VIDEOEVAL: COMPREHENSIVE BENCHMARK SUITE FOR LOW-COST EVALUATION OF VIDEO FOUNDATION MODEL

Anonymous authors

Paper under double-blind review

ABSTRACT

With the accumulation of high-quality data and advancements in visual pretraining paradigms, recent Video Foundation Models (VFMs) have made significant progress, demonstrating remarkable performance on popular video understanding benchmarks. However, conventional benchmarks (e.g. Kinetics) and evaluation protocols are limited by their relatively poor diversity, high evaluation costs, and saturated performance metrics. In this work, we introduce a comprehensive benchmark suite to address these issues, namely VideoEval. We establish the Video Task Adaption Benchmark (VidTAB) and the Video Embedding Benchmark (VidEB) from two perspectives: evaluating the task adaptability of VFMs under few-shot conditions and assessing their feature embedding's direct applicability to downstream tasks. With VideoEval, we conduct a large-scale study of 20 popular open-source vision foundation models. Our study reveals some insightful findings, 1) overall, current VFMs exhibit weak generalization across diverse tasks, 2) increasing video data, whether labeled or in video-text pairs, does not necessarily improve task performance, 3) the effectiveness of some pre-training paradigms may not be fully validated in previous benchmarks, and 4) combining different pretraining paradigms can help develop models with better generalization capabilities. We believe this study serves as a important complement to the current evaluation methods for VFMs and offers valuable insights for future research directions.

030 031 032

033

006

008 009 010

011

013

014

015

016

017

018

019

021

023

025

026

027

028

029

1 INTRODUCTION

The field of deep learning is experiencing a significant paradigm shift due to the emergence of foundation models (FMs). These models, exemplified by BERT Devlin et al. (2018), GPT Brown et al. (2020); OpenAI (2023a;b), CLIP Radford et al. (2021) and Stable Diffusion Rombach et al. (2021), are trained on massive and diverse data at scale and demonstrate remarkable adaptability to a broad spectrum of downstream tasks.

In the realm of video understanding, early researchers train backbone networks Feichtenhofer et al. 040 (2019); Bertasius et al. (2021); Liu et al. (2022); Fan et al. (2021) using visual classification tasks 041 on large-scale labeled datasets like ImageNet Deng et al. (2009) and Kinetics Kay et al. (2017b). 042 However, the high cost associated with labeled data promotes the development of self-supervised 043 learning methods that capitalize on unlabeled data for visual pre-training Pan et al. (2021); Wei et al. 044 (2022); Feichtenhofer et al. (2022); Tong et al. (2022); Wang et al. (2022a). Furthermore, researchers delve into multimodal pre-training utilizing large-scale visual-text pairs Xu et al. (2021a); Yan et al. (2022); Wang et al. (2024a); Li et al. (2023), thereby enhancing their models' capabilities and 046 demonstrating impressive zero-shot performance. Overall, fueled by the accumulation of high-quality 047 image and video data and advancements in visual pre-training paradigms, Video Foundation Models 048 (VFMs) witness remarkable progress in recent years. A new generation of VFMs Feichtenhofer et al. (2022); Tong et al. (2022); Wang et al. (2023b); Bardes et al. (2023); Zhao et al. (2024); Wang et al. (2022b; 2024b) emerges, demonstrating outstanding performance on conventional video 051 understanding benchmarks. 052

⁰⁵³ The rapid development of VFMs raises the problem: *How to evaluate a video foundation model?* In image realm, Previous works assess the generalization capability of Image Foundation Models

079

Figure 1: **Overview of VideoEval.** We propose a novel, vision-centric evaluation method for video foundation models that is comprehensive, challenging, indicative, and low-cost.

080 (IFMs) by evaluating their performance on numerous downstream visual tasks, encompassing diverse 081 scenarios and evaluation protocols Zhai et al. (2019); Hendrycks et al. (2021b); Recht et al. (2019); Hendrycks et al. (2021a); Wang et al. (2019); Idrissi et al. (2023); Goldblum et al. (2023). However, 083 previous works primarily evaluates VFMs through benchmarks focusing on action recognition 084 tasks Tong et al. (2022); Bardes et al. (2023); Yuan et al. (2023). Some studies Wang et al. (2022b; 085 2024b); Zhao et al. (2024) have also considered combining language models to evaluate performance on multimodal tasks. There are several problems with current evaluation methods: (1) Benchmarks 087 like Kinetics Kay et al. (2017b), Something Goyal et al. (2017b) and AVA Gu et al. (2017), which focus 880 on action recognition, overlook other video understanding scenarios (e.g., video quality assessment), limiting their applicability in evaluating the generalization capabilities of visual foundation backbones 089 across diverse video understanding applications. (2) The performance of VFMs on conventional 090 benchmark Kay et al. (2017a) has reached a saturation point (90% Top-1 accuracy), making it 091 challenging to differentiate between the true capabilities of different VFMs. (3) The high validation 092 costs associated with conventional evaluation protocols, which often necessitate end-to-end training on the entire dataset, pose a significant challenge, particularly for large VFMs. (4) Incorporating 094 language models may introduce bias when evaluating VFMs, as performance differences might stem 095 from the language model rather than the VFMs itself. 096

