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Abstract

We initiate a systematic study of worst-group
risk minimization under (ϵ, δ)-differential privacy
(DP). The goal is to privately find a model that
approximately minimizes the maximal risk across
p sub-populations (groups) with different distribu-
tions, where each group distribution is accessed
via a sample oracle. We first present a new algo-
rithm that achieves excess worst-group population
risk of Õ(p

√
d

Kϵ +
√

p
K ), where K is the total num-

ber of samples drawn from all groups and d is the
problem dimension. Our rate is nearly optimal
when each distribution is observed via a fixed-
size dataset of size K/p. Our result is based on a
new stability-based analysis for the generalization
error. In particular, we show that ∆-uniform argu-
ment stability implies Õ(∆+ 1√

n
) generalization

error w.r.t. the worst-group risk, where n is the
number of samples drawn from each sample ora-
cle. Next, we propose an algorithmic framework
for worst-group population risk minimization us-
ing any DP online convex optimization algorithm
as a subroutine. Hence, we give another excess

risk bound of Õ
(√

d1/2

ϵK +
√

p
Kϵ2 +

√
p
K

)
. As-

suming the typical setting of ϵ = Θ(1), this bound
is more favorable than our first bound in a certain
range of p as a function of K and d. Finally, we
study differentially private worst-group empiri-
cal risk minimization in the offline setting, where
each group distribution is observed by a fixed-size
dataset. We present a new algorithm with nearly
optimal excess risk of Õ(p

√
d

Kϵ ).
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1. Introduction
Multi-distribution learning has gained increasing attention
due to its close connection to robustness and fairness in
machine learning. Consider p groups (or, sub-populations),
where each group is associated with some unknown data
distribution. In the multi-distribution learning paradigm, the
learner tries to find a model that minimizes the maximal
population risk across all groups. Let Di denote distribution
of group i ∈ [p] and ℓ : W ×Z be a loss function over the
parameter space W and data domain Z , our objective of
minimizing the worst-group population risk can be formu-
lated as a minimax stochastic optimization problem written
as

min
w∈W

max
i∈[p]

{LDi
(w) := Ez∼Di

ℓ(w, z)} (1)

When each group distribution Di is observed by a dataset Si,
we also define the worst-group empirical risk minimization
problem as

min
w∈W

max
i∈[p]

{
LSi(w) :=

1

|Si|
∑
z∼Si

ℓ(w, z)

}
(2)

The worst-group risk minimization problems (1) and (2)
have wide applications in a variety of learning scenarios.
In the regime of robust learning, the objective represents a
class of problems named as group distributionally robust
optimization (Group DRO) (Soma et al., 2022; Zhang et al.,
2023; Sagawa et al., 2019). This formulation also captures
the mismatch between distributions from different domains
(or, sub-populations). In this type of scenarios, instead of
assuming a fixed target distribution, this formulation can
be used to find a model that can work well for any possible
target distribution formed as a mixture of the distributions
from different domains/sub-populations. From the perspec-
tive of learning with fairness, each group may represent a
protected class or a demographic group. Minimizing the
worst-group risk leads to the notions of good-intent fairness
(Mohri et al., 2019) or min-max group fairness (Abernethy
et al., 2022; Diana et al., 2021; Papadaki et al., 2022). By
making sure the worst-off group performs as good as pos-
sible, the objective prevents the learner from overfitting to
certain groups at the cost of others. Moreover, the objectives
are also connected to other learning applications such as
collaborative learning (Blum et al., 2017) and agnostic fed-

1



Differentially Private Worst-group Risk Minimization

erated learning (Mohri et al., 2019) where the output model
is optimized to perform well across multiple distributions.

Meanwhile, machine learning algorithms typically depend
on large volumes of data, which may pose serious privacy
risk, particularly in certain privacy-sensitive applications
like healthcare and finance. Therefore, it is important that
we provide a strong and provable privacy guarantee for such
algorithms to ensure that the sensitive information always
remains private during the learning process. Although there
has been a significant progress in understanding worst-group
risk minimization in the non-private setting (Soma et al.,
2022; Haghtalab et al., 2022; Zhang et al., 2023), this prob-
lem has not been formally studied in the context of learning
with provable privacy guarantees.

Motivated by this, in this paper, we initiate a formal study of
worst-group risk minimization under (ϵ, δ)-differential pri-
vacy (DP). We consider the setting where the loss function
is convex and Lipschitz over a compact parameter space
W ⊂ Rd. For the sample access model, each group distribu-
tion is accessed via a sample oracle and the learner is able
to sample new data points from any group distribution via
its sample oracle as needed during the learning process.

1.1. Contribution

As we mentioned earlier, we let p denote the number of
groups , K denote the total number of samples drawn from
all groups and d denote the problem dimension.

We first provide a new algorithm adapted from the phased-
ERM approach in (Feldman et al., 2020) with the excess
worst-group population risk of Õ

(√
p
K + p

√
d

Kϵ

)
. The first

term in this bound matches the optimal non-private bound
(Soma et al., 2022) and the second term represents the cost
of privacy. Our rate is optimal up to logarithmic factors in
the offline setting where each distribution is observed via a
a fixed-size dataset of size K/p. The utility guarantee of our
algorithm relies on a new stability based argument to estab-
lish the generalization error bound. Roughly speaking, we
show that ∆-uniform argument stability (see Definition 1)
with respect to the parameter w implies a Õ(∆ + 1/

√
n)

generalization error where n is the number of samples drawn
from each sample oracle. This is distinct from existing gen-
eralization results based on uniform convergence (Mohri
et al., 2019; Abernethy et al., 2022), which lead to subop-
timal rates for general convex losses. On the other hand,
our result also circumvents a known bottleneck in deriving
generalization guarantees using argument uniform stability
in the stochastic saddle-point problems. In particular, in the
L2/L2 setting, the best known generalization guarantee for
a ∆-uniform argument stable algorithm is

√
∆ generaliza-

tion error based on the analysis of the strong duality gap
(Ozdaglar et al., 2022).

Our algorithm is akin to the Phased ERM approach of (Feld-
man et al., 2020), which was introduced to solve private
stochastic convex optimization. We repurpose this approach
for the private stochastic minimax optimization. In particu-
lar, we define a sequence of regularized minimax problems,
which are solved iteratively using any generic non-private
solver. Our version of this algorithm requires different tun-
ing of parameters across iterations and, more crucially, a
new analysis that utilizes the uniform argument stability of
the solutions of the regularized minimax problems.

As a side product, our stability result naturally leads to a new
non-private regularization based method which matches the
non-private lower bound in (Soma et al., 2022) up to loga-
rithmic factors. This may be of independent interest because
existing non-private methods with (nearly) optimal rate rely
on single-pass first order method rather than regularization.

Next, we give a framework to minimize the worst-group
population risk using a black-box access to any DP on-
line convex optimization (DP OCO) algorithm as a sub-
routine. Our framework leverages the idea in (Soma et al.,
2022; Haghtalab et al., 2022) on casting the worst-group
risk minimization objective in a zero-sum game and decom-
posing the excess worst-group risk into the expected regret
of both players. By instantiating our framework with the
DP-FTRL algorithm from (Kairouz et al., 2021), we ob-
tain another bound on the excess worst-group population

risk of Õ
(√

d1/2

ϵK +
√

p
Kϵ2 +

√
p
K

)
. Assuming the typi-

cal setting for the privacy parameter ϵ, namely, ϵ = Θ(1),
this bound is more favorable than our bound based on the
Phased ERM approach in a certain range of p as a func-
tion of K and d, particularly, when p ≥ max{

√
d,K/d} or√

K
d1/2 ≤ p ≤

√
d.

Finally, we investigate the worst-group empirical risk min-
imization problem (2) in the offline setting, where each
distribution Di is observed by a fixed-size dataset Si. We
present a new algorithm based on a private version of the
multiplicative group reweighing scheme (Abernethy et al.,
2022; Diana et al., 2021). We show that our algorithm
achieves a nearly optimal excess worst-group empirical risk
of Õ

(
p
√
d

Kϵ

)
.

1.2. Related Work

The worst-group risk minimization is closely related to the
group DRO problem. In (Sagawa et al., 2019), the authors
consider solving the empirical objective in the offline setting
and propose an online algorithm based on the stochastic mir-
ror descent (SMD) method from (Nemirovski et al., 2009).
The convergence rate achieved in (Sagawa et al., 2019) is
suboptimal because of the high variance of the gradient esti-
mators. On the other hands, several works (Haghtalab et al.,
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2022; Soma et al., 2022; Zhang et al., 2023) has studied
the group DRO problem in the stochastic oracle setting and
achieves an excess worst-group population risk of Õ

(√
p
K

)
The basic idea behind the methods used in these works is
to cast the objective into a zero-sum game based on the
observation that the optimality gap depends on the expected
regret of the max and min players. The authors in (Soma
et al., 2022) demonstrate the tightness of this rate by proving
a matching lower bound result.

