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Abstract

Random access (RA) is one of the most foundational medium access control (MAC)
layer scheduling schemes for handling unpredictable data traffic from multiple
terminals and serves as the basis for modern carrier-sense multiple access (CSMA)
protocols. While multi-agent reinforcement learning (MARL) has been explored
to optimize RA-based networks, its reliance on experience-driven, distributed
policy learning incurs significant training overhead for each optimization task,
limiting their feasibility in real-world applications. In this work, we propose to
leverage a foundation model (FM) to improve MARL efficiency across diverse
RA network optimization tasks. Specifically, we design an FM-aided actor-critic
algorithm within a consensus-based decentralized MARL architecture and provide
its convergence analysis. Numerical evaluations show that our proposed method
enhances MARL efficiency for RA network optimization.

1 Introduction

1) Background and Motivations Random access (RA) techniques have long been woven into
the fabric of modern wireless networks at the medium access control (MAC) layer, with prominent
examples including CSMA/CA in Wi-Fi and LTE-LAA [1]. In RA networks, multiple devices share
a common channel and make independent transmission decisions without centralized scheduling.
This decentralized design enables scalable and flexible operation in a wide range of applications,
such as the Internet of Things (IoT) [2], machine-type communications (MTC) [3], and smart
grid infrastructure [4], where many devices are connected with sporadic traffic patterns. A central
challenge in RA lies in optimizing network performance while mitigating collisions among devices.
Despite decades of research, existing solutions often rely on heuristic methods that fail to achieve
strong performance or idealized analytical models that inadequately capture the complexities of
real-world environments.

2) Multi-agent Reinforcement Learning Approaches and Foundation Models Recent advances
in machine learning (ML) have allowed intelligent strategies for optimizing RA networks (e.g., [5, 6,
7]). Given their decentralized nature, RA networks can be modeled as distributed decision-making
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systems, making them well-suited to multi-agent reinforcement learning (MARL) framework. This
has motivated many MARL-based approaches for RA optimization [8, 9, 10, 11, 12, 13, 14] (see
Appendix A.1 for details). However, conventional MARL methods often suffer from task-specific
overfitting as they are primarily tailored to a single objective (e.g., minimizing collisions). Achieving
high performance in different objectives often demands complex models and extensive re-training,
which reduces efficiency and limits generalization across tasks. These limitations highlight the need
for more efficient MARL frameworks for RA optimization.

In recent years, foundation models (FMs), which are pretrained on large datasets and finetuned for
downstream tasks, have achieved astonishing successes in natural language processing and emerged
as powerful tools for enhancing reinforcement learning (RL). Self-supervised FMs can capture data
dynamics as sequence models (e.g., MAMBA [15]) and provide reward-agnostic representations that
accelerate online learning. With FMs also gaining attention in wireless communications recently
(see Appendix A.2 for details), integrating them into MARL presents a promising direction for
efficient RA network optimization. However, a key challenge lies in the deployment of FMs within
existing RL architectures (e.g., actor-critic) and designing MARL algorithms that fully leverage their
representational power.

3) Our Approach and Contributions We propose an FM-aided MARL framework for optimizing
RA networks under a fully decentralized architecture, where policy learning proceeds without
centralized training. To ensure global convergence, we employ an average consensus mechanism [16],
allowing devices to exchange local information with neighbors. Our design builds on the actor-critic
framework (e.g., A2C [17], SAC [18], DDPG [19], PPO [20]), where an FM serves as a reward-
agnostic backbone. A reward-specific head is then attached to form the critic network. The FM
is pretrained in a self-supervised manner on reward-independent network data, capturing system
dynamics and generating expressive latent representations. This FM-aided actor-critic accelerates
online policy learning while maintaining comparable or superior performance to end-to-end training.

Our main contributions are as follows: 1) We introduce a new method to incorporate an FM as a
reward-agnostic critic backbone inspired by the SMART architecture [21] pretrained for forward
dynamics prediction; 2) We define Markov decision process (MDP) parameters for three RA op-
timization objectives: fair age of information (AoI), maximum sum-rate, and fair rate. We use
distinct locally computable reward functions compatible with decentralized MARL; 3) We provide
a mathematical analysis of the convergence properties of our decentralized FM-aided actor–critic
algorithm; and 4) We conduct numerical experiments to demonstrate consistent improvements in
learning speed and performance across diverse RA optimization tasks.

2 System Model

1) Network Configuration: We consider an RA network with K single-antenna devices attempting
to transmit data packets to anNr-antenna access point (AP). The network operates in slotted time over
a finite horizon T , with time slots indexed by t ∈ {1, 2, . . . , T}. Following the CSMA/CA protocol,
each device k ∈ K = {1, 2, . . . ,K} adopts a listen-before-talk (LBT) mechanism, performing clear
channel assessment (CCA) prior to transmission. If the channel becomes idle, the device decides
whether to transmit a packet to the AP over τ time slots. A successful transmission (i.e., no collision)
triggers an acknowledgment (ACK) from the AP, allowing the device to proceed with next packet. In
case of collision, no ACK is sent, and the device waits for the next opportunity to retransmit. We
assume a saturated traffic condition, i.e., all devices always have packets to transmit. To support
decentralized operation, no central controller is assumed. Instead, devices exchange local information
with neighbors defined by an undirected graph G=(K, E), where E represents connectivity [16].

2) Data Transmission Model: The single-input multiple-output (SIMO) channel between device k
and the AP at time slot t is given by

gk,t =
√
ηk,thk,t, (1)

where hk,t ∼ CN (0, INr) represents small-scale fading and ηk,t denotes the distance-dependent
large-scale fading factor. Then, the achievable data rate of device k at time slot t can be obtained by
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the Shannon capacity formula:

Rk,t = B log2

(
1 +

pk∥gk,t∥22
BN0

)
, (2)

where B is the bandwidth, pk is the transmit power of device k, and N0 is the noise spectral
density [22]. Assuming a block-fading channel (i.e., the channel remains static during each packet
transmission), the amount of data which device k can transmit at time slot t is expressed as mk,t =
Rk,tTsτ , where Ts is the slot duration.

3) Downstream Tasks: We consider the following three objectives for our downstream tasks:

i) Fair-AoI (Worst-case AoI Minimization): AoI of device k can be quantified as the number of
time slots elapsed since its last successful packet transmission, which we denote as ℓk,t. Let
Tk,t ⊆ {1, 2, . . . , t} denote the set of time slot indices at which device k has successfully transmitted
a packet during the time horizon t ≤ T . We minimize the worst-case AoI among all devices using

min max
k∈K,t∈Tk,T

ℓk,t. (3)

This task is useful in applications where timely information updates are important.

ii) Max-rate (Sum-rate Maximization with Minimum Rate Guarantees): We define

xk,t =
1

tTs

∑
t′∈Tk,t

mk,t′ (4)

as the throughput of device k over the time horizon t≤T . To maximize sum-rate, i.e.,
∑

k∈K xk,T , it
is ideal to prioritize devices with higher data rates, but this can result in poor fairness. To prevent this,
we impose a minimum rate requirement Rmin and formulate our objective as

max
∑
k∈K

xk,T (5)

s.t. xk,T ≥ Rmin, ∀k ∈ K.

This problem seeks to maximize the sum-rate while ensuring each device’s rate to be at least Rmin.

iii) Fair-rate (Worst-case Rate Maximization): To ensure balanced per-device rate, we maximize the
minimum throughput across all devices over the time horizon T , which can be expressed as

max min
k∈K

xk,T . (6)

This formulation ensures that no device is significantly disadvantaged in terms of data rate.

