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Abstract

AT Uncertainty Quantification (UQ) has the po-
tential to improve human decision-making be-
yond Al predictions alone by providing additional
probabilistic information to users. The major-
ity of past research on Al and human decision-
making has concentrated on model explainability
and interpretability, with little focus on under-
standing the potential impact of UQ on human
decision-making. We evaluated the impact on
human decision-making for instance-level UQ,
calibrated using a strict scoring rule, in two online
behavioral experiments. In the first experiment,
our results showed that UQ was beneficial for
decision-making performance compared to only
Al predictions. In the second experiment, we
found UQ had generalizable benefits for decision-
making across a variety of representations for
probabilistic information. These results indicate
that implementing high quality, instance-level UQ
for Al may improve decision-making with real
systems compared to Al predictions alone.

1. Introduction

Using Al to improve human decision-making requires effec-
tive human-Al interaction. Recent work on human-Al inter-
action guidelines focuses on explainability and interpretabil-
ity (Amershi et al., 2019), which may improve subjective
human ratings of trust in and usability of Al. However, a
quantitative synthesis of studies found that explanations
may not generally improve decision accuracy beyond Al
prediction alone (Schemmer et al., 2022) in many applica-
tion domains. One less-explored possibility for promoting
effective human-Al interaction is Al Uncertainty Quantifi-
cation (UQ) for predictions. AI UQ is posited to be key for
human decision-making (Abdar et al., 2021b; Jalaian et al.,
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2019). However, there is conflicting evidence in the existing
literature as to whether presenting AI UQ for predictions
can improve human decision-making accuracy, and how to
best communicate this uncertainty information (Lai et al.,
2021). These conflicting results may be due in part to ”a
lack of discussion on the reliability of uncertainty estimates,
sometimes referred to as calibration” (Lai et al., 2021, p.
15).

In order to resolve these questions, we use well-calibrated,
instance-level Al Uncertainty Quantification (UQ) evaluated
using a strict scoring rule (Gneiting & Raftery, 2007) using
the ground truth for class labels !. We evaluate the impact of
this AT UQ in two pre-registered, large sample size, online
behavioral experiments assessing human decision-making.
Decision-making is measured objectively using response ac-
curacy and confidence calibration with accuracy. We found
that providing high-quality AT UQ meaningfully improves
decision-accuracy and confidence calibration over an Al
prediction alone. Additionally, the benefits of this Al UQ
appear to be generalizable — decision-making was similar
for AI UQ presented with different visualizations and types
of information. Our results indicate well-calibrated AI UQ
is beneficial for decision-making.

The paper is structured as follows. In section 2, we pro-
vide the background information on uncertainty and human
decision-making and an overview of existing techniques for
AI UQ. Section 3 describes our UQ technique and exper-
imental design. In section 4, we report findings from the
behavioral experiments comparing human decision making
accuracy with or without UQ information. In section 5, we
report the impact of different visualizations of UQ informa-
tion. Finally, sections 6 and 7 conclude by discussing the
implications of our results and future work.

2. Background and Related Work

2.1. Human Decision-Making and Uncertainty

The possible benefit of AI UQ is supported by work in
the judgment and decision-making literature on decision-

'We wish to highlight that for the classification task, ground
truths for class labels are utilized to offer well-calibrated, high
quality, instance-level uncertainty quantification for human subject
experiments.
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making under uncertainty. This work shows that providing2.2. Techniques for Al UQ
overall prediction uncertainty enhances decision-makin
accuracy. For example, in weather forecasting, human

demonstrate higher decision-making performance whe . L . : :
g 9.p aleatoric, caused by noise in data and irreducible, or epis-

they receive well-calibrated probabilistic information (e.g.,,” . i o
a forecast with a probability of rain), compared to only de-tng'ZSi;auSe of tm_ctertaln rr;_odetl_ dlstnbtuhtlc:jn (;}(endka)lll &
terministic predictions (e.g., it will or will not rain) (Frick a )- Uncertainty quanti cation methods have been

& Hegg, 2011: Joslyn & LeClerc, 2013; Morss et al., 2008;"?"?'0533 1t° a?selssd.the r;"ab".'ty of A'tr?rgd'c“%”s (Abdirl
Nadav-Greenberg & Joslyn, 2009). However, increasin a., a), including Bayesian methods and ensemble

information, even when it is task-relevant, is not always ethods (Abdar etal., 2021b).