To tackle these problems, we build a comprehensive benchmark suite for evaluation of VFMs, namely VideoEval. As shown in Figure 1, our method has the following key features: *Comprehensive*: 098 First, we created the Video Task Adaptation Benchmark (VidTAB) to evaluate the adaptability of VFMs to unseen tasks with limited samples. We collected public datasets from various video task 100 domains, including action recognition in special scenarios, AI for science, video content moderation, 101 video quality/aesthetic assess, and emotion analysis. From these domains, we constructed eight 102 adaptation tasks and developed evaluation protocols and adaptation methods suitable for current 103 VFMs. Additionally, to assess the capability of VFMs' feature embedding for downstream applica-104 tions, we created the Video Embedding Benchmark (VidEB), which includes four tasks that evaluate 105 embedding at different granularities. Challenging & Indicative: Due to the diversity of test data and the effectiveness of our evaluation protocols, our VideoEval can effectively distinguish between 106 various VFMs that perform similarly on traditional benchmarks, providing deeper insights into their 107 true capabilities. Low-cost: Thanks to our training-light few-shot evaluation and training-free feature

embedding evaluation protocols, VideoEval requires significantly fewer training samples compared to
 previous benchmarks, while maintaining a comparable number of testing samples to ensure accurate
 and stable evaluations. *Vision-centric*: Our evaluation focuses solely on the Video FMs themselves,
 avoiding the introduction of biases that may arise from incorporating language models.

112 Based on VideoEval, we evaluate 20 open-source vision foundation models, including VFMs, 113 Image Foundation Models (IFMs), and IFMs with image-to-video methods. Our main findings as 114 following: First, current VFMs still struggle to adapt to unseen video tasks with limited training 115 samples. Second, while more data and larger models generally improve performance, augmenting 116 video training data can sometimes negatively affect certain tasks. Third, the effectiveness of certain 117 pre-training paradigms, such as VideoMAEv2 Wang et al. (2023b), may not have been adequately 118 validated in previous benchmarks. Finally, combining multiple pre-training paradigms can lead to models with better generalization capabilities, such as performing multimodal contrastive learning 119 after unimodal visual self-supervised pre-training Li et al. (2023); Wang et al. (2024b). 120

121 122

123

124

137

Table 1: **Comparison of VFMs Benchmark.** "Num. training" denotes number of training samples, "Num. test" denotes number of test samples, and "Beyond Action" denotes the tasks in this benchmark extend beyond action understanding. Compared to previous benchmarks, our VideoEval framework achieves more comprehensive and reliable evaluations at a lower cost.

Benchmark	Num. training	Num. test	Beyond Action	Task Diversity	Domain Diversity	VFMs-specific protocol
		Single-	dataset Benchmark	ks		
Kinetics-400 Kay et al. (2017a)	240,436	19,165	X	×	X	X
Sth-Sth V2 Goyal et al. (2017a)	168,913	24,777	X	×	X	×
Moment-in-Time Monfort et al. (2020)	791,246	33,898	X	×	X	×
UCF101 Soomro et al. (2012)	9,537	3,783	×	×	X	×
		Multi-a	lataset Benchmark	S		
SEVERE Thoker et al. (2022b)	868,446	144,830	X	1	1	×
BEAR Deng et al. (2023)	240,236	140,436	X	1	1	×
VideoGLUE Yuan et al. (2023)	1,896,621	239,011	×	1	1	1
VideoEval	5,704	20,497	1	1	1	1