The worst-group risk minimization problem is also exten-
sively studied under the notion of min-max group fairness.
Reference (Diana et al., 2021) studies learning with min-
max group fairness and propose a multiplicative reweighting
based method. However, their method assumes the access
to a weighted empirical risk minimization oracle which may
not be realistic in practice. Meanwhile, reference (Aber-
nethy et al., 2022) studies a similar problem and present
more efficient gradient based methods to achieve the min-
max group fairness based on the idea of active sampling.
The problem of min-max group fairness is also studied in
(Mohri et al., 2019) under the federated learning setting.
However, all these works do not provide any privacy guar-
antees.

Our work is also related to the line of works on differentially
private stochastic saddle point (DP-SSP) problem. Refer-
ences (Yang et al., 2022; Zhang et al., 2022) have presented
algorithms with the optimal rate for the weak duality gap,
while the optimal rate for the strong duality gap is achieved
in (Bassily et al., 2023). However, these works only con-
sider the objective with L2/L2 geometry, directly applying
the results from existing DP-SSP works will lead to a sub-
optimal convergence rate due to the dependence of p on the
L2 Lipschtiz constant for the model parameters.

2. Preliminaries
We consider p groups, where each group i ∈ [p] corresponds
to a distributions Di. Given a parameter space W ∈ Rd

and a loss function ℓ, we let ℓ(w, z) be the loss incurred
by a weight vector w on a data point z. We assume the
L2 diameter of W , ∥W∥2, is bounded by M . Through-
out this paper, we assume that the loss function ℓ is con-
vex, L-Lipschitz and bounded by [0, B] unless stated oth-
erwise . The population loss of distribution Di is written
as LDi

(w) = Ez∼Di
ℓ(w, z). When each group distribution

Di is observed by a dataset Si with i.i.d samples drawn
from Di, we denote the empirical loss evaluated on Si as
LSi(w) =

1
|Si|
∑

z∈Si
ℓ(w, z).

Sample oracle: A sample oracle Ci w.r.t distribution Di,
i ∈ [p] returns an i.i.d sample z drawn from Di. We denote
the collection of sample oracles from all groups as C̃ =
{C1, . . . Cp}.

α-saddle point: We say (x̃, ỹ) is an α-saddle point of
a minimax problem minx∈X maxy∈Y ϕ(x, y) if ϕ(x̃, y) −
ϕ(x, ỹ) ≤ α for any x ∈ X and y ∈ Y . When α = 0, we
simply call (x̃, ỹ) a saddle point of ϕ.

Worst-group population risk minimization: Given p
groups that each of them is with a distribution Di, we de-
fine the expected (population) worst-group risk of model
w as the maximal population loss of w across all group
distributions written as

R(w) = max
i∈[p]

LDi
(w)

Our objective of minimizing the worst-group risk is there-
fore written as

min
w∈W

max
i∈[p]

LDi
(w) (3)

Denote ∆p = {λ ∈ [0, 1]p : ∥λ∥1 = 1} as the
probability simplex over p dimensions and ϕ(w, λ) =∑p

i=1 λiLDi
(w).

Then the objective in (3) can be equivalently written as

min
w∈W

max
λ∈∆p

ϕ(w, λ) (4)

The equivalence is based on the fact that for any w ∈ W ,
ϕ(w, λ) is maximized by a λ with all dimensions being zero
except the one with the highest LDi(w). We also define the
excess worst-group population risk of w ∈ W as

E(w; {Di}pi=1) ≜ max
i∈[p]

LDi(w)− min
w̃∈W

max
i∈[p]

LDi
(w̃)

Differential Privacy (Dwork et al., 2006): A mechanism
M is (ϵ, δ)-DP if for any two neighboring datasets S and
S′ that differ on single data point and any output set O, we
have

P (M(S) ∈ O) ≤ eϵP (M(S′) ∈ O) + δ

We focus on record-level privacy throughout the paper.
We say that a pair of sequences of sampled data points
{z1, . . . zT } and {z′1, . . . z′T } are neighbors if, for some
j ∈ [T ], zi = z′i for all i ∈ [T ] \ {j} and zj ̸= z′j .

Stability: Our analysis depends on the notion of uniform
argument stability defined as follows

Definition 1. Consider a randomized algorithm A that
takes a collection of datasets S̃ as input and outputs
(Aw(S̃),Aλ(S̃)) as the solution to a minimax problem
minw∈W maxλ∈∆ ϕ(w, λ). Then A is said to attain ∆-
uniform argument stability with respect to w if for any pairs
of adjacent S̃ and S̃′ that differs in a single data point, we
have

EA

[∥∥∥Aw(S̃)−Aw(S̃′)
∥∥∥] ≤ ∆
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3. Minimax Phased ERM
In this section, we propose an algorithm attaining an excess
worst-group population risk of Õ

(√
p
K + p

√
d

Kϵ

)
, where p

and K denote the number of groups and the total number
of samples drawn from all groups, respectively. Our algo-
rithm involves iteratively solving a sequence of regularized
minimax objectives. In iteration t, given the previous iter-
ate wt−1 and a dataset collection {St

i}
p
i=1 where St

i is the
dataset formed by the data points drawn from the sample
oracle Ci at current iteration, we find an approximate saddle
point (w̃t, λ̃t) of the regularized objective

Ft(w, λ)

=

p∑
i=1

λiLSt
i
(w) + µt

w ∥w − wt−1∥22 − µt
λ

p∑
j=1

λj log λj

and output w̃t. We can show that w̃t has low sensitivity w.r.t.
the collection of samples drawn from all groups , and hence,
we can use the standard Gaussian mechanism to ensure that
the computation of w̃t is differentially private.

Proving the utility guarantee of our algorithm involves new
stability based argument. First, given a dataset collection
S̃ = {S1, . . . Sp} where each Si ∼ Dn

i is a dataset formed
by n samples drawn from the sample oracle Ci. we show that
an algorithm that outputs an approximate saddle point (w̃, λ̃)
for the regularized objective F (w, λ) =

∑p
i=1 λiLSi(w) +

µw

2 ∥w − w′∥22 − µλ

∑p
j=1 λj log λj has uniform argument

stability of O
(

L
nµw

+ B
n
√
µwµλ

)
with respect to w̃. Then

we prove that ∆-uniform argument stability of w̃ leads to a
Õ
(
∆+ B√

n

)
generalization error bound.

Our stability-based generalization argument is distinct from
existing generalization analysis based on uniform conver-
gence (Mohri et al., 2019; Abernethy et al., 2022), which
leads to sub-optimal excess worst-group risk for general
convex losses even in the non-private regime. On the other
hand, our result circumvents a known bottleneck in the rela-
tionship between stability and generalization in stochastic
minimax optimization (also, known as Stochastic Saddle
Point (SSP) problems). In particular, in the L2/L2 setting of
the SSP problem, the best known generalization guarantee
using a ∆-argument stable algorithm is

√
∆ generaliza-

tion error based on the analysis of the strong duality gap
(Ozdaglar et al., 2022).

3.1. Algorithm description

Our algorithm relies on a non-private subroutine to solve
a regularized minimax problem. More concretely, let S̃ =
{S1, . . . Sp} be a collection of datasets. Let µw, µλ > 0

and w′ ∈ W . Let Aemp(S̃, µw, µλ, w
′, α) be an empirical

minimax solver that computes an α-saddle point (w̃, λ̃) of

min
w∈W

max
λ∈∆p

{
F (w, λ) (5)

:=

p∑
i=1

λiLSi(w) +
µw

2
∥w − w′∥22 − µλ

p∑
j=1

λj log λj

}

and outputs w̃.

The formal description of our algorithm is given in Algo-
rithm 1. Our algorithm is inspired by the Phased ERM
approach of (Feldman et al., 2020), which was used to attain
the optimal rate for the simpler problem of differentially
private stochastic convex optimization. We repurpose the
Phased ERM approach for the stochastic minimax prob-
lem. Our algorithm involves several modifications to this
approach that enable us to attain strong guarantees for the
worst-group population risk minimization problem. Cru-
cially, we provide a new analysis for our algorithm that
utilizes the argument uniform stability of the regularized
minimax problems (see, Lemma 4).