bene cial to human decision-making performance (e.g.Monte Carlo sampling (Neal, 2012) and Markov chain
Marusich et al., 2016; Gigerenzer & Brighton, 2009; Al- Monte Carlo (Salakhutdinov & Mnih, 2008; Salimans et al.,
ufaisan et al., 2021). An additional consideration is the2015; Chen et al., 2014; Ding et al., 2014; Chen et al., 2015;
way that uncertainty information is represented. In humarLi et al., 2016; Gong et al., 2019) are heavily used for un-
decision-making, communicating uncertainty with visual certainty quanti cation in Bayesian techniques (Kendall &
representations and other intuitive methods can be especialgal, 2017; Wang et al., 2019; Liu et al., 2019a). To estimate
effective (Gigerenzer et al., 2007; Hullman et al., 2018). aleatoric uncertainty, a hidden variable is often proposed to

Despite previous general ndings that uncertainty im‘orma—.represent the underlying data pointirom which a given

tion is useful for decision-making, there is limited behav—'nStance( is only one of many possible observationsof

ioral research assessing the bene ts of Al UQ, particularlyp ararrr:]etlerj tmo%t;:l|ir;gnt1hiitrlansfozmatlfotr;] frx:::g; chl::arr]
for human decision-making accuracy. Some existing qual J€ sampled to obta uitiple copies otthe enro

itative work (e.g., Prabhudesai et al., 2023) suggests thaeipistemic uncertainty, the distribution of model parameter

the addition of UQ to predictions can impact the decision® often approximated during training by achieving certain
bjective optimization, for example, the Kullback-Leibler

making process of users and possibly reduce over—relianc% The distributi fh dicti b
on Al predictions. Among quantitative studies that do asses Ilvgrfgrerr:]ct?{ ?n IIS r ?tlhonl 0 m N dpr;e dlcllonrc?nn " er SaTT"
objective accuracy performance (e.g., Zhang et al., 2024¥eC ro € sampies oT the learned mode! parameters. 1he

)pred|ct|ve uncertainty can be established from the variance

Bucinca et al., 2021), both the methods and results var ¢ fih led predicti fth led hidd
In particular, the quality of the UQ calibration varies, with or entropy of the sampled predictions ot the sampled hidden
states of a given instance.

some studies opting to simulate Al prediction con dence
with wizard-of-0z techniques, and others using the predicQuantifying uncertainty on learning models from a Bayesian
tion probabilities generated by their model, but withoutperspective takes many different forms. Uncertainty Pos-
quantifying the calibration of those probabilities. As a resultterior distribution over Bayesian Neural Network (BNN)
the potential bene ts for Al UQ remain at least somewhatweights can be learned using variational inference (Sube-
of an open question (Lai et al., 2021). dar et al., 2019; Louizos & Welling, 2017; Farquhar et al.,

There is a clear gap for behavioral studies assessing h 020; Ghosh et al., 2020). On the other hand, Generative

man decision-making performance using quanti ably well- dversarial Networks (GANS) are used to generate out-of-
calibrated Al UQ for predictions. Our method for Al UQ dl_st_rlbutlon (OoD) examples (Oberdiek et al., 2022). Im-
uses known class labels to ensure high-quality uncertaintgl'c't neL_JraI represen_tatlons (INRs) are refo_rmulated f_rom
information at the instance-level, as poorly calibrated un-, Bayesian perspective to allow f.or.uncertz.amty qugnﬂ ca-
certainty information is likely to be detrimental to decision—tlon (Vas:concelos;_ eF al,, 2023). $|m|larly, Direct Epistemic
making. We emphasize thtite application of known class pncertalnty I_Dredlctlon .(DEUP) IS proposgd 0 addr_ess the
labels to generate instance-level UQ aims to provide well'Ssue that using th_e variance of the Bgye5|an posterior dqes
calibrated Al UQ for individual predictions speci cally in not capture the epistemic uncertainty induced by model mis-

the context of human subject experimefisis approach is spgci ca.tion (Lahlqu etal., 2023). Aleatoric uncertainty.and

notdesigned for real-life deployment scenarios where cIasseF)'Stem'? uncertalnty have glso been modeled as universal

labels may not be known in advanda the next section, adversarial perturbations (Liu et al., 2019a).