3 Foundation Model-aided Multi-agent Reinforcement Learning Framework

1) MARL Problem Formulation: We formulate the FM-aided MARL problem by the tuple
{S, {Ak}k∈K, P, {Rk}k∈K}, where S is the global state space, Ak is the action set for device k, P
is the state transition probability, and Rk is the local reward function for device k. At a time slot
t, each device k at a global state st ∈ S selects an action ak,t ∈ Ak according to its local policy
πk, i.e., ak,t ∼ πk(·|st). As the state transitions from st to st+1, each device k receives a reward
rk,t = Rk(st,at), where at = [a1,t, a2,t, . . . , aK,t] is the joint action vector.

We define our state as
st =

(
{ξ̂k,t}k∈K, {ℓ̂k,t}k∈K, qt

)
, (7)

where ξ̂k,t =
ξk,t−mink Et[ξk,t]

maxk Et[ξk,t]−mink Et[ξk,t]
is the min-max normalized signal-to-noise ratio (SNR) for

device k, ℓ̂k,t = ℓk,t/λ is the normalized AoI with λ as a scaling factor, and qt ∈ {0, 1} is the

binary channel occupancy indicator. We use dB scale for SNR, i.e., ξk,t = 10 log10
pk∥gk,t∥

2
2

BN0
. For

each device k, ξ̂k,t and ℓ̂k,t are local information. Following [10, 13, 14], we consider AoIs of other
devices {ℓ̂k′,t}k′∈K\k and qt to be observable from the broadcast ACK packets and CCA phase,
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Figure 1: The architecture of FM as a reward-agnostic critic backbone. The model takes an state-
action history and extracts embeddings via state and action encoders. Transformer blocks are used to
process the embeddings. The output of a prediction head is sent to the reward-specific critic head.

respectively. We assume that SNRs of other devices {ξ̂k′,t}k′∈K\k are available via local information
exchange. We consider a discrete action ak,t ∈ Ak = {0, 1}, where 0 indicates wait and 1 represents
transmit.

We now define local reward functions corresponding to each downstream objective. First, the local
reward for fair-AoI task is defined as

rFAk,t = −ℓk,t/(ωFAK), (8)

where ωFAK is a scaling factor. Since ℓk,t = 0 only upon successful transmission, this reward
encourages devices to avoid collisions and prioritizes those with higher AoI, thus promoting fairness.

Next, the local reward for max-rate task is given by

rMR
k,t = xk,t/ωMR +D(xk,t), (9)

where ωMR is a scaling parameter, and D(xk,t) is a penalty function defined as

D(xk,t) =

log
(

xk,t+ωP1Rmin

(1+ωP1)Rmin

)ωP2/K

, if xk,t ≤ Rmin,

0, otherwise,
(10)

with scaling factors ωP1 and ωP2. Note that (10) is bounded in [log(ωP/(1 + ωP), 0]. This reward
derives each device to maintain the minimum rate requirement while maximizing the sum-rate.

Lastly, we adopt the α-fairness utility function [10] and define the reward for fair-rate task as

rFRk,t =
1

1− α

(
xk,t

ωFR1/K
+ ωFR2

)1−α

, (11)

where α ∈ (1,∞) controls the level of fairness, and ωFR1 and ωFR2 are scaling factors.

Note that, to reflect the condition of fully decentralized MARL, these reward functions are restricted
to be local. For the consensus step, we let rk,t ∈ {rFAk,t, rMR

k,t , r
FR
k,t} to be exchanged across the devices

through local communication links defined by G.

2) Foundation Model (FM) Architecture: We provide the details of our FM, which supports
the actor-critic framework (see Appendix B for details) as a reward-agnostic critic backbone. The
FM is pretrained in a self-supervised manner and thus does not require reward labels. This allows
the FM to be reward-agnostic and transferrable across different RL tasks. Our FM pretraining is
inspired by the SMART framework [21], which uses a control transformer architecture to facilitate
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self-supervised learning across different pretraining goals. Similar to SMART, we employ encoders to
extract meaningful embeddings and utilizes the attention mechanism within transformers to perform
a prediction task. In this paper, we specifically adopt the forward dynamics prediction task for
self-supervised pretraining, which aligns naturally with the core principle of RL to optimize future
outcome predictions.

The architecture of our FM is shown in Fig. 1, which consists of three main parts: encoders,
transformers, and a prediction head. The encoders first map the input into a sequence of token
embeddings, which are augmented with position embeddings to convey temporal information. The
combined embeddings are then passed through a multi-transformer module, where each block consists
of a self-attention layer and a multi-layer perceptron (MLP). The output from the transformer module
is fed into the prediction head, which generates an embedding that represents next-step state. During
the pretraining, the FM is optimized such that the loss between the predicted and actual next-state
embeddings is minimized. By integrating the self-supervised FM, we allow our MARL agents to
utilize effective representations of the environment dynamics during their online learning.

Similar to [10, 13, 14], we assume that each device can store the H latest states and actions. Let t̃[h]k
denote the time slot when the h-th latest action was taken by device k. Then, the state-action history
at time slot t can be defined as

Ψ
[H:1]
k,t = {s

t̃
[H]
k

, a
k,t̃

[H]
k

, . . . , s
t̃
[1]
k

, a
k,t̃

[1]
k

, st}, (12)

which we use as an input to both actor and critic. This enables the model to better reflect the temporal
dynamics of RA environment.

3) Decentralized MARL Algorithm Implementation: Fig. 2 shows the overall framework of
our FM-aided decentralized MARL for RA network optimization. Each device k ∈ K maintains a
history buffer to store past states and actions and updates its own actor and critic models. Connected
devices can exchange local information (i.e., rewards and SNRs) with one another. The critic network
consists of two parts: a reward-agnostic FM and a reward-specific head. The FM is pretrained only
using a set of state-action tuples and remains fixed during the online phase.

Our decentralized MARL for a K-device RA network is summarized as Algorithm 1 in Appendix D.
Each device obeys the LBT mechanism and constantly monitors the channel. Once the channel is
assessed to be clear, the device makes a transmission decision ak,t using its local policy conditioned
on the state-action history (Lines 6 - 11). Depending on the transmission result, each device updates
its status. The above step is repeated for the span of T time slots, and we consider our MDP to
only progress over time slots where an action is taken by the devices. Each time the devices are
prepared for updating their model weights, the consensus process (Lines 19 - 22) first takes place
for information exchange. Each consensus step consists of G rounds of communication, where
weight-based averaging is performed in each round. Then, each device updates its actor and critic
parameters after computing the temporal difference (TD) error (Lines 24 - 29). While the actor
takes the input directly from the state-action history, the critic first processes it via FM-based reward-
agnostic backbone and then uses its output to update the weights of reward-specific head. As a final
step, both the current state and action are stored in the history buffer.

4) Theoretical Convergence Analysis: Denoting the MDP step index by n, we establish the theo-
retical convergence of our decentralized multi-agent actor-critic algorithm. The required assumptions
are provided in Appendix E.1.
Theorem 1 (Finite-Time Critic Convergence Rate). Consider iterative updates of wk,n for all k ∈ K
in Algorithm 1. For any given policy πθ and k ∈ K, we have

E
[
∥wk,n − w∗

k,n∥2
]
≤ 2

(
c1
c2

)2

e−2c3G+2c4n + 2c5(1− c6β)n−τ(β) + 2c7τ(β)β, (13)

where c1 = 2Krmaxβ(1+ ν−(K−1)), c2 = (1+ γ)β, c3 = ln(1− νK−1)−1, c4 = ln(1+ (1+ γ)β),
{c5, c6, c7} are constants independent of the step size β, and τ(β) = O(log(β−1)) is the mixing time.