In Algorithm 1, a sequence of regularized empirical mini-
max problems are defined and solved iteratively using the
non-private minimax solver Aemp (defined earlier in this
section). The total number of such problems (the number
of rounds in the algorithm) T is logarithmic in K/p. In
round t ∈ [T ], we first sample a dataset of size nt from each
distribution to construct a new dataset collection S̃t. The
center of the regularization term is chosen to be w′ = wt−1,
i.e., the previous iterate. The settings of the regularization
parameters in each round are carefully chosen to ensure
convergence to a nearly optimal rate. The regularization pa-
rameter µλ is fixed across all rounds whereas µw is doubled
with every round. Our main result is stated below.

Theorem 2. Algorithm 1 is (ϵ, δ)-differentially private. Let

η = M
D min

{
ϵ√

72d log(K
p ) log( 1

δ )
,

√
p

log
3
4 (K)

√
K

}
. We have

E
[
max
i∈[p]

LDi
(wT )

]
− min

w∈W
max
i∈[p]

LDi
(w)

= O

(
MD

(
log

11
4 (K)

√
p

K
+

log
5
2 (K)p

√
d log(1/δ)

Kϵ

))
,

where wT is the output of Algorithm 1 and the expectation
is taken over the sampled data points and the algorithm’s
inner randomness.

Remarks:

• One can show that the rate in Theorem 2 is nearly optimal
in the offline setting considered in Section 5, where each
distribution is observed by a fixed-size dataset of size
K/p. A lower bound instance of Ω

(
p
√
d

Kϵ +
√

p
K

)
can
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Algorithm 1 Minimax Phased ERM

Input Sample oracles {C1, . . . Cp}, step size η, D =
max{L,B}, total number of samples drawn from all
groups K, non-private empirical solver Aemp.
Initialize w0 arbitrary parameter vector in W .
Set n = K/p and T = log2(n).
for t = 1, . . . , T do

Let nt = n/T, ηt = η2−t, µt
w = 1/(ηtnt), µt

λ =
1/(ηn).
For each i ∈ [p], sample St

i ∼ Dnt
i using the sample

oracle Ci. Denote S̃t = {St
1, . . . S

t
p}.

Let αt =
L2

8n2
tµ

t
w
+ B2

8n2
tµ

t
λ

.

Let w̃t = Aemp(S̃
t, µt

w, µ
t
λ, wt−1, αt).

Set wt = w̃t + ξt where ξt ∼ N (0, σtId) and σt =
6D
√

2 log2(n) log(1/δ)ηηt/ϵ.
end for
Output: wT .

be constructed in this case. More details are given in
Appendix D. Also, note that when d = O(K/p), the rate
in Theorem 2 matches the the non-private lower bound
Ω
(√

p
K

)
up to logarithmic factors.

• In Appendix A.1, we give an instantiation of Aemp, which
is an iterative algorithm for solving the regularized mini-
max problem in (5) with a convergence rate of Õ(1/N),
where N is the number of iterations.

The privacy and utility guarantees in Theorem 2 rely on a
stability-based result of the saddle point of the regularized
objective (5), which we present in the following lemma.

Lemma 3. Consider two neighboring dataset collections
S̃ = {S1, . . . Sp} ∈ Zn×p and S̃′ = {S′

1, . . . S
′
p} ∈ Zn×p

that differs in a single data point. Let (w̃, λ̃) and (w̃′, λ̃′)
be an α-saddle point of F (w, λ) in (5) when the dataset
collections are S̃ and S̃′, respectively. By letting α ≤

L2

8n2µw
+ B2

8n2µλ
, we have

∥w̃ − w̃′∥2 ≤ 3

n

(
L

µw
+

B
√
µwµλ

)

The proof of Lemma 3 follows from Lemma 2 in (Zhang
et al., 2021) as well as the observation that F (w, λ) can be
equivalently written in the finite-sum form composed with
regularization terms. We give full details in Appendix A.3.

Now we are ready to present our main technical lemma,
which shows that an approximate saddle point of the regu-
larized objective F (w, λ) in (5) gives a good solution to the
worst-group population risk minimization problem. We will
sketch the proof of this lemma and defer the full proof to
Appendix A.4.

Lemma 4. Let (w̃, λ̃) be an α-saddle point of F (w, λ) in (5)
with α ≤ L2

8n2µw
+ B2

8n2µλ
. For any w ∈ W ,

E
[
max
i∈[p]

LDi(w̃)

]
−max

i∈[p]
LDi(w)

= O

(
µw ∥w − w′∥22 + µλ log p

+

(
L2

nµw
+

LB

n
√
µwµλ

)
log(n) log(np) +

B
√
log(pn)√
n

)
,

where the expectation is taken over the randomness in the
datasets S̃.

Proof. (sketch) For simplicity, we let α = 0, which means
(w̃, λ̃) is the exact saddle point of F (w, λ). In particular,
by the definition of saddle point, one can show that for any
w ∈ W

max
i∈[p]

LSi
(w̃)− ϕ̂(w, λ̃) ≤ µw

2
∥w − w′∥22 + µλ log p

where ϕ̂(w, λ) =
∑p

i=1 λiLSi(w).

By Lemma 3 and Lipschitzness, for any given i ∈ [p], com-
puting w̃ has a uniform stability of γ = 3

n

(
L2

µw
+ LB√

µwµλ

)
with respect to the change of datapoint in Si. By Theo-
rem 1.1 in (Feldman & Vondrak, 2019), we have with high
probability over the sampling of S̃,

|LSi(w̃)− LDi(w̃)| = Õ

(
γ +

B√
n

)
Then we can use union bound across all i ∈ [p] and obtain
with high probability

|LSi
(w̃)− LDi

(w̃)| = Õ

(
γ +

B√
n

)
∀i ∈ [p]

In particular, we have with high probability

|max
i∈[p]

LDi
(w̃)−max

i∈[p]
LSi

(w̃)| = Õ

(
γ +

B√
n

)
Meanwhile, we can show that with high probability,
|ϕ(w, λ̃) − ϕ̂(w, λ̃)| = Õ

(
B√
n

)
for any given w ∈ W .

Finally, we put everything together and have with high prob-
ability

max
i∈[p]

LDi(w̃)−max
i∈[p]

LDi(w)

≤ max
i∈[p]

LDi
(w̃)− ϕ(w, λ̃)

≤ max
i∈[p]

LSi(w̃)− ϕ̂(w, λ̃) + Õ

(
γ +

B√
n

)
= Õ

(
µw ∥w − w′∥22 + µλ + γ +

B√
n

)
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Replacing γ with 3
n

(
L2

µw
+ LB√

µwµλ

)
and we obtain the de-

sired result.

Remark: As a side product of Lemma 4, we can sam-
ple a new dataset collection S̃ = {S1, . . . Sp} where
Si ∼ D

K/p
i . By letting µw = D

M

√
p
K

√
log(K/p) log(K),

µλ = D
√

p log(K/p) log(K)
K log p and w′ be any arbitrary parame-

ter in W , solving the regularized objective (5) with S̃ gives
an excess worst-group population risk of Õ

(√
p
K

)
, which

matches the non-private lower bound in (Soma et al., 2022)
up to logarithmic factors. Prior methods (nearly) matching
the non-private lower bound depend on making one pass
over the sampled data points to directly optimize the popu-
lation objective, our regularization-based method however
does not require such one pass structure.

Now, we are ready to give a proof sketch of Theorem 2. The
full proof is deferred to Appendix A.5.

Proof. (Proof Sketch of Theorem 2)

Privacy: At iteration t, by the stability argument in
Lemma 3, we have∥∥w̃t − w̃t

′∥∥
2
≤ 3L

ntµt
w

+
3B

nt

√
µt
wµ

t
λ

= 3Lηt +
3B

√
ntnηtη

nt

≤ 6D
√
(log2 n)ηtη

where w̃t and w̃t
′ are outputs from neighboring dataset

collections S̃t and S̃t′ that differ in one datapoint. Since the
sampled minibatches S̃t are disjoint across iterations, the
privacy of Algorithm 1 follows from the privacy guarantee
of the Gaussian mechanism and parallel composition.

Utility: Recall that R(w) = maxi∈[p] LDi(w). By
Lemma 4, we have

E[R(w̃t)−R(w̃t−1)]

= Õ

(
E[∥ξt−1∥22]

ntηt
+

1

ηn
+D2√ηηt +

B
√
nt

)
.