2 RELATED WORK

138 **Video foundation models** With the continuous growth of image Sharma et al. (2018); Changpinyo 139 et al. (2021); Schuhmann et al. (2022) and video data Bain et al. (2021); Wang et al. (2024a); Chen 140 et al. (2023; 2024a;b) and advancements in pre-training paradigms, research on Video Foundation 141 Models (VFMs) has progressed rapidly. Current VFMs are primarily built around two pre-training 142 paradigms: masked video modeling based on unimodal video data Feichtenhofer et al. (2022); 143 Tong et al. (2022); Wang et al. (2023b; 2022a; 2023c); Girdhar et al. (2023); Ryali et al. (2023) 144 and video-text contrastive learning based on multimodal visual-text pairs Xu et al. (2021a); Wang et al. (2023a); Yan et al. (2022); Cheng et al. (2022); Wang et al. (2024a). Some works Wang 145 et al. (2022b); Li et al. (2023); Zhao et al. (2024) combine these paradigms, enabling VFMs to 146 extend further into multimodal understanding. Additionally, some studies introduce modalities like 147 audio and speech on top of video and text Chen et al. (2023; 2024a); Wang et al. (2024b), further 148 expanding the capabilities of VFMs. Recently, InternVideo2 Wang et al. (2024b) leverages mature 149 pre-training paradigms and large-scale high-quality data to scale VFMs to 6 billion parameters, 150 achieving remarkable performance improvements.

151

152 **Evaluation of VFMs** Previous works primarily utilize action recognition benchmarks focused on 153 appearance and motion Kay et al. (2017b); Goyal et al. (2017a); Gu et al. (2017) to evaluate VFMs. 154 To enhance evaluation diversity, some studies explore richer domains and tasks Thoker et al. (2022a); 155 Deng et al. (2023); Schiappa et al. (2023), but they remain limited to action recognition tasks. The 156 InternVideo series Wang et al. (2022b; 2024b) and VideoGLUE Yuan et al. (2023) attempt to provide 157 a more comprehensive evaluation of VFMs by expanding the number of benchmarks and evaluation 158 protocols. However, these efforts are still based on existing benchmarks and incurred high validation 159 costs. In contrast, our work considers the characteristics and application scenarios of VFMs, offering a comprehensive and low-cost evaluation solution through task definition and evaluation protocols, 160 aimed at rapidly verifying the generalization capabilities of VFMs—a crucial aspect currently lacking 161 in the community's development of these models.

162 Task Selection Data Filtration Evaluation Method 163 Selecting datasets with high ኛ Training-light: Efficient Adapation Dataset quality video sources and with Few-Shot protoco 164 Quality annotations 🔆 Training-free: Direct Evaluation of 165 Too easy: indistinguishable Task Feature Embeddina Discriminative task Can VEMs understand sentiment 166 Difficulty × Too hard: inseparable alicious/emotional) in video? √ suitable for foundation model 167 application scenarios Beyond action recognition Task Novel scene/task Diversity Aim to complete the evaluation at Multi-faceted and granula the lowest possible cost 169 semantic understanding 170 Task Construction Evaluation Target 171 VFMs detect deepfake Using existing annotations to 🖄 Image FMs Have in video 172 Can IFMs be effectively category Image FMs Converting the original task applied to video task? 173 labels? no 🖄 🛄 with image to into a classification task using video Method existing annotation. 174 How do various pre-training Good 175 Can VEMs assess video H Video FMs paradigms, model scales, Bad technical/aesthetic quality and training data impact 176 the generalization? > Classific 177

Figure 2: Illustration of building VideoEval.

3 BUILDING VIDEOEVAL

We argue that a powerful video foundation model should possess two key capabilities: (1) strong task adaptation ability, i.e., the ability to *adapt to diverse, unseen tasks with limited training samples*, and (2) the capacity to *extract feature embedding that retain and distill key information from videos*, directly supporting various downstream tasks. From these perspectives, we construct VideoEval, which includes the Video Task Adaptation Benchmark (VidTAB) and the Video Embedding Benchmark (VidEB). By creating diverse task scenarios and employing efficient evaluation methods, VideoEval can quickly and comprehensively assess the generalization ability of VFMs in video understanding. In this section, we present our VideoEval in detail. The construction pipeline for VideoEval is illustrated in Figure 2, and the evaluation tasks we ultimately constructed are presented in Table 2.