we brie y provide context of existing techniques for Al UQ, Ensemble models can enhance the predictive accuracy, how-

which are often model-based and typically do not requireever, it is highly debated whether an ensemble of mod-

labelled data. els can provide a good uncertainty estimate (Abdar et al.,
2021b; Wilson & Izmailov, 2020; Sensoy et al., 2018). Re-
cently, bene ts of prior functions and bootstrapping in train-
ing ensembles with estimate of uncertainty have been dis-
cussed (Dwaracherla et al., 2023). Maximizing Overall

redictions by Al-based systems are subject to uncertainty
om different sources. The source of uncertainty is either
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Diversity takes into account ensemble predictions for pos3. Current Work

sible future input when estimating uncertainty (Jain et aI.W q d . he eff f id
2020). Random parameter initialization and data shufing’ ¢ cO" ucted two experiments to assess the effect of provid-

have also been proposed to estimate the uncertainty of pNAPg visualizations of Al prediction UQ infqrr_nation upon the

ensembles (Lakshminarayanan et al., 2017). A Bayesiaficcuracy and con dence of human decision-making. The
non-parametric ensemble (BNE) approach is proposed ¢St experiment compares performance when Al uncertainty
account for different sources of model uncertainty (Liu et al. S Provided to performance when only an Al prediction, or
2019b). More details on extensive studies on quantifyindqo Al information at all, is provided. The second experiment

uncertainty with respect to both Bayesian and ensembl§0MPares decision-making performance for different repre-
methods, as well as in real applications can be found in (Abgentatlons of Al uncertainty. Our methods and results for

dar et al., 2021b). However, prediction probabilities arethe instance-level predictive UQ and behavioral experiments

prone to overcon dence in some Al models. There is a lack2"® fully reproducible. See the supplementary material for
of discussion on the calibration of uncertainty estimates indetaIIS and links.

the existing literature. In both experiments, we assessed our research gquestions
Another related challenge is predictive multiplicity: models ssmg thr.ei different publlcly—avzlllablz anccii W|dely%used
with similar performance yielding contradictory predictions atasets: th€ensusGerman CreditandStudent Perfor-

(Watson-Daniels et al., 2023). One approach to resolvinénancedatasetS from the UCI Machine Learning Reposi-
con icting predictions is using their variations to calculate ©Y (Pua & Gratff, 2017), described in more detail below.

a risk score. Risk scores are typically point estimates, al-
though there are exceptions such as the Viable Predictiof-1- Datasets

Range over a set of models (Watson-Daniels et al., 20236 censuglataset has 48,842 instances and 14 attributes.
Here, we do not develop a novel UQ method. Instead ouihe missing values in the dataset were replaced with the
aim is assessing if well-calibrated UQ can improve humany,qde (the most frequent value), and the dollar amounts
decision-making. were adjusted for in ation. Th&erman Creditlataset has

In this work, we achieved ef ciency of UQ estimate by as-1,000 instances and 20 attributes. The currency values were
sessing the change of prediction yielded from repeatedigonverted to dollars and adjusted for in ation. T&eident
sampling noise adjacent to a given instance, and carefullyerformancehas 649 instances and 33 attributes. Three of
calibrated the uncertainty information shown to the user byihe attributesrst period grade second period gradend
leveraging the ground truth. More precisaflie provide well- nal grade were combined into one with their average. Each
calibrated uncertainty estimates in different visualizationsdataset was split into training (70%) and test (30%) data
of con dence intervals to the human participantsnlike ~ S€ts.

the existing work discussed above, our goal ipfovide  \ye selected these datasets because they involve real-world
the uncertainty information to the human participatésin-  contexts that are fairly intuitive for non-expert human par-
derstand whether well-calibratesicertainty quanti cation ticipants to reason about (e.g., will a student pass or fail a
information helps in user decision-makingp achieve this  ¢|3557). 1n addition, using three datasets that vary in number
goal, we do not attempt to come up with a UQ method &y features and in the overall accuracy classi ers can achieve

priori. Instead, we take the liberty of knowing the true labelsip, their predictions ensures that our ndings are not limited
of given instances, and simplify the problem as samplingomy to one speci ¢ dataset.