Also, we have

E ∥ξt∥22 = dσ2
t = 72dD2 log n log(1/δ)2−tη2/ϵ2

Therefore, as long as

η ≤ Mϵ

D
√
72d log n log(1/δ)

We will have

E ∥ξt∥22 ≤ 2−tM2 and E ∥ξt∥2 ≤
√
2
−t
M

Let w̃0 = w∗ and ξ0 = w0−w∗. Then ∥ξ0∥2 ≤ M . Hence,

E[R(wT )]−R(w∗)

=

T∑
t=1

E[R(w̃t)−R(w̃t−1)] + E[R(wT )−R(ŵT )]

≤
T∑

t=1

Õ

(
E[∥ξt−1∥22]

nηt
+

1

ηn
+D2√ηηt +

B√
n

)
+ LE[∥ξT ∥2]

The inequality holds since R(·) is L-Lipschitz and nt =
n/ log2(n).

We have

E[∥ξt−1∥22]
ntηt

≤ 2−(t−1)M2 log2 n

n2−tη
=

2(log2 n)M
2

ηn

and E[∥ξT ∥2] ≤ M
√
2
− log2 n

= M√
n

.

Therefore,

E[R(wT )]−R(w∗)

≤
T∑

t=1

Õ

(
M2

ηn
+D2η +

B√
n

)
+

ML√
n

= Õ

(
MD√

n
+

MD
√
d

nϵ

)

Replace n with K/p and we get the desired result.

4. Worst-group Risk Minimization using DP
OCO Algorithm

In this section, we give a framework to directly minimize
the expected worst-group loss in (4) using any DP online
convex optimization (OCO) algorithm as a subroutine.

Our framework leverages the idea from (Haghtalab et al.,
2022; Soma et al., 2022; Zhang et al., 2023) of casting the
objective into a two-player zero-sum game. One can show
that the excess expected worst-group risk is bounded by the
sum of the expected regret bounds of the min-player (the w-
player) and max-player (the λ-player) using stochastic gra-
dient estimation. Therefore, given any DP-OCO algorithm
Q−, our frameworks proceed by letting the w-player run
Q− with an estimate of the loss function ϕ(w, λt). Mean-
while, we instantiate the λ-player as EXP3 (Auer et al.,
2002), an adversarial multi-armed bandit algorithm and
feed it with a privatized estimator of ∇λϕ(wt, λt).

An online convex optimization algorithm interacts with an
adversary for T rounds. In each round, the algorithm picks
a vector wt and then the adversary chooses a convex loss
function ℓt. The performance of an OCO algorithm Q is

6
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therefore measured by the regret defined as

rQ(T ) =
1

T
E

[
T∑

t=1

ℓt(wt)− min
w∗∈W

T∑
t=1

ℓt(w
∗)

]

Definition 5. An online algorithm M is (ϵ, δ)-DP if for
any two sequence of loss functions S = (ℓ1, . . . ℓT ) and
S′ = (ℓ′1, . . . ℓ

′
T ) that differs in one loss function, we have

P (M(S) ∈ O) ≤ eϵP (M(S′) ∈ O) + δ

Suppose we have a DP OCO algorithm Q− with regret
rQ−(T ) that observes lt = ℓ(·, xt) for some data point xt

in each iteration, the formal description of our framework
is given in Algorithm 2. We give the privacy and utility
guarantee of Algorithm 2 in the following theorems.

Algorithm 2 Worst-group risk minimization using DP-OCO
algorithm

Input Sample oracles {C1, . . . Cp}, DP OCO algorithm
Q−, learning rate η, privacy parameters ϵ, δ.
Initialize w1 ∈ W and λ1 = (1/p, . . . 1/p) ∈ [0, 1]p.
Set U = B + 2B

ϵ log(T ).
for t = 1, . . . , T − 1 do

Sample it ∼ λt.
Sample x−

t , x
+
t ∼ Dit using the sample oracle Cit .

Update wt+1 = Q−(w1:t, x
−
t ).

Compute ℓ̃t = U − ℓ(wt, x
+
t ) + yt, yt ∼ Lap(B/ϵ).

Update λt+1,it = λt,itexp
(

−ηℓ̃t
λt,it

)
.

Normalize λt+1 = λt+1

∥λt+1∥1
.

end for
Output w̄T = 1

T

∑T
t=1 wt, λ̄T = 1

T

∑T
t=1 λt.

Theorem 6. (Privacy Guarantee) Algorithm 2 is (ϵ, δ)-
differentially private.

Proof. The sampled dataset can be divided into two disjoint
sets. S = {S−, S+} where S− = {x−

1 , . . . x
−
T } and S+ =

{x+
1 , . . . x

+
T }. Now, we proceed inductively. When t = 1,

it is easy to see that the generation of (w1, λ1) is (ϵ, δ)-DP.

Now we assume that the generation of {(wi, λi)}ti=1 is
(ϵ, δ)-DP for iteration t. At iteration t+ 1, we observe that
the computation of wt+1 only depends on S− and {wi}ti=1,
hence wt+1 can be generated under (ϵ, δ)-DP constraint due
to the privacy guarantee of Q−.

Furthermore, since ℓ is uniformly bounded by B, then
clearly the sensitivity of ℓ(wt, ·) w.r.t. replacing one data
point in the input sequence is bounded by B. Hence, by the
properties of the Laplace mechanism, ℓ̃t is also generated in
(ϵ, 0)-DP manner. Given that λt+1 depends on only ℓ̃t and

λt and since DP is closed under postprocessing, computing
λt+1 is (ϵ, δ)-DP. Since in iteration t, two different data
points (namely, x−

t and x+
t ) are used to generate wt+1 and

λt+1, then by parallel composition (and given the induction
hypothesis), generating (wt+1, λt+1) is (ϵ, δ)-DP.

Theorem 7. (Utility Guarantee) Suppose the regret of Q−

is denoted as rQ−(·). By setting η =
√

ln(p)
pTU2 , we have

E
[
max
i∈[p]

LDi(w̄T )

]
− min

w∈W
max
i∈[p]

LDi(w)

= rQ−(K/2) +O

((
B +

B log(K)

ϵ

)√
p log(p)

K

)

where w̄T is the output of Algorithm 2 and the expectation
is over the sampling of data points and the algorithm’s
randomness.

The proof of Theorem 7 can be found in Appendix B.1. In
particular, by instantiating the DP OCO algorithm Q− with
the DP-FTRL algorithm (Kairouz et al., 2021), we have the
following corollary.

Corollary 8. Let Q− in Algorithm 2 be DP-FTRL algorithm
from (Kairouz et al., 2021). By plugging the regret bound of
DP-FTRL into Theorem 7, we have

E
[
max
i∈[p]

LDi
(w̄T )

]
− min

w∈W
max
i∈[p]

LDi
(w)

= O

(
ML√
K

+ML

√
d

1
2 log2(1/δ) log(K)

ϵK

+

(
B +

B log(K)

ϵ

)√
p log(p)

K

)
,

where the expectation is over the sampling of data points
and the algorithm’s randomness.

Remark: Corollary 8 demonstrates an excess expected

worst-group risk of Õ
(√

d1/2

ϵK +
√

p
Kϵ2 +

√
p
K

)
. For the

common case of ϵ = Θ(1), the rate in Corollary 8 matches
the lower bound of Ω

(√
p
K

)
shown in (Soma et al., 2022)

up to logarithmic factors in the regime of d = Õ
(
p2
)
.

5. Private Worst-group Empirical Risk
Minimization

In this section, we consider the offline setting where each
distribution Di is observed by a fixed-size dataset Si with
i.i.d samples drawn from Di. In the offline setting, the
learner will take the dataset collection S̃ = {S1, . . . Sp} as
input instead of querying the sample oracles directly. This

7
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setting captures scenarios where each group is represented
by a dataset whose size is fixed beforehand.

In particular, we denote the dataset collection as S̃ =
{S1, . . . Sp}. Without loss of generality, we assume all
datasets Si have same size, namely |Si| = n for all i ∈ [p].
Note that n can also be written as n = K/p in this case.
We first define the worst-group empirical risk minimization
problem as follows.

Worst-group empirical risk minimization: Given a dataset
collection S̃ = {S1, . . . Sp} ∈ Zn×p, we denote ϕ̂(w, λ) =∑p

i=1 λiLSi
(w). The worst-group empirical loss can be

expressed as maxi∈[p] LSi
(w) = maxλ∈∆p

ϕ̂(w, λ). The
empirical objective is hence written as

min
w∈W

max
λ∈∆p

ϕ̂(w, λ) (6)

We define the excess worst-group empirical risk of
w ∈ W as Ê(w; {Si}pi=1) ≜ maxi∈[p] LSi

(w) −
minw̃∈W maxi∈[p] LSi

(w̃).

