
CLAP4CLIP: Continual Learning with Probabilistic
Finetuning for Vision-Language Models

Saurav Jha1, Dong Gong1∗, Lina Yao1,2

1University of New South Wales (UNSW Sydney), 2CSIRO’s Data61
{saurav.jha, dong.gong}@unsw.edu.au; lina.yao@data61.csiro.au

Abstract

Continual learning (CL) aims to help deep neural networks learn new knowledge
while retaining what has been learned. Owing to their powerful generalizability, pre-
trained vision-language models such as Contrastive Language-Image Pre-training
(CLIP) [1] have lately gained traction as practical CL candidates. However, the
domain mismatch between the pre-training and the downstream CL tasks often calls
for finetuning of the CLIP on the latter. Most existing finetuning methods exhibit
deterministic nature. This makes them overlook the many possible interactions
across the input modalities and deems them unsafe for high-risk tasks requiring
reliable uncertainty estimation. To address these, our work proposes Continual
LeArning with Probabilistic finetuning (CLAP) - a probabilistic modeling frame-
work over visual-guided text features per task, thus providing more calibrated CL
finetuning. Unlike recent data-hungry anti-forgetting CL techniques, CLAP allevi-
ates forgetting by exploiting the rich pre-trained knowledge of CLIP for weight
initialization and distribution regularization of task-specific parameters. Cooperat-
ing with the diverse range of existing prompting methods, CLAP can surpass the
predominant deterministic finetuning approaches for CL with CLIP. We conclude
with out-of-the-box applications of superior uncertainty estimation abilities of
CLAP including novel data detection and exemplar selection within the existing CL
setups. Our code is available at https://github.com/srvCodes/clap4clip.

1 Introduction
Learning in the real world involves dealing with the ever-changing distributions of task streams and
their data [2, 3, 4]. Given the constraints on resources and privacy, there is also no guarantee for
re-training a network on all previously seen data [5]. Continual learning (CL) aims to learn from such
data/task stream without catastrophic forgetting [6, 2] of past data/tasks. A challenging CL setup is
the class-incremental learning setting, where new classes emerge with new tasks, and at test time, a
model must infer from all seen classes without known task IDs [7, 8].

Recent years have seen pre-trained multi-modal foundation models excel on several domains [1, 9, 10].
One such example for the vision-language (VL) domain is the CLIP [1] model that comes with
strong zero-shot generalizability acquired by learning to match large-scale image-text pairs in a
contrastive manner [11]. However, to adapt well to downstream tasks, CLIP must be finetuned on the
task-specific data [12, 13]. Considering both the need for continually finetuning pre-trained models
on streaming tasks and their perks over training from scratch [14], our work studies CL with CLIP.

An issue with the existing deterministic approaches to finetuning [13, 12] is that these overlook
the uncertainties arising from many possible interactions between the visual and textual cues of
downstream tasks. For instance, on the textual side, while a good generic hand-crafted prompt for
images is “A photo of a {class}”, there can be instances where further tailored prompts help

∗Corresponding author

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/srvCodes/clap4clip

p1 p2 Text features

Image features

Visual-guided
text features

Task-specific
adapter modules

Text
encoder

Image
encoder

Pre-trained CLIP

• In-domain
performance

• Prompt-type
agnostic

• Cross-modal
cues

• In-domain
performance

• Prompt-type
agnostic

• Cross-modal
cues

• In-domain
performance

• Prompt-type
agnostic

• Cross-modal
cues

• Distinct task
representation

• In-domain
performance

• Prompt-type
agnostic

• Cross-modal
cues

1. 2. 3. 4.

Prompts

Figure 1: Concept diagram for probabilistic finetuning of pre-trained CLIP in a CL setup: We
identify four such suitable design choices for probabilistic modelling. Choice #1 [17] performs
variational modelling by imposing prior on the prompt space which makes it prompt-type dependent
while also interfering with the in-domain knowledge learning capability of the prompts – a criterion
crucial in the deployment of CL models. Choice #2 (see Sec. 3.2.1) instead imposes a prior on the
outputs of the text encoder. While this makes it prompt-type agnostic (as the text features can now
be derived from arbitrary prompt types), not taking the visual information into account nevertheless
leads to the loss of information about cross-modal interactions between the visual and textual cues –
a property essential for preventing cross-modal deviation of finetuned features in CL (see Sec. 3.2.2).
Choice #3 (Ours) leverages the best of both worlds by modelling the distribution of visual-guided
text features. To further refine the learned distributions of CL tasks, we finally introduce lightweight
task-specific adapter modules in choice #4 that make the cross-task centroids more distinct while
preserving the aforesaid properties (see Sec. 3.2.3).

improve the image-to-text coherence. Similarly, on the visual side, images from the same class can
have diverse range of backgrounds, poses, orientations, etc. Overlooking the uncertainties in image-
text matching can thus cause overfitting on downstream tasks and forgetting of the generalizable
knowledge [15]. For CL, where we seek to adapt CLIP on a stream of tasks, this can further lead to the
cross-modal features increasingly deviating from each other to the point of catastrophic forgetting (see
Fig. 3b). While existing methods [16, 17] model such uncertainties through probabilistic finetuning,
these remain subpar at CL given: (a) their inaptness to leverage existing prompt-based approaches
[16], (b) their excessive trading of in-domain performance for generalization [17].

Lastly, like other autonomous real-world agents, CL models deployed in mission-critical settings
(healthcare, transport, etc.) can benefit from uncertainty awareness by calibrating their predictions to
reliably assess their confidences [18, 8]. Hence, to enhance the usage of the pre-trained CLIP for
real-world CL tasks, we design a finetuning approach with the following three properties (see Fig.
1): A) probabilistic modeling of cross-modal task cues for better generalization; B) compatibility
with prompt-based finetuning methods [14, 12, 19, 20] to exploit their finegrained in-domain task
knowledge; C) leveraging the rich pre-trained knowledge of CLIP to further counter forgetting.

To this end, we design a principled Variational Inference (VI) framework that learns the functional
space of task-specific posterior distributions based on text features that are aligned with their visual
counterpart (property #A). To refine these variational task posteriors, we draw our motivation
from Bayesian mixture-of-experts ensembles [21, 22], and employ lightweight task-specific adapter
modules that model task-specific distributions. Our final prediction is thus a mixture of logits
derived from individual task adapter modules. To further counter the forgetting in these modules,
we diverge from the recent trend of internet data-hungry CL techniques [23, 24]. Instead, we
exploit the readily available pre-trained language knowledge of CLIP for weight initialization and
task distribution regularization (property #C). Finally, by modelling the distribution of the text
feature space, our probabilistic finetuning method boasts a rich modular nature as the features can
be derived from arbitrary prompt types (property #B). In particular, we show that our framework
can inherit the in-domain knowledge of hand-crafted [1], uni-modal [12], multi-modal [20], or
instance-conditioned [19] prompts. We backronymize our finetuning approach as CLAP – Continual
LeArning with Probabilistic finetuning – for the pre-trained CLIP model. Our experiments across

2

several settings show that CLAP4CLIP enhances prompt-based finetuning for CLIP, and surpasses the
predominant deterministic finetuning methods in terms of in-domain performance, output calibration,
and generalization to unseen CL tasks, all while sharing a similar resource overhead. We study
some out-of-the-box perks of CLAP’s probabilistic nature by leveraging its uncertainty estimation
capabilities on a proposed post-hoc novel data detection setup and on exemplar selection for CL.

2 Related work
Continual Learning (CL). The existing CL literature is predominated by three categories of methods:
(a) Regularization-based methods [6, 25, 26] alleviate forgetting by punishing changes to the param-
eters that are important to previous tasks; (b) Architecture-based approaches learn parameters that
are specialized for individual tasks either by network expansion [27] or by sub-network composition
[28, 29]; (c) Rehearsal-based approaches [30, 5] rely on storing a fraction of the past task experiences
in a memory to train with the current task. Each category has its own flaw – methods in (a) struggle
to discriminate inter-task classes [31]; those in (b) often require task oracle during inference; those
in (c) are sensitive to the memory sizes besides being prone to overfitting on the memory samples
[32]. Hence, practical CL calls for combining these. Our work leverages (a) via function-space
regularization (Sec. 3.4), (b) via task-specific modules (Sec. 3.2.3), and (c) via herding-based replay
(see App. A.1.1).

Vision-Language Models (VLMs) finetuning. The powerful generalizability of pre-trained VLMs
[9, 33] like the CLIP [1] has enabled their zero-shot applications to a range of downstream tasks,
including CL [14]. In practice, their performance on downstream out-of-domain data remains rather
weak [34, 35]. For such cases, finetuning on task-specific data is a natural choice. Instead of
performing extensive full finetuning on all parameters, some parameter-efficient finetuning (PEFT)
methods learn a lightweight feature adapter module for textual and/or visual paths [13, 36]. Another
line of PEFT methods learns soft prompts which are a few continuous tokens serving as inputs to
the frozen visual and/or textual encoder(s) to capture task-specific information [12, 37, 20]. Existing
works on CL with pre-trained CLIP have leveraged either [19, 38] or both [39] of these methods.
However, such finetuning methods remain deterministic in nature. This imposes an explicit constraint
on the modeling of the possible ways in which the visual and the textual semantics interact.

To address the aforesaid flaw, one could turn to adapt the existing probabilistic finetuning approaches
to capture the cross-modal interactions in CL tasks. For instance, [16] learn the distribution of
hand-crafted prompts while [17] propose variational prompt tuning (VPT) conditioned on the input
images. Yet these methods are limited in their efficacy. [16] is incompatible with conditional prompt
learning [37], which is an extensively studied PEFT field. VPT [17] trades in-domain performance
excessively in favor of generalizability – a trait detrimental in the deployment of CL models. Our
work aims to bridge these gaps for probabilistic finetuning all while adapting it for CL.

3 Methodology
3.1 Preliminaries
Continual Learning (CL). Class-incremental CL [7] aims to learn from a sequence of T
tasks [(C1, D1), (C2, D2), ..., (CT , DT)]. Each task t ∈ [1, T] has its training data Dt =
{(x1, y1), (x2, y2), ..., (xkt , ykt)}, where x and y are the input images and labels, respectively from
the set of classes Ct = {ct1, ct2, ..., ctnt}. Following [40, 41], we assume any two task-specific sets of
classes to be disjoint: Ci∩Cj = ∅. A neural network with parameters ϕ is then trained on task t using
Dt to minimize the cross-entropy loss over Ct. At test time, the model is evaluated on all seen classes
C =

⋃t
i=1 C

i, where the past task predictions are prone to forgetting. As a solution, rehearsal-based
methods [42, 43] replay past task samples from a memoryM during training. Following [30], we
use herding [44] to maintainM (see App. A.1.1 for details).

CLIP with prompt. CLIP comprises an image encoder f(x) acting on an image x ∈ R3×H×W of
height H and width W , and a text encoder g(t(p)) acting on a word embedding vector t ∈ R(L×e)

derived from a text prompt p ∈ R((L−1)×e). Here, L is the text length, and e is the text embedding
dimension. The encoders’s outputs are used in the prediction of the class yi as:

p(yi|x) =
exp

(
⟨f(x)T , g(ti)⟩/τ

)∑|Ct|
c=1 exp

(
⟨f(x)T , g(tc)⟩/τ

) , (1)

where τ is a learnable temperature parameter, ⟨·, ·⟩ is the cosine similarity, and the c-th class text
feature tc = [p, ec] is the result of adding a class-specific word embedding ec to the prompt p. The

3

cat

dog

koala

snow
leopard

Image
Encoder

Text
Encoder

f

p2 pL

tC
2

tC
L

.

.

.

...

Visual-

guided

Attention

(VGA)

Inference

Module

Σ

μ1

σ1

μ2

σ2

μt

σt

~

~

~

y1

y2

yt

y1:t

Sampling

.

.

.

Visual

features

Textual

features

Task distribution
encoders

Cosine similarity

Task logits

Task 1
Task t

K/V

Q
Ƹ𝐭C .

.

.

||

.

.

.

.

.
Concatenated

logit

Task 2 Task t-1

. . .

Replay Memory tC
1

+

+

+

.

.

.

+

Weight Initialization

Functional Regularization

Pre-trained Language-

Aware Knowledge

Pre-trained

CLIP
p1

.

.

.

Trainable

Frozen

/

Hand-crafted

prompts

Figure 2: CLAP4CLIP overview: the visual-guided attention (VGA) inference module uses the text
features as query (Q), and the visual features as keys (K) and values (V) to produce visual-guided text
features. The task-specific text features are fed to their respective task distribution encoders (µt, σt).
The task distribution samples are then fused with the original task features prior to deriving the task
logits yt. All task logits are concatenated to produce the final prediction y1:t.

features g(tc) for all classes are used as the weights of a linear classifier. In CL, g(tc) would thus
encode the features for classes c ∈ C seen until task t. Eq. (1) forms a contrastive training criterion
for the text and visual modalities, whose rich representation allows pre-trained CLIP to be used for
zero-shot classification through hard prompt templates, i.e., pc = “A photo of a {cth class}".

CLIP finetuning with learnable soft prompts. To improve the CLIP performance on a downstream
task t, soft prompts use a set of learnable vector tokens p = {p1,p2, ...,pL}. CoOp [12] shares p
with all classes of a task. MaPLe [20] learns multi-modal prompts by employing two such token sets
pf and pg until the J-th layers of the vision and the text encoders of CLIP, respectively. AttriCLIP
[19] selects a subset of prompts conditioned on the input: {{pj}1≤j≤L|xk}. Learning p (with frozen
CLIP weights) thusly helps encode task/modality/instance-conditioned context for a given task.

CLIP finetuning with adapters. Adapter-based methods like CLIP-Adapter [13] learn lightweight
modules over text and/or visual features of the frozen CLIP model. With a text adapter At, the
updated text features from Eq. (1) can be rewritten (with a slight abuse of notation) as:

g(ti) = αAt(g(ti)) + βg(ti), (2)

where α and β control the strength of the residual connection between the adapted and the pretrained
models’ features, e.g., β = 1− α in [13].

