
Using AI Uncertainty Quantification to Improve Human Decision-Making

Laura R. Marusich 1 Jonathan Z. Bakdash 2 Yan Zhou 2 Murat Kantarcioglu 2

Abstract
AI Uncertainty Quantification (UQ) has the po-
tential to improve human decision-making be-
yond AI predictions alone by providing additional
probabilistic information to users. The major-
ity of past research on AI and human decision-
making has concentrated on model explainability
and interpretability, with little focus on under-
standing the potential impact of UQ on human
decision-making. We evaluated the impact on
human decision-making for instance-level UQ,
calibrated using a strict scoring rule, in two online
behavioral experiments. In the first experiment,
our results showed that UQ was beneficial for
decision-making performance compared to only
AI predictions. In the second experiment, we
found UQ had generalizable benefits for decision-
making across a variety of representations for
probabilistic information. These results indicate
that implementing high quality, instance-level UQ
for AI may improve decision-making with real
systems compared to AI predictions alone.

1. Introduction
Using AI to improve human decision-making requires effec-
tive human-AI interaction. Recent work on human-AI inter-
action guidelines focuses on explainability and interpretabil-
ity (Amershi et al., 2019), which may improve subjective
human ratings of trust in and usability of AI. However, a
quantitative synthesis of studies found that explanations
may not generally improve decision accuracy beyond AI
prediction alone (Schemmer et al., 2022) in many applica-
tion domains. One less-explored possibility for promoting
effective human-AI interaction is AI Uncertainty Quantifi-
cation (UQ) for predictions. AI UQ is posited to be key for
human decision-making (Abdar et al., 2021b; Jalaian et al.,

1DEVCOM Army Research Laboratory 2University of
Texas at Dallas, Richardson, TX. Correspondence to: Laura
Marusich <laura.m.cooper20.civ@army.mil>, Yan Zhou
<yan.zhou2@utdallas.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

2019). However, there is conflicting evidence in the existing
literature as to whether presenting AI UQ for predictions
can improve human decision-making accuracy, and how to
best communicate this uncertainty information (Lai et al.,
2021). These conflicting results may be due in part to ”a
lack of discussion on the reliability of uncertainty estimates,
sometimes referred to as calibration” (Lai et al., 2021, p.
15).

In order to resolve these questions, we use well-calibrated,
instance-level AI Uncertainty Quantification (UQ) evaluated
using a strict scoring rule (Gneiting & Raftery, 2007) using
the ground truth for class labels 1. We evaluate the impact of
this AI UQ in two pre-registered, large sample size, online
behavioral experiments assessing human decision-making.
Decision-making is measured objectively using response ac-
curacy and confidence calibration with accuracy. We found
that providing high-quality AI UQ meaningfully improves
decision-accuracy and confidence calibration over an AI
prediction alone. Additionally, the benefits of this AI UQ
appear to be generalizable – decision-making was similar
for AI UQ presented with different visualizations and types
of information. Our results indicate well-calibrated AI UQ
is beneficial for decision-making.

The paper is structured as follows. In section 2, we pro-
vide the background information on uncertainty and human
decision-making and an overview of existing techniques for
AI UQ. Section 3 describes our UQ technique and exper-
imental design. In section 4, we report findings from the
behavioral experiments comparing human decision making
accuracy with or without UQ information. In section 5, we
report the impact of different visualizations of UQ informa-
tion. Finally, sections 6 and 7 conclude by discussing the
implications of our results and future work.

2. Background and Related Work
2.1. Human Decision-Making and Uncertainty

The possible benefit of AI UQ is supported by work in
the judgment and decision-making literature on decision-

1We wish to highlight that for the classification task, ground
truths for class labels are utilized to offer well-calibrated, high
quality, instance-level uncertainty quantification for human subject
experiments.
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making under uncertainty. This work shows that providing
overall prediction uncertainty enhances decision-making
accuracy. For example, in weather forecasting, humans
demonstrate higher decision-making performance when
they receive well-calibrated probabilistic information (e.g.,
a forecast with a probability of rain), compared to only de-
terministic predictions (e.g., it will or will not rain) (Frick
& Hegg, 2011; Joslyn & LeClerc, 2013; Morss et al., 2008;
Nadav-Greenberg & Joslyn, 2009). However, increasing
information, even when it is task-relevant, is not always
bene�cial to human decision-making performance (e.g.,
Marusich et al., 2016; Gigerenzer & Brighton, 2009; Al-
ufaisan et al., 2021). An additional consideration is the
way that uncertainty information is represented. In human
decision-making, communicating uncertainty with visual
representations and other intuitive methods can be especially
effective (Gigerenzer et al., 2007; Hullman et al., 2018).