Next, we will present a method described in Algorithm 3
to solve the empirical objective (6) under the differential
privacy constraint. Algorithm 3 is based on a private version
of the multiplicative reweighting scheme (Abernethy et al.,
2022; Diana et al., 2021) and attains nearly optimal excess
empirical worst-group risk.

5.1. Private Multiplicative Group Reweighting

Here, we provide the details of our algorithm described
formally in Algorithm 3. In this algorithm, we maintain a
sampling weight vector λ ∈ [0, 1]p for all datasets {Si}pi=1.
In each iteration, we first sample a dataset according to λ.
Next, we sample a mini-batch from this dataset and update
the model parameters using Noisy-SGD. We then update
the group weight vector λ using the multiplicative weights
approach based on privatized loss values computed over the
datasets at the model parameters. We present the privacy and
utility guarantee of Algorithm 3 in the following theorems.

Theorem 9. (Privacy guarantee) In Algorithm 3, let τ =
cBp
Kϵ

√
T log(1/δ) and σ2 = cTp2L2 log(T/δ) log(1/δ)

K2ϵ2 for
some universal constant c. Then, Algorithm 3 is (ϵ, δ)-DP.

Theorem 10. (Convergence guarantee) There exist set-

tings of T = O

(
(ML+B

√
log(p))K2ϵ2

GBdp2 log(1/δ)

)
, ηw =

O
(

M2

T (G2+dσ2)

)
and ηλ = O

(√
log(p)
U2T

)
, where U =

Algorithm 3 Noisy SGD with Multiplicative Group
Reweighting (Noisy-SGD-MGR)

Input: Collection of datasets S̃ = {S1, . . . Sp} ∈ Zn×p,
mini-batch size m, # iterations T , learning rates ηw and
ηλ, privacy parameters ϵ, δ, and noise scales σ2, τ .
Initialize w1 ∈ W and λ1 =

(
1
p , . . .

1
p

)
∈ [0, 1]p.

for t = 1, . . . , T − 1 do
Sample it ∼ λt.
Sample Bt = {z1, . . . zm} from Sit uniformly with
replacement.
Update the model as follows

wt+1 = ProjW

(
wt − ηw

(
1

m

∑
z∈Bt

∇ℓ(wt, z) +Gt

))

where Gt ∼ N (0, σ2Id).
Compute Lt = [−LSi(wt) + yi,t]

q
i=1, yi,t

iid∼ Lap(τ).
Update the weights λ̃i

t+1 = λi
t exp(−ηλL

i
t), ∀ i ∈ [p].

Normalize λt+1 = λ̃t+1

∥λ̃t+1∥
1

.

end for
Output: w̄T = 1

T

∑T
t=1 wt, λ̄T = 1

T

∑T
t=1 λt.

O
(
B + Bp

Kϵ

√
T log(1/δ) log(KT )

)
such that

E
[
max
i∈[p]

LSi
(w̄T )

]
− min

w∈W
max
i∈[p]

LSi
(w)

= O

(
MLp

√
d log(1/δ) log(K/δ)

Kϵ

+
Bp
√

log(p) log(1/δ) log( Kϵ
d log(1/δ) )

Kϵ

)
,

where the expectation is over the algorithm’s randomness.

Remarks:

• The convergence rate in Theorem 10 is nearly optimal up
to logarithmic factors. A lower bound instance can be
created to reduce the original problem to a DP-ERM prob-
lem with single dataset, which leads to a lower bound of
Ω
(

p
√
d

Kϵ

)
(Bassily et al., 2014). A more detailed argument

for the lower bound instance can be found in Appendix D.

• (Abernethy et al., 2022) proposes a gradient method based
on the active group selection scheme. One can also design
a private algorithm based on this scheme and achieve a

suboptimal rate of Õ
(√

MLBp
Kϵ + MLp

√
d

Kϵ

)
. We defer

the details to Appendix C.2.

• Our results for the offline setting can be readily extended
to the case where the dataset sizes are non-uniform. In par-
ticular, when different groups are associated with datasets

8
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of different sizes, we find the group with the minimum
dataset size, which we denote as nmin. For the worst-
group population risk, we can simply replace n with nmin

in Algorithm 1 and sample without replacement from the
dataset of each group. This gives us an excess worst-
group population risk of Õ(

√
d

nminϵ
+ 1√

nmin
). For the

worst-group empirical risk, we can let the added noise
scale with nmin instead of n in Algorithm 3, which gives
an excess worst-group empirical risk of Õ(

√
d

nminϵ
). Both

rates can be shown to be nearly optimal by constructing a
matching lower bound instance (similar to our construc-
tion in Appendix D) in which the group with the min-
imum dataset size has a higher population or empirical
risk than the other groups.

6. Conclusion
We presented differentially private algorithms for solving
the worst-group risk minimization problem. In particular,
we gave two upper bounds on the excess worst-group pop-
ulation risk, one of them is tight in the offline setting and
we established the optimal rate for the excess worst-group
empirical risk. Establishing the optimal rate for the worst-
group population risk in general is left as an interesting open
problem for future work.
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A. Missing Proofs in Section 3
A.1. Non-private algorithm for the regularized objective

Here, we provide an non-private algorithm in solving the regularized minimax problem in (5) written as

min
w∈W

max
λ∈∆p

F (w, λ) :=

p∑
i=1

λiLSi(w) +
µw

2
∥w − w′∥2 − µλ

p∑
j=1

λj log λj

with an convergence rate of Õ (1/N) where N is the number of iterations.

Algorithm 4 Minimax Optimization for SC-SC Objective

Input: Collection of datasets S = {S1, . . . Sp}, regularization parameters µw, µλ > 0.
Init: w1 ∈ W .
for t = 1, . . . , N − 1 do

Compute λ̃t =
[
exp(LS1

(wt)/µλ), . . . exp(LSp
(wt)/µλ)

]
.

Let λt =
λ̃t

∥λt∥1
.

Compute ∇t =
∑p

i=1 λ
i
t∇LSi

(wt) + µw(wt − w′) .
Update wt+1 = ProjW(wt − ηt∇t).

end for
Output: w̄N = 1

N

∑N
t=1 wt and λ̄N = 1

N

∑N
t=1 λt .

We now provide the convergence guarantee on Algorithm 4.

Theorem 11. Let ηt = 1
µwt , we have

max
λ∈∆p

F (w̄N , λ)− min
w∈W

F (w, λ̄N ) = O

(
lnN

N

(
L2

µw
+M2µw

))

Proof. An important observation here is that in λt is the best response of function F (wt, ·), that is,

λt = argmin
λ∈∆p

F (wt, λ)

Then by Corollary 11.16 in (Orabona, 2019), we have

max
λ∈∆p

F (w̄N , λ)− min
w∈W

F (w, λ̄N ) ≤ RegretwN
N

(7)

where RegretwN =
∑N

t=1 lt(wt)−minw∈W
∑N

t=1 lt(w) and lt(w) = F (w, λt). Since w is updated using online gradient
descent and lt(w) is strongly convex, by Corollary 4.9 in (Orabona, 2019) and ∥∇t∥2 ≤ G+ µwB, we have

RegretwN = O

(
(L+ µwM)2

µw
(1 + lnN)

)
= O

(
lnN

(
L2

µw
+M2µw

))
(8)

Combining equations (7) and (8), we get the desired result.