The proof of Theorem 1 is provided in Appendix E.2. The above result establishes convergence to
the TD fixed points for all devices even when rewards are shared rather than critic parameters as in
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Figure 2: A visual representation of our fully decentralized MARL framework. Both the actor and
critic are trained in a decentralized manner. There exist local communication links among devices
that allow local information sharing for consensus.

related works [23, 24, 25]. From the first term in (13), we see that the communication rounds G for
reward sharing must be sufficiently large.

Theorem 2 (Finite-Time Convergence Rate of Decentralized MARL with Local Reward Consensus).
Consider the actor-critic algorithm in Algorithm 1. With step-size set as α = 1

4LJ
,

E
[
∥∇θJ(θ

(N̂))∥2
]
≤ 16LJrmax

N(1− γ)
+ 18(1 + γ)2

∑N
n=1

∑
k∈K ∥wk,n − w∗

k,n∥2

N

+ 72K3r2max

(
(1 + ν−(K−1))(1− νK−1)G

)2

+ 72K(rmax + (1+γ)Rw)
2 + 18(1+γ)2ξcritic

approx,

(14)

where N̂ is sampled uniformly from {1, · · · , N} and Rw is a constant that is independent of N .

The proof of Theorem 2 is provided in Appendix E.3. Based on Theorem 2, we ensure that the output
policy of Algorithm 1 converges to the neighborhood of some stationary point at a rate of O(1/N).

4 Numerical Evaluation

We conduct numerical experiments to evaluate our FM-aided decentralized MARL algorithm for
optimizing RA-based MAC layer. The details of experimental setup are provided in Appendix C.1.

As the baselines, we first analyze the end-to-end learning behavior of our consensus-based decen-
tralized MARL and validate MDP parameters we formulate. For ease of illustration, we show the
throughput and AoI results across learning episodes with K = 2 devices in Fig. 3. The results in
Fig. 3 confirm strong learning performance in all tasks. As expected, the fair-AoI task (Fig. 3a)
successfully balances the AoI across devices. The max-rate task (Fig. 3b) effectively maximizes one
device’s throughput while ensuring the other remains close to Rmin. The fair-rate task (Fig. 3c) is
able to jointly improve throughput of both devices while preserving the fairness. We refer readers to
Appendix C.2.1 for further experiments.

With the end-to-end MARL results as proof of concepts and baselines, we are now ready to assess the
effectiveness of our FM-aided MARL algorithm by comparing it with the end-to-end training. Fig. 4
presents the AoI and throughput over runtime for each downstream task. For all tasks, FM-aided
learning shows superior learning efficiency, approximately improving the convergence speed by
at least 30%. Due to space limitation, we relegate additional results in Appendix C.2.2. Lastly,
we provide a summary of performance comparison in Table 1. We can observe that all algorithms
converge to nearly the same rate and AoI. However, the proposed FM-aided MARL approach arrives
at its 95%-optimal performance level much quicker than the end-to-end training approach. Due to
space limitation, we provide our results with K = 4 in Appendix C.2.3, showing 55% improvement
in learning speed.
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Figure 3: Throughput and AoI performance under end-to-end learning across different RA optimiza-
tion tasks, evaluated with K = 2 for ease of illustration.
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Figure 4: Performance comparison of end-to-end and FM-aided MARL across different RA optimiza-
tion tasks. The FM-aided approach achieves faster convergence than the end-to-end baseline.

Table 1: Performance Comparison of End-to-End and FM-aided MARL. AoI is measured for the
fair-AoI task, and rate is measured for both max-rate and fair-rate tasks.

Task Algorithm Mean Min. Max. N-Gap 95%-Time (s)
Fair-AoI End-to-End 0.364 ± 0.007 0.363 0.364 0.002 120

(ms) FM-aided 0.364 ± 0.002 0.362 0.366 0.013 82
Max-rate End-to-End 36.113 ± 0.051 8.878 63.347 0.860 450
(Mbps) FM-aided 36.443 ± 0.102 8.420 64.467 0.723 220
Fair-rate End-to-End 25.741 ± 0.026 21.442 30.039 0.286 420
(Mbps) FM-aided 25.659 ± 0.022 21.541 29.777 0.277 701

5 Conclusion

In this work, we proposed an FM-aided decentralized MARL framework for RA network optimization.
By employing an FM as a reward-agnostic critic backbone, our algorithm effectively leverages self-
supervised knowledge on network dynamics and improves learning efficiency. Compared with end-
to-end training, the FM-aided approach achieves faster convergence, demonstrating its effectiveness
in optimizing throughput and AoI across diverse objectives. Future work will extend this framework
to more complex RA scenarios with larger action spaces (e.g., considering transmit power control).
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A Related Work

A.1 MARL-based Random Access (RA) Network Optimization

To address the challenges present in RA network optimization, several reinforcement learning
(RL)-based approaches have been proposed. For example, authors in [8] proposed Q-learning-based
contention window selection algorithms for each cooperative and non-cooperative setting to maximize
the total throughput while satisfying the fairness constraints. In [9], deep RL based on SAC and long
short-term memory (LSTM) models was utilized to dynamically adjust the device waiting time and
optimize the network throughput. Another approach in RA optimization is to develop a deterministic
transmission policy for each participating device, for which several MARL-based strategies have
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been proposed. In [10], a deep Q-network was adopted to make transmission decisions for each
RA device with an aim to maximize the generalized α-fairness objective. This approach was later
extended to account for an imperfect wireless channel in which feedback signals for information
collection can be corrupted [11]. The work in [12] employed a federated learning framework to
implement distributed policy learning in RA networks, where each device is equipped with a DNN
for decision-making. Furthermore, QMIX and multi-agent PPO algorithms were explored in [13]
and [14], respectively, to implement MARL-based RA and improve network performance.

A.2 Foundation Model (FM) and its Application in Wireless Communications

FMs have revolutionized a wide range of AI-driven domains including natural language processing
and computer vision. By leveraging large-scale data and powerful representation learning, FM-
enhanced tasks in these areas have demonstrated remarkable advances in reasoning, perception, and
generative capabilities.

Building on these successes, FMs are expected to play a significant role in data-driven optimization
strategies for wireless communications, spanning diverse PHY-layer and MAC-layer tasks [26, 27, 28,
29]. When combined with emerging communication paradigms, such as semantic communications
and integrated sensing and communications (ISAC), FMs can unlock immense potential. In particular,
their ability to generalize across tasks and domains makes them well-suited for addressing the
challenges of dynamic wireless environments, enabling robust adaptability, cross-layer optimization,
and real-time decision-making. Moreover, FMs can drive a paradigm shift in designing scalable,
efficient, and intelligent wireless networks by effectively unifying domain-specific communication
frameworks.

There exist several early works on developing FMs specified for wireless communications and
networks. For example, a FM called WirelessGPT is introduced in [30], which is tailored for wireless
communication and sensing tasks. In [31], a patch-masked FM is developed for multi-task prediction
in wireless networks, demonstrating effectiveness in channel, angle, traffic prediction tasks.

B Actor-Critic Framework for MARL

In the actor-critic method, MARL is implemented using two sets of neural networks: actors and
critics. Each device k is equipped with an actor network parameterized by weights θk, which defines
its local policy πθk . Let θ = [θ⊤1 , θ

⊤
2 , . . . , θ

⊤
K ]⊤ denote the joint weight vector of all K actors.