Despite previous general �ndings that uncertainty informa-
tion is useful for decision-making, there is limited behav-
ioral research assessing the bene�ts of AI UQ, particularly
for human decision-making accuracy. Some existing qual-
itative work (e.g., Prabhudesai et al., 2023) suggests that
the addition of UQ to predictions can impact the decision-
making process of users and possibly reduce over-reliance
on AI predictions. Among quantitative studies that do assess
objective accuracy performance (e.g., Zhang et al., 2020;
Buçinca et al., 2021), both the methods and results vary.
In particular, the quality of the UQ calibration varies, with
some studies opting to simulate AI prediction con�dence
with wizard-of-oz techniques, and others using the predic-
tion probabilities generated by their model, but without
quantifying the calibration of those probabilities. As a result,
the potential bene�ts for AI UQ remain at least somewhat
of an open question (Lai et al., 2021).

There is a clear gap for behavioral studies assessing hu-
man decision-making performance using quanti�ably well-
calibrated AI UQ for predictions. Our method for AI UQ
uses known class labels to ensure high-quality uncertainty
information at the instance-level, as poorly calibrated un-
certainty information is likely to be detrimental to decision-
making. We emphasize thatthe application of known class
labels to generate instance-level UQ aims to provide well-
calibrated AI UQ for individual predictions speci�cally in
the context of human subject experiments. This approach is
not designed for real-life deployment scenarios where class
labels may not be known in advance. In the next section,
we brie�y provide context of existing techniques for AI UQ,
which are often model-based and typically do not require
labelled data.

2.2. Techniques for AI UQ

Predictions by AI-based systems are subject to uncertainty
from different sources. The source of uncertainty is either
aleatoric, caused by noise in data and irreducible, or epis-
temic because of uncertain model distribution (Kendall &
Gal, 2017). Uncertainty quanti�cation methods have been
developed to assess the reliability of AI predictions (Abdar
et al., 2021a), including Bayesian methods and ensemble
methods (Abdar et al., 2021b).

Monte Carlo sampling (Neal, 2012) and Markov chain
Monte Carlo (Salakhutdinov & Mnih, 2008; Salimans et al.,
2015; Chen et al., 2014; Ding et al., 2014; Chen et al., 2015;
Li et al., 2016; Gong et al., 2019) are heavily used for un-
certainty quanti�cation in Bayesian techniques (Kendall &
Gal, 2017; Wang et al., 2019; Liu et al., 2019a). To estimate
aleatoric uncertainty, a hidden variable is often proposed to
represent the underlying data pointx � from which a given
instancex is only one of many possible observations ofx � .
Parameters modeling the transformation fromx � to x can
be sampled to obtain multiple copies of the hiddenx � . For
epistemic uncertainty, the distribution of model parameter�
is often approximated during training by achieving certain
objective optimization, for example, the Kullback–Leibler
divergence. The distribution of the prediction can be sam-
pled from the samples of the learned model parameters. The
predictive uncertainty can be established from the variance
or entropy of the sampled predictions of the sampled hidden
states of a given instance.

Quantifying uncertainty on learning models from a Bayesian
perspective takes many different forms. Uncertainty Pos-
terior distribution over Bayesian Neural Network (BNN)
weights can be learned using variational inference (Sube-
dar et al., 2019; Louizos & Welling, 2017; Farquhar et al.,
2020; Ghosh et al., 2020). On the other hand, Generative
Adversarial Networks (GANs) are used to generate out-of-
distribution (OoD) examples (Oberdiek et al., 2022). Im-
plicit neural representations (INRs) are reformulated from
a Bayesian perspective to allow for uncertainty quanti�ca-
tion (Vasconcelos et al., 2023). Similarly, Direct Epistemic
Uncertainty Prediction (DEUP) is proposed to address the
issue that using the variance of the Bayesian posterior does
not capture the epistemic uncertainty induced by model mis-
speci�cation (Lahlou et al., 2023). Aleatoric uncertainty and
epistemic uncertainty have also been modeled as universal
adversarial perturbations (Liu et al., 2019a).