A.2. Auxiliary Lemma

Lemma 12. Let (ŵ, λ̂) be the exact saddle point of (5) and (w̃, λ̃) be an α-saddle point of (5). Then we have

∥ŵ − w̃∥2 ≤
√

2α

µw

11
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Proof. Since (w̃, λ̃) is an α-saddle point of F (w, λ), then

F (w̃, λ̂)− F (ŵ, λ̃) ≤ α

=⇒ F (w̃, λ̂)− F (ŵ, λ̂) + F (ŵ, λ̂)− F (ŵ, λ̃) ≤ α

Since (ŵ, λ̂) is the saddle point, then
F (ŵ, λ̂)− F (ŵ, λ̃) ≥ 0

Therefore,
F (w̃, λ̂)− F (ŵ, λ̂) ≤ α

Also we have ŵ = argminw∈W F (w, λ̂) and F (·, λ̂) is a µw-strongly convex function, then

µw/2 ∥ŵ − w̃∥22 ≤ F (w̃, λ̂)− F (ŵ, λ̂) ≤ α

=⇒ ∥ŵ − w̃∥2 ≤
√

2α

µw

A.3. Proof of Lemma 3

Proof. Note that the empirical objective ϕ̂(w, λ) =
∑p

i=1 λiLSi
(w) can also be written in a finite sum form. For any

i ∈ [p], we denote zji be the jth datapoint of dataset Si and define batched node ξj = (zj1, . . . z
j
p). Hence S̃ can be expressed

as S̃ = {ξ1, . . . ξn}. We also define a new loss function f(w, λ, ξ) where ξ = {z1, . . . zp} as

f(w, λ, ξ) =

p∑
i=1

λiℓ(w, zi)

Then it is easy to show that

ϕ̂(w, λ) =
1

n

n∑
j=1

f(w, λ, ξj) (9)

Suppose S̃ = {ξ1, . . . ξi, . . . ξn} and S̃′ = {ξ1, . . . ξ′i, . . . ξn} where ξi and ξ′i differ with single datapoint zji for some
j ∈ [n]. By equation (9), we have

ϕ̂(w, λ) =
1

n

∑
ξ∈S̃

f(w, λ, ξ)

ϕ̂′(w, λ) =
1

n

∑
ξ∈S̃′

f(w, λ, ξ)

We also let Ψ(w, λ) = µw

2 ∥w − w′∥22 − µλ

∑p
j=1 λj log λj .

Let (ŵ, λ̂) and (ŵ′, λ̂′) be the exact saddle point of ϕ̂(w, λ) + Ψ(w, λ) and ϕ̂′(w, λ) + Ψ(w, λ) respectively.

It is easy to show that ∥∇wf(w, λ, ξ)∥2 ≤ L and ∥∇λf(w, λ, ξ)∥∞ ≤ B for any ξ. Also, ϕ̂(w, λ)+Ψ(w, λ) is µw-strongly
convex w.r.t ∥·∥2 and µλ-strongly concave w.r.t ∥·∥1. Then using Lemma 2 from (Zhang et al., 2021), we obtain√

µw ∥ŵ − ŵ′∥22 + µλ

∥∥∥λ̂− λ̂′
∥∥∥2
1
≤ 2

n

√
L2

µw
+

B2

µλ

12
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Furthermore, we have

∥ŵ − ŵ′∥2 ≤
√

µw ∥ŵ − ŵ′∥22 + µλ

∥∥∥λ̂− λ̂′
∥∥∥2
1
/
√
µw

≤ 1

n

√
4L2

µ2
w

+
4B2

µλµw
≤ 2

n

(
L

µw
+

B
√
µwµλ

)

Meanwhile, by Lemma 12, we also have

∥w̃ − ŵ∥2 ≤
√

2α

µw
≤ 1

2n

(
L

µw
+

B
√
µwµλ

)
and

∥w̃′ − ŵ′∥2 ≤
√

2α

µw
≤ 1

2n

(
L

µw
+

B
√
µwµλ

)
Putting every thing together, we have

∥w̃ − w̃′∥2 ≤ 3

n

(
L

µw
+

B
√
µwµλ

)

A.4. Proof of Lemma 4

Proof. Let R(w) = maxi∈[p] LDi
(w) and ϕ̂(w, λ) =

∑
i∈[p] λiLSi

(w). Denote (ŵ, λ̂) the exact saddle point of F (w, λ).
By the definition of saddle point, we have for any w ∈ W and λ ∈ ∆p,

ϕ̂(ŵ, λ) +
µw

2
∥ŵ − w′∥22 − µλ

p∑
j=1

λj log λj

−

ϕ̂(w, λ̂) +
µw

2
∥w − w′∥22 − µλ

p∑
j=1

λ̂j log λ̂j

 ≤ 0

=⇒ ϕ̂(ŵ, λ)− ϕ̂(w, λ̂) ≤

µw

2
∥w − w′∥22 − µλ

p∑
j=1

λ̂j log λ̂j −

µw

2
∥ŵ − w′∥22 − µλ

p∑
j=1

λj log λj


≤ µw

2
∥w − w′∥22 − µλ

p∑
j=1

λ̂j log λ̂j

≤ µw

2
∥w − w′∥22 + µλ log p

In particular, we have for any w ∈ W

max
i∈[p]

LSi
(ŵ)− Φ̂(w, λ̂) ≤ µw

2
∥w − w′∥22 + µλ log p

By Lemma 3, for any fixed i ∈ [p], computing ŵ has a uniform stability of γ = 2L2

nµw
+ 2LB

n
√
µwµλ

with respect to the change

of datapoint in dataset Si. Therefore, by fixing the randomness of S̃−i = {S1, . . . Si−1, Si+1, . . . Sp} and Theorem 1.1
from (Feldman & Vondrak, 2019), we have

PSi∼Dn
i

(
|LSi(ŵ)− LDi(ŵ)| ≥ c

(
γ log(n) log(n/β) +

B
√
log 1/β√
n

))
≤ β

13
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Then we can release the randomness of S̃−i and obtain

PS̃

(
|LSi(ŵ)− LDi(ŵ)| ≥ c

(
γ log(n) log(n/β) +

B
√
log 1/β√
n

))
≤ β

Using union bound across all i ∈ [p], we obtain with probability over 1− β, for all i ∈ [p]

|LSi(ŵ)− LDi(ŵ)| = O

((
L2

nµw
+

LB

n
√
µwµλ

)
log(n) log(np/β) +

B
√
log(p/β)√

n

)

Therefore, with probability 1− β, we have

|max
i∈[p]

LDi
(ŵ)−max

i∈[p]
LSi

(ŵ)|

= O

((
L2

nµw
+

LB

n
√
µwµλ

)
log(n) log(np/β) +

B
√
log(p/β)√

n

)

Also, since w is independent of the dataset, with probability over 1− β

|LSi(w)− LDi(w)| = O

(
B log(p/β)√

n

)
∀i ∈ [p]

and

|Φ(w, λ̂)− Φ̂(w, λ̂)| = O

(
B log(p/β)√

n

)
After putting everything together, we obtain with probability over 1− 2β

R(ŵ)−R(w) = max
i∈[p]

LDi
(ŵ)−max

i∈[p]
LDi

(w)

≤ max
i∈[p]

LDi
(ŵ)− ϕ(w, λ̂)

≤ max
i∈[p]

LSi
(ŵ)− ϕ̂(w, λ̂) +O

((
L2

nµw
+

LB

n
√
µwµλ

)
log(n) log(np/β) +

B
√
log(p/β)√

n

)

= O

(
µw

2
∥w − w′∥22 + µλ log p+

(
L2

nµw
+

LB

n
√
µwµλ

)
log(n) log(np/β) +

B
√

log(p/β)√
n

)

Choosing β = 1/n and taking expectation over the dataset collection S̃, we obtain

E [R(ŵ)]−R(w) (10)

= O

(
µw

2
∥w − w′∥22 + µλ log p+

(
L2

nµw
+

LB

n
√
µwµλ

)
log(n) log(np) +

B
√
log(pn)√
n

)

By Lemma 12, we have

∥w̃ − ŵ∥2 ≤
√

2α

µw
≤ 1

2n

(
L

µw
+

B
√
µwµλ

)
Given the fact that R(·) is L-Lipschitz, we have

|R(w̃)−R(ŵ)| ≤ L ∥w̃ − ŵ∥2 = O

(
L2

nµw
+

LB

n
√
µwµλ

)
(11)

14
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Combining equations (10) and (11), we have

E [R(w̃)]−R(w)

= O

(
µw

2
∥w − w′∥22 + µλ log p+

(
L2

nµw
+

LB

n
√
µwµλ

)
log(n) log(np) +

B
√
log(pn)√
n

)

A.5. Proof of Theorem 2

Proof. Privacy: At iteration t, by the stability argument in Lemma 3, we have∥∥w̃t − w̃t
′∥∥

2
≤ 3L

ntµt
w

+
3B

nt

√
µt
wµ

t
λ

= 3Lηt +
3B

√
ntnηtη

nt

≤ 6D
√
(log2 n)ηtη

where w̃t and w̃t
′ are outputs from neighboring dataset collections S̃t and S̃t′ that differ in one datapoint. Since the sampled

minibatches S̃t are disjoint across iterations, the privacy of Algorithm 1 follows from the privacy guarantee of the Gaussian
mechanism and parallel composition.

Utility: By Lemma 4, we have

E[R(w̃t)−R(w̃t−1)]

= O

(
E[∥ξt−1∥22]

ntηt
+

log p

ηn
+D2√ηηt log

1.5 n log(np) +
B
√
log(pn)
√
nt

)

where R(w) = maxi∈[p] LDi
(w).