3.2 CL with probabilistic finetuning for CLIP
Overview. We develop our CLIP-based probabilistic finetuning model using a Bayesian VI framework
(see Fig. 2). Sec. 3.2.1 starts by making the case that, unlike previous VI-based finetuning approaches,
the feature embedding space of the text encoder output is a superior choice for defining our functional
space priors on. While linear adapter layers are often employed for obtaining the mapping from such
a pre-defined feature-space prior to the function outputs [45, 17], we show in Sec. 3.2.2 that CL
finetuning with generic adapter leads to the issue of cross-modal deviation. In Sec. 3.2.3, we then
propose refining our variational distribution on function space using an ensemble of task-specific
adapters that are built on top of cross-modal aligned text features.

3.2.1 Variational inference with function space prior on text features
We are interested in modeling the stochastic processes that generate the labels y for the inputs x of
a CL task t. To this end, we assume a prior distribution pχ over the text feature of the c-th class:
pχ(tc(p)). We can then draw M number of latent variables z = {zm ∼ pχ}Mm=1 to represent the
c-th class text feature tc(p) as a linear combination of the text encoder feature g(tc(p)) and z:

tc(p) = {g(tc(p)) + zm}Mm=1, s.t. zm ∼ pχ, (3a)

p(yi|x) =
∫
χ

exp
(
⟨f(x)T , tc(p)⟩

)∑|Ct|
c=1 exp

(
⟨f(x)T , tc(p)⟩

)p(tc(p))dχ, (3b)

4

0.1 0.3 0.5 0.7 0.9
Residual strength ()

-35

-50

-65

-80

Ba
ck

wa
rd

 tr
an

sf
er

10

25

40

55

Ac
cu

ra
cy

Variation of Acc. & BwT w/
BWT Accuracy

(a) Effect of α on Accuracy and
Backward Transfer (BwT).

2 4 6 8 10
Incremental test step

40

50

60

70

Av
g.

 ro
ta

tio
n

an
gl

e
(d

eg
re

es
) Test step vs Avg. rotation angle

Continual-CLIP (frozen)
CoOp
CoOp + Adapter
CoOp + Adapter + VGA

(b) Avg. rotation angle [47] per incremental step
for image and text features.

Figure 3: Need for Visual-guided Attention (VGA) inference module. Fig. 3a: A simple adapter is
inadequate at preventing catastrophic forgetting in CL – marked by high BwT scores; Fig. 3b: VGA
module encourages cross-modal alignment between the learned text features and the pre-trained visual
features – marked by a decrease in average angle arccos⟨t, 1⟩ between them – where otherwise the
former deviates further with incremental training steps.
where Eq. (3b) replaces g(ti) in Eq. (1) by tc(p). Eq. (3b) thus results into M number of predictions
whose distribution gives us the model’s epistemic uncertainty about the correct prediction. To deal
with the intractability of the marginal likelihood, we optimize for the evidence lower bound (ELBO)
using a variational posterior qϕ that approximates the prior pχ based on the KL-divergence loss DKL:

log p(y|x) ≥ Eqϕ(z|tc)[log p(y|x, z)]− DKL
(
qϕ(z|tc)∥pχ

)
. (4)

By assuming pχ to be the (static) standard Gaussian N (0, I) and qϕ to be the (learnable) Gaussian
N (µ(tc), σ(tc)), whose mean µ and standard deviation σ are parameterized by linear adapter layers,
we can ensure that the random variable z remains differentiable by reparameterization trick [45].
Accordingly, we refer to the parameters [µ;σ] together as probabilistic adapter from here onward.

Imposing the prior over the text feature offers us further advantages over that in the prompt embedding
space as done by VPT [17] (also see App. Fig. 1 for an illustration). First, Eq. (3b) is prompt-type
agnostic as the text features g(t) could be derived from any existing soft [37, 19, 20] or hard [14, 13]
prompts.2 Second, by leaving the prompt embedding space intact and injecting stochasticity into the
feature space, we can better learn the task-specific knowledge known to be encoded by the prompt
embeddings [46]. This can help bypass the loss of in-domain performance. In CL, the latter property
is crucial for our model to perform well on all previously seen tasks. Third, as the latent variable z is
now directly used to infer the logits, it naturally favors generalization by influencing the predictions.
On the contrary, the effect of the prompt space prior on the predictions is indirect as it is mediated by
the representations of the entire text encoder layers. This can make the influence of the prior harder
to control and can hinder the aforesaid interpretability in the model’s predictions.

Efficient continual finetuning with a probabilistic adapter. Finetuning adapters for CL is not
straightforward. Namely, we have the overhead of searching for task-specific residual ratio α (see
Eq. (2)) which is sensitive to the training setup including dataset and prompt-type [13, 36]. This
has particularly worse implications for a probabilistic adapter like ours, where a larger α can inject
enough noise to corrupt the pre-trained representations to the point of catastrophic forgetting (see
Fig. 3a). For efficient learning of our adapter, we thus seek to retain no additional overhead of
hyperparameter search for the residual ratio. Subsequently, we use α = β = 1 through our work.

3.2.2 Cross-modal feature deviation in continual finetuning of CLIP
To perform CL with variational modelling in the text feature space, we first take a step back to
investigate how CL in general affects the cross-modal deviation [47] between the learned text and
the frozen visual features of finetuning methods. To this end, we consider two basic CL models: the
CoOp [12] and the CoOp with a CLIP-Adapter [13]. Then, for the base task (t = 1) test samples of
CIFAR100, we compute the average of the Rotation Angle Matrix (RAM) [47] using the CL models’
frozen visual f(x) and learnable textual g(tc(p)) features at each incremental test step. Fig. 3b
shows the deviation of the learned textual features from their (frozen) visual counterparts for the
CoOp. This implies that the cross-modal retrieval performance of CLIP finetuned with learnable
prompts deteriorates with incremental training. Moreover, as a generic adapter (CoOp + Adapter)
does not remedy the cross-modal deviation, this sets a direct hindrance in employing our probabilistic
adapter to learn the variational distribution qϕ.

2From a practitioner’s perspective, this enriches the modularity by taking away the overhead of engineering
the priors specific to the prompt-type that could, for instance, be spanning multiple layers and/or modalities.

5

Variational modeling on visual-guided text features. For variational modeling of text features
tc(p) that remain aligned with the visual features during continual finetuning, we propose enriching
the text features with the visual context through an explicit attention mechanism (see App. A.3
for further justification on this design choice). To this end, we treat the text features as queries Q
and the visual features as keys K and values V , and adopt a standard transformer-styled decoder
block [48] as a task-shared Visual-guided attention (VGA) module. The VGA module performs
text-to-text self-attention followed by text-to-visual cross-attention. To eliminate the influence of the
text features from multiple CL tasks, a naive strategy is to perform specialized VGA forward passes
with task-specific queries [27]. We seek to replace several such costly VGA passes with a single pass.
To do so, we exploit the global nature of our visual context and mask out (set to −∞) all inter-task
connections in the queries using a target mask. This ensures that only the task-specific text features
undergo self-attention while the entire query still attends to the visual context:

{t̂kc}tk=1 = VGA
(
Q = {tkc}tk=1,K = V = f(x)

)
, (5a)

t̃tc = t̂tc + g(ttc(p)), (5b)

where t̂kc is the task-specific visual-guided text feature which is fused with the residual task-specific
text encoder feature g(ttc) to derive the task embedding t̃tc. We note that in a non-CL setup, [49]
employ the VGA module using the per-pixel spatial features (obtained before global average-pooling)
instead of the globally pooled visual features of the ViT [50]. Our choice for the latter favors the
efficiency of our framework for large CL datasets where attending to per-pixel spatial features can
incur much higher latency (see App. A.4 for a comparison).

3.2.3 Task-specific probabilistic adapters as ensembles for posterior approximation

By exploring diverse modes in function space, ensembles of neural networks can better approximate
the variational posterior [51, 22]. Motivated by this, we replace our task-shared adapter qϕ with
task-specific adapters {qiϕ}ti=1 that parameterize the t-th task-specific posterior N (µt, σt) over the
task embeddings t̃tc:

{ztm}Mm=1 ∼ qtϕ(z|t̃tc) = N
(
µt(t̃tc), σ

t(t̃tc)
)
, (6)

where ztm are the task-specific MC samples. Task-specific adapters thus serve as mixture-of-experts
ensemble where each expert is trained on task-specific embeddings t̃tc and the logits computed using

Figure 4: Need for task-specific probabilistic
adapters: Cosine distance between the centroids
of class-specific latent variables produced without
(left) and with (right) task-specific adapters on
CIFAR100 (10 tasks, 10 classes per task).

each expert is combined to derive the final pre-
diction ŷ1:t (see Algo 1). The experts learn
posteriors that are more discriminative across
tasks. This is depicted in Fig. 4 using the co-
sine distance between the embeddings of the
class-specific samples drawn from the poste-
riors. With task-specific adapters (right), the
cross-task class centroids are more separable.

To prevent interference from current task train-
ing data, we freeze the past task encoders dur-
ing each incremental training step (t > 1).
Moreover, to reduce the forgetting in past task
adapters, we follow other parameter-isolation
techniques [27, 42, 52] to finetune on a class-
balanced dataset of new data and rehearsal data M at the end of each incremental training step
(t > 1). We refer to this as memory consolidation training (see App. A.2). We also provide an
overview of a test-time forward pass of our framework in App. A.5.

Algorithm overview. App. algo. 1 outlines the pseudo-code of a forward pass of CLAP at t−th
task test step. Here, a test image is to be classified into one of the classes {1, ..., |Ct|}. Our method
executes the computationally heavy VGA layers only once. The task-specific VGA outputs are passed
to their respective adapters. By limiting the quadratic complexity of the VGA pass, our method
induces minimal time overhead. By only expanding the linear adapters per task, our memory overhead
is negligible compared to the large backbone of the pre-trained CLIP model (ablation Fig. 5).

3.3 Alleviating forgetting with pre-trained language-aware CLIP knowledge
Like other finetuning methods, our probabilistic adapters are likely to trade the generalizability of
text features for downstream task performances [12, 37]. On the contrary, the pre-trained CLIP text

6

encoder with hand-crafted prompts [53] has strong generalizability because of its rich pre-trained
language information. We propose to leverage this pre-trained language knowledge to help guide
the incremental finetuning in CLAP. In the following, we assume {th,ly ∈ Rd}Ll=1 to be the features
corresponding to the L hand-crafted textual prompts for the class y ∈ Ct.

3.3.1 Past-task distribution regularization for mitigating forgetting
The functional spaces of the past task distributions are prone to forgetting in CL. Though replay
helps alleviate the forgetting up to a certain degree, repeated training on the memory samples can
lead to overfitting on these [32, 54]. To address this, previous works [8, 55] exploit functional priors
for regularizing the visual space alongside memory replay. Here, we propose to regularize the past
task distributions in the textual space by using the hand-crafted prompt-based features {th,ly }Ll=1 to

distill the past task latent samples
{
zi = {zim}Mm=1

}t−1

i=1
. Namely, the probability of the sample set

zt belonging to a class y ∈ Ct is:

PKD(y|zt) =
1

M

M∑
m=1

1

L

L∑
l=1

exp
(
⟨th,ly , ztm⟩

)∑|Ct|
c=1 exp

(
⟨th,lc , ztm⟩

) . (7)

The resulting language-aware distillation loss is thus the sum of cross-entropy between the true label
distribution yc and the predicted probability distribution PKD across all the past-task classes:

LKD = −
T−1∑
t=1

|Ct|∑
c=1

logPKD(c|zt)yc, (8)

whereLKD serves as a data-free (i.e., no training samples required) text-to-text distribution regularizer
that encourages the latent variable outputs from past-task adapters to stay close to the text features
from the hand-crafted prompts. LKD is applied only during the memory consolidation training, that
is, when the past-task adapters are trainable. Lastly, as LKD acts on the functional space of past tasks,
this sets apart our setting from the non-CL setup of [56] where the language-aware distillation loss
regularizes the vector embedding space.

3.3.2 Task-specific adapter initialization considering stability
Stability gap [57] in CL refers to the temporary yet substantial forgetting of past task knowledge in
the initial phases of updating a network’s weights to learn an incremental task. An informed weight
initialization can help bridge this gap over random initialization by stabilizing the learning for new
task components [58]. We thus leverage the t−th task text features {th,ly }Ll=1 to initialize the weights
wµ

t ,w
σ
t ∈ Rd×d of our t−th task’s linear adapter layer. Let sµ, sσ ∈ R|Ct|×d be the mean and the

std. dev. of the L text features. We initialize wµ
t and wσ

t as:

wµ
t =

1

d
⟨sTµ , sµ⟩, wσ

t =
1

d
⟨sTσ , sσ⟩. (9)

3.4 Training objective

Approximate ELBO. Building upon Eq. (4), we now learn the task-specific adapters qtϕ to approx-
imate the intractable t ∈ [1, T] task-specific posteriors. The ELBO (see App. F for derivation) is:

log p(y1:T |x; t̃tc) ≥
T∑

t=1

[
Eqtϕ(z

t|x;t̃tc)

[
log pθ(y

t|zt,x; t̃tc)
]
− DKL

(
qtϕ(z

t|x; t̃tc)∥pχ(zt)
)]
. (10)

Overall objective. Denoting the loss weights by λ and γ, our total loss term can be given as
L = LCE − λDKL + γLKD, where the cross-entropy LCE and the prior-matching DKL terms act on
the outputs of all task encoders while the distribution regularization term LKD acts only on the past
task encoders. λ is set to 0.001. As the past task encoders are trainable only during the memory
consolidation training stage, λ for these is set to 0 during training. γ is set to 15.