Denoting the MDP step index by n, the goal of MARL is to optimize θ to maximize the state-value
function under the joint policy πθ, which is defined as Vθ(s) = Eπθ

[∑∞
n=0 γ

nrn

∣∣∣s0 = s
]
, where

rn = 1
K

∑K
k=1 rk,n is the global average reward, and γ ∈ [0, 1] is the discount factor. For each

device k, the state-value function is typically estimated using a critic network of parameters wk.
Applying the Bellman equation [17], the function can be expressed as Vwk

(s) = Eπθ
[r + γVwk

(s′)].
During training, each actor selects an action based on its current policy, and the corresponding
critic evaluates the resulting reward. The actor policy is then updated using the policy gradient
Es,a[∇θk log πθk(ak|s) · Advθ(s,a)], where Advθ(s,a) = r̄ + γVθ(s

′) − Vθ(s) is the advantage
function. This update encourages the actor to select actions that yield higher expected future rewards
relative to the baseline value.

C Numerical Evaluation

C.1 Experimental Settings

We consider K = {2, 4} devices participating in RA over T = 600 time slots. As described in
Sect. 2, all devices operate under the LBT mechanism. Following the IEEE 802.11 protocol, the SIFS
and DIFS durations are set to 2 and 4 time slots, respectively, with each slot lasting Ts = 9 µs. Each
data packet transmission requires τ = 10 time slots, while ACK signals occupy 4 time slots.

We set the number of AP antennas to Nr = 2, the bandwidth to B = 10 MHz, and the transmit power
to pk = 0 dBm, with the noise spectral density fixed at−174 dBm/Hz. For a given number of devices
K, device-to-AP distances are uniformly distributed between 2 m and 14 m. For example, with
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K = 4, the device distances are {dk,t}K=4
k=1 = {2, 6, 10, 14}. The distance-dependent large-scale

fading factor ηk,t is modeled as ηk,t = Lo

(
dk,t

do

)z

, where Lo = −40 dB is the reference pathloss,
do = 1 m is the reference distance, and z = 4 is the pathloss exponent.

The network graph G is generated using the Watts-Strogatz model [32], where each device connects
to one neighboring device with zero rewiring probability. To generate the consensus weight matrix C,
we assign equal weights are assigned to each device’s established links, i.e., for each device k ∈ K,
ckk′ = 1

|Nk|+1 ,∀k
′ ∈ Nk, where Nk denotes the neighbor set of device k. Each consensus step

consists of G = 3 communication rounds.

For the critic-backbone FM, we set the embedding size toNe = 64 such that the encoders, transformer
blocks, and prediction head all generate embeddings of dimension 64. Both the state and action
encoders are implemented as two-layer MLPs with width 64. The FM consists of four transformer
blocks, each containing a self-attention layer with 8 heads and an MLP of width 4Ne and depth 1.
The prediction head is a linear transformation of size 2Ne ×Ne with bias. No dropout is applied in
the FM design.

Each device’s FM is pretrained using more than 100, 000 reward-independent RA network samples,
each consisting of a tuple {t, st, ak,t}. We employ stochastic gradient descent (SGD) with a learning
rate of 0.005, applying 500 updates with a batch size 256. The target encoder is updated using a soft
update with rate 0.005. As an illustrative example, we present the FM pretraining loss curve for the
case of K = 4 in Fig. 5.
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Figure 5: FM pretraining loss curve with K = 4.

For both actor and reward-specific critic head, we adopt a ResNet block of width 128 and depth 3.
The actor and critic weights are updated using the SGD optimizer, with learning rates α = 0.002
and β = 0.001 for K = 2, and α = 0.001 and β = 0.0005 for K = 4. Discount factor is set to
γ = 0.3. For the end-to-end training baseline, we employ a ResNet block of width 128 and depth 7
for both actor and critic to ensure a comparable number of parameters for fair evaluation. Since the
state dimension grows proportionally with K, we set H = 10 for K = 2 and H = 6 for K = 4 to
stabilize the input dimension of the actor–critic network.

For the MDP parameters, we set λ = 60, ωFA = 15, ωMR = 24 × 106, ωP1 = 0.5, ωP2 = 8,
ωFR1 = 256 × 106, ωFR2 = 0.7, and α = 12 for parameter scaling. These values are heuristically
selected to bound the reward to a reasonable range. All results are averaged over at least 20
independent runs.

As performance metrics on RA-based networks, we evaluate throughput (in Mbps) and AoI (in ms).
In addition, we assess fairness across devices using the normalized gap (N-Gap) defined as

N-Gap of {x} = max({x})−min({x})
max({x})

. (15)
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C.2 Additional Experimental Results

C.2.1 Performance Analysis on Downstream Tasks in Terms of Collision Frequency and
Reward

In Fig. 6, we present two additional performance metrics for evaluating our consensus-based de-
centralized MARL in an end-to-end learning setting across different RA optimization tasks: the
number of collisions (Fig. 6a) and the normalized reward sum (Fig. 6b). For readability, all results are
smoothed using a moving average over 40 samples. The results show that the fair-AoI task reduces
collisions the fastest, suggesting that balancing AoI is the simplest among the three tasks. This
is intuitive, as the fair-AoI objective does not require consideration of channel conditions, which
directly influence device data rates. By contrast, the fair-rate task exhibits the highest collision counts
even after many episodes. This is because its reward function imposes stronger penalties for rate
unfairness across devices. Consequently, the policy that reduces collisions emerges later in training,
consistent with Fig. 3c where device rates increase gradually while maintaining fairness gaps.
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Figure 6: Collision and reward performance under end-to-end learning across different RA optimiza-
tion tasks, evaluated with K = 2 for ease of illustration.

C.2.2 Comparison of FM-aided and End-to-End Learning in Collision Frequency and
Reward Evaluation

In Figs. 7 and 8, we compare the collision frequency and reward sum between end-to-end and FM-
aided MARL across different RA optimization tasks. Consistent with the trend observed in Fig. 4, our
algorithm demonstrates superior performance, achieving faster collision reduction and quicker reward
maximization. The performance gap in collision frequency is particularly evident in the fair-AoI and
max-rate tasks, whereas it appears less pronounced in the fair-rate task. This is consistent with our
analysis in Appendix C.2.1, where the learning is shown to focus on rate fairness first. Regarding
reward sum, FM-aided MARL converges in roughly half the time required by end-to-end learning.
Overall, FM-aided MARL consistently outperforms end-to-end learning in terms of learning speed.
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Figure 7: Collision frequency comparison between end-to-end and FM-aided MARL.
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Figure 8: Normalized reward sum comparison between end-to-end and FM-aided MARL.

C.2.3 Performance Comparison of End-to-End and FM-aided MARL across Different RA
Optimization Tasks with 4 Devices

We evaluate the effectiveness of our FM-aided MARL algorithm by comparing it with conventional
end-to-end training for K = 4. We present the evolution of AoI and throughput over runtime for each
downstream task in Fig. 9, and the corresponding results are summarized in Table 2. As the number
of devices increases, overall throughput decreases and AoI rises due to heightened competition
for channel access. Nevertheless, the observed trends remain consistent with the K = 2 case,
where FM-aided MARL substantially increases learning speed. In particular, the runtime required to
achieve 95%-performance is reduced by approximately 55%, which is a much increased improvement
than 30% for the K = 2 case. These results suggest that leveraging self-supervised FMs becomes
increasingly beneficial in more complex learning environments.
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Figure 9: Performance comparison of end-to-end and FM-aided MARL across three RA optimization
tasks with K = 4. The FM-aided MARL achieves faster convergence than the end-to-end baseline.