Also, we have
E ∥ξt∥22 = dσ2

t = 72dD2 log(n) log(1/δ)2−tη2/ϵ2

Therefore, as long as

η ≤ Mϵ

D
√
72d log(n) log(1/δ)

We will have
E ∥ξt∥22 ≤ 2−tM2 and E ∥ξt∥2 ≤

√
2
−t
M

Let w̃0 = w∗ and ξ0 = w0 − w∗. Then ∥ξ0∥2 ≤ M . Hence

E[R(wT )]−R(w∗) =

T∑
t=1

E[R(w̃t)−R(w̃t−1)] + E[R(wT )−R(ŵT )]

≤
T∑

t=1

O

(
E[∥ξt−1∥22]

ntηt
+

log p

ηn
+D2√ηηt log

1.5 n log(np) +
B
√
log(n) log(pn)√

n

)
+ LE[∥ξT ∥2] (R(·) is L-Lipschitz.)

We have
E[∥ξt−1∥22]

ntηt
≤ 2−(t−1)M2 log2 n

n2−tη
=

2(log2 n)M
2

ηn

and E[∥ξT ∥2] ≤ M
√
2
− log2 n

= M√
n

.

15
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Therefore,

E[R(wT )]−R(w∗)

≤
T∑

t=1

O

(
log(n)M2

ηn
+

log(p)

ηn
+D2η log1.5(n) log(np) +

B
√
log(n) log(pn)√

n

)

+
ML√
n

= log n ·O

(
(log(np))M2

ηn
+D2η log2.5(np) +

B
√
log(n) log(np)√

n

)

+
ML√
n

= O

(
MD log11/4(np)√

n
+ (MD log5/2(np))

√
d log(1/δ)

nϵ

)
Replacing n with K/p gives the desired result.

B. Missing Proofs in Section 4
B.1. Proof of Theorem 7

Proof. It is easy to see that the objective in (3) is equivalent to

min
w∈W

max
λ∈∆p

∑
i∈[p]

λiLDi(w)

where ∆p = {λ ∈ [0, 1]p : ∥λ∥1 = 1} the probability simplex over p users. Recall ϕ(w, λ) =
∑

i∈[p] λiLDi
(w), then we

have

max
λ∈∆p

ϕ(w̄T , λ)− min
w∈W

max
λ∈∆p

ϕ(w, λ)

= max
λ∈∆p

ϕ(w̄T , λ)− max
λ∈∆p

min
w∈W

ϕ(w, λ)

≤ 1

T
max

w∈W,λ∈∆p

{
T∑

t=1

ϕ(wt, λ)− ϕ(w, λt)

}

=
1

T
max

w∈W,λ∈∆p

{
T∑

t=1

(ϕ(wt, λ)− ϕ(wt, λt) + ϕ(wt, λt)− ϕ(w, λt))

}

=
1

T

[
T∑

t=1

ϕ(wt, λt)− min
w∈W

T∑
t=1

ϕ(w, λt)

]
(A)

+
1

T

[
T∑

t=1

−ϕ(wt, λt)− min
λ∈∆p

T∑
t=1

(−ϕ(wt, λ))

]
(B)

We address the term A first. By fixing the randomness of wt and λt for some iteration t, we have Ex−
t
ℓ(wt, x

−
t ) = ϕ(wt, λt).

By extending the same argument to all t ∈ [T ], we obtain for any w,

1

T
E

[
T∑

t=1

(ϕ(wt, λt)− ϕ(w, λt))

]
=

1

T
E

[
T∑

t=1

ℓ(wt, x
−
t )− ℓ(w, x−

t )

]

By the regret guarantee of Q−, we have for any sequence x−
1 , . . . x

−
T

1

T
E

[
T∑

t=1

ℓ(wt, x
−
t )− ℓ(w, x−

t )

]
≤ rQ−(T )
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where the expectation is taken from the randomness over the algorithm. Therefore, we have

E[A] ≤ rQ−(T ) (12)

We then address the term B. We first define ℓ′(w, x) as the difference between some fixed constant U and the original loss
function ℓ(w, x), that is, ℓ′(w, x) = U − ℓ(w, x). Similarly the vector of p population risks over the new loss function ℓ′ is
therefore written as g(w) = [L′

D1
(w), . . . L′

Dp
(w)]. Therefore, the term B can be equivalently written as

B =
1

T

[
T∑

t=1

⟨g(wt), λt⟩ − min
λ∈∆p

T∑
t=1

⟨g(wt), λ⟩

]

Notice that at each iteration t, we have
∇λ⟨g(wt), λ⟩ = g(wt)

We construct a unbiased estimator of g(wt) as

g′(wt) =

{
ℓ̃t
λi
t

i = jt

0 o.w.

By letting U = B + 2B
ϵ log(T ), we have we have w.p. over 1− 1

T , maxt∈[T ] |yt| ≤ 2B
ϵ log(T ), which we denote as event

E. Conditioned on E, we have l̃t ∈ [0, 2U ] for any t ∈ [T ].

Observing that for any fixed wt, since x+
t ∼ Dit , we obtain

E[g′(wt)|E] = g(wt)

We now establish the bound on term B

E

[
T∑

t=1

⟨g(wt), λt⟩ −
T∑

t=1

⟨g(wt), λ⟩

]

= E

[
T∑

t=1

⟨g′(wt), λt⟩ −
T∑

t=1

⟨g′(wt), λ⟩

]

Since ∥g′(wt)∥∞ ≤ 2U conditioned on event E, by setting η =
√

ln(p)
pTU2 and invoking the regret bound of EXP3, we obtain

E[B|E] =
1

T
E

[
T∑

t=1

⟨g(wt), λt⟩ −
T∑

t=1

⟨g(wt), λ⟩

]

= O

(
U

√
p log(p)

T

)

Then we take the expectation on E and obtain

E[B] = P (E)E[B|E] + (1− P (E))E[B|Ec] = O

(
U

√
p log(p)

T

)

Finally we plug in the value of U ,

E[B] = O

((
B +

B log(T )

ϵ

)√
p log(p)

T

)
(13)

We combine equations (12) and (13) to get the desired result.
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C. Missing Proofs from Section 5
C.1. Proof of Theorem 9 and 10

Proof. (Proofs of Theorem 9) Note that given two neighboring data collections S̃ = {S1, . . . Sp} and S̃′ = {S′
1, . . . S

′
p} that

differ in one datapoint of jth dataset for some j ∈ [p]. In iteration t, if it ̸= j, then the output distribution of wt+1 is same
for S̃ and S̃′. Otherwise, generating wt+1 satisfies ( ϵ

c
√

T log(1/δ)
, δ
2T )-DP based on the property of Gaussian mechanism

and privacy amplification by subsampling. Therefore, overall generating wt+1 is ( ϵ

c
√

T log(1/δ)
, δ
2T )-DP.

Meanwhile, generating λt+1 is ( ϵ

c
√

T log(1/δ)
, 0)-DP based on the property of Laplace mechanism. Using basic composition,

we have generating the pair (wt+1, λt+1) is ( 2ϵ

c
√

T log(1/δ)
, δ
2T )-DP. Hence, by strong composition for t ∈ [T ], we obtain the

algorithm is (ϵ, δ)-DP.

Proof. (Proof of Theorem 10) Recall that n = K/p. We have

max
λ∈∆p

ϕ̂(w̄T , λ)− min
w∈W

max
λ∈∆p

ϕ̂(w, λ)

≤ max
λ∈∆p

ϕ̂(w̄T , λ)− min
w∈W

ϕ̂(w, λ̄T )

≤ max
λ∈∆p,w∈W

{
1

T

T∑
t=1

(
ϕ̂(wt, λ)− ϕ̂(w, λt)

)}

= max
λ∈∆p,w∈W

{
1

T

T∑
t=1

(
ϕ̂(wt, λ) + ϕ̂(wt, λt)− ϕ̂(wt, λt)− ϕ̂(w, λt)

)}

=
1

T

[
T∑

t=1

ϕ̂(wt, λt)− min
w∈W

T∑
t=1

ϕ̂(w, λt)

]
(A)

+
1

T

[
T∑

t=1

−ϕ̂(wt, λt)− min
λ∈∆p

T∑
t=1

(−ϕ̂(wt, λ))

]
(B)

Next, we will bound the terms A and B separately. We address term A first. In particular, for any w ∈ W , we can rewrite
the expectation of term A as

E[A] =
1

T
E

[
T∑

t=1

(
ϕ̂(wt, λt)− ϕ̂(w, λt)

)]

≤ 1

T
E

[
T∑

t=1

⟨∇ϕ̂(wt, λt), wt − w⟩

]

For any iteration t, by fixing the randomness up to wt and λt and letting ∇t =
1
m

∑
z∈Bt

∇ℓ(wt, z) +Gt be the gradient
update in step 6 in Algorithm 3, we have

E[∇t] = ∇ϕ̂(wt, λt)

18
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We can extend the same augment for all t ∈ [T ] and obtain

E[A] ≤ 1

T
E

[
T∑

t=1

⟨∇ϕ̂(wt, λt), wt − w⟩

]

=
1

T
E

[
T∑

t=1

⟨∇t, wt − w⟩

]

≤ M2

2Tη
+

η

2T

T∑
t=1

E
[
∥∇t∥2

]
≤ ηL2

2
+

M2

2Tη
+

dσ2η

2

where the first equality holds by standard convex analysis.