4 Experiments
Datasets. We evaluate our method on CIFAR100 [3, 30], ImageNet100 [41, 43], ImageNet-R [59],
CUB200 [60], and VTAB [60]. CIFAR100 [61] and ImageNet100 [62] setups split their respective
original datasets into 10 tasks with 10 classes each. ImageNet-R [63] and CUB200 split 200 classes

7

Method CIFAR100 ImageNet100 ImageNet-R CUB200 VTAB
Avg ↑ Last ↑ Avg ↑ Last ↑ Avg ↑ Last ↑ Avg ↑ Last ↑ Avg ↑ Last ↑

Single-task JOINT 80.28 81.08 80.92 75.4 89.29
Task-specific JOINT 82.9 83.55 83.07 85.72 94.6

iCaRL [30] 72.93 57.6 68.62 59.5 66.34 43.71 82.39 75.1 53.38 41.6

L2P [65] 78.92 70.04 - - 77.07 69.33 76.98 68.47 - -
DualPrompt [59] 82.11 74.31 - - 82.73 76.41 82.37 76.29 - -
CODA-P [38] 85.19 76.4 85.93 79.02 82.06 79.5 84.77 80.39 87.5 81.2
PROOF [39] 84.84 76.55 - - 84.89 79.7 83.98 79.35 - -

Continual-CLIP [14] 78.65 68.26 83.99 74.2 84.43 76.94 67.0 54.8 68.5 60.97
CoOp [12] 81.17 70.58 79.14 64.9 84.7 78.66 76.62 68.53 87.06 81.25
MaPLe [20] 82.74 74.52 79.23 64.06 85.28 79.71 73.38 64.43 83.91 81.81
AttriCLIP [19] 79.31 68.45 82.29 70.76 83.09 76.53 65.26 52.12 71.84 64.09
CLIP-Adapter [13] 78.75 68.32 84.13 73.96 84.49 78.1 67.41 54.49 68.23 61.02
VPT [17] 73.4 59.33 80.51 61.09 81.66 74.0 69.14 60.03 67.2 77.26

Ours w/o VI 84.36 76.8 86.11 76.48 85.69 79.83 72.21 61.87 90.74 88.64

Ours 86.13 78.21 87.76 79.16 85.77 79.98 86.93 81.64 91.37 89.67
CoOp + Ours 85.71 77.4 86.8 78.18 85.32 79.52 86.99 81.95 92.51 91.28
MaPLe + Ours 86.06 78.48 87.47 79.02 86.25 80.56 81.53 74.24 90.97 88.83
AttriCLIP + Ours 78.06 67.59 87.37 79.3 86.35 80.6 83.71 79.01 74.84 71.12

Table 1: Performance comparison of different methods averaged over three runs. Best scores are in
bold. The second-best scores are in blue. The results for L2P, DualPrompt, and PROOF are taken
from [39]. See App. Table 12 for statistical significance of these results using std. dev. scores.

into 10 tasks with 20 classes each. VTAB has 5 tasks with 10 classes each [64]. While CIFAR100,
ImageNet100, and CUB200 are robust settings for evaluating CL methods in the face of large
forgetting, ImageNet-R and VTAB make challenging settings for CL methods using pre-trained
models as these might include test images in their pre-training set (see App. A.1 for details).

Baselines. We compare CLAP4CLIP against several baselines and state-of-the-art finetuning methods.
These include: (a) CLIP-based methods – Continual-CLIP [14], CoOp [12], CLIP-Adapter [13],
AttriCLIP [19], MaPLe [20], and PROOF [39], (b) vision-only methods – DualPrompt [59] L2P [65],
CODA-P [38], (c) the baseline CIL method – iCaRL [30]. For a fair comparison, we adhere to the
experimental protocols of PROOF [39] throughout. We adopt ViT-B/16 with the pre-trained weights
of OpenAI [1] as our backbone unless otherwise specified. As the upper bounds on performance, we
use the CLAP4CLIP with single and task-specific encoders, trained on all tasks jointly (JOINT).

Variants. We integrate our method with four prompt-based approaches: Ours uses CLAP with hand-
crafted prompt templates, CoOp + Ours with soft prompts [12], MaPLe + Ours uses multi-modal soft
prompts [20], and AttriCLIP + Ours uses CLAP4CLIP with instance-conditioned soft prompts [19].
Ours w/o Variational Inference (VI) is the deterministic variant of Ours depicted in App. Fig. 7. We
leave the details of the training and the hyperparameters of our models in App. A.2.

Performance measures. To quantify CL performances, we report: (a) the final accuracy after the
last incremental step (Last) and the average of the accuracies after each step (Avg) [30], and (b) the
backward transfer score (BwT) [66] to quantify forgetting. To assess the benefits of probabilistic
modelling, we report: (a) the expected calibration error (ECE) [67] that measures the calibration in the
model’s predictions [68], and (b) the (forward) transfer score [69] that quantifies the generalizability
of CL models by measuring the extent of their zero-shot transfer ability after finetuning.

4.1 Results

Accuracy. We report performances in Table 1 on all five datasets. Our method consistently achieves
the best results among all the methods compared. Notably, on CIFAR100 and ImageNet100, our
variants using the hand-crafted and multi-modal prompts outperform the others. On the challenging
ImageNet-R setup with significant intra-class diversity, our method can better leverage the instance-
conditioned prompt knowledge of AttriCLIP [19], which helps it outperform PROOF [39] by 1.46%
in terms of average accuracy. On CUB200 and VTAB, sharing the prompt pool among all tasks gives
CoOp [12] an edge over other baselines. Leveraging CoOp offers us the best results on these while
surpassing PROOF, which also builds upon CoOp with task-specific soft prompts. We also observe
that VPT [17] lags on all CL settings. Comparing the performance evolution of our variants against
other baselines shows that our variants perform better throughout the incremental steps (App. Fig. 8).

Forgetting. Table 13 shows that in general, plugging CLAP4CLIP with prompt-based finetuning
methods helps improve the BwT scores of the latter. It is worth noting that on the cross-dataset setting
of VTAB [64], our variants are the only methods that effectively transfer the knowledge learned from

8

Method ImageNet100 CIFAR100 +
ImageNet100

DualPrompt [59] 81.9 67.1

Continual-CLIP [14] 75.4 54.9
CoOp [12] 79.3 55.4

MaPLe [20] 84.81 76.2
AttriCLIP [19] 83.3 78.3
PROOF [39] 81.26 82.59

Ours 83.51 83.83
CoOp + Ours 82 82.63

MaPLe + Ours 82.97 83.6
AttriCLIP + Ours 84.14 84.56

Table 2: Performance comparison on the
CDCL setting [19]. All CLIP-based methods
use the ViT-L/14 backbone.

ID Prob
ab

ilis
tic

Enc
od

er

VGA Con
so

lid
ati

on

tra
ini

ng

Task
-sp

ec
ific

Enc
od

ers
W

eig
ht

Ini
tia

liz
ati

on

Dist
rib

uti
on

Reg
ula

riz
ati

on

Avg Last

#1 ✓ 22.78 11.49
#2 ✓ ✓ 82.82 73.41
#3 ✓ ✓ ✓ 84.4 74.99
#4 ✓ ✓ ✓ ✓ 85.7 77.2
#5 ✓ ✓ ✓ ✓ ✓ 86.01 77.98
#6 ✓ ✓ ✓ ✓ ✓ ✓ 86.13 78.21

Table 3: Ablations of the key components of
CLAP4CLIP on CIFAR100.

incremental tasks to improve the performance on past tasks (i.e., BwT > 0). This indicates that our
probabilistic modeling strategy does not only counter forgetting but can also help bring anti-forgetting
properties onto existing finetuning methods.

Calibration. App. Table 15 compares the ECE scores of our variants and their respective underlying
deterministic baselines at the last test step. In general, our variants help enhance (decrease) the ECE
scores of the underlying prompt-based methods. This implies that even in the face of forgetting in a
CL setup, CLAP retains more reliability in assessing the confidence of its predictions.

Generalization. App. Table 14 shows that our method consistently enhances the (forward) transfer
scores of the underlying deterministic prompt-based methods. This means that CLAP can better
transfer the learned knowledge from seen tasks to help solve future tasks.

Resource-constrained CL. To study the robustness of CLAP towards memory and compute-
constrained environments, we ablate its performance on replay-free [70] and computationally-
budgeted [23] CL setups, respectively. Tables 16 and 17 show that for both these setups, leveraging
the instance-conditioned and semantically diverse prompts of AttriCLIP provides an edge. Here, our
variant leveraging AttriCLIP surpasses the replay-free SOTA, i.e., CODA-P [38] and the budgeted
SOTA, i.e., AttriCLIP [19]. Further ablating the role of our proposed language-aware distribution
regularization and weight initialization components for our AttriCLIP variant shows that the former
component remains crucial for avoiding forgetting under resource-constrained settings.

4.1.1 Cross-Datasets Continual Learning (CDCL)
To simulate real-world settings with long sequence of tasks and large distribution shifts, the CDCL
setting [19] trains a model sequentially on ImageNet100 and CIFAR100 (i.e., on 20 tasks), and
evaluates it jointly on these. For a fair comparison with [19], we adopt the ViT-L/14 as our CLIP
backbone and set the train/test batch size to 32. All other settings remain the same as in Sec. 4.1.
Table 2 reports the last task accuracy of different methods. While all our variants improve the CDCL
performances of their respective baselines, combining ours with AttriCLIP [19] leads to the most
gains. This further suggests that our framework can reliably leverage the diverse nature of learned
prompts to inherit their setting-specific advantages.

4.2 Ablation Studies
We provide a few ablations of the training pipeline for CLAP4CLIP below and leave more in App. C.

Influence of components. We ablate the importance of different components of CLAP4CLIP in
Table 3. On top of the base CLIP model, we first train a probabilistic encoder. Adding the VGA
module and the memory consolidation training stage helps us achieve more stable performances
while countering forgetting. We then apply task-specific encoders which make the centroids of the
class-specific latent variable more separable (see Fig. 4) thus improving the last task accuracy by
2.21%. Language-aware weight initialization and regularization help improve the last task accuracies
by 0.78% and 0.23%, respectively. Weight initialization further helps us tackle the stability gap
[57, 58] (see App. C.6 for more ablations on language-aware components).

Probabilistic vs Deterministic inference. To understand our probabilistic inference modules further,
we examine their performance against the deterministic variant of ours (Ours w/o VI). Table 1 shows
that our probabilistic variant consistently outperforms its deterministic counterpart. This emphasizes
the advantages of considering uncertainty in finetuning. We further introspect the effects of the
number of layers for the VGA and task encoder modules in our framework in App. C.3.

9

Time analyses. We compare the inference time per iteration for different methods. As shown in App.
Table 19, our variants need more inference time than other finetuning methods for the performance
gains. The increased time comes mainly from the VGA and from inferring the M latent variables.

100

150

200

250

300

Pa
ra

m
et

er
s (

in
 m

illi
on

s)

299.2

149.8
149.6173.1

173.1
155.2

149.6
149.7159.5

iCaRL
CLIP-Adapter
Continual-CLIP
L2P
DualPrompt

PROOF
CoOp
AttriCLIP
Ours

Figure 5: Parameter count
comparison.

Parameter analyses. The additional parameters in CLAP4CLIP
come from the shared VGA module and the task-specific encoders.
For a ViT-B/16 backbone of output dimension, d = 512 on CI-
FAR100, the VGA module contains 4,204,032 parameters. The
mean and the std. dev. layers for 10 tasks have d × d parame-
ters each, i.e., 524, 2880 parameters. Hence, the CLAP4CLIP has
9.5 million extra parameters, which is negligible compared to the
pre-trained CLIP with ≈ 150 million parameters. We report the
parameter counts in Fig. 5.

5 Out-of-the-box utilities of probabilistic finetuning
We study the out-of-the-box utilities of CLAP4CLIP’s uncertainty quantification (UQ) capabilities.
Our motivation for these is not to achieve state-of-the-art performance but to highlight the perks
of probabilistic modeling in scenarios where the deterministic CL finetuning methods struggle.

Method AUROC ↑ AUPR ↑ FPR95 ↓

Continual-CLIP [14] 74.46 71.11 77.33
Ours w/o VI 82.29 78.88 68.83

Ours 82.21 79.54 68.72

CoOp [12] 80.15 77.62 66.8
+ Ours w/o VI 81.98 78.88 66.21

+ Ours 83.73 80.97 62.68

Table 4: PhNDD performances averaged
over 3 runs on CIFAR100. Best scores for
each variant are in bold.

Post-hoc novel data detection (PhNDD). PhNDD
uses a pre-trained classification model to identify novel
data based on the output confidence [71, 72]. For CL,
this can help discern the arrival of new tasks, expand
the network, etc. To evaluate the PhNDD capabilities
of models within a CL setup, we design a simple set-
ting. Namely, at all but the last test step, we treat the
test data from the past and the current tasks as seen
while those from all future tasks as novel. We then
use FPR95, AUROC [73], and AUPR [74] scores as
our performance metrics (see App. D.1) averaged over all but the last incremental test steps. To
quantify the output confidence, we rely on the Energy score [75] given its aptness for pre-trained
models. Table 4 compares the averaged PhNDD performances. Our probabilistic models enhance the
PhNDD capabilities of their underlying prompting frameworks. Moreover, the inferior results of the
deterministic (i.e., w/o VI) versions of our models suggest that probabilistic modelling helps a model
output predictions that better express what it is not aware of.

Entropy iCaRL
Random Energy

Variance
Exemplar selection strategy

70

80

90

Ac
cu

ra
cy

85.18
85.73

86.13
85.81

85.63

77.92
78.59

78.21
78.29

78.57

Avg Last

Figure 6: Analyses of various strate-
gies for exemplar selection w/ our
method on CIFAR100.

Exemplar selection. We employ the entropy (averaged over
M predictions) of CLAP’s softmax outputs as our exemplar
selection criteria [2]. Table 20 shows the efficacy of entropy-
based rehearsal for our method, where other deterministic
methods lag due to their inconsistent UQ capabilities. Next,
we employ the energy [75] and the variance of the softmax
outputs as our selection criterion and contrast these against
other criteria proposed in [2]. Fig. 6 shows that variance-
based exemplar selection outperforms random, and is only
second to iCaRL [30] in terms of Last accuracy. We note that
deterministic methods with pointwise predictions cannot use
variance for exemplar selection.

6 Conclusion
In this paper, we propose CLAP4CLIP, a probabilistic finetuning method for learning task-specific
distributions over visual-guided textual features. Our model shares the visual-guided text alignment
module across all tasks while adding lightweight task-specific encoders to learn fine-grained task
distributions. Besides leading to little memory overhead, this architecture is compatible with several
prompt-tuning-based methods thus helping us inherit their respective perks on different CL settings.
Our experiments show the superior results of CLAP4CLIP across several datasets and settings.
We conclude with two out-of-the-box utilities of our method wherein existing continual learning
methods lag: post-hoc novel data detection and uncertainty-based exemplar selection. We discuss our
limitations, potential future research directions, and the broader impact in App. sec. E.