predictive con dence from instances distorted with a small _ ) )

amount of random noise. The quality of the disclosed unSeveral machine learning models were trained on all three
certainty estimate is veri ed using a strictly proper scoring datasets, including decision tree, logistic regression, ran-
rule (Gneiting & Raftery, 2007) prior to use in two behay-dom forest, and support vector machine. The best set of
ioral experiments. While there have been recent calls foRyper-parameters was determined through grid search. Ran-
research using UQ with human decision-making (e.g., Bhatflom forest was the best in terms of overall accuracy on the
et al. 2021; Lai et al. 2021), the few existing studies tenddatasets and therefore was selected for use as the Al model
to focus on qualitative or subjective assessments of huma this study. The mean accuracy on @ensusdata is
behavior (e.g., Prabhudesai et al. 2023). Furthermore, #5-3%, 75.7% on th&erman Credidata, and 85.1% on

is not clear how useful to decision-makers the UQ inforthe Student Performancaata. All classi cation tasks were
mation provided in these studies @je to lack of proper completed on an Int€lXeorf” machine with a 2.30GHz
calibration. CPU.
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Census German Credit Student Performance

Figure 1.The Brier score of the “cloned” instances f6ensug100),German Credi(100), andStudent Performanc@0) sampled for
demonstrationY -axis is the Brier score. Magenta marks the samples that are correctly predicted by the Al model, cyan marks samples
incorrectly predicted by the model. Horizontal lines illustrate the mean of the Brier score, and its 0.5, 1, and 1.5 standard deviations.

3.2. Instance-Level Predictive Uncertainty parameterized bw, the class label of is predicted as:
Quanti cation

UQ methods in existing literature estimate predictive uncer- Plypcw) = plyix swip(x jx)dx

tainty without the knowledge of the true labels of the tes . L .
. . : he posteriop(x jx) is generally unknown. By assuming
instances. These methods are subject to complicated calcula- . o

N (0; g;1),we can sample from the posterior distribu-

tions, §0met|mes poor convergence, lack of scalgblllty, an(EIion given the noisy input. In this study, we set = 100
sometimes, they are time and resource consuming (Abdar .
et al., 2021a). In our study, we aim to provide predictiveand 0=0:1.

uncertainty quanti cation to human decision-makers andSimilarly, for model uncertainty, given a set of training data
use the advantage of knowing the true labels in advancéX;Y ), we assume there exists an uncertain set ofiodels
Therefore, we simplify the problem as sampling predictivewith model uncertainty (™) p( jX;Y ). Hence, given an
con dence from samples of with a small random distur- instancex, the probability of the class label &fis:

bance anderify the quality of the uncertainty estimatsing . .

a strictly proper scoring rule (Gneiting & Raftery, 2007) be- POYIX XY ) = Bp( jxov ) [P(YIX; I:

fore showing it to the human. Note that, without knowing

the ground truth, this treatment of UQ would be recklessn this study, we tested an ensembldagfistic regression

and naive. It would appear that we model a prior distribuSUppPOrt vector machinendrandom foresto predict the

tion over hypothesis as the distribution over observation§lass label. The best uncertainty estimate, however, was
in the noisy neighborhood of a given instance. Howeverobtained by using theandom forestlone, assessed by the
given the true label of an instance, we can hypothesize thdg'ier score discussed below.

observations over ita neighboring noisy samples are  pyegictive uncertainty per instance was computed for 294
pl_au5|ble_ ts for this msta_nce, and con rm our hypothesis randomly selecte@ensusnstances, 30German Credit
with a strictly proper scoring rule. instances, and 198tudent Performandastances, for use in

Predictive uncertainty consists of data uncertainty (aleatoricr?he behavioral study. Predictive uncertainty at the instance-
and model uncertainty (epistemic). To model data unce evel was measured on random samples in the neighborhood

tainty, we sample instances from a Gaussian distribution Of the instance. More speci cally, given an instancen
within a standard deviation from a given instance, as- random “clones” were sampled from a Gaussian distribu-

sumingx = X + wherex is the clean input ok without  tion within  standard deviation from the mean In the

the random disturbance Thus, given a prediction function €xperiment, we lea = 100 and = 0:1 which provided
suf cient statistical signi cance and constrained neighbor-
hood choices. Class probabilities were computed using the
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trained random forest classi er for each of the 100 samplesalso appear. Figure 2 shows an example of the information
and the 95% con dence interval of the class probabilitiesappearing in the three Al conditions for a trial from the
was used as the predictive uncertainty range for instance German Credit dataset condition (see supplementary ma-
UQ computed frommandom forestlone was superior to that terial for more example trials). After making a decision,
of the ensemble dbgistic regressionsupport vector ma- participants then entered their con dence in that choice, on
chine andrandom foresthence was used in the behavioral a Likert scale of 1 (No Con dence) to 5 (Full Con dence).
study. Feedback was then displayed, indicating whether or not the