Table 2: Performance Comparison of End-to-End and FM-aided MARL withK = 4. AoI is measured
for the fair-AoI task, and rate is measured for both max-rate and fair-rate tasks.

Task Algorithm Mean Min. Max. N-Gap 95%-Time (s)
Fair AoI End-to-End 0.742 ± 0.014 0.732 0.754 0.028 1645

(ms) FM-aided 0.757 ± 0.025 0.745 0.773 0.037 760
Max Rate End-to-End 16.026 ± 0.047 4.567 49.637 0.793 3000
(Mbps) FM-aided 15.861 ± 0.113 4.332 45.937 0.739 1300

Fair Rate End-to-End 10.600 ± 0.026 8.888 13.083 0.321 2340
(Mbps) FM-aided 11.530 ± 0.025 8.791 14.188 0.277 1055

D Algorithm Pseudocode

Below is the pseudocode for our FM-aided consensus-based decentralized MARL algorithm.
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Algorithm 1: FM-aided Decentralized MARL for RA Network Optimization.
1 Input: device set K, neighbor sets {Nk}k∈K, pretrained FM weights {Ξk}k∈K, time horizon

length T , history length H , consensus weight matrix C, consensus iteration count G, actor rate
α, critic rate β,

2 Initialize: actor weights θk, critic weights wk, transmit flag fk = False, and ready-for-update
status uk = False for all k ∈ K

3 Load: FM weights Ξk for all k ∈ K
4 for t = 1, 2 . . . , T do
5 for k ∈ K do
6 Update qt, fk, and ℓk,t
7 if qt = 0 then
8 Acquire state st and reward rk,t
9 Select ak,t ∼ πθk( · |Ψ

[H:1]
k,t )

10 if ak,t = 1 then
11 fk ← True
12 uk ← True

13 for k ∈ K do
14 if fk = True then
15 qt ← 1
16 Transmit a packet
17 if ACK received then
18 ℓk,t ← 0

19 if uk = True,∀k ∈ K then
20 r̃k,0 ← rk,t for all k ∈ K
21 for g = 1, 2 . . . , G do
22 r̃k,g ←

∑
k′∈Nk

ckk′ r̃k′,g−1 for all k ∈ K
23 r̃k,t ← r̃k,G for all k ∈ K
24 for k ∈ K do
25 δk← r̃k,t + γVΞkwk

(Ψ
[H:1]
k,t )− VΞkwk

(Ψ
[H+1:2]

k,t̃
[1]
k

)

26 wk ← wk − βδk · ∇VΞkwk
(Ψ

[H+1:2]

k,t̃
[1]
k

)

27 δk← r̃k,t + γVΞkwk
(Ψ

[H:1]
k,t )− VΞkwk

(Ψ
[H+1:2]

k,t̃
[1]
k

)

28 θk ← θk + αδk · ∇ log πθk(ak,t̃[1]k

|Ψ[H+1:2]

k,t̃
[1]
k

)

29 Store st and ak,t in the history buffer
30 uk ← False

31 Output: θk for all k ∈ K

E Theoretical Convergence Analysis

E.1 Assumptions

Assumption 1 (Bounded Reward). For each downstream task, there exists a positive constant rmax
such that rk,n ∈ [−rmax, rmax] for any n ≥ 0 and k ∈ K.
Assumption 2 (Mixing Time). There exist a stationary distribution ζ for (s, a), and positive constants
κ and ρ ∈ (0, 1), such that sups∈S ∥P (sn, an|s0 = s)− ζ(θ)∥TV ≤ κρn,∀n ≥ 0.
Assumption 3 (Lipschitz Continuity). J(θ) is LJ -Lipschitz continuous w.r.t. θ, i.e., there exists a
positive constant LJ such that, for any θ and θ′, we have |J(θ)− J(θ′)| ≤ LJ∥θ − θ′∥2.
Assumption 4 (Consensus Matrix). The consensus weight matrix C is doubly stochastic. Additionally,
for all k, k′ ∈ K, there exists a positive constant ν > 0 such that (i) ckk ≥ ν and (ii) ckk′ ≥ ν
whenever devices k and k′ are connected.

14



E.2 Proof of Theorem 1

For the convenience of notation, we use Ψk,n and Ψk,n+1 to represent Ψ[H+1:2]

k,t̃
[1]
k

and Ψ
[H:1]
k,t in

Algorithm 1, respectively. We first make the following assumption as in [23, 25].
Assumption 5. State-value function of each k ∈ K can be approximated using a linear function, i.e.,
VΞkwk

(Ψk,n) = ϕΞk
(Ψk,n)

⊤wk where ϕΞk
(Ψk,n) is the uniformly bounded feature associated with

Ψk,n, i.e., ∥ϕΞk
(Ψk,n)∥ ≤ 1.

Let us define w∗
k,n to be the optimal weights for device k’s critic at a step index n. To derive the upper

bound on the difference between wk,n and w∗
k,n, i.e., ∥wk,n − w∗

k,n∥, we separate the difference into
wk,n − w̄k,n and w̄k,n − w∗

k,n, where w̄k,n ≜ 1
K

∑
k∈K wk,n and derive the bound on each of them.

We start on the first part of our theorem. Recall that each gradient update step yields

wk,n = wk,n−1 + β
(
r̃k,n−1 + γϕ⊤(Ψk,n)wk,n−1 − ϕ⊤(Ψk,n−1)wk,n−1

)
ϕ(Ψk,n−1) (16)

w̄k,n = w̄k,n−1 + β
(
r̄n−1 + γϕ⊤(Ψk,n)w̄k,n−1 − ϕ⊤(Ψk,n−1)w̄k,n−1

)
ϕ(Ψk,n−1) (17)

where r̃k,n = [CG]krn, r̄n = 1
K1⊤rn, and rn = [r1,n, · · · , rK,n]

⊤. Note that [CG]k denotes the
k-th row of matrix CG. We get the consensus error vector given by

ek,n = wk,n − w̄k,n (18)

= (wk,n−1 − w̄k,n−1) + βϕ(Ψk,n−1)

([
[CG]k −

1

K
1⊤

]
rn−1

)
+ βϕ(Ψk,n−1)[γϕ(Ψk,n)− ϕ(Ψk,n−1)]

⊤(wk,n−1 − w̄k,n−1) (19)

= (wk,n−1 − w̄k,n−1) + βϕ(Ψk,n−1)r
⊤
n−1

[
[CG]⊤k −

1

K
1
]

+ βϕ(Ψk,n−1)[γϕ(Ψk,n)− ϕ(Ψk,n−1)]
⊤(wk,n−1 − w̄k,n−1) (20)

= ek,n−1 + βCk,n−1

[
[CG]⊤k −

1

K
1
]
+ βBk,n−1ek,n−1 (21)

= (I+ βBk,n−1)ek,n−1 + βCk,n−1

[
[CG]⊤k −

1

K
1
]
, (22)

where Bk,n = ϕ(Ψk,n)[γϕ(Ψk,n+1) − ϕ(Ψk,n)]
⊤ and Ck,n = ϕ(Ψk,n)r

⊤
n . Note that (22) is a

function of ek,n−1. Hence, we can express ek,n in an iterative form:

ek,n =

[
n−1∏
x=0

(I+ βBk,x)

]
ek,0 + β

n−1∑
x=0

[
n−1∏
y>x

(I+ βBk,y)