10

7 Acknowledgement

This work was partially supported by a Discovery Early Career Researcher Award Fellowship
(DE230101591) awarded by the Australian Research Council (ARC) to Dong Gong. We are grateful
to Daniel Marczak and M. Jehanzeb Mirza for their insights on the need for continual finetuning of
the pre-trained CLIP model.

References
[1] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,

Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PMLR, 2021.

[2] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Rie-
mannian walk for incremental learning: Understanding forgetting and intransigence. In
Proceedings of the European conference on computer vision (ECCV), pages 532–547, 2018.

[3] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic
intelligence. In International conference on machine learning, pages 3987–3995. PMLR,
2017.

[4] Saurav Jha, Martin Schiemer, Franco Zambonelli, and Juan Ye. Continual learning in sensor-
based human activity recognition: An empirical benchmark analysis. Information Sciences,
575:1–21, 2021.

[5] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K
Dokania, Philip HS Torr, and Marc’Aurelio Ranzato. On tiny episodic memories in continual
learning. arXiv preprint arXiv:1902.10486, 2019.

[6] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska,
et al. Overcoming catastrophic forgetting in neural networks. Proceedings of the national
academy of sciences, 114(13):3521–3526, 2017.

[7] Marc Masana, Xialei Liu, Bartłomiej Twardowski, Mikel Menta, Andrew D Bagdanov, and
Joost Van De Weijer. Class-incremental learning: survey and performance evaluation on image
classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(5):5513–
5533, 2022.

[8] Saurav Jha, Dong Gong, He Zhao, and Lina Yao. NPCL: Neural processes for uncertainty-
aware continual learning. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023.

[9] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson,
Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual
language model for few-shot learning. Advances in Neural Information Processing Systems,
35:23716–23736, 2022.

[10] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 10684–10695, 2022.

[11] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[12] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for
vision-language models. International Journal of Computer Vision, 130(9):2337–2348, 2022.

[13] Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao Fang, Yongfeng Zhang, Hongsheng
Li, and Yu Qiao. Clip-adapter: Better vision-language models with feature adapters. arXiv
preprint arXiv:2110.04544, 2021.

11

[14] Vishal G. Thengane, Salman A. Khan, Munawar Hayat, and Fahad Shahbaz Khan. Clip model
is an efficient continual learner. ArXiv, abs/2210.03114, 2022.

[15] Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang. Fine-tuning
can distort pretrained features and underperform out-of-distribution. ICLR, 2022.

[16] Yuning Lu, Jianzhuang Liu, Yonggang Zhang, Yajing Liu, and Xinmei Tian. Prompt distribu-
tion learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5206–5215, 2022.

[17] Mohammad Mahdi Derakhshani, Enrique Sanchez, Adrian Bulat, Victor G Turrisi da Costa,
Cees GM Snoek, Georgios Tzimiropoulos, and Brais Martinez. Bayesian prompt learning
for image-language model generalization. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 15237–15246, 2023.

[18] Yann LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27.
Open Review, 62, 2022.

[19] Runqi Wang, Xiaoyue Duan, Guoliang Kang, Jianzhuang Liu, Shaohui Lin, Songcen Xu, Jinhu
Lü, and Baochang Zhang. Attriclip: A non-incremental learner for incremental knowledge
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3654–3663, 2023.

[20] Muhammad Uzair Khattak, Hanoona Rasheed, Muhammad Maaz, Salman Khan, and Fa-
had Shahbaz Khan. Maple: Multi-modal prompt learning. In CVPR, 2023.

[21] Yuji Iikubo, Shunsuke Horii, and Toshiyasu Matsushima. Model selection of bayesian hi-
erarchical mixture of experts based on variational inference. In 2019 IEEE International
Conference on Systems, Man and Cybernetics (SMC), pages 3474–3479, 2019.

[22] Oleksandr Balabanov, Bernhard Mehlig, and Hampus Linander. Bayesian posterior approxi-
mation with stochastic ensembles. In 2023 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 13701–13711. IEEE, 2023.

[23] Ameya Prabhu, Hasan Abed Al Kader Hammoud, Ser-Nam Lim, Bernard Ghanem, Philip HS
Torr, and Adel Bibi. From categories to classifier: Name-only continual learning by exploring
the web. arXiv preprint arXiv:2311.11293, 2023.

[24] Minhyuk Seo, Diganta Misra, Seongwon Cho, Minjae Lee, and Jonghyun Choi. Just say the
name: Online continual learning with category names only via data generation. arXiv preprint
arXiv:2403.10853, 2024.

[25] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuyte-
laars. Memory aware synapses: Learning what (not) to forget. In Proceedings of the European
conference on computer vision (ECCV), pages 139–154, 2018.

[26] Saurav Jha, Shiqi Yang, Masato Ishii, Mengjie Zhao, Christian Simon, Muhammad Jehanzeb
Mirza, Dong Gong, Lina Yao, Shusuke Takahashi, and Yuki Mitsufuji. Mining your own
secrets: Diffusion classifier scores for continual personalization of text-to-image diffusion
models. arXiv preprint arXiv:2410.00700, 2024.

[27] Arthur Douillard, Alexandre Ramé, Guillaume Couairon, and Matthieu Cord. Dytox: Trans-
formers for continual learning with dynamic token expansion. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 9285–9295, 2022.

[28] Oleksiy Ostapenko, Pau Rodriguez, Massimo Caccia, and Laurent Charlin. Continual learning
via local module composition. Advances in Neural Information Processing Systems, 34:30298–
30312, 2021.

[29] Haeyong Kang, Rusty John Lloyd Mina, Sultan Rizky Hikmawan Madjid, Jaehong Yoon, Mark
Hasegawa-Johnson, Sung Ju Hwang, and Chang D Yoo. Forget-free continual learning with
winning subnetworks. In International Conference on Machine Learning, pages 10734–10750.
PMLR, 2022.

12

[30] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pages 2001–2010, 2017.

[31] Timothee LESORT and Andrei Stoian. Regularization shortcomings for continual learning,
2021.

[32] Eli Verwimp, Matthias De Lange, and Tinne Tuytelaars. Rehearsal revealed: The limits
and merits of revisiting samples in continual learning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 9385–9394, 2021.

[33] Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui
Wu. Coca: Contrastive captioners are image-text foundation models. Transactions on Machine
Learning Research, 2022.

[34] Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca
Roelofs, Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong,
et al. Robust fine-tuning of zero-shot models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 7959–7971, 2022.

[35] Hieu Pham, Zihang Dai, Golnaz Ghiasi, Kenji Kawaguchi, Hanxiao Liu, Adams Wei Yu, Jiahui
Yu, Yi-Ting Chen, Minh-Thang Luong, Yonghui Wu, et al. Combined scaling for zero-shot
transfer learning. Neurocomputing, page 126658, 2023.

[36] Renrui Zhang, Wei Zhang, Rongyao Fang, Peng Gao, Kunchang Li, Jifeng Dai, Yu Qiao,
and Hongsheng Li. Tip-adapter: Training-free adaption of clip for few-shot classification. In
European Conference on Computer Vision, pages 493–510. Springer, 2022.

[37] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning
for vision-language models. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 16816–16825, 2022.

[38] James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun
Kim, Assaf Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Continual
decomposed attention-based prompting for rehearsal-free continual learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11909–11919,
2023.

[39] Da-Wei Zhou, Yuanhan Zhang, Jingyi Ning, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu.
Learning without forgetting for vision-language models. arXiv preprint arXiv:2305.19270,
2023.

[40] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern
analysis and machine intelligence, 40(12):2935–2947, 2017.

[41] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified
classifier incrementally via rebalancing. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 831–839, 2019.

[42] Francisco M Castro, Manuel J Marín-Jiménez, Nicolás Guil, Cordelia Schmid, and Karteek
Alahari. End-to-end incremental learning. In Proceedings of the European conference on
computer vision (ECCV), pages 233–248, 2018.

[43] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu.
Large scale incremental learning. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 374–382, 2019.

[44] Max Welling. Herding dynamical weights to learn. In Proceedings of the 26th Annual
International Conference on Machine Learning, pages 1121–1128, 2009.

[45] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

13

[46] Yuchao Gu, Xintao Wang, Jay Zhangjie Wu, Yujun Shi, Yunpeng Chen, Zihan Fan, Wuyou
Xiao, Rui Zhao, Shuning Chang, Weijia Wu, et al. Mix-of-show: Decentralized low-rank adap-
tation for multi-concept customization of diffusion models. Advances in Neural Information
Processing Systems, 36, 2024.

[47] Zixuan Ni, Longhui Wei, Siliang Tang, Yueting Zhuang, and Qi Tian. Continual vision-
language representaion learning with off-diagonal information, 2023.

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[49] Longtian Qiu, Renrui Zhang, Ziyu Guo, Ziyao Zeng, Yafeng Li, and Guangnan Zhang. Vt-clip:
Enhancing vision-language models with visual-guided texts. arXiv preprint arXiv:2112.02399,
2021.

[50] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on Learning Representations, 2021.

[51] Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep ensembles: A loss landscape
perspective. arXiv preprint arXiv:1912.02757, 2019.

[52] Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynamically expandable representation for
class incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3014–3023, 2021.

[53] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

[54] Dongyue Li and Hongyang Zhang. Improved regularization and robustness for fine-tuning in
neural networks. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors,
Advances in Neural Information Processing Systems, 2021.

[55] Pingbo Pan, Siddharth Swaroop, Alexander Immer, Runa Eschenhagen, Richard Turner,
and Mohammad Emtiyaz E Khan. Continual deep learning by functional regularisation of
memorable past. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, volume 33, pages 4453–4464. Curran
Associates, Inc., 2020.

[56] Adrian Bulat and Georgios Tzimiropoulos. Language-aware soft prompting for vision &
language foundation models, 2023.

[57] Matthias De Lange, Gido M van de Ven, and Tinne Tuytelaars. Continual evaluation for
lifelong learning: Identifying the stability gap. In The Eleventh International Conference on
Learning Representations, 2023.

[58] Md Yousuf Harun and Christopher Kanan. Overcoming the stability gap in continual learning.
arXiv preprint arXiv:2306.01904, 2023.

[59] Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi
Ren, Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting
for rehearsal-free continual learning. In European Conference on Computer Vision, pages
631–648. Springer, 2022.

[60] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The
caltech-ucsd birds-200-2011 dataset. 2011.

[61] Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

[62] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems, 25, 2012.

14

[63] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo,
Rahul Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness:
A critical analysis of out-of-distribution generalization. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 8340–8349, 2021.

[64] Da-Wei Zhou, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Revisiting class-incremental
learning with pre-trained models: Generalizability and adaptivity are all you need. arXiv
preprint arXiv:2303.07338, 2023.

[65] Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su,
Vincent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
139–149, 2022.

[66] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
Advances in neural information processing systems, 30, 2017.

[67] Mahdi Pakdaman Naeini, Gregory F. Cooper, and Milos Hauskrecht. Obtaining well calibrated
probabilities using bayesian binning. Proceedings of the ... AAAI Conference on Artificial
Intelligence. AAAI Conference on Artificial Intelligence, 2015:2901–2907, 2015.

[68] Matthias Minderer, Josip Djolonga, Rob Romijnders, Frances Hubis, Xiaohua Zhai, Neil
Houlsby, Dustin Tran, and Mario Lucic. Revisiting the calibration of modern neural networks.
Advances in Neural Information Processing Systems, 34:15682–15694, 2021.

[69] Zangwei Zheng, Mingyuan Ma, Kai Wang, Ziheng Qin, Xiangyu Yue, and Yang You. Prevent-
ing zero-shot transfer degradation in continual learning of vision-language models. In ICCV,
October 2023.

[70] Francesco Pelosin, Saurav Jha, Andrea Torsello, Bogdan Raducanu, and Joost van de Weijer.
Towards exemplar-free continual learning in vision transformers: An account of attention, func-
tional and weight regularization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, pages 3820–3829, June 2022.

[71] Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-distribution
detection: A survey. arXiv preprint arXiv:2110.11334, 2021.

[72] Jiangpeng He and Fengqing Zhu. Out-of-distribution detection in unsupervised continual
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3850–3855, 2022.

[73] Jesse Davis and Mark Goadrich. The relationship between precision-recall and roc curves. In
Proceedings of the 23rd international conference on Machine learning, pages 233–240, 2006.

[74] Takaya Saito and Marc Rehmsmeier. The precision-recall plot is more informative than the
roc plot when evaluating binary classifiers on imbalanced datasets. PloS one, 10(3):e0118432,
2015.

[75] Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution
detection. Advances in neural information processing systems, 33:21464–21475, 2020.

[76] Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme,
Mario Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy,
et al. A large-scale study of representation learning with the visual task adaptation benchmark.
arXiv preprint arXiv:1910.04867, 2019.

[77] Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification:
Benchmark and state of the art. Proceedings of the IEEE, 105(10):1865–1883, 2017.

[78] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi.
Describing textures in the wild. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 3606–3613, 2014.

15

[79] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. Cats and dogs. In
2012 IEEE Conference on Computer Vision and Pattern Recognition, pages 3498–3505, 2012.

[80] Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel
dataset and deep learning benchmark for land use and land cover classification. IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing, 12(7):2217–2226,
2019.

[81] M-E Nilsback and Andrew Zisserman. A visual vocabulary for flower classification. In 2006
IEEE computer society conference on computer vision and pattern recognition (CVPR’06),
volume 2, pages 1447–1454. IEEE, 2006.

[82] Da-Wei Zhou, Qi-Wei Wang, Zhi-Hong Qi, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Deep
class-incremental learning: A survey. arXiv preprint arXiv:2302.03648, 2023.

[83] Sebastian Farquhar and Yarin Gal. Towards robust evaluations of continual learning. Interna-
tional Conference on Machine Learning (ICML) Workshop, page 9, 2018.

[84] Z. Zheng, M. Ma, K. Wang, Z. Qin, X. Yue, and Y. You. Preventing zero-shot transfer
degradation in continual learning of vision-language models. In 2023 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 19068–19079, Los Alamitos, CA, USA, oct
2023. IEEE Computer Society.

[85] Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In
International Conference on Learning Representations, 2022.

[86] Youngjae Cho, HeeSun Bae, Seungjae Shin, Yeo Dong Youn, Weonyoung Joo, and Il-Chul
Moon. Make prompts adaptable: Bayesian modeling for vision-language prompt learning with
data-dependent prior. arXiv preprint arXiv:2401.06799, 2024.