193 3.1 VIDEO TASK ADAPTION BENCHMARK

Collecting diverse dataset from public source. Previous benchmarks primarily focus on evaluating
 video models based on human actions, overlooking many other tasks requiring video understanding.
 Therefore, we consider five different application scenarios:

- Action Recognition in Special Scenarios (Action): While previous benchmarks have extensively examined action recognition tasks, our focus here is to assess VFMs' capabilities in recognizing actions within special scenarios.
 - *AI for Science* (Science): Referencing previous work Zhao et al. (2024), we classify tasks related to medicine and natural sciences as a category.
 - *Video Content Moderation* (**Safety**): We group tasks related to identifying harmful or misleading information in video content.
 - *Video Quality Assessment* (**Quality**): We categorize more subjective tasks into this group. The goal is to assess VFMs' ability to learn low-level information and human aesthetic preferences.
 - *Emotion Analysis* (**Emotion**): We group tasks related to human emotion analysis into this category to evaluate VFMs' ability to understand and analyze human emotions.

210 211 212

179

181

182 183

185

187

188

189

190

191 192

194

200

201

202

203 204

205

206

207

208

Constructing the adaptation task based on the existing annotations. Classification tasks are
 straightforward and well-defined, with strong classification performance often indicating robust
 feature learning. Therefore, they are suitable for evaluating video foundation models. We construct
 adaptation classification tasks based on the collected data and annotations as follow:

218								
010	Domain	Task	Source	Task Description				
219	Video Task Adaptation 1	Benchmark (VidTAB)						
220	Action Recognition	Action Recognition in Dark Scene	ARID Xu et al. (2021b)	Recognizing 11 distinct human actions in dark scenarios. e.g. Run / Walk / Drink				
221	in Special Scenarios	Action Recognition in Long Video	BreakFast Kuehne et al. (2014)	Classifying 10 types of long-duration cooking videos. e.g. Milk / Tea / Sandwich				
221		Medical Surgery	SurgicalActions160 Schoeffmann et al. (2018)	Classifying 16 surgical actions in gynecologic laparoscopy. e.g. Knotting / Suction / Injection				
222	AI for Science	Animal Behavior	Animal Kingdom Ng et al. (2022)	Classifying 12 behaviors of wild animals from diverse environmental footage. e.g. Flying / Chirping / Preening				
223	Video Content	Fake Face	FaceForensics++ Rossler et al. (2019)	Determine whether the faces in the video have been tampered with by AI technology (such as DeepFake). e.g. Origin video / Video with fake face				
220	Moderation	Harmful Content	mob Ahmed et al. (2023)	Detecting 3 degrees of malicious content within videos. e.g. Obscene / Indecent activity / Violent activity				
224	Video Quality Assessment Quality Assess		DOVER Wu et al. (2023)	Evaluating videos from an aesthetic and technical perspective and categorizing them into low and high quality. e.g. Low quality / High quality				
225	Emotion Analysis	Emotion Analysis	CAER Lee et al. (2019)	Classifying 7 different human emotions in video. e.g. Happy / Fear / Anger				
226	Video Embedding Benci	hmark (VidEB)						
220		Duplicate Scene Retrieval	FIVR5K Kordopatis-Zilos et al. (2019)	Retrieve Duplicate Scene Videos (DSV): Videos captured by the same camera and sharing at least one scene (without considering any application transformations).				
227	Scene Understanding in Temporal Contexts	Complementary Scene Retrieval	FIVR5K Kordopatis-Zilos et al. (2019)	Retrieve Complementary Scene Videos (CSV): Retrieve a portion of the same spatiotemporal segment captured from different perspectives.				
228		s Incident Scene Retrieval FIVR5K Kordopatis-Zilos et al. (2019)		Retrieving Incident Scene Videos (ISV): The same event is close in both space and time, but there are no overlapping videos.				
229		Copy Detection	DVSC23 Pizzi et al. (2024)	Detecting edited versions of the same source video. Given a query inserted with one or more copied segments, detect the source video from the database.				

216 Table 2: Task details of VideoEval. All videos are collected from the public datasets for building 217 tasks of VidTAB and VidEB.