]
Ck,x

[
[CG]⊤k −

1

K
1
]
. (23)

Since ek,0 is zero due to wk,0 = w̄k,0, we can express the norm of ek,n as

∥ek,n∥ =
∥∥∥∥β n−1∑

x=0

[ n−1∏
y>x

(I+ βBk,y)
]
Ck,x

[
[CG]⊤k −

1

K
1
]∥∥∥∥ (24)

≤ β
n−1∑
x=0

∥∥∥∥ n−1∏
y>x

(I+ βBk,y)

∥∥∥∥ · ∥Ck,x∥ ·
∥∥∥∥[CG]⊤k −

1

K
1

∥∥∥∥. (25)

We bound each term in (25) as follows. For the first term, we have∥∥∥∥ n−1∏
y>x

(I+ βBk,y)

∥∥∥∥ ≤ n−1∏
y>x

∥I+ βBk,y∥ ≤
n−1∏
y>x

(∥I∥+ ∥βBk,y∥)

≤
n−1∏
y>x

(1 + β(1 + γ)) (26)

= (1 + β(1 + γ))n−1−x, (27)
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where the last inequality is due to Assumption 5. For the second term, using Assumptions 1 and 5,
we have

∥Ck,n∥ =
∥∥ϕ(Ψk,n)[r1,n, · · · , rK,n]

∥∥ (28)

≤ ∥ϕ(Ψk,n)∥ ·
∥∥[r1,n, · · · , rK,n]

∥∥ (29)

≤
∥∥[r1,n, · · · , rK,n]

∥∥ (30)

≤
√
Krmax. (31)

For the third term, we get∥∥∥[CG]⊤k −
1

K
1
∥∥∥ ≤ 2

√
K

(1 + 1
ν(K−1) )

1− νK−1
(1− νK−1)G+1 (32)

= 2
√
K(1 + ν−(K−1))(1− νK−1)G. (33)

By combining each term, we obtain

β

n−1∑
x=0

∥∥∥∥ n−1∏
y>x

(I+ βBy)

∥∥∥∥ · ∥Cx∥ ·
∥∥∥[CG]⊤k −

1

K
1
∥∥∥

≤ β
n−1∑
x=0

(1 + β(1 + γ))n−1−x ·
√
Krmax · 2

√
K(1 + ν−(K−1))(1− νK−1)G (34)

= 2Krmaxβ(1 + ν−(K−1))(1− νK−1)G
n−1∑
x=0

(1 + β(1 + γ))n−1−x (35)

Thus, the upper bound on ∥wk,n − w̄k,n∥ becomes

∥wk,n − w̄k,n∥ ≤ 2Krmaxβ(1 + ν−(K−1))(1− νK−1)G
n−1∑
x=0

(1 + β(1 + γ))n−1−x (36)

To further understand (36), we simplify its right-hand-side (RHS). Let us first denote c1 ≜
2Krmaxβ(1 + ν−(K−1)) and consider (1 − νK−1)G = e−c3G with c3 ≜ ln(1 − νK−1)−1 > 0.
By denoting c2 ≜ (1 + γ)β > 0, we also have

n−1∑
x=0

(1 + (1 + γ)β)n−1−x =

n−1∑
x=0

(1 + c2)
x =

(1 + c2)
n − 1

c2
≤ (1 + c2)

n

c2
.

Furthermore, we have (1 + c2)
n = en ln(1+c2) = ec4n where c4 ≜ ln(1 + c2). Combining the points

made above, (36) becomes

∥wk,n − w̄k,n∥ ≤
c1
c2
e−c3G+c4n. (37)

Note that c1
c2

is a constant independent of step size β. The inequality in (37) indicates that if the
exponent −c3G+ c4n remains a sufficiently large negative number, the consensus error should be
sufficiently small.

We now work on the second part of our theorem, which is on the convergence of average parameter.
Using [33], we have
Lemma 1. (Theorem 7 of [33]) For any n > τ(β) and for sufficiently small constant step size β, the
finite-time convergence bound for average parameter is

E
[
∥w̄k,n − w∗

k,n∥2
]
≤ c5(1− c6β)n−τ(β) + c7τ(β)β (38)

where c5, c6, c7 are constants independent of step size β, and τ(β) = O(log( 1β )) is mixing time.

By Remark 1 in [33], βτ(β)→ 0 as β → 0.

We are now ready to bound ∥w̄k,n − w∗
k,n∥. For k ∈ K, we have

E
[
∥w̄k,n − w∗

k,n∥2
]
≤ 2E

[
∥wk,n − w̄k,n∥2

]
+ 2E

[
∥w̄k,n − w∗

k,n∥2
]

(39)

≤ 2

(
c1
c2

)2

e−2c3G+2c4n + 2c5(1− c6β)n−τ(β) + 2c7τ(β)β. (40)

Note that, in the finite time result above, the only constant that is dependent on β is c4.
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E.3 Proof of Theorem 2

For the ease of notation, we define vk,n(wk,n) = δ̃k,n · ψk,n and hk,n(wk,n) = δ∗k,n ·
ψk,n, where ψk,n = ∇ log πθk(ak,n|Ψk,n), δ̃k,n is the TD error computed using r̃k,n =
[CG]k[r1,n, · · · , rK,n]

⊤, and δ∗k,n is the TD error computed using r̄t = 1
K1⊤[r1,n, · · · , rK,t]

⊤.
We also define wn = [w1,n, . . . , wk,n], vn(wn) = [v1,n(w1,n), . . . , vk,n(wk,n)], and hn(wn) =
[h1,n(w1,n), . . . , hk,n(wk,n)]. Lastly, we define

Advwn
(sn,an) = Es′∼P (·|s,a),r∼dr(s,a)[δwn

(s,a, s′)|s = sn,a = an] (41)

= Es′∼P (·|s,a),r∼dr(s,a)[r + γVwn
(s′)− Vwn

(s)|s = sn,a = an] (42)

and

g(wn, θ
(n)) = E[Advwn

(sn,an)ψθ(n)(sn,an)] (43)

We now make the following assumption on ψk,n.

Assumption 6. For any policy parameter θk, the score function ψk,n is uniformly bounded, i.e.,
∥ψk,n∥2 ≤ 1.

Since J(θ) is LJ -Lipschitz continuous from Assumption 3, we can apply descent lemma to obtain
the following result:

J(θ(n+1)) ≥ J(θ(n)) + ⟨∇θJ(θ
(n)), θ(n+1) − θ(n)⟩ − LJ

2
∥θ(n+1) − θ(n)∥2 (44)

= J(θ(n)) + α⟨∇θJ(θ
(n)), vn(wn)−∇θJ(θ

(n)) +∇θJ(θ
(n))⟩ − LJα

2

2
∥vn(wn)∥2

(45)

= J(θ(n)) + α∥∇θJ(θ
(n))∥2 + α⟨∇θJ(θ

(n)), vn(wn)−∇θJ(θ
(n))⟩

− LJα
2

2
∥vn(wn)−∇θJ(θ

(n)) +∇θJ(θ
(n))∥2 (46)

≥ J(θ(n)) +
(
1

2
α− LJα

2

)
∥∇θJ(θ

(n))∥2

−
(
1

2
α+ LJα

2

)
∥vn(wn)−∇θJ(θ

(n))∥2, (47)

where the last inequality is due to

⟨∇θJ(θ
(n)), vn(wn)−∇θJ(θ

(n))⟩ ≥ −1

2
∥∇θJ(θ

(n))∥2 − 1

2
∥vn(wn)−∇θJ(θ

(n))∥2 (48)

and

∥vn(wn)−∇θJ(θ
(n)) +∇θJ(θ

(n))∥2 ≤ 2∥vn(wn)−∇θJ(θ
(n))∥2 + 2∥∇θJ(θ

(n))∥2. (49)