[87] Tejas Srinivasan, Ting-Yun Chang, Leticia Pinto Alva, Georgios Chochlakis, Mohammad
Rostami, and Jesse Thomason. Climb: A continual learning benchmark for vision-and-
language tasks. Advances in Neural Information Processing Systems, 35:29440–29453, 2022.

[88] Zifeng Wang, Zheng Zhan, Yifan Gong, Geng Yuan, Wei Niu, Tong Jian, Bin Ren, Stratis
Ioannidis, Yanzhi Wang, and Jennifer Dy. Sparcl: Sparse continual learning on the edge.
Advances in Neural Information Processing Systems, 35:20366–20380, 2022.

[89] Qingsen Yan, Dong Gong, Yuhang Liu, Anton van den Hengel, and Javen Qinfeng Shi.
Learning bayesian sparse networks with full experience replay for continual learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
109–118, 2022.

[90] Sachit Menon and Carl Vondrick. Visual classification via description from large language
models. In The Eleventh International Conference on Learning Representations, 2023.

[91] Sarah Pratt, Ian Covert, Rosanne Liu, and Ali Farhadi. What does a platypus look like?
generating customized prompts for zero-shot image classification. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 15691–15701, 2023.

[92] Muhammad Uzair Khattak, Muhammad Ferjad Naeem, Muzammal Naseer, Luc Van Gool,
and Federico Tombari. Learning to prompt with text only supervision for vision-language
models. arXiv preprint arXiv:2401.02418, 2024.

[93] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language
models are few-shot learners. Advances in neural information processing systems, 33:1877–
1901, 2020.

[94] Tejas Srinivasan, Furong Jia, Mohammad Rostami, and Jesse Thomason. I2i: Initializing
adapters with improvised knowledge. arXiv preprint arXiv:2304.02168, 2023.

16

[95] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed,
Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and comprehension. In Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics, pages 7871–7880,
2020.

[96] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

[97] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik, and
Daniel Cohen-Or. An image is worth one word: Personalizing text-to-image generation using
textual inversion. arXiv preprint arXiv:2208.01618, 2022.

[98] James Seale Smith, Yen-Chang Hsu, Lingyu Zhang, Ting Hua, Zsolt Kira, Yilin Shen, and
Hongxia Jin. Continual diffusion: Continual customization of text-to-image diffusion with
c-lora. arXiv preprint arXiv:2304.06027, 2023.

[99] Vincent Fortuin. Priors in bayesian deep learning: A review. International Statistical Review,
90(3):563–591, 2022.

[100] Andrew Gelman. Prior distributions for variance parameters in hierarchical models (comment
on article by browne and draper). Bayesian Analysis, 1:515–534, 2004.

[101] Bernt Øksendal and Bernt Øksendal. Stochastic differential equations. Springer, 2003.

[102] Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende, SM Es-
lami, and Yee Whye Teh. Neural processes. arXiv preprint arXiv:1807.01622, 2018.

[103] Donggyun Kim, Seongwoong Cho, Wonkwang Lee, and Seunghoon Hong. Multi-task pro-
cesses. In International Conference on Learning Representations, 2022.

[104] Tuan Anh Le, Hyunjik Kim, Marta Garnelo, Dan Rosenbaum, Jonathan Schwarz, and
Yee Whye Teh. Empirical evaluation of neural process objectives. In NeurIPS workshop on
Bayesian Deep Learning, volume 4, 2018.

17

Appendix

cat

dog

koala

snow
leopard

Image
Encoder

Text
Encoder

f

p2 pL

tC
2

tC
L

.

.

.

...

Visual-

guided

Attention

(VGA)

Inference

Module

Σ

μ1

μ2

μt

y1

y2

yt

y1:t

.

.

.

Visual

features

Textual

features

Task mean
encoders

Cosine similarity

Task logits

Task 1
Task t

K/V

Q
Ƹ𝐭C .

.

.

||

.

.

.

.

.
Concatenated

logit

Task 2 Task t-1

. . .

Replay Memory tC
1

+

+

+

.

.

.

+

Weight Initialization

Functional Regularization

Pre-trained Language-

Aware Knowledge

Pre-trained

CLIP
p1

.

.

.

Trainable

Frozen

/

μ1

μ2

μt

Hand-crafted

prompts

Figure 7: Illustration of the deterministic variant of Ours (Ours w/o VI in Table 1): the task-
specific text features are fed to their respective task encoders, consisting of only the mean µ layer
each. There is no sampling involved and the task mean outputs are fused directly with the original
task features prior to deriving the task logits yt. All task logits are concatenated to produce the final
prediction y1:t.

A Experiments and Benchmarks

A.1 Datasets

Dataset # training instances # testing instances # Classes # Tasks Link
CIFAR100 50,000 10,000 100 10 URL

ImageNet100 130,000 5,000 100 10 URL
ImageNet-R 24,000 6,000 200 10 URL

CUB200 9,430 2,358 200 10 URL
VTAB 1,796 8,619 50 5 URL

Table 5: Benchmark datasets and their details.

We evaluate our method on five datasets, the details of which are reported in Table 5. Following
[39], we shuffle the order of training classes for all but the VTAB dataset with the random seed 1993.
While the original VTAB [76] includes 19 evaluation tasks from three categories (natural, specialized,
and structured) and their respective sub-domains, we rely on the five datasets cross-domain class-
incremental subset proposed in SimpleCIL [64]. The five datasets (used in the same streaming order)
include Resisc45 [77], DTD [78], Pets [79], EuroSAT [80], and Flowers [81]. To make the classes
emerge from domain to domain, we do not shuffle the class order for VTAB.

A.1.1 Exemplar selection for memory replay

Following [30, 41], we employ the herding algorithm [44] to choose the exemplars for our main
experiments. Following the previous works [82, 39], we rely on two typical methods to populate the
memory:

1. Fixed memory budget maintains a static memoryM with K instances. Upon having seen
|Yb| number of classes after an incremental training stage, the model selects K

|Yb| exemplars
per class.

18

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.image-net.org/challenges/LSVRC/index.php
https://github.com/hendrycks/imagenet-r
https://www.vision.caltech.edu/datasets/cub_200_2011/
https://drive.google.com/file/d/1xUiwlnx4k0oDhYi26KL5KwrCAya-mvJ_/view?usp=sharing

2. Expandable exemplar set dynamically expands the memoryM with the arrival of more
incremental tasks. After each incremental training stage, the model here stores |Yb| × kc
exemplars, where kc is the number of exemplars per class.

For CIFAR100, ImageNet100, and VTAB, given their lesser number of classes, we employ the first
policy, and keep a total of 2,000, 1,000, and 1,000 exemplars, respectively. This amounts to the
respective sub-totals of 20 and 10 exemplars per class after the last incremental stage. We choose
these sizes for a straightforward comparison with the existing works, i.e., PROOF [39] for CIFAR100
and AttriCLIP [19] for ImageNet100. For VTAB, the chosen memory size reflects the fact that we
have only 1, 796 training instances in total (see Table 5). For ImageNet-R and CUB200 with 200
classes each, we adopt the second policy and store 20 exemplars per class.

A.2 Training and Hyperparameter selection

We train CLAP and its variants using SGD, with a batch size of 64, for 5 epochs, including 1 epoch of
linear warmup. The initial learning rate (LR) is set to 1e-3 and decays with cosine annealing. At the
end of each incremental task (t > 1), we perform memory consolidation training for 2 epochs, with an
LR of 1e-4, on the class-balanced memory dataset. All our experiments were performed on NVIDIA
V100 GPUs hosted on the Gadi supercomputers of the National Computational Infrastructure (NCI
Australia).

Training for memory consolidation. To alleviate the forgetting of past tasks, we finetune on the
class-balanced dataset of new data and rehearsal dataM at the end of each incremental training step
(t > 1) [41, 27]. Following other well-established parameter-isolation CL algorithms [27, 42, 52], we
freeze the past task encoders during the normal training. This helps us avoid knowledge interference
from the dominant new task training samples. During the memory consolidation training stage, we
optimize all the task encoders while freezing the task-shared VGA module parameters.

Hyperparameter tuning. To the end goal of obtaining task-agnostic hyperparameters [83], we
tuned our hyperparameters using a validation set comprising 10% of the CIFAR-100 training dataset.
Similar to [27], performing the hyperparameter search only on the CIFAR100 setup helps us avoid
optimizing for the number of tasks while generalizing across all our other setups. Table 6 shows
the candidate values for the hyperparameter grid search and their best-chosen values. Tables 7, 8, 9,
and 10 report the last task accuracy scores (Last) corresponding to the hyperparameter search for the
number of training epochs, the number of finetuning epochs, the coefficient γ and the coefficient λ,
respectively. Fig. 9 in the main paper reports the accuracy and the runtimes for the different numbers
of MC samples M . We will release the full source code upon the acceptance of our paper.

Hyperparameter Range Chosen value
Learning rate 5e-3, 1e-3, 5e-4 1e-3

Epochs 3, 5, 7 5
Warmup epochs 0.5, 1, 1.5 1

Finetuning epochs 1, 2, 3, 4 2
γ 1, 5, 10, 15, 20, 25 15
λ 0.0001, 0.001, 0.01, 0.1 0.001
M 1, 5, 10, 15, 20, 25, 30, 50 20

Table 6: Hyperparameter tuning: we run a gridsearch on the CIFAR100 setup with a validation set
comprising 10% of the training set. The chosen values are reused across all other setups.

Epochs 3 5 7

Last 77.32 78.21 78.18

Table 7: Accuracy vs. Training epochs

Finetuning ep. 1 2 3 4

Last 77.65 78.21 78.2 78.18

Table 8: Accuracy vs. Finetuning epochs

19

γ 1 5 10 15 20 25

Last 78.04 77.94 78.1 78.21 77.96 77.14

Table 9: Accuracy vs. weight “γ" for LKD

λ 0.0001 0.001 0.01 0.1

Last 78.16 78.21 77.99 77.4

Table 10: Accuracy vs. weight “λ" for DKL

A.3 Variational modeling of text feature space vs. image feature space

We opt for the probabilistic modeling of task-specific text feature space rather than the image feature
space mainly in light of the practical constraints imposed by the class-incremental learning (CIL)
setting. In CIL, at test time, we are not given the task labels for images. As such, if we were to use
task-specific adapters to model task-specific visual features distribution (rather than task-specific text
features distribution), then we must infer which images are to be routed to what adapter. Existing
solutions [8] to task id inference would route the text-guided visual features to all available adapters
and then infer the correct prediction based on the adapter’s outputs. Such an exhaustive routing
mechanism greatly increases the test-time computational burden. Instead, we exploit the multimodal
nature of CLIP [1] to model the distribution of visual-guided text features. This helps us avoid
test-time task id inference as now our visual features form a shared context to which all task-specific
text features (which we can distinguish simply by their labels) can attend. By sampling from the
distributions over such visual-guided task-specific text features, we compute their cosine similarities
with the visual features to obtain our predictive logits.

A.4 Latency comparison for VT-CLIP styled VGA vs Ours

We compare the performance of VT-CLIP-styled VGA with Ours. To align the text features with the
image features, the former uses per-pixel spatial features obtained from the ViT prior to global pooling
while we use the globally pooled features. Table 11 shows that VT-CLIP styled VGA achieves similar
accuracy as ours while incurring ≈ 6× higher inference time.

Method Avg. Last Inference time (s)
VT-CLIP styled VGA 86.54 77.98 0.94

Ours 86.13 78.21 0.16
Table 11: Performance comparison of VT-CLIP styled VGA with Ours on CIFAR-100.

A.5 Algorithm overview.

B Results

B.1 Performance evolution

To complement the results in Table 1, Fig. 8 compares the accuracy of different methods at each
evaluation step across all datasets. Our major conclusions are briefed as follows. A) The base
task performance of CLAP4CLIP (ours) is consistently higher than other methods including the
state-of-the-art PROOF [39]. This suggests that our probabilistic finetuning framework is effective
for general downstream tasks in a non-incremental setting. B) For the CL settings in Table 1 where
either of the CLAP4CLIP variants achieve the best performances, their performance curves also
consistently retain superior results across all evaluation steps. This validates the effectiveness of our
method at tackling forgetting. C) Similar to [39], we notice that CLAP4CLIP achieves a significant
performance improvement over vision-only methods (L2P and DualPrompt). This indicates the merits
of considering text and visual cues together for continual learning.

20

Algorithm 1: A forward CLAP4CLIP pass at test step t

Input :{ti}ti=1: text features, f(x): image features
Output : ŷ1:t (predictions for classes seen till task t)

1 {t̂i}ti=1← VGA({ti}ti=1, f(x)) // Eq. (5a)
2 for i← 1; i ≤ t; i += 1 do
3 t̃i = t̂i + ti // Eq. (5b)
4 N

(
µi, σi

)
← qiϕ(t̃

i
c) // Sec. 3.2.3

5 ŷi ← ∅ // Null prediction set
6 for m← 1; m ≤M ; m += 1 do
7 zim ∼ N

(
µi, σi

)
// Sampling

8 t̃im ← t̃i + zim // Fusion
9 ŷim ← ⟨f(x)T , t̃im⟩ // Using Eq. (3b)

10 ŷi ← ŷi ∪ ŷim // Set Union

11 ŷ1:t ← [ŷ1, ..., ŷt] // Concatenation

Method CIFAR100 ImageNet100 ImageNet-R CUB VTAB

Continual-CLIP [14] 1.416 2.175 1.98 2.087 0.614
+Ours 1.39 2.19 1.86 2.06 0.443

CoOp [12] 1.57 2.47 1.95 1.99 0.54
+Ours 1.533 2.074 2.011 1.885 0.516

MaPLe [20] 1.3 2.052 2.16 1.803 0.49
+Ours 1.36 1.956 1.84 1.62 0.407

AttriCLIP [19] 1.781 2.54 2.37 2.419 0.996
+Ours 1.677 2.019 2.388 2.410 0.98

Table 12: Standard deviation (std. dev.) scores comparison for Avg. accuracy scores of Table 1
between our variants and their corresponding baseline prompt-based finetuning methods over three
runs. In general, our std. dev. scores are comparable to or lower than the corresponding baseline
methods and are thus statistically significant.