- 1. **Remove Low-Quality Video Datasets**: We manually exclude datasets with videos that have low resolution (below 240p), low frame rate (below 15fps), insufficient quantity (fewer than 150 videos per category), or low annotation accuracy (below 90%).
- 2. Select Discriminative Tasks: For task difficulty screening, we first evaluate zero-shot classification performance using CLIP-L Radford et al. (2021), EVA-g Sun et al. (2023), ViCLIP-L Wang et al. (2024a), and Internvideo2-1B Wang et al. (2024b). We then classify samples as follows: *Easy*: Samples that are correctly classified by three or more models. Spatial: Samples that are correctly classified by both CLIP and EVA. *Temporal*: Samples that are correctly classified by at least one of ViCLIP or Internvideo2-1B, but not by CLIP and EVA. Hard: Samples that are incorrectly classified by all models. We use the zero-shot classification accuracy of the models and the aforementioned proportions as references for task selection. Based on this, we choose tasks with lower zero-shot classification accuracy, higher proportions of Hard and Temporal samples, and lower proportions of Easy samples. The proportions of each type of sample in the tasks we ultimately selected can be found in Table 3.
- 246 3. Control the Number of Categories: For datasets that originally include category labels, 247 such as ARID Xu et al. (2021b) and Animal Kingdom Ng et al. (2022), we select categories 248 with sufficient samples to ensure evaluation accuracy and stability. We also control the final 249 number of categories to avoid making the adaptation task overly difficult. We observed that both zero-shot testing and few-shot experiments based on current VFMs show that when 250 the number of categories is too high, models often perform no better than random guessing. Although this issue may be mitigated as VFMs improve, we currently need to control the number of categories to effectively showcase differences between models. We select the 253 main categories for each task and limit the number of categories to around 10 (based on 254 few-shot experiments).
- 4. Handling Multi-label and Regression Tasks: For datasets that are not originally classifica-256 tion tasks, we transform the tasks into classification tasks. For example, for DOVER Wu et al. 257 (2023), which is used for video aesthetics and technical quality assessment (a regression 258 task), we assume that videos with quality scores in the top 40% are "high-quality videos" and 259 those with scores in the bottom 40% are "low-quality videos", thus converting the original 260 task into a binary classification task. 261
- 262 In total, we construct eight classification tasks to evaluate the adaptation capabilities of video foundation models.
- 264

229 230 231

233

234

235

237

238

239

240

241

242

243

244

245

265 **Determining the evaluation protocol.** Previous studies Wang et al. (2022b; 2024b); Yuan et al. 266 (2023) typically train video models using entire samples of training set, and most popular benchmarks have large training sample sizes. We argue that this evaluation method overlooks the examination 267 of the adaptation capability of VFMs. As illustrated in Figure 3, under the scenario of using full 268 training samples, the differences between VFMs are difficult to discern. However, under a low-sample protocol, different foundation models exhibit varying degrees of task adaptation capabilities. We

Table 3: Task difficulty assessment based on visual language models. For tasks with fewer categories, such as Fake Face (n=2) and Quality Assess (n=2), random guessing can lead to high accuracy, which may result in a lower apparent proportion of hard samples. Therefore, the zero-shot classification accuracy of the models should also be considered when making task selection.

ratio %	Dark Scene	Long Video	Medical Surgery	Animal Behavior	Fake Face	Harmfull Content	Quality Assess	Emotion Analysis
Easy	18.45	24.57	0.00	19.18	39.06	28.78	53.04	7.21
Spatial	19.00	20.44	4.17	20.86	20.72	24.56	51.24	5.01
Temporal	20.09	22.39	19.79	23.90	4.89	22.76	13.26	27.06
Hard	36.90	26.28	62.50	35.58	9.00	20.17	3.04	47.15

Figure 3: **Performance comparison on different training data scales.** We evaluate the performance variation of multiple video foundation models across tasks from two different domains as the scale of the training data changed. 'FT' and 'AP' denote full finetuning and attentive probe, respectively.

observe that for tasks such as Action Recognition in Dark Scenes, which VFMs usually excel at, there are significant differences in adaptation capabilities among different models when training samples are extremely limited (4 shot and 16 shot). As the number of samples gradually increases to 100 shot, these differences diminish. Conversely, for more challenging tasks like Emotion Analysis, the performances of different models are uniformly weak when training samples are extremely limited, showing no discernible differences until a certain number of training samples (100 shot) are reached, at which point different models begin to demonstrate distinct adaptation capabilities. Therefore, to account for the adaptation capabilities of models with different numbers of training samples, we define a task adaptation capability evaluation score (TA-score):

$$\text{TA-score} = \frac{Acc^{4s} + Acc^{16s} + Acc^{100s}}{3} \tag{1}$$

Where Acc^{4s} , Acc^{10s} , Acc^{100s} represent the model's top-1 accuracy for 4-shot, 16-shot, and 100-shot classifications, respectively. Unless otherwise specified, we will use TA-score to denote the performance of various tasks in VidTAB.