Ensemble models can enhance the predictive accuracy, how-
ever, it is highly debated whether an ensemble of mod-
els can provide a good uncertainty estimate (Abdar et al.,
2021b; Wilson & Izmailov, 2020; Sensoy et al., 2018). Re-
cently, bene�ts of prior functions and bootstrapping in train-
ing ensembles with estimate of uncertainty have been dis-
cussed (Dwaracherla et al., 2023). Maximizing Overall
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Diversity takes into account ensemble predictions for pos-
sible future input when estimating uncertainty (Jain et al.,
2020). Random parameter initialization and data shuf�ing
have also been proposed to estimate the uncertainty of DNN
ensembles (Lakshminarayanan et al., 2017). A Bayesian
non-parametric ensemble (BNE) approach is proposed to
account for different sources of model uncertainty (Liu et al.,
2019b). More details on extensive studies on quantifying
uncertainty with respect to both Bayesian and ensemble
methods, as well as in real applications can be found in (Ab-
dar et al., 2021b). However, prediction probabilities are
prone to overcon�dence in some AI models. There is a lack
of discussion on the calibration of uncertainty estimates in
the existing literature.

Another related challenge is predictive multiplicity: models
with similar performance yielding contradictory predictions
(Watson-Daniels et al., 2023). One approach to resolving
con�icting predictions is using their variations to calculate
a risk score. Risk scores are typically point estimates, al-
though there are exceptions such as the Viable Prediction
Range over a set of models (Watson-Daniels et al., 2023).
Here, we do not develop a novel UQ method. Instead our
aim is assessing if well-calibrated UQ can improve human
decision-making.

In this work, we achieved ef�ciency of UQ estimate by as-
sessing the change of prediction yielded from repeatedly
sampling noise adjacent to a given instance, and carefully
calibrated the uncertainty information shown to the user by
leveraging the ground truth. More precisely,we provide well-
calibrated uncertainty estimates in different visualizations
of con�dence intervals to the human participants. Unlike
the existing work discussed above, our goal is toprovide
the uncertainty information to the human participantsto un-
derstand whether well-calibrateduncertainty quanti�cation
information helps in user decision-making. To achieve this
goal, we do not attempt to come up with a UQ method a
priori. Instead, we take the liberty of knowing the true labels
of given instances, and simplify the problem as sampling
predictive con�dence from instances distorted with a small
amount of random noise. The quality of the disclosed un-
certainty estimate is veri�ed using a strictly proper scoring
rule (Gneiting & Raftery, 2007) prior to use in two behav-
ioral experiments. While there have been recent calls for
research using UQ with human decision-making (e.g., Bhatt
et al. 2021; Lai et al. 2021), the few existing studies tend
to focus on qualitative or subjective assessments of human
behavior (e.g., Prabhudesai et al. 2023). Furthermore, it
is not clear how useful to decision-makers the UQ infor-
mation provided in these studies is,due to lack of proper
calibration.

3. Current Work

We conducted two experiments to assess the effect of provid-
ing visualizations of AI prediction UQ information upon the
accuracy and con�dence of human decision-making. The
�rst experiment compares performance when AI uncertainty
is provided to performance when only an AI prediction, or
no AI information at all, is provided. The second experiment
compares decision-making performance for different repre-
sentations of AI uncertainty. Our methods and results for
the instance-level predictive UQ and behavioral experiments
are fully reproducible. See the supplementary material for
details and links.

In both experiments, we assessed our research questions
using three different publicly-available and widely-used
datasets: theCensus, German Credit, andStudent Perfor-
mancedatasets from the UCI Machine Learning Reposi-
tory (Dua & Graff, 2017), described in more detail below.

3.1. Datasets

TheCensusdataset has 48,842 instances and 14 attributes.
The missing values in the dataset were replaced with the
mode (the most frequent value), and the dollar amounts
were adjusted for in�ation. TheGerman Creditdataset has
1,000 instances and 20 attributes. The currency values were
converted to dollars and adjusted for in�ation. TheStudent
Performancehas 649 instances and 33 attributes. Three of
the attributes�rst period grade, second period grade, and
�nal grade were combined into one with their average. Each
dataset was split into training (70%) and test (30%) data
sets.