Method CIFAR100 ImageNet100 ImageNet-R CUB VTAB

Continual-CLIP [14] -0.086 -0.091 -0.066 -0.124 -0.041
+Ours -0.106 -0.117 -0.107 -0.117 0.012

CoOp [12] -0.257 -0.338 -0.12 -0.162 -0.007
+Ours -0.129 -0.139 -0.112 -0.106 0.011

MaPLe [20] -0.209 -0.352 -0.1 -0.145 0.037
+Ours -0.105 -0.112 -0.093 -0.102 0.005

AttriCLIP [19] -0.128 -0.152 -0.082 -0.151 -0.099
+Ours -0.143 -0.1 -0.092 -0.037 0.041

Table 13: Backward Transfer (BwT) scores ↑ comparison between our variants and their corre-
sponding baseline prompt-based finetuning methods averaged over three runs. Best scores across
each pair is highlighted in bold.

Method CIFAR100 ImageNet100 ImageNet-R CUB VTAB

Continual-CLIP [14] 65.34 53.13 61.67 59.55 65.13
+Ours 65.47 53.07 64.05 58.11 66.91

CoOp [12] 64.09 52.6 60.93 62.11 69.38
+Ours 66.2 55.09 63.44 58.6 74.1

MaPLe [20] 68.22 57.04 66.56 61.6 71.51
+Ours 76.17 62.33 70.03 67.8 78.29

AttriCLIP [19] 61.45 50.4 56.41 57.04 61.59
+Ours 61.87 50.56 58.03 57.95 64.3

Table 14: Transfer scores [84] ↑ comparison between our variants and their corresponding baseline
prompt-based finetuning methods averaged over three runs. Best scores across each pair is highlighted
in bold.

21

20 40 60 80 100
Number of Classes

50

60

70

80

90
Ac

cu
ra

cy
 (%

)

iCaRL
Continual-CLIP
CoOp
CLIP-Adapter
AttriCLIP
DualPrompt

L2P
PROOF
Ours
Ours + CoOp
Ours + AttriCLIP

(a) CIFAR100

20 40 60 80 100
Number of Classes

45

55

65

75

85

95

Ac
cu

ra
cy

 (%
)

iCaRL
Continual-CLIP
CoOp

CLIP-Adapter
AttriCLIP
Ours

Ours + CoOp
Ours + AttriCLIP

(b) ImageNet100

25 50 75 100 125 150 175 200
Number of Classes

25
35
45
55
65
75
85
95

Ac
cu

ra
cy

 (%
)

iCaRL
Continual-CLIP
CoOp
CLIP-Adapter

AttriCLIP
DualPrompt
L2P
PROOF

Ours
Ours + CoOp
Ours + AttriCLIP

(c) ImageNet-R

25 50 75 100 125 150 175 200
Number of Classes

30
40
50
60
70
80
90

Ac
cu

ra
cy

 (%
)

iCaRL
Continual-CLIP
CoOp
CLIP-Adapter

AttriCLIP
DualPrompt
L2P
PROOF

Ours
Ours + CoOp
Ours + AttriCLIP

(d) CUB200

10 20 30 40 50
Number of Classes

40
50
60
70
80
90

Ac
cu

ra
cy

 (%
)

iCaRL
Continual-CLIP
CoOp

CLIP-Adapter
AttriCLIP
Ours

Ours + CoOp
Ours + AttriCLIP

(e) VTAB

Figure 8: Performance evolution of different methods. The top-1 accuracy (%) is reported upon
learning of each task.

Method CIFAR100 ImageNet100 ImageNet-R CUB VTAB

Continual-CLIP [14] 0.288 0.238 0.206 0.208 0.186
+Ours 0.216 0.207 0.201 0.203 0.165

CoOp [12] 0.245 0.3 0.191 0.21 0.191
+Ours 0.224 0.217 0.207 0.204 0.136

MaPLe [20] 0.168 0.243 0.149 0.195 0.195
+Ours 0.214 0.208 0.146 0.184 0.159

AttriCLIP [19] 0.256 0.256 0.205 0.209 0.191
+Ours 0.304 0.205 0.19 0.198 0.304

Table 15: Expected Calibration Error (ECE) scores ↓ (computed over 15 bins) comparison between
our variants and their corresponding baseline prompt-based finetuning methods averaged over three
runs. Best scores across each pair is highlighted in bold.

22

B.2 Results for replay-free CL setup

Method CIFAR100 ImageNet100 ImageNet-R CUB200 VTAB
Avg ↑ Last ↑ Avg ↑ Last ↑ Avg ↑ Last ↑ Avg ↑ Last ↑ Avg ↑ Last ↑

CODA-P 74.66 63.7 79.8 72.66 76.44 72.19 74.32 70.15 70.59 66.12
AttriCLIP [19] 71.35 61.4 80.55 73.08 79.57 76.1 73.89 72.36 71.25 66.02

CoOp + Ours 74.19 63.45 81.07 72.0 81.22 75.8 82.59 74.98 82.11 80.11
AttriCLIP + Ours 76.94 69.39 84.1 75.83 85.2 78.57 77.2 73.58 72.98 68.5

AttriCLIP + Ours (w/o adapter init) 71.87 60.35 75.9 69.41 77.1 70.53 69.82 65.95 65.48 61.35
AttriCLIP + Ours (w/o distribution reg.) 64.2 53.01 64.03 52.55 62.81 53.19 58.52 51.0 58.22 56.14

Table 16: Performance comparison without memory replay (avg. over 3 runs). For a thorough
analysis, the last two rows ablate our proposed pretrained CLIP’s language-aware anti-forgetting
components (Sec. 3.3, main paper): distribution regularization and adapter weight initialization. Best
results are in bold.

B.3 Results for computationally-budgeted CL setup

For our computationally-budgeted CL setup, we follow [23] where on each incremental training task,
we allocate the number of training iterations equivalent to 1 epoch on the first (base) task of each
dataset. Here, our variant utilizing instance-conditioned prompts of AttriCLIP outperforms other
compared methods. A further ablation shows that our proposed weight distribution regularization
technique indeed remains a crucial component at tackling forgetting on the budgeted setup (see the
two bottom-most rows in Table 17).

Method CIFAR100 ImageNet100
Avg ↑ Last ↑ Avg ↑ Last ↑

CODA-P 52.13 49.5 52.99 48.03
AttriCLIP [19] 58.61 52.1 60.54 57.4
PROOF 55.29 50.3 56.8 54.37

AttriCLIP + Ours 61.7 55.89 62.91 60.2

AttriCLIP + Ours (w/o init.) 61.33 54.95 62.14 59.86
AttriCLIP + Ours (w/o reg.) 58.95 52.6 60.04 57.93

Table 17: Results for computationally budgeted CL setup [23]: we follow the "Normal" budget
setup from [23] where each incremental task is allocated training iterations equivalent of 1 epoch on
the first task of each dataset. Scores reported are averages over three runs. Best results are in bold.

C Ablation studies

C.1 Sensitivity to the number of Monte Carlo (MC) samples.

1 5 10 15 20 25 30 50
of MC samples (M)

73

74

75

76

77

78

La
st

 A
cc

ur
ac

y

0.166

0.167

0.168

0.169

0.170

0.171
Ru

n
tim

e
(s

ec
on

ds
)

Accuracy
Runtime

Figure 9: Accuracy-runtime
trade-off with number of MC
samples M .

We vary the number of MC samples M from 1 to 50. In Fig. 9, the
accuracy is poorer in range [1, 10], grows in range [10, 20], and
saturates thereafter. Hence, we set M to 20 for all our experiments.

C.2 Effect of forgetting on individual task adapters.

We ablate the task head predictions over the test set of each task
on CIFAR100 (see App. C.2 for more details). Fig. 10a reports
the accuracy of test set samples corresponding to the task encoder heads at the end of incremental
training on the last task. Here, the first row is to be interpreted as follows: 77% of test samples
belonging to test set of the first task (test set ID 1) were correctly allocated to task head 1, 1.4% of
test samples belonging to test set of the first task (test set ID 1) were incorrectly allocated to task head
2, and so on. Visualizing the task head selection results for the last task evaluation helps us uncover
the amount of forgetting among the individual task heads at the end of the incremental training.

Fig. 10b compares the evolution of the task head selection accuracy across the incremental test steps.
Here, at the first test step, we have only one task head and thus the task head selection accuracy is
100%. At the second test step, we have the test samples from two seen tasks as well as two available

23

task heads. Out of all test samples of task 1, the reported 94.5% were correctly classified into the task
head 1 while the rest 5.5% were incorrectly classified into the task head 2. Similarly, for test samples
belonging to task 2, 3.1% were incorrectly classified into the task head 1 while the reported 96.9%
were correctly classified into the task head 2, and so on. Hence, by studying the task head selection
per incremental step, we can investigate the trend of forgetting among the individual task heads.

1 2 3 4 5 6 7 8 9 10
Task head

1
2
3
4
5
6
7
8
9

10

Te
st

 se
t I

D

77.01.4 2.3 2.0 2.2 2.6 3.1 2.3 4.1 3.0
2.073.83.4 2.4 3.9 2.3 2.4 2.2 5.9 1.7
1.9 1.180.82.3 3.1 2.6 0.4 0.8 4.2 2.8
2.2 2.1 1.980.52.9 1.3 1.3 2.1 2.7 3.0
1.3 4.0 1.6 2.178.02.1 0.6 4.0 3.9 2.4
1.7 1.6 1.0 1.2 1.278.22.4 5.4 4.3 3.0
0.8 2.2 0.6 1.0 1.0 2.382.83.0 3.8 2.5
0.8 0.8 0.5 1.4 3.6 3.9 2.177.54.3 5.1
1.3 2.7 1.5 1.3 2.1 1.2 1.7 1.884.42.0
1.0 0.8 1.6 0.9 1.5 2.4 1.4 1.4 3.885.2 Low

High

(a) Last step task head selection accuracies

1 2 3 4 5 6 7 8 9 10
Task head

1
2
3
4
5
6
7
8
9

10

Te
st

 st
ep

100
94.596.9
92 90.593.6

89.287.388.792.7
88.482.786.388.188.3
83.982.583.8 86 84.9 91
81.477.883.3 86 84.1 88 91.9
79.477.581.684.582.280.989.285.3
78.474.483.683.981.180.384.479.885.8
77 73.880.880.5 78 78.282.877.584.485.2 Low

High

Ac
cu

ra
cy

(b) Per step task head selection accuracies

Figure 10: Task head selection accuracies reported on CIFAR-100 upon: (a) evaluation on the last
step, (b) evaluation on each incremental step.

C.3 Effect of inference module architecture.

To further investigate the effects of inference modules on performances, we vary the number of layers
for the VGA module (sec. 3.2.2) and for the task-specific encoders (sec. 3.2.3). Fig. 11a reports the
results of varying the number of Transformer Decoder layers [48] in the VGA module. As the number
of layers grow, the average accuracy (Avg) increases while the last task accuracy (Last) decreases.
This indicates that while a larger number of layers in the VGA module lead to an increase in the
initial tasks’ performances, these are amenable to larger forgetting on latter incremental steps.

In Fig. 11b, we report the performances for varying number of MLP layers in the mean and the
standard deviation heads of the task distribution encoders. Unlike the VGA module, here we observe
a consistent trend of decreasing last and average task accuracy with the increase in the number of
layers. This clearly indicates the superiority of using a single-layered task distribution encoder.

1 2 3 4
of VGA layers

77.9

78.0

78.1

78.2

La
st

 A
cc

ur
ac

y

86.15

86.20

86.25

Av
g

Ac
cu

ra
cy

Last
Avg

(a)

1 2 3
of task encoder layers

77.0

77.5

78.0

La
st

 A
cc

ur
ac

y

85.6

85.8

86.0

Av
g

Ac
cu

ra
cy

Last
Avg

(b)

Figure 11: Ablation studies on CIFAR100 showing: (a) the variation of accuracy with the number
of Transformer decoder layers in the VGA module, (b) the variation of accuracy with the number of
linear layers in the task-specific mean and standard deviation encoders.

C.4 Effect of prior type.

To study the role of a more informed prior in our VI framework, we study three choices of priors
to be used in the prior-matching term of eq. (10): (a) the static (standard normal) prior, (b) the
language-aware prior using the distribution obtained from the task encoders using the hand-crafted
prompts’ features {th,ly }Ll=1 (sec 3.3), (c) the data-driven prior using a randomly chosen subset of a
training minibatch as the context set to condition the prior on (see App. G for more details). App.
Table 18 shows that while (b) and (c) slightly improve over (a) in terms of accuracies and forgetting,
these come at the cost of poorer model calibration and longer runtime per iteration.

24

Prior type Last ↑ Avg ↑ BwT ↑ ECE ↓ Runtime
per iter. ↓

Static 78.21 86.13 -0.141 0.204 0.169
Data-driven 78.32 86.15 -0.115 0.216 0.172

Language-aware 78.38 86.22 -0.112 0.214 0.17
Table 18: Performances of different priors averaged over 3 runs on CIFAR100.

C.5 Inference time for different finetuning methods.

Table 19 investigates the inference time per iteration for different methods. Among the compared
prompt-based methods, the inference time for AttriCLIP [19] is notably the highest. This is because
it relies on selecting test instance-conditioned prompt tokens from a pool of prompt tokens. The
instance-specific prompts are fed to the text encoder which further outputs an equivalent number of
instance-specific text features to be used in the derivation of logits through eq. 1. These operations
increase the inference time of AttriCLIP beyond our proposed variants of CLAP4CLIP with hand-
crafted prompts (Ours), class-conditioned prompts (CoOp + Ours), and multi-modal prompts (MaPLe
+ Ours) where the latter three outperform AttriCLIP significantly across all our settings.

Method Inference time (s)
Continual-CLIP [14] 0.017

CoOp [12] 0.018
MaPLe [20] 0.035

AttriCLIP [19] 0.257
CLIP-Adapter [13] 0.019

Ours 0.163
CoOp + Ours 0.182

MaPLe + Ours 0.064
AttriCLIP + Ours 0.299

Table 19: Average inference time for different finetuning methods on CIFAR100.

C.6 Influence of language-aware knowledge components on training dynamics.

Continuing our ablations from sec. 4.2, here we visualize the effects of using language-aware
pre-trained knowledge, i.e., weight initialization and task distribution regularization on the training
dynamics of our model. For thorough analyses, we consider four variants of our model: (a) Ours uses
both weight initialization and task distribution regularization, (b) Ours without weight initialization,
(c) Ours without task distribution regularization, and (d) Ours without either of the language-aware
components.