Taking the expectation on (47) and rearranging the terms, we have:(
1

2
α− LJα

2

)
E
[
∥∇θJ(θ

(n))∥2
]

≤ E
[
J(θ(n+1))

]
− J(θ(n))+

(
1

2
α+ LJα

2

)
E
[
∥vn(wn)−∇θJ(θ

(n))∥2
]
, (50)

where the last term in the RHS should be carefully controlled. To this end, we adopt triangle inequality
to attain the following inequality:

∥vn(wn)−∇θJ(θ
(n))∥2 ≤ 6∥vn(wn)− vn(w∗

n)∥2 + 6∥vn(w∗
n)− hn(w∗

n)∥2

+ 6∥hn(w∗
n)− g(w∗

n, θ
(n))∥2 + 6∥g(w∗

n, θ
(n))−∇θJ(θ

(n))∥2. (51)

We can decompose the first three terms using the following fact: ∥x∥2 =
∑K

k=1 ∥xk∥2 for any
x = [x1, . . . , xK ]⊤.
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Now, we are ready to control each term in (51). The first term in the RHS of (51) can be bounded as
follows: ∥∥∥vn(wn)− vn(w∗

n)
∥∥∥2 (52)

=
∑
k∈K

∥∥∥vk,n(wk,n)− vk,n(w∗
k,n)

∥∥∥2 (53)

=
∑
k∈K

∥∥∥δ̃k,n(wk,n) · ψk,n − δ̃k,n(w∗
k,n) · ψk,n

∥∥∥2 (54)

=
∑
k∈K

∥∥∥[(δ̃k,n(wk,n)− δ̃k,n(w∗
k,n)

]
· ψk,n

∥∥∥2 (55)

≤
∑
k∈K

∥∥δ̃k,n(wk,n)− δ̃k,n(w∗
k,n)

∥∥2 · ∥∥ψk,n

∥∥2 (56)

≤
∑
k∈K

∥∥∥(r̃k,n + γϕ⊤(Ψk,n+1)wk,n − ϕ⊤(Ψk,n)wk,n)

− (r̃k,n + γϕ⊤(Ψk,n+1)w
∗
k,n − ϕ⊤(Ψk,n)w

∗
k,n)

∥∥∥2 (57)

=
∑
k∈K

∥∥∥[γϕ⊤(Ψk,n+1)− ϕ⊤(Ψk,n)
]
(wk,n − w∗

k,n)
∥∥∥2 (58)

≤
∑
k∈K

∥∥γϕ⊤(Ψk,n+1)− ϕ⊤(Ψk,n)
∥∥2 · ∥∥wk,n − w∗

k,n

∥∥2 (59)

≤
∑
k∈K

(1 + γ)2∥wk,n − w∗
k,n∥2 (60)

= (1 + γ)2
∑
k∈K

∥wk,n − w∗
k,n∥2 (61)

where the second inequality is from Assumption 6, and the last inequality is due to Assumption 5.

The second term in the RHS of (51) can be bounded as follows:∥∥∥vn(w∗
n)− hn(w∗

n)
∥∥∥2 (62)

=
∑
k∈K

∥∥∥vk,n(w∗
k,n)− hk,n(w∗

k,n)
∥∥∥2 (63)

=
∑
k∈K

∥∥∥δ̃k,n(w∗
k,n) · ψk,n − δ∗k,n(w∗

k,n) · ψk,n

∥∥∥2 (64)

=
∑
k∈K

∥∥∥[δ̃k,n(w∗
k,n)− δ∗k,n(w∗

k,n)
]
· ψk,n

∥∥∥2 (65)

≤
∑
k∈K

∥∥δ̃k,n(w∗
k,n)− δ∗k,n(w∗

k,n)
∥∥2 · ∥∥ψk,n

∥∥2 (66)

≤
∑
k∈K

∥∥(r̃k,n + γϕ⊤(Ψk,n+1)w
∗
k,n − ϕ⊤(Ψk,n)w

∗
k,n)

− (r̄k,n + γϕ⊤(Ψk,n+1)w
∗
k,n − ϕ⊤(Ψk,n)w

∗
k,n)

∥∥2 (67)

=
∑
k∈K

∣∣∣([CG]k −
1

K
1⊤)[r1,n, · · · , rK,n]

⊤
∣∣∣2 (68)

≤
∑
k∈K

∥∥[CG]k −
1

K
1⊤∥∥2 · ∥∥[r1,n, · · · , rK,t]

∥∥2 (69)

≤
∑
k∈K

∥∥[CG]k −
1

K
1⊤∥∥2Kr2max (70)
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≤
∑
k∈K

4K
[
(1 + ν−(K−1))(1− νK−1)G

]2
·Kr2max (71)

= 4K3r2max

(
(1 + ν−(K−1))(1− νK−1)G

)2

, (72)

where the second inequality is due to Assumption 6, and the last inequality is by the property of
gossiping technique.

According to the definitions of hk,n and (43), the third term in the RHS of (51) can be written as
follows:∥∥hn(w∗

n)− g(w∗
n, θ

(n))∥2 =
∑
k∈K

∥hk,n(w∗
k,n)− g(w∗

k,n, θ
(n)
k )

∥∥2 (73)

=
∑
k∈K

∥∥δ∗k,n(w∗
k,n) · ψk,n − E[Advw∗

k,n
(sn,an)ψθ

(n)
k

(sn, ak,n)]
∥∥2.

(74)

Taking expectation over the filtration Fn on both sides of (74), we have:

E
[∥∥hn(w∗

n)− g(w∗
n, θ

(n))
∥∥2|Fn

]
(75)

= E

[∑
k∈K

∥∥∥hk,n(w∗
k,n)− g(w∗

k,n, θ
(n)
k )

∥∥∥2|Fn

]
(76)

= E

[∑
k∈K

∥∥∥δ∗k,n(w∗
k,n)ψk,n − E

[
Advw∗

k,n
(sn,an)ψθ

(n)
k

(sn, ak,n)
]∥∥∥2|Fn

]
(77)

= E

[∑
k∈K

∥∥∥δ∗k,n(w∗
k,n)ψk,n − E

[
δ∗k,n(w

∗
k,n)ψk,n

]∥∥∥2|Fn

]
(78)

= E

[∑
k∈K

∥∥∥(δ∗k,n(w∗
k,n)− E[δ∗k,n(w∗

k,n)]
)
· ψk,n

∥∥∥2|Fn

]
(79)

≤ E

[∑
k∈K

∣∣∣δ∗k,n(w∗
k,n)− E[δ∗k,n(w∗

k,n)]
∣∣∣2 · ∥∥ψk,n

∥∥2|Fn

]
(80)

≤ E

[∑
k∈K

∣∣∣δ∗k,n(w∗
k,n)− E[δ∗k,n(w∗

k,n)]
∣∣∣2|Fn

]
(81)

≤ E

[∑
k∈K

∣∣∣δ∗k,n(w∗
k,n)

∣∣∣2 + ∣∣∣E[δ∗k,n(w∗
k,n)]

∣∣∣2|Fn

]
(82)

=
∑
k∈K

E
[∣∣∣δ∗k,n(w∗

k,n)
∣∣∣2 + ∣∣∣E[δ∗k,n(w∗

k,n)]
∣∣∣2|Fn

]
(83)