We selected these datasets because they involve real-world
contexts that are fairly intuitive for non-expert human par-
ticipants to reason about (e.g., will a student pass or fail a
class?). In addition, using three datasets that vary in number
of features and in the overall accuracy classi�ers can achieve
in their predictions ensures that our �ndings are not limited
only to one speci�c dataset.

Several machine learning models were trained on all three
datasets, including decision tree, logistic regression, ran-
dom forest, and support vector machine. The best set of
hyper-parameters was determined through grid search. Ran-
dom forest was the best in terms of overall accuracy on the
datasets and therefore was selected for use as the AI model
in this study. The mean accuracy on theCensusdata is
85.3%, 75.7% on theGerman Creditdata, and 85.1% on
theStudent Performancedata. All classi�cation tasks were
completed on an Intel® Xeon® machine with a 2.30GHz
CPU.
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Census German Credit Student Performance

Figure 1.The Brier score of the “cloned” instances forCensus(100),German Credit(100), andStudent Performance(40) sampled for
demonstration.Y -axis is the Brier score. Magenta marks the samples that are correctly predicted by the AI model, cyan marks samples
incorrectly predicted by the model. Horizontal lines illustrate the mean of the Brier score, and its 0.5, 1, and 1.5 standard deviations.

3.2. Instance-Level Predictive Uncertainty
Quanti�cation

UQ methods in existing literature estimate predictive uncer-
tainty without the knowledge of the true labels of the test
instances. These methods are subject to complicated calcula-
tions, sometimes poor convergence, lack of scalability, and
sometimes, they are time and resource consuming (Abdar
et al., 2021a). In our study, we aim to provide predictive
uncertainty quanti�cation to human decision-makers and
use the advantage of knowing the true labels in advance.
Therefore, we simplify the problem as sampling predictive
con�dence from samples ofx with a small random distur-
bance andverify the quality of the uncertainty estimateusing
a strictly proper scoring rule (Gneiting & Raftery, 2007) be-
fore showing it to the human. Note that, without knowing
the ground truth, this treatment of UQ would be reckless
and naive. It would appear that we model a prior distribu-
tion over hypothesis as the distribution over observations
in the noisy neighborhood of a given instance. However,
given the true label of an instance, we can hypothesize that
observations over itsn neighboring noisy samples aren
plausible �ts for this instance, and con�rm our hypothesis
with a strictly proper scoring rule.

Predictive uncertainty consists of data uncertainty (aleatoric)
and model uncertainty (epistemic). To model data uncer-
tainty, we samplen instances from a Gaussian distribution
within a standard deviation� from a given instancex, as-
sumingx = x � + � wherex � is the clean input ofx without
the random disturbance� . Thus, given a prediction function

parameterized byw, the class label ofx is predicted as:

p(yjx; w) =
Z

p(yjx � ; w)p(x � jx)dx�

The posteriorp(x � jx) is generally unknown. By assuming
� � N (0; � 2

0 ; I ), we can sample from the posterior distribu-
tion given the noisy inputx. In this study, we setn = 100
and� 0 = 0 :1.

Similarly, for model uncertainty, given a set of training data
(X; Y ), we assume there exists an uncertain set ofm models
with model uncertainty� (m ) � p(� jX; Y ). Hence, given an
instancex, the probability of the class label ofx is:

p(yjx; X; Y ) = Ep( � jX;Y ) [p(yjx; � )]:

In this study, we tested an ensemble oflogistic regression,
support vector machine, andrandom forestto predict the
class label. The best uncertainty estimate, however, was
obtained by using therandom forestalone, assessed by the
Brier score discussed below.

Predictive uncertainty per instance was computed for 294
randomly selectedCensusinstances, 300German Credit
instances, and 194Student Performanceinstances, for use in
the behavioral study. Predictive uncertainty at the instance-
level was measured on random samples in the neighborhood
of the instance. More speci�cally, given an instancex, n
random “clones” were sampled from a Gaussian distribu-
tion within � standard deviation from the meanx. In the
experiment, we letn = 100 and� = 0 :1 which provided
suf�cient statistical signi�cance and constrained neighbor-
hood choices. Class probabilities were computed using the
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trained random forest classi�er for each of the 100 samples,
and the 95% con�dence interval of the class probabilities
was used as the predictive uncertainty range for instancex.
UQ computed fromrandom forestalone was superior to that
of the ensemble oflogistic regression, support vector ma-
chine, andrandom forest, hence was used in the behavioral
study.