Meanwhile, we let U = B + 8B
nϵ

√
T log(1/δ) log(pnT/2), and denote L′

t = [U − LSi(wt) + yi,t]
p
i=1. By using a union

bound, we have ∥L′(t)∥∞ ≤ 2U for all t ∈ [T ] with probability over 1− 1
n , which we denote as event E. Conditioned on

event E, our update rule for λ can be seen as applying the Hedge algorithm with L′
t as the loss input and the term B is

formulated as its corresponding regret bound. Therefore, by the regret bound of Hedge , we obtain

E[B|E] = O

(
∥Lt∥∞

√
log(p)

T

)
= O

(
B

√
log(p)

T
+

B
√

log(p) log(1/δ) log(pnT )

nϵ

)

Then we can take the expectation over E and have

E[B] = P (E)E[B|E] + P (Ec)E[B|Ec] = O

(
B

√
log(p)

T
+

B
√
log(p) log(1/δ) log(pnT )

nϵ

)

By combining the bounds of E[A] and E[B] and plugging into the values of T , ηw and ηλ, we obtain the desired result.

C.2. Private Active Group Selection

Here we present another algorithm built upon the active group selection scheme described in Algorithm 5. Algorithm 5 is
different from Algorithm 3 on the group selection method. Instead of maintaining a weight vector to sample the dataset as in
Algorithm 3, we select the dataset with highest loss in each iteration. To maintain privacy, we resort to the report-noisy-max
mechanism for the group selection. After such (approximately) worst-off group is selected, we sample a mini-batch from it
and use Noisy-SGD to update the model parameters.

Algorithm 5 Noisy SGD with active group selection (Noisy-SGD-AGS)

InputCollection of datasets S = {S1, . . . Sp} ∈ Zn×p, mini-batch size m, # iterations T , learning rate η
for t = 1, . . . , T − 1 do

Compute it = argmaxi∈[p] LSi
(wt) + yi,t where yi,t

iid∼ Lap(τ).
Sample Bt = {z1, . . . zm} from Sit uniformly with replacement.
Update the model by

wt+1 = ProjW

(
wt − η ·

(
1

m

∑
z∈Bt

∇ℓ(wt, z) +Gt

))
.

where Gt ∼ N (0, σ2Id).
end for
Output w̄T = 1

T

∑T
t=1 wt

Theorem 13. (Privacy guarantee) Algorithm 5 is (ϵ, δ)-DP with τ = cBp
Kϵ

√
T log(1/δ) and σ2 = cTL2q2 log(K/δ) log(1/δ)

K2ϵ2

for some universal constant c.
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.

Theorem 14. (Convergence rate) with probability over 1 − κ, by letting T = MLKϵ

16Bp
√

log(1/δ)
and η = M√

T (G2+dσ2)
, we

have

E[max
i∈[p]

LSi
(w̄T )]− min

w∈W
max
i∈[p]

LSi
(w) =

O

((√
MLBp

Kϵ
+

MLp
√
d

Kϵ

)
· polylog(p, δ, κ, n)

)
.

Proof. By the union bound, we have with probability over 1− κ

|yi,t| ≤
8B

nϵ

√
T log(1/δ) log(pT/2κ)

for all i ∈ [p] and t ∈ [T ]. We denote this as event A and condition on A. By denoting R(κ, T ) =
8B
nϵ

√
T log(1/δ) log(pT/2κ), we have

E[max
i∈[q]

LSi(w̄T )]

≤ E

[
1

T

T∑
t=1

max
i∈[q]

LSi
(wt)

]
(convexity of max

i
LSi

)

≤ E

[
1

T

T∑
t=1

LSit
(wt)

]
+R(κ, T ) (Event A)

For any fixed w∗, by the convexity of the loss function, we obtain

E

[
1

T

T∑
t=1

(LSit
(wt)− LSit

(w∗))

]
≤ 1

T
E

[
T∑

t=1

⟨∇LSit
(wt), wt − w∗⟩

]

Denote ∇t =
1
m

∑
z∈Bt

∇ℓ(wt, z) +Gt where Bt is the mini-batch uniformly sampled from Sit and Gt ∼ N (0, σ2Id). If
we fix the randomness of wt and it, it is easy to see that

E[∇t] = ∇LSit
(wt)

where the randomness comes from the datapoint sampling and added Gaussian noise.

By releasing the randomness of wt and it and extending the same analysis to all t ∈ [T ], we obtain

E

[
1

T

T∑
t=1

(
LSit

(wt)− LSit
(w∗)

)]
≤ 1

T
E

[
T∑

t=1

⟨∇LSit
(wt), wt − w∗⟩

]

=
1

T
E

[
T∑

t=1

⟨∇t, wt − w∗⟩

]

≤ M2

2Tη
+

η

2T

T∑
t=1

E
[
∥∇t∥2

]
≤ ηL2

2
+

M2

2Tη
+

dσ2η

2

20



Differentially Private Worst-group Risk Minimization

Therefore, we have

E[max
i∈[q]

LSi
(w̄T )]

≤ E

[
1

T

T∑
t=1

LSit
(wt)

]
+R(κ, T ) (Event A)

≤ E

[
1

T

T∑
t=1

LSit
(w∗)

]
+

ηL2

2
+

M2

2Tη
+

dσ2η

2
+R(κ, T )

≤ max
i∈[q]

LSi
(w∗) +

ηL2

2
+

M2

2Tη
+

dσ2η

2
+R(κ, T )

By plugging into the value of η, σ2 and T and replacing n with K/p, we get the desired result.

D. Lower Bounds for the Offline Setting
Consider a L-Lipschitz convex loss function ℓ(w, z) bounded by [0, B] for any w ∈ W and z ∈ Z . We create a new loss
function ℓ′(w, (z, y)) = ℓ(w, z) + y where y ∈ [0, B]. It is easy to see that ℓ′(·, (z, y)) is also convex and L-Lipschitz.

Empirical case We let y = B for all datapoints in S1 = {(z1, y1), . . . (zn, yn)} and y = 0 for all datapoints in Si with
i ̸= 1. Therefore, it is easy to see that for any w ∈ W and i ∈ [p]

L′
S1
(w) ≥ L′

Si
(w)

where L′
Si
(w) = 1

n

∑
(z,y)∈Si

ℓ′(w, (z, y)).

Then we have
min
w∈W

max
i∈[p]

L′
S1
(w) = min

w∈W
L′
S1
(w)

Then the original worst-group empirical risk minimization problem is reduced to single-distribution DP-ERM problem
which is known to be lower bounded by Ω

(√
d

nϵ

)
for Lipschitz convex loss (Bassily et al., 2014). Therefore, a lower bound

of the excess worst-group empirical risk is also Ω
(√

d
nϵ

)
. Since n = K/p, this lower bound can also be written as Ω

(
p
√
d

Kϵ

)
.

Population case We let y = B when (z, y) ∼ D1 and y = 0 when (z, y) ∼ Di with i ̸= 1. The distribution of z is
arbitrary. Therefore, we have for any w ∈ W and i ∈ [p]

L′
D1

(w) ≥ L′
Di

(w)

and
min
w∈W

max
i∈[p]

L′
Di

(w) = min
w∈W

L′
D1

(w)

Similar to the empirical case, we can reduce the worst-group population risk minimization problem to single-distribution DP-
SCO problem which is lower bounded by Ω

(√
d

nϵ + 1√
n

)
(Bassily et al., 2019). Therefore a lower bound of the population

excess worst-group risk is also Ω
(√

d
nϵ + 1√

n

)
. Since n = K/p, this lower bound can be also written as Ω

(
p
√
d

Kϵ +
√

p
K

)
.
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