l(x) =
N∑
i=1

softmax(xi)(xi − x̂i)
2.

Appendix D. Model Consistency

One advantage of equivariant models is that they are robust-by-design against perturbations
to the inputs (within their defined symmetries). In our domain, this means that REM is
invariant to rotations of the object mesh or the radar orientation. To demonstrate this
property, we examine two types of equivariance error: numerical error and functional error.
To calculate numerical error, we apply 1000 random transformations to a sampled mesh
and compare the model outputs to the model output of the non-transformed mesh. The
numerical error is then the average difference between the transformed outputs and the
non-transformed output. To calculate the functional error, we apply a random transformation
to every sample (mesh, radar line-of-sight) in the test dataset and calculate the average
mean-squared error between the predicted response and the ground truth response. Note,
because we are randomly transforming both the mesh and the radar line-of-sight with the
same transformation, the radar response does not change. We report the results in Table 3.
REM has almost no numerical error (we report results to the third decimal place) whereas
the baselines have a substantial amount of both numerical and functional error, highlighting
the performance guarantees of REM.

Appendix E. Example Radar Response Predictions

We provide some qualitative performance results of the various models, by visualizing the
radar learned responses as static patterns. Figure 8 and Figure 9 show the true static patterns
alongside the predictions for REM and the baselines.
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Figure 8: Basic Shapes Predictions. Static pattern predictions on the Basic Shapes
dataset. Each row displays the ground truth static pattern for a randomly sampled
mesh alongside the model predictions.
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Figure 9: Frusta Predictions. Static pattern predictions on the Frusta dataset. Each row
displays the ground truth static pattern for a randomly sampled mesh alongside
the model predictions.
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Table 3: Equivariance Error. The two types of equivariance error: numerical and func-
tional. Numerical error measures the amount of variance in predicted response
when randomly transforming the input mesh and functional error measures the
effect of randomly transforming both the mesh and radar line-of-sight.

Basic Shapes Numerical Error (MSE) Functional Error (MSE)

GNN 0.853 > 2000

Transformer 0.246 1.064

REM 0.0 0.0

Appendix F. Zero-Shot Generalization To Unseen Meshes

In addition to generalizing to unseen viewing angles, we also test our model’s ability to
generalize to other unseen meshes. In this zero-shot generalization experiment, we take
models trained on the Basic Shapes dataset and test them on the Frusta dataset (and vice
versa). We report these results in Table 4. Interestingly, while both graph-based models are
completely unable to generalize and produce large MSEs, the transformer is able to at least
produce predictions near the target responses. We attribute this behavior to the difference in
the sizes of the graphs with the Basic Shapes dataset meshes consisting of 20 nodes whereas
meshes from the Frusta dataset consist of 250 nodes. Specifically, we hypothesize that the
global pooling, which compresses the remaining nodes at the end of the encoder, causes this
large accumulation of error.

Table 4: Zero-Shot Generalization. Comparison of zero-shot generalization performance
from the Basic Shapes dataset to the Frusta dataset and vice versa. We report the
mean and standard deviation over three random seeds.

MSE Basic Shapes → Frusta Frusta → Basic Shapes

GNN inf 1063 ± 958

Transformer 1.793 ± 0.440 0.188 ± 0.002

REM 1011 ± 213 102 ± 13.24
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Figure 10: Zero-Shot Predictions. Zero-shot static pattern predictions on the Frusta
dataset. Each row displays the ground truth static pattern for a randomly sampled
mesh alongside the model predictions.
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