Table 4: Comparison of adaptation method on V-JEPA-H Bardes et al. (2023) All results are obtained using A100-80G with PyTorch-builtin mixed precision, using a batch size of 4 to measure Cuda memory and training time. "Dark" and "Emotion" denote the tasks of Action Recognition in Dark Scenes and Emotion Analysis, respectively.

Adaptation	Tunable	Cuda	Training	Dark	Emotion
method	Params (M)	Memory (G)	Time (h)	TA-score	TA-score
full finetuning	663.7	52.1	1.0	68.8	25.3
adapter	52.6	45.0	1.0	62.4	24.7
attentive probe	19.7	6.4	0.4	54.7	23.8
linear probe	0.0	6.0	0.3	12.9	16.2

Identifying efficient adaptation method for evaluation. We also need to identify how to adapt the foundation models to the corresponding task. Previous work Houlsby et al. (2019); Yu et al. (2023); Pan et al. (2022); Yang et al. (2023); Li & Wang (2023) has explored various strategies for efficient adapting the foundation models. Here, we consider several of the most common and popular methods,

Figure 4: **Illustration of different adaptation method**: (a) Full Finetuning, (b) Adapter, (c) Attentive Probe and (d) Linear Probe.

341 as illustrated in Figure 4: Full Finetuning: Fine-tuning all the parameters of the pre-trained model. 342 Adapter: Freezing the pre-trained model and inserting learnable low-rank adapter Pfeiffer et al. 343 (2020) modules into each block of the pre-trained model for adaptation. Attentive Probe: Freezing 344 the pre-trained model and adding an additional learnable cross-attention block at the end of the model 345 to achieve attentive pooling, followed by a linear projection for classification. **Linear Probe**: Directly 346 using the features from the pre-trained model, performing mean pooling, and then using a linear 347 projection for classification. We evaluate the performance of these adaptation methods based on the V-JEPA-H model, as shown in Table 4. Full finetuning and adapter exhibited the best adaptation 348 performance, but incurred high training costs. Linear probe was highly efficient but showed weak 349 adaptation performance. Attentive probe offered a good trade-off between efficiency and adaptation 350 performance. Therefore, in subsequent evaluation experiments, we employed attentive probe to adapt 351 various vision foundation models. 352

353 354

355

337

338

339 340

3.2 VIDEO EMBEDDING BENCHMARK

356 The main application domains of video embeddings we considering include: Label-Level: Classifica-357 tion and Action Retrieval. Instance-Level: Retrieval, Copy Detection and Ranking. For label-level 358 tasks, VidTAB has already provided a flexible way to evaluate models. Therefore, VidEB aims to assess existing models at a finer semantic level, focusing on instance-level tasks. Although ranking 359 tasks are common in recommendation system scenarios, they are influenced by user information 360 and interactions, in addition to video data. Based on prior research Ni et al. (2023), using frozen 361 embeddings for video features does not consistently improve recommendation tasks (resulting in 362 minimal or even negative effects). Thus, we have narrowed the final dataset scope to instance-level 363 retrieval and copy detection. Apart from the traditional classification tasks, the evaluation of repre-364 sentations typically involves standard benchmarks such as video action retrieval Han et al. (2020a); Xu et al. (2019); Han et al. (2020b), which primarily rely on class labels. However, this approach 366 often overlooks the overall scene context and exhibits an overlap with recognition tasks. In contrast, 367 inspired by previous works Plummer et al. (2015); Pizzi et al. (2024); Wu et al. (2007); Jiang et al. 368 (2014); Douze et al. (2021), we establish more rigorous criteria for embedding evaluation in Table 2. 369 Specifically, we require the model to determine the priority and retrieve individual samples based on the overall similarity, rather than solely relying on class labels. This evaluation protocol provides a 370 more comprehensive assessment of the model's capability to encapsulate subtle visual information. 371

Evaluation protocol. To facilitate fine-grained embedding evaluation, we incorporate two tasks for
assessment: (1) Hierarchical Video Retrieval aims to retrieve videos from a database that closely
matches the query video in terms of scene, viewpoint, and temporal context. According to previous
work Kordopatis-Zilos et al. (2019), videos related to the query are categorized into three levels based
on their similarity to the query: Duplicate Scene Videos (DSVs), Complementary Scene Videos
(CSVs), and Incident Scene Videos (ISVs), as shown in Table 2: Consequently, the retrieval tasks are

380

381

- Duplicate Scene Video Retrieval: only DSVs are positive instances.
- Complementary Scene Video Retrieval: both DSVs and CSVs are positive instances.
- Incident Scene Video Retrieval: DSVs, CSVs, and ISVs are all positive instances.