Knowing the ground truth (class label) of the instances, Weorewous choice was correct.

can verify the quality of the simulated predictive uncertainty
using the Brier score (also referred to as Brier loss). The
Brier score measures the mean squared difference between
the predicted probability and the true outcome. For each
selected instance, withy 2 f 0; 1g and the predicted prob-
ability pi = Pr(y; = 1) for eagh “cloned” samplg;, we
compute the Brier sco® = % ((y pi)? between the
predicted probability of the “cloned” samples apd-the
actual label ok.

If the “cloned” samples are truly representativexgfthe

computed Brier score should re ect the correctness of the

prediction made fox by the Al modelM . A smaller Brier

score means more accurate predictions made for the clones

of x, and therefore should correspond to a correct classi Figure 2.Example showing the information appearing in the three

cation forx by M . We veri ed empirically that the Brier Al conditions in Experiment 1 for a trial from th@erman Credit

scores of the predictive uncertainty is highly correlated withdataset condition.

the true prediction for by M , as shown in Figure 1. Points

with low Brier score corresponds to instances whdrés

correct. In Figure 1, points in magenta are the sample§or each dataset, we selected 50 instances with representa-

correctly predicted by the Al model, and points in cyan aretive average Al prediction accuracieSegnsus 88%, Ger-

samples incorrectly predicted by the model. As can be seefan Credit 76%, Student Performance32%). Then, for

“clones” for each correctly predicted sample correspond tgach participant, we randomly sampled 40 of those 50 in-

low Brier score loss, and vice versa, cloned samples foptances for the block of test trials, resulting in small varia-

incorrectly classi ed samples produce high Brier scorestions in Al accuracy for each participant.

Horizontal lines illustrate the mean of the Brigr score, andyjine participants were recruited from Proli bitps:

its 0.5, 1, and 1.5 standard d.eV|at|lons. The Brler_scc_)re Closﬁwww.prolific.co ). They provided informed con-

to mean (approximatel§:29) is a highly accurate indicator gent viewed a series of instructional screens with examples,

of the classi cation outcome. In essence, the Brier SCorg.,myjeted 8 practice trials, followed by 40 test trials, and a

rese_m_bles the trgsfc score (Jiang et 6_"" 2018) that has h_'grnief series of questionnaires (demographics, self-reported

precision at identifying correctly classi ed examples, and i gy ategies, subjective usability, subjective task dif culty, task

adequate to assess the quality of the estimated UQ. understanding, and an assessment of risk literacy (Cokely
] ) et al., 2012), see supplementary material). Most partici-

3.3. Behavioral Experiments: General Methods pants completed the task in less than 20 minutes, and they

We used the same experimental task across both Experimeff"e Paid$5.00 for their participation (i.e., well above the
1 and 2, which was developed using jsPysch (De Leeuv&,J-S- federal minimum hourly wage). This research received

2015) and hosted on MindProbéps://mindprobe. Institutional Review Board (IRB) approval.
eu/ using Just Another Tool for Online Studies (JATOS)
https://github.com/JATOS/JATOS . Eachtrialof 4, Experiment 1

this task included a description of an individual and a two- . o o )
alternative forced choice for the classi cation of that indi- EXPeriment 1 compared participant decision-making accu-
vidual. Each choice was correct on 50% of the trials, thug@cy in three conditions: Control (no Al prediction infor-
chance performance for human decision-making accurady'ation), Al Prediction, and Al Uncertainty (Al prediction
was 50%. In some conditions, an Al prediction or an Al pre_plus a visualized point estimate of Al uncertainty), see Fig-

diction and a visualization of prediction uncertainty would Ur® 2. All hypotheses and methods were pre-registered
(https://aspredicted.org/ZW9_Z54 ).