≤
∑
k∈K

2E
[∣∣∣δ∗k,n(w∗

k,n)
∣∣∣2|Fn

]
+ 2E

[∣∣∣E[δ∗k,n(w∗
k,n)]

∣∣∣2|Fn

]
(84)

≤
∑
k∈K

4(rmax + (1 + γ)Rw)
2 (85)

= 4N(rmax + (1 + γ)Rw)
2, (86)

where the second inequality is from Assumption 6. The last inequality is due to

∥δ∗k,n(wk,n)∥ = ∥r̄k,n + γϕ⊤(Ψk,n+1)w
∗
k,n − ϕ⊤(Ψk,n)w

∗
k,n∥ (87)

= ∥r̄k,n + [γϕ⊤(Ψk,n+1)− ϕ⊤(Ψk,n)]w
∗
k,n∥ (88)

≤ ∥r̄k,n∥+ ∥γϕ⊤(Ψk,n+1)− ϕ⊤(Ψk,n)∥ · ∥w∗
k,n∥ (89)

≤ ∥r̄k,n∥+
(
∥γϕ⊤(Ψk,n+1)∥+ ∥ϕ⊤(Ψk,n)∥

)
· ∥w∗

k,n∥ (90)
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≤ rmax + (γ + 1)Rw, (91)

where the last inequality is due to Assumptions 1 and 5 as well as the 2-norm bound on the equilibrium
point w∗

k,n [34].

The last term in the RHS of (51) can be bounded as follows:∥∥g(w∗
n, θ

(n))−∇θJ(θ
(n))

∥∥2 (92)

=
∥∥E [

Advw∗
n
(sn,an)ψθ(n)(sn,an)

]
− E [Advθ(n)(sn,an)ψθ(n)(sn,an)]

∥∥2 (93)

=
∥∥E [

(Advw∗
n
(sn,an)− Advθ(n)(sn,an))ψθ(n)(sn,an)

] ∥∥2 (94)

≤
(
E
[
∥(Advw∗

n
(sn,an)− Advθ(n)(sn,an))ψθ(n)(sn,an)∥

])2

(95)

≤
(
E
[
|Advw∗

n
(sn,an)− Advθ(n)(sn,an)| · ∥ψθ(n)(sn,an)∥

] )2

(96)

≤
(
E
[
|Advw∗

n
(sn,an)− Advθ(n)(sn,an)|

] )2

(97)

=
(
E
[
|E[γVw∗

n
(sn+1)|sn,an]− Vw∗

n
(sn)− E[γVθ(n)∗(sn+1)|sn,an] + Vθ(n)∗(sn)|

] )2

(98)

≤
(
E
[
|E[γVw∗

n
(sn+1)− γVθ(n)∗(sn+1)|sn,an]|+ |Vw∗

n
(sn)− Vθ(n)∗(sn)|

] )2

(99)

≤
(
E
[
E[|γVw∗

n
(sn+1)− γVθ(n)∗(sn+1)||sn,an] + |Vw∗

n
(sn)− Vθ(n)∗(sn)|

] )2

(100)

=
(
E[|γVw∗

n
(sn)− γVθ(n)∗(sn)|] + E

[
|Vw∗

n
(sn)− Vθ(n)∗(sn)|

] )2

(101)

≤ (1 + γ)2
(
E
[
|Vw∗

n
(sn)− Vθ(n)∗(sn)|

] )2

(102)

≤ (1 + γ)2E
[
|Vw∗

n
(sn)− Vθ(n)∗(sn)|2

]
(103)

≤ (1 + γ)2ξcritic
approx, (104)

where ξcritic
approx is the error bound on the linear approximation of value function.

Combining everything together, we can upper bound the RHS of (51) as

E
[
∥vn(wn)−∇θJ(θ

(n))∥2
]

(105)

≤ 6(1 + γ)2
∑
k∈K

∥wk,n − w∗
k,n∥2 + 24K3r2max

(
(1 + ν−(K−1))(1− νK−1)G

)2

+ 24K(rmax + (1 + γ)Rw)
2 + 6(1 + γ)2ξcritic

approx. (106)

Therefore, we have:(
1

2
α− LJα

2

)
E
[
∥∇θJ(θ

(n))∥2
]

≤ E
[
J(θ(n+1))

]
− E[J(θ(n))] +

(
1

2
α+ LJα

2

)(
6(1 + γ)2

∑
k∈K

∥wk,n − w∗
k,n∥2 (107)

+ 24K3r2max

(
(1 + ν−(K−1))(1− νK−1)G

)2

+ 24K(rmax + (1 + γ)Rw)
2 + 6(1 + γ)2ξcritic

approx

)
.

(108)

By setting step-size α = 1
4LJ

and dividing both sides of previous equation by 1
16LJ

, we further
obtain:

E
[
∥∇θJ(θ

(n))∥2
]

≤ 16LJE
[
J(θ(n+1))

]
− 16LJE[J(θ(n))] + 18(1 + γ)2

∑
k∈K

∥wk,n − w∗
k,n∥2
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+ 72K3r2max

(
(1 + ν−(K−1))(1− νK−1)G

)2

+ 72K(rmax + (1 + γ)Rw)
2 + 18(1 + γ)2ξcritic

approx.

(109)

Let N̂ be a random integer variable uniformly taken from (1, N). If we take summation over
n = {1, . . . , N} and divide it by N , we have

E
[
∥∇θJ(θ

(N̂))∥2
]
=

1

N

N∑
n=1

E[∥∇θJ(θ
(n))∥2] (110)

≤
16LJ(E

[
J(θ(n))

]
− E

[
J(θ(0))

]
)

N
+ 18(1 + γ)2

∑N
n=1

∑
k∈K ∥wk,n − w∗

k,n∥2

N

+ 72K3r2max

(
(1 + ν−(K−1))(1− νK−1)G

)2

+ 72K(rmax + (1 + γ)Rw)
2 + 18(1 + γ)2ξcritic

approx

(111)

≤
16LJE

[
J(θ(n))

]
N

+ 18(1 + γ)2
∑N

n=1

∑
k∈K ∥wk,n − w∗

k,n∥2

N

+ 72K3r2max

(
(1 + ν−(K−1))(1− νK−1)G

)2

+ 72K(rmax + (1 + γ)Rw)
2 + 18(1 + γ)2ξcritic

approx

(112)

≤ 16LJrmax

N(1− γ)
+ 18(1 + γ)2

∑N
n=1

∑
k∈K ∥wk,n − w∗

k,n∥2

N

+ 72K3r2max

(
(1 + ν−(K−1))(1− νK−1)G

)2

+ 72K(rmax + (1 + γ)Rw)
2 + 18(1 + γ)2ξcritic

approx.

(113)

21


	Introduction
	System Model
	Foundation Model-aided Multi-agent Reinforcement Learning Framework
	Numerical Evaluation
	Conclusion
	Related Work
	MARL-based Random Access (RA) Network Optimization
	Foundation Model (FM) and its Application in Wireless Communications

	Actor-Critic Framework for MARL
	Numerical Evaluation
	Experimental Settings
	Additional Experimental Results
	Performance Analysis on Downstream Tasks in Terms of Collision Frequency and Reward
	Comparison of FM-aided and End-to-End Learning in Collision Frequency and Reward Evaluation
	Performance Comparison of End-to-End and FM-aided MARL across Different RA Optimization Tasks with 4 Devices


	Algorithm Pseudocode
	Theoretical Convergence Analysis
	Assumptions
	Proof of Theorem 1
	Proof of Theorem 2