For the evaluation metric, we follow Kordopatis-Zilos et al. (2019) to utilize the mean Average Precision (mAP) to assess the quality of video ranking. (2) Video Copy Detection aims to detect edited copies of the query video. Instead of the ranking/retrieval task where all video pairs need to be sorted according to video embedding similarity, it is required to identify a set of video pairs that contain edited versions of the given query. Following Pizzi et al. (2024), we consider the micro-AP (μ AP) as our evaluation metric that operates on all queries jointly and takes the confidence scores into account.

- 389
- 390 391 392

393

4 BENCHMARKING VIDEO FOUNDATION MODELS

4.1 TARGETS AND DETAILS OF EVALUATION

Evaluation targets We evaluate twenty open-source vision foundation models. Including: (1)
 twelve video foundation models, covering *different pre-training paradigms, model scales, and training data scales*, to analyze the impact of these factors on the generalization capability
 foundation models. (2) five image foundation models to observe *how much generalization capability trained on image data can exhibit in video understanding*. (3) three image-to-video methods based
 on image foundation models to assess the *effectiveness of current efficient transfer methods*.

400 **Implementation details** All models take 8 frames (16 frames if the model has temporal downsam-401 pling), with each frame being 224x224 in size as input. For VidTAB, to ensure fair comparison and 402 efficient assessment, we train all models for the same number of epochs and made minor adjustments 403 to the hyperparameters to ensure convergence. For VidEB, all models take 16 frames, with each frame 404 being 224x224 in size as input. In hierarchical video retrieval, the similarity of video-level embedding 405 determines the ranking of retrieval results. In video copy detection, each sample is segmented into 5 406 clips. The detection confidence score for the entire video is derived from the maximum frame-wise 407 similarity computed for each query-reference pair. See the Appendix for more details.

409 4.2 RESULTS ON VIDTAB 410

Zero-shot evaluation To preliminarily assess the characteristics and difficulty of the dataset, we first evaluate the zero-shot performance of the eight tasks we created using two image language models and two video language models. As shown in the top section of Table 3, both image and video models demonstrated some level of performance for action-related tasks, with video models exhibiting relatively higher performance. For tasks involving low-level information understanding, such as Quality Assessment task, image models performed significantly better. In contrast, for other tasks involving scenarios typically unseen in training data, such as medical surgery videos or Safety Review tasks requiring complex semantic reasoning, all models exhibited almost no performance.

418

408

419 **Main results** Table 5 presents the evaluation results on VidTAB. We summarize our findings as 420 follows. On the whole, (1) Despite exhibiting a degree of generalization capability, current vision 421 FMs still struggle to adapt to unseen video tasks with limited training samples. VFMs outperform 422 IFMs, particularly in tasks related to action and behavior understanding. However, IFMs exhibit superior performance on more novel tasks, specifically in the domains of safety and quality, especially 423 when combined with image-to-video adaptation techniques. (2) The adaptation performance of 424 models generally increases with the growth of data and model size, as observed by the improvements 425 observed from V-JEPA-L to V-JEPA-H (+1.5) and ViCLIP-L-10M to ViCLIP-L-200M (+1.3). 426

For the pre-training data, (3) While augmenting video training data is generally beneficial, it can negatively impact the performance on some tasks. For both VideoMAEv2-g and InternVideo2- B_{stage1} , fine-tuning on Kinetics-710 data significantly enhances Action-related tasks, but consistently degrades certain Safety and Quality tasks. Similar findings are observed with ViCLIP-L, where post-pretraining on a large-scale video dataset improves Action-related tasks but diminishes performance in other domains (Science, Safety, Quality, Emotion). It could be attributed to the Table 5: Evaluating state-of-the-art FMs on the VidTAB. The best and second-best results offoundation models are noted by blueand <u>underline</u>, respectively. 'I', 'V', and 'IV' denote imagedata, video data, and mixed image-video data, respectively. Data marked in gray indicates thatthe model uses a model trained on that data as initialization. 'K710ft' indicates that the modelwas fine-tuned with supervision using the labeled action recognition dataset Kinetics-710 (0.66M).Considering the random error in few-shot experiments, we conducted 3-fold experiments for both436437438438