Does language-aware weight initialization help alleviate stability gap [57]? To answer this, we
first investigate the evolution of the training loss during the initial training stages of each incremental
task. Fig. 14 shows the loss L (Sec. 3.4) during the initial 100 training iterations of each task.
We observe that our proposed weight initialization technique leads to lower training losses for the
scenarios with or without task distribution regularization, i.e., in general, red values < green values
and blue values < orange values. Following [58], our observations support the hypothesis that
larger loss values lead to the stability gap [57] for CL, and that an informed weight initialization
method can help tackle it by reducing the initial training loss.

To further verify the benefit of our proposed weight initialization strategy for reducing the stability
gap, we ablate the accuracy evolution of the first task test samples during the early training stages
of each task. Figures 12b and 12a contrast these for CIFAR100. In general, our proposed weight
initialization strategy helps mitigate the drop in accuracy during the initial training phases. On average,
the first task accuracy upon the first iteration of training across all tasks remains 78.12 without weight
initialization and grows to 79.5 with weight initialization, i.e., a gain of 1.38 percentage points.

How does language-aware knowledge help learning of task distributions in general? To under-
stand the effect of language-aware knowledge on task distribution learning, we next investigate the
evolution of the means and standard deviations learned by the past and the new task heads throughout

25

Step 1 Step 2 Step 3 Step 4 Step 5
20

40

60

80

100

Ta
sk

 1
 A

cc
ur

ac
y

 93.2

 81.1

 80.3

 81.5

First 100 training iterations

Step 6 Step 7 Step 8 Step 9 Step 10

20

40

60

80

Ta
sk

 1
 A

cc
ur

ac
y

 78.6

 79.7

 74.5

 75.0

 71.6

(a) With weight initialization

Step 1 Step 2 Step 3 Step 4 Step 5

0

20

40

60

80

100

Ta
sk

 1
 A

cc
ur

ac
y

 86.1

 79.0

 79.9

 82.6

First 100 training iterations

Step 6 Step 7 Step 8 Step 9 Step 10

0

20

40

60

80

Ta
sk

 1
 A

cc
ur

ac
y

 77.8

 76.6

 75.2

 73.9

 72.0

(b) Without weight initialization

Figure 12: Effect of weight initialization on stability gap: Test accuracy with and without weight
initializations on the first task for the initial 100 iterations of incremental training on all ten tasks of
CIFAR100. The green lines are the means over three different runs, the orange shades denote ±1
standard error of the mean. The labels to the vertical bars denote the accuracy values for the first
iteration of training on each task.

the training iterations. To this end, Fig. 15 and Fig. 16 report the training iterations against the L2
norm of means and standard deviations for the past task heads (at each incremental training step) and
the new task heads (at each training step). We observe two consistent trends regarding the evolution
of distributions of the past and the new task heads. First, the proposed initialization of weights
helps stabilize the learning of the means and standard deviations with (red against green) or without
(blue against orange) regularizing the task distributions. Second, regularizing the task distributions
increases the L2 norms of the learned mean and the standard deviation as these now have to encode
more information to mimic the distributions of the hand-crafted text features.

26

20 40 60 80
40

60

80

FP
R9

5

20 40 60 80

70

80

90
AU

RO
C

20 40 60 80
Number of Classes

40

60

80

AU
PR

Continual-CLIP
CoOp

Ours
Ours w/o VI

Ours + CoOp
Ours + CoOp (w/o VI)

Figure 13: Performance comparisons for post-hoc novel data detection averaged over 3 runs on
CIFAR100: FPR95 (left), AUROC (middle), and AUPR (right). The evaluations are carried over all
but the last incremental test step.

D Out-of-the-box utilities of probabilistic finetuning

D.1 Post-hoc novel data detection

Our post-hoc novel data detection (PhNDD) setting aims to evaluate the continual learning methods
at identifying novel data on the fly. To do so, we design an evaluation setup that uses no additional
data resource other than that provided by the dataset-specific CL setting. Starting from the first test
step, we treat the test data of the future tasks as novel while those of the seen tasks (including the
most recently trained one) as seen. Since the last test step of a CL dataset has no future tasks, we
exclude this step for our PhNDD evaluation, i.e., we carry our PhNDD evaluation of CL models
starting from the first until the penultimate test step.

Following other standard practices [75, 72], we use the Energy scores [75] of the outputs for each
test sample as a measure of the model’s confidence score. The samples assigned with a confidence
score below the pre-defined confidence threshold are classified as novel. By assuming the seen data
as the positive class and the novel data as the negative class, we can obtain a series of true positives
rate (TPR) and false positive rate (FPR) by varying the confidence thresholds. One of our PhNDD
evaluation metrics – the FPR95 then measures the FPR when the TPR is 0.95. As such, a lower
FPR95 score indicates better PhNDD performance. Our other two PhNDD performance metrics
include the the area under receiver operating characteristic curve (AUROC [73]) calculated based on
FPR and TPR, and the precision-recall curve (AUPR [74]). Higher values of AUROC and AUPR
indicate better PhNDD performance.

27

Table 4 reports the PhNDD metrics averaged over all the evaluated steps. Here, in Fig. 13, we
show the evolution of these metrics with each evaluation starting from the first test step until the
penultimate test step of CIFAR100. We observe that the zero-shot Continual-CLIP [14] has the
poorest PhNDD performances (highest FPR95, and least AUROC and AUPR scores) across all steps
given that it has not been finetuned on the downstream CL tasks. Among the finetuned methods, the
CoOp [12] exhibits the poorest performances across all tasks. Among the variants of our method,
combining CoOp with ours (CoOp + Ours) achieves the best PhNDD performances across all tasks.
Furthermore, the deterministic versions: Ours w/o VI and CoOp + Ours (w/o VI) remain sub-optimal
to their respective probabilistic variants, i.e., Ours and CoOp + Ours. The latter results validate the
added perks of our probabilistic modeling framework for post-hoc novel data detection.

D.2 Exemplar selection results

Method Avg Last

CoOp 76.71 64.1
Clip-Adapter 78.78 68.49
Ours w/o VI 84.44 76.55

Ours 85.18 77.92

Table 20: Entropy-based exemplar selection results for different methods on CIFAR100.

E Limitations and further research directions

Few potential directions of research for CLAP4CLIP include the design of: (a) parameter-efficient
adapters [85] for very large CL settings; (b) better regularization techniques to alleviate forgetting;
and (c) more informed [86] yet computationally efficient priors for inference. Similarly, along the
direction of alleviating forgetting and mitigating the stability gap [57, 58], it would be interesting
to see how class-specific prompts generated by pre-trained Large Language Models (LLMs) can be
exploited to obtain task-relevant language-aware CLIP knowledge while preserving the zero-shot
transfer ability of the learned prompts (see App. Table 21 for a preliminary investigation). Lastly, we
consider applying CLAP4CLIP to more sophisticated Vision-Language tasks [87] as another possible
direction for research. We elaborate further on each of these directions below.

Parameter overhead. For each incoming task, CLAP4CLIP initializes a new head consisting
of d × d parameters where d is the output dimension of the CLIP model’s encoder. For a very
large number of real-world CL tasks, the number of finetunable parameters for CLAP4CLIP may
thus become comparable to or larger than that of the pre-trained CLIP model’s ≈ 150 million
parameters. For example, using a VIT-B/16 encoder with d = 512 brings an overhead of ≈ 525, 000
new parameters with each incoming task. After having seen ≈ 300 new tasks, the number of
CLAP parameters to be finetuned thus amount to ≈ 158 million, which is larger than the frozen
CLIP itself, and thus defeats the purpose of finetuning at the first place. One solid future direction
to use CLAP4CLIP for very large real-world CL settings could thus be introducing more strict
parameter-efficiency measures [88, 89] and/or learning probabilistic adapters with low-rank weights
[85].

Design choices. Other future directions for improving CLAP4CLIP could include the use of better
regularization techniques to further prevent forgetting (see Table 13 for the current forgetting in
CLAP), and the search for more informed yet computationally efficient priors (see Table 18 for the
computational overhead attached with more informed priors).

LLM-generated class descriptions as language-aware knowledge. In Sec. 3.3, we proposed
using the text features from hand-crafted prompts as language-aware CLIP knowledge to help alleviate
forgetting. However, hand-crafted prompts require manual labelling of data which is not always
practical. Hence, several recent works [90, 91, 92] have opted to mining Large Language Models
(LLMs) for efficiently obtaining the class-specific descriptions. To study the feasibility of alleviating
forgetting using such LLM-generated class descriptions, we leverage the diverse prompts from
CuPL [91] obtained using the GPT-3 [93] model. Our preliminary investigation suggests that the

28

hand-crafted prompts have an upper hand over GPT-3 based prompts for CLAP4CLIP performance
(see Table 21). This could be because of the broad range of knowledge encoded in the GPT-generated
prompts – which at times are irrelevant for the test images.

Prompt
type Last ↑ Avg ↑ BwT ↑ ECE ↓ Runtime

per iter. ↓

Hand-crafted 78.21 86.13 -0.141 0.204 0.169
GPT-3 77.76 85.7 -0.099 0.219 0.151

Table 21: Performance comparison on CIFAR100 using hand-crafted vs. LLM-generated prompts
for encoding language-aware CLIP knowledge. The results reported are averages over 3 runs. Best
results across the metrics are highlighted in bold.

Based on the above finding, we suggest leveraging task-relevant LLM-generated descriptions as
language-aware knowledge to be another promising future research direction. It is worth noting that
a number of existing methods that rely on LLM-generated prompts are limited in their transferable
knowledge across unseen classes and datasets [90, 91] (e.g., any new class at test-time would require
mining the LLM descriptions in advance). On the contrary, our proposed weight initialization and
task distribution regularization strategies provide a natural framework for LLM-generated prompts to
be used alongside arbitrary learnable prompts (e.g. replacing th,ly in eq. (7)). This compliments the
idea of LLM-based text-only supervision frameworks [92] that seek to enrich zero-shot transfer of
prompts to new classes by extracting rich contextual information from LLM data.3

Compatibility with Vision-Language datasets The tasks we have covered so far in the paper are
based solely on Vision datasets. To further demonstrate that our method is compatible with more
sophisticated vision-language datasets, we here consider using a toy Visual Question Answering
(VQAv2) task from the CLiMB dataset [87]. The CLiMB dataset hosts a number of tasks/settings to
evaluate multi-modal and low-shot transfer abilities of CL algorithms. However, given the intricacies
of these tasks (visual question answering, reasoning, etc.), we leave a full in-depth engagement with
CLiMB [87] as a separate future direction for research.4

To show the aptness of our method for the dataset’s tasks, we carry out preliminary experiments
on the single-task learning setting [94] of the VQAv2 subset of CLiMB. Following [94], we rely
on the BART model [95] for text generation here. Table 22 shows that our method surpasses the
Continual-CLIP by 9.29 percentage points on the VQAv2 task, thus showing that ours enhances the
zero-shot generalization capability of CLIP.

Model VQAv2 task score

Continual-CLIP 57.42
Ours 66.71

Table 22: Single-task learning performance on the VQAv2 subset of the CLiMB dataset.

E.1 Broader Impact

Recent years have witnessed the immense popularity of sequential generative models like Stable
Diffusion [10] with applications in multimodal content generation as well as scientific research
through fast and highly detailed sampling. The CLIP text encoder is widely employed by such
generative models for learning personalized concepts conditioned on text prompts [96, 97]. By
effective continual finetuning of the text encoder’s features, our method can thus aid in customizing
such models in a sequential manner using multiple, fine-grained concepts [98, 26].

3Given that new classes might emerge at test time for which we do not have the LLM-generated descriptions,
it is important that the learned prompts preserve their zero-shot generalization ability.

4The CLiMB dataset [87] was introduced as an independent CL benchmark with a number of tasks (Visual
Question Answering/Reasoning/Entailment) and training settings including low-shot and unimodal learning.
Existing works [94] that study CLiMB thus rely solely on it and not on additional datasets for evaluations.

29

F Derivation of ELBO for the static prior.

We seek to maximize the likelihood p(y1:T) for all observed labels y1:T . To derive the predictions, our
framework uses the visual-aligned text features t̃1:Tc and the image inputs x (see eq. (1)). Our evidence
is thus p(y1:T |x; t̃1:Tc) for which we derive the lower bound (ELBO). In the following, we denote the
prior network as pθ(zt) for which the true posterior is pθ(zt|x; t̃tc). We approximate the true posterior
using the variational posterior qϕ(zt|x; t̃tc). Our derivation ends up with the reconstruction term
pθ(y

t|zt,x; t̃tc) that can be seen as a deterministic function converting a given latent vector zt and an
input image x into an observation yt. For our CLIP-based variational framework, this deterministic
function is the cosine similarity operation followed by the softmax application (Eq. (3b)).

log pθ(y
1:T |x; t̃1:Tc) (Log-likelihood of evidence)

= log pθ(y
1:T |x; t̃1:Tc)

∫
qϕ(z

1:T |x; t̃1:Tc)dz
1:T (

∵
∫

qϕ(z
1:T |x1:T

)dz
1:T

= 1
)

=

∫
qϕ(z

1:T |x; t̃1:Tc)
(
log pθ(y

1:T |x; t̃1:Tc)
)
dz

1:T
(Bring evidence into integral)

= E
qϕ(z1:T |x;t̃1:Tc)

[
log pθ(y

1:T |x; t̃1:Tc)
]

(Definition of Expectation)

=
T∑

t=1

[
Eqϕ(zt|x;t̃tc)

[
log pθ(y

t|x; t̃tc)
]]

(Rewrite using sum)

=
T∑

t=1

[
Eqϕ(zt|x;t̃tc)

[
log

pθ(y
t, zt|x; t̃tc)

pθ(z
t|x; t̃tc)

]]
(Re-introduce z

t by Chain rule of probability)

=

T∑
t=1

[
Eqϕ(zt|x;t̃tc)

[
log

pθ(y
t, zt|x; t̃tc)qϕ(zt|x; t̃tc)

pθ(z
t|x; t̃tc)qϕ(zt|x; t̃tc)

]]
(Multiply by 1 =

qϕ(zt|x; t̃tc)
qϕ(zt|x; t̃tc)

)

=

T∑
t=1

[
Eqϕ(zt|x;t̃tc)

[
log

pθ(y
t, zt|x; t̃tc)

qϕ(zt|x; t̃tc)

]
+ Eqϕ(zt|x;t̃tc)

[
log

qϕ(zt|x; t̃tc)
pθ(z

t|x; t̃tc)

]]
(Split the expectation)

=

T∑
t=1

[
Eqϕ(zt|x;t̃tc)

[
log

pθ(y
t, zt|x; t̃tc)

qϕ(zt|x; t̃tc)

]
+ DKL

(
qϕ(z

t|x; t̃tc)∥pθ(z
t|x; t̃tc)

)
(Definition of KL divergence)

≥
T∑

t=1

[
Eqϕ(zt|x;t̃tc)

[
log

pθ(y
t, zt|x; t̃tc)

qϕ(zt|x; t̃tc)

]]
(∵ KL divergence ≥ 0)

≥
T∑

t=1

[
Eqϕ(zt|x;t̃tc)

[
log

pθ(y
t|zt,x; t̃tc)pχ(zt)

qϕ(zt|x; t̃tc)

]]
(Chain rule of probability)

≥
T∑

t=1

[
Eqϕ(zt|x;t̃tc)

[
log pθ(y

t|zt,x; t̃tc)
]
+ Eqϕ(zt|x;t̃tc)

[pχ(zt)

qϕ(zt|x; t̃tc)

]]
(Split the Expectation)

≥
T∑

t=1

[
Eqϕ(zt|x;t̃tc)

[
log pθ(y

t|zt,x; t̃tc)
]
− DKL

(
qϕ(z

t|x; t̃tc)∥pχ(z
t
)
)]

(Definition of KL divergence)

G Data-driven prior

The choice of prior is pivotal to a Bayesian inference workflow like ours [99]. While a standard
Gaussian prior pχ = N (0, I) adapts well to a range of settings, it is (seemingly) uninformative
regarding the nature of a given task [100]. With the end goal of deriving more informative priors, we
thus seek to replace pχ with task data-dependent prior distributions pt, wherever applicable.