Knowing the ground truth (class label) of the instances, we
can verify the quality of the simulated predictive uncertainty
using the Brier score (also referred to as Brier loss). The
Brier score measures the mean squared difference between
the predicted probability and the true outcome. For each
selected instancex, with y 2 f 0; 1g and the predicted prob-
ability pi = Pr(yi = 1) for each “cloned” samplex i , we
compute the Brier scoreB = 1

n

P
i (y � pi )2 between the

predicted probability of the “cloned” samples andy—the
actual label ofx.

If the “cloned” samples are truly representative ofx, the
computed Brier score should re�ect the correctness of the
prediction made forx by the AI modelM . A smaller Brier
score means more accurate predictions made for the clones
of x, and therefore should correspond to a correct classi�-
cation forx by M . We veri�ed empirically that the Brier
scores of the predictive uncertainty is highly correlated with
the true prediction forx by M , as shown in Figure 1. Points
with low Brier score corresponds to instances whereM is
correct. In Figure 1, points in magenta are the samples
correctly predicted by the AI model, and points in cyan are
samples incorrectly predicted by the model. As can be seen,
“clones” for each correctly predicted sample correspond to
low Brier score loss, and vice versa, cloned samples for
incorrectly classi�ed samples produce high Brier scores.
Horizontal lines illustrate the mean of the Brier score, and
its 0.5, 1, and 1.5 standard deviations. The Brier score close
to mean (approximately0:25) is a highly accurate indicator
of the classi�cation outcome. In essence, the Brier score
resembles the trust score (Jiang et al., 2018) that has high
precision at identifying correctly classi�ed examples, and is
adequate to assess the quality of the estimated UQ.

3.3. Behavioral Experiments: General Methods

We used the same experimental task across both Experiment
1 and 2, which was developed using jsPysch (De Leeuw,
2015) and hosted on MindProbehttps://mindprobe.
eu/ using Just Another Tool for Online Studies (JATOS)
https://github.com/JATOS/JATOS . Each trial of
this task included a description of an individual and a two-
alternative forced choice for the classi�cation of that indi-
vidual. Each choice was correct on 50% of the trials, thus
chance performance for human decision-making accuracy
was 50%. In some conditions, an AI prediction or an AI pre-
diction and a visualization of prediction uncertainty would

also appear. Figure 2 shows an example of the information
appearing in the three AI conditions for a trial from the
German Credit dataset condition (see supplementary ma-
terial for more example trials). After making a decision,
participants then entered their con�dence in that choice, on
a Likert scale of 1 (No Con�dence) to 5 (Full Con�dence).
Feedback was then displayed, indicating whether or not the
previous choice was correct.

Figure 2.Example showing the information appearing in the three
AI conditions in Experiment 1 for a trial from theGerman Credit
dataset condition.

For each dataset, we selected 50 instances with representa-
tive average AI prediction accuracies (Census: 88%,Ger-
man Credit: 76%,Student Performance: 82%). Then, for
each participant, we randomly sampled 40 of those 50 in-
stances for the block of test trials, resulting in small varia-
tions in AI accuracy for each participant.

Online participants were recruited from Proli�c (https:
//www.prolific.co ). They provided informed con-
sent, viewed a series of instructional screens with examples,
completed 8 practice trials, followed by 40 test trials, and a
brief series of questionnaires (demographics, self-reported
strategies, subjective usability, subjective task dif�culty, task
understanding, and an assessment of risk literacy (Cokely
et al., 2012), see supplementary material). Most partici-
pants completed the task in less than 20 minutes, and they
were paid$5.00 for their participation (i.e., well above the
U.S. federal minimum hourly wage). This research received
Institutional Review Board (IRB) approval.

4. Experiment 1

Experiment 1 compared participant decision-making accu-
racy in three conditions: Control (no AI prediction infor-
mation), AI Prediction, and AI Uncertainty (AI prediction
plus a visualized point estimate of AI uncertainty), see Fig-
ure 2. All hypotheses and methods were pre-registered
(https://aspredicted.org/ZW9_Z54 ).
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