To this end, we first note that the outputs of the VGA module remain invariant not only to the order
of the input text features (due to self-attention) but also to the order of the contextual image features
(due to cross-attention). The latter invariance implies that the joint task-specific distribution learned
by the encoder qtϕ (conditioned on the VGA outputs t̂tc from eq. 5a) is preserved if we were to
permute the elements of the task-specific visual context set. More formally, this observation helps
guarantee the (finite) exchangeability and the consistency properties of a stochastic process [101].

Motivated by the above, we treat the t−th task image features xt as the target set T t and employ a
randomly chosen subset of it as our context set Ct to align the t−th task text features and to condition
our prior pt on:

t̂tc = VGA
(
Q = ttc,K = V = Ct

)
,

pt = qtϕ(t̃
t
c) =

(
µt(t̃tc), σ

t(t̃tc)
) (12)

where t̃t is the fused task-specific text feature following eq. (5b). The task-specific prior pt

thus endows our training framework with a resemblance to the neural process (NP) architectures

30

[102, 103, 8]. Following NPs, we use the same encoder qtϕ to parameterize the conditional prior and
the variational posterior. This results in the following approximate ELBO (see App. F for the ELBO
derivation):

log p(y1:T |x, C1:T) ≥
T∑

t=1

[
Eqϕ(zt|x)

[
log p(yt|zt,xt

T , Ct)
]

− DKL
(
qϕ(z

t|T t)∥qϕ(zt|Ct)
)] (13)

where in practice, the entire set of t−th images in a training minibatch form the target set T t and
a randomly chosen subset of the targets make up the context Ct [104]. Note that unlike NPs, our
framework does not entirely rely on data-driven priors. Namely, while training on a CL task t, the
past-task encoders are frozen and we have ample t−th task data points to condition the prior on. We
thus resort to optimizing the ELBO (13) during training. On the other hand, during finetuning, we
have limited task-specific data points to condition our context on. As such, we empirically found that
switching to the static prior yields better results and thus resort to optimizing the ELBO (10) during
finetuning.

G.1 Effect of the context size on data-driven prior.

Table 18 in the main paper compares the results of using a data-driven prior against the uniform
normal prior and the language-aware prior (see Sec. 3.3), where the latter is driven from the pre-
trained text encoder using hand-crafted prompts. We observe that data-driven prior leads to minor
accuracy improvements over the standard normal prior but falls narrowly behind the language-aware
prior. Here, we study the influence of the batch size of the context set selected at random to derive
our prior from.

Table 23 shows the last task accuracy with varying context sizes and a fixed target batch size of 64.
We find that a smaller context set size hurts the performance of the model to the extent of falling
behind the standard normal prior. Given that the context sets are the sampled subsets of the training
(target) minibatches, a much smaller context set can lead to the increase in the prior matching loss
values. We find that the context set batch size of 40 performs the best, and thus use this to ablate the
prior-dependent performances in the main paper.

4 8 16 32 40 50
Static
prior

Accuracy 76.1 76.99 77.41 78.03 78.32 77.35 78.21
Table 23: Influence of the context set size used to derive the data-driven prior on CIFAR100.

G.2 Derivation of ELBO for the data-driven prior.

Similar to App. F, we start with the log-likelihood of the evidence which now involves conditioning
on an additional context set C1:T . The t−th task context set is used to condition our prior network
pθ(z

t|Ct). Following the standard practices of other data-driven prior frameworks [102, 8], we
introduce parameter-sharing between our conditional prior and variational posterior networks. This
allows us to replace our prior network with the variational posterior network qϕ(z

t|T t), where T is

31

the target set for task t.

log pθ(Y
1:T
T |x1:T

T , C1:T
) (Log-likelihood of evidence)

= log pθ(Y
1:T
T |x1:T

T , C1:T
)

∫
qϕ(z

1:T |x1:T
T , C1:T

)dz
1:T (

∵
∫

qϕ(z
1:T |x1:T

T , C1:T
)dz

1:T
= 1

)
=

∫
qϕ(z

1:T |x1:T
T , C1:T

)
(
log pθ(Y

1:T
T |x1:T

T , C1:T
)
)
dz

1:T
(Bring evidence into integral)

= E
qϕ(z1:T |T 1:T)

[log pθ(Y
1:T
T |x1:T

T , C1:T
)] (By definition)

=
T∑

t=1

[
Eqϕ(zt|T t)[log pθ(Y

t
T |xt

T , Ct
)]

]
(Rewrite using sum)

=
T∑

t=1

[
Eqϕ(zt|T t)

[
log

pθ(Y
t
T , zt|xt

T , Ct)

pθ(z
t|xt

T , Y t
T , Ct)

]]
(Re-introduce z

t by Chain rule of probability)

=
T∑

t=1

[
Eqϕ(zt|T t)

[
log

pθ(Y
t
T |zt,xt

T , Ct) pθ(z
t|Ct)

pθ(z
t|T t)

]]
(By Chain rule of probability; C ⊂ T)

=
T∑

t=1

[
Eqϕ(zt|T t)

[
log

pθ(Y
t
T |zt,xt

T , Ct) pθ(z
t|Ct) qϕ(zt|T t)

pθ(z
t|T t) qϕ(zt|T t)

]]
(Equivalent fraction)

=
T∑

t=1

[
Eqϕ(zt|T t)

[
log pθ(Y

t
T |zt,xt

T , Ct
)
]

+ Eqϕ(zt|T t)

[
log

pθ(z
t|Ct)

qϕ(zt|T t)

]
+ Eqϕ(zt|T t)

[
log

qϕ(zt|T t)

pθ(z
t|T t)

]]
(Split the expectation)

=

T∑
t=1

[
Eqϕ(zt|T t)

[
log pθ(Y

t
T |zt,xt

T , Ct
)
]

− DKL
(
qϕ(z

t|T t
)∥pθ(z

t|Ct
)
)
+ DKL

(
qϕ(z

t|T t
)∥pθ(z

t|T t
)
)]

(By definition of KL divergence)

≥
T∑

t=1

[
Eqϕ(zt|T t)

[
log pθ(Y

t
T |zt,xt

T , Ct
)
]
− DKL

(
qϕ(z

t|T t
)∥pθ(z

t|Ct
)
)]

(∵ KL divergence ≥ 0)

32

0 50 100
0

50

100

150

Step 1
0 50 100

0

100

200

Step 2

0 50 100
0

100

200

Step 3
0 50 1000

50

100

150

Step 4

0 50 1000

50

100

Step 5
0 50 1000

25
50
75

100

Step 6

0 50 1000

25

50

75

100

Step 7
0 50 1000

50

100

Step 8

0 50 100

50

100

Step 9
0 50 100

0

50

100

Step 10

Training Iteration

To
ta

l l
os

s

Ours
Ours w/o: weight init.

Ours w/o: Regularization
Ours w/o: weight init. & Reg.

Figure 14: Evolution of the loss value L during the first 100 training iterations of each task on
CIFAR100. Training with our proposed weight initialization strategy consistently leads to lower
training losses thus bridging the stability gap [57] in CL.

33

0 500 1000

25

50

75

Step 2
0 500 1000

50

100

Step 3
0 500 1000

50

100

Step 4

0 500 1000
50

100

150

Step 5
0 500 1000

50

100

150

Step 6
0 500 1000

50
100
150

Step 7

0 500 1000
50

100
150

Step 8
0 500 1000

50
100
150

Step 9
0 500 1000

100

200

Step 10

Training Iteration

L2
 n

or
m

 o
f p

as
t t

as
ks

' m
ea

n
Ours Ours w/o: weight init. Ours w/o: Regularization Ours w/o: weight init. & Reg.

(a) L2 norm of mean of past task heads

0 500 100020

40

60

Step 2
0 500 1000

40

60

80

Step 3
0 500 1000

60

70

80

Step 4

0 500 1000
70
80
90

Step 5
0 500 1000

80

100

Step 6
0 500 1000

90
100
110

Step 7

0 500 1000
100

120

Step 8
0 500 1000

100

120

Step 9
0 500 1000

120

140

Step 10

Training Iteration

L2
 n

or
m

 o
f p

as
t t

as
ks

' s
td

. d
ev

.

Ours Ours w/o: weight init. Ours w/o: Regularization Ours w/o: weight init. & Reg.

(b) L2 norm of standard deviation of past task heads

Figure 15: Evolution of mean and standard deviation of past task encoders with training iterations.

34

0 500
0

20

40

60

Step 1
0 1000

0

50

100

Step 2
0 1000

0

50

100

150

Step 3
0 10000

20

40

60

Step 4
0 10000

20

40

60

Step 5

0 10000

20

40

60

Step 6
0 10000

20

40

60

Step 7
0 10000

20

40

60

Step 8
0 10000

20

40

60

Step 9
0 10000

20

40

60

Step 10

Training Iteration

L2
 n

or
m

 o
f c

ur
re

nt
 ta

sk
's

m
ea

n
Ours Ours w/o: weight init. Ours w/o: Regularization Ours w/o: weight init. & Reg.

(a) L2 norm of mean of current task heads

0 500

30

40

50

Step 1
0 1000

30

40

50

Step 2
0 1000

35

40

45

50

55

Step 3
0 1000

35

40

45

50

55

Step 4
0 1000

40

45

50

Step 5

0 1000
35

40

45

50

Step 6
0 1000

40

45

50

55

Step 7
0 1000

35

40

45

50

55

Step 8
0 1000

35

40

45

50

Step 9
0 1000

35

40

45

50

55

Step 10

Training Iteration

L2
 n

or
m

 o
f c

ur
re

nt
 ta

sk
's

st
d.

 d
ev

.

Ours Ours w/o: weight init. Ours w/o: Regularization Ours w/o: weight init. & Reg.

(b) L2 norm of standard deviation of current task heads

Figure 16: Evolution of mean and standard deviation of task encoders (recorded at the step where
they were first introduced) with training iterations.

35

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: To support the claims, we provide in-depth experimental results on four
different (with replay memory, cross-datasets, and resource-constrained) CL setups.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We detail the limitations of our work in App. E. This includes parameter
overhead and design choices.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

36

Answer: [Yes]
Justification: We detail the derivation of Evidence Lower Bound for our proposed model in
App. F.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have made our code public in addition to providing details on hyperparam-
eter choices and tuning.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

37

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We use publicly available datasets and have also released our code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We detail these in App. A.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the standard deviation scores for our main results in Table 12.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

38

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We leave these details in App. A.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have followed all the listed NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss these in App. E.1.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

39

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: To the best of our knowledge, the pretrained CLIP model does not have any
such associated high risk.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have provided citations wherever necessary.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

40

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not rely on crowdsourcing experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not use human subjects for research in this work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

41

	Introduction
	Related work
	Methodology
	Preliminaries
	CL with probabilistic finetuning for CLIP
	Variational inference with function space prior on text features
	Cross-modal feature deviation in continual finetuning of CLIP
	Task-specific probabilistic adapters as ensembles for posterior approximation

	Alleviating forgetting with pre-trained language-aware CLIP knowledge
	Past-task distribution regularization for mitigating forgetting
	Task-specific adapter initialization considering stability

	Training objective

	Experiments
	Results
	Cross-Datasets Continual Learning (CDCL)

	Ablation Studies

	Out-of-the-box utilities of probabilistic finetuning
	Conclusion
	Acknowledgement
	Experiments and Benchmarks
	Datasets
	Exemplar selection for memory replay

	Training and Hyperparameter selection
	Variational modeling of text feature space vs. image feature space
	Latency comparison for VT-CLIP styled VGA vs Ours
	Algorithm overview.

	Results
	Performance evolution
	Results for replay-free CL setup
	Results for computationally-budgeted CL setup

	Ablation studies
	Sensitivity to the number of Monte Carlo (MC) samples.
	Effect of forgetting on individual task adapters.
	Effect of inference module architecture.
	Effect of prior type.
	Inference time for different finetuning methods.
	Influence of language-aware knowledge components on training dynamics.

	Out-of-the-box utilities of probabilistic finetuning
	Post-hoc novel data detection
	Exemplar selection results

	Limitations and further research directions
	Broader Impact

	Derivation of ELBO for the static prior.
	Data-driven prior
	Effect of the context size on data-driven prior.
	Derivation of ELBO for the data-driven prior.