140					Act	ion	Scie	ence	Saf	ety 🛛	Quality	Emotion
41 42 43		# Params (M)	# Pretrain Data	Average	Dark Scene	Long Video	Medical Surgery	Animal Behavior	Harmful Content	Fake Face	Quality Assess	Emotion Analysis
	Random	-	-	22.7	9.1	10.0	6.3	8.3	33.3	50.0	50.0	14.3
45 46 47	Zero-shot performance of visual language CLIP-L Radford et al. (2021) EVA-CLIP-g Sun et al. (2023) ViCLIP-L Wang et al. (2024a) Intern Video2 _{etone} , Wang et al. (2024b)	models 428 1365 428 1350	I-400M I-2B I-400M+V-200M IV-1.1M+IV-25.5M	35.7 36.0 33.6 40.6	29.2 32.8 26.2 37.1	34.6 37.2 37.5 40.2	12.5 9.4 8.3 11.5	32.9 28.5 29.3 45.2	42.1 39.6 32.1 59.1	56.3 52.8 52.2 51.3	65.5 69.5 53.9 56.1	12.9 17.9 29.0 24.3
48	Image Foundation Model											
49	CLIP-L Radford et al. (2021) SigLiP-SO Zhai et al. (2023)	316 444	I-400M I-4.11B	43.2 43.3	31.9 27.6	37.8 38.4	32.3 36.5	37.4 35.8	54.2 53.3	58.2 58.5	66.6 67.8	27.6 28.5
50	EVA-g Fang et al. (2023)	1035	I-2B	45.8	40.2	47.1	34.4	41.0	51.8	55.2	68.1	29.0
51	DINOv2-L Oquab et al. (2023) DINOv2-g Oquab et al. (2023)	317 1165	I-142M I-142M	42.7 44.4	40.8 37.8	45.0 46.4	39.6 42.7	36.1 36.0	38.9 48.5	52.2 53.2	63.2 64.3	25.6 26.3
52	Image Foundation Model with image-to-vid	eo adaj	otation method									
53 54	ST-Adapter-CLIP-L Pan et al. (2022) AIM-CLIP-L Yang et al. (2023) ZeroI2V-CLIP-L Li & Wang (2023)	328 328 303	I-400M I-400M I-400M	46.5 48.8 46.3	42.4 41.5 40.3	44.3 50.0 47.0	31.2 38.5 31.2	40.1 40.2 40.2	47.4 46.4 46.1	64.6 69.5 65.2	71.5 73.7 69.9	30.4 <u>30.6</u> 30.5
55	Video Foundation Model ViCLIP L 10M Wang et al. (2024a)	316	L400M I V 10M	118	21.2	127	30.2	25.2	47.0	53.0	66.2	26.0
56	ViCLIP-L-200M Wang et al. (2024a) ViCLIP-L-200M Wang et al. (2024a) VideoMAEv1-L Tong et al. (2022)	316 316	I-400M+V-200M V-0.24M	43.3 43.3	38.2 45.6	44.6 30.8	30.2 30.2 31.2	37.9 37.4	47.4	54.9 51.9	65.9 68.7	20.9 27.5 24.0
57	VideoMAEv1-H Tong et al. (2022)	651	V-0.24M	44.7	45.5	31.0	35.4	38.6	55.8	51.8	70.5	29.1
8	VideoMAEv2-g Wang et al. (2023b) VideoMAEv2-g ^{k710pt} Wanget al. (2023b)	1037 1037	V-1.35M V-1.35M+K710ft	37.8 54.0	35.2 76.4	18.3 72.6	18.8 50.0	33.7 42.4	<u>59.6</u> 43.8	50.9 56.9	64.7 63.2	21.6 27.0
59	UMT-Lstage1 Li et al. (2023)	316	V-0.66M	40.6	34.3	35.4	30.0	34.2	45.6	53.6	64.7	27.0
60	UMT-L _{stage2} Li et al. (2023) V-JEPA-L Bardes et al. (2023)	316 318	V-0.66M+IV-25M V-2M	44.0 43.5	34.2 50.4	43.9 34.3	22.9 39.6	39.4 39.7	63.9 43.9	53.0 51.7	67.3 66.7	27.4 21.4
1	V-JEPA-H Bardes et al. (2023) InternVideo2-1B Wang et al. (2024b)	653 1037	V-2M IV-1 1M	45.1	53.8 45.2	37.6 50.3	35.4	40.4 38.7	47.3	53.0 53.5	68.1 65.9	25.1
2	InternVideo2-1B _{stage1} Wang et al. (2024b) InternVideo2-1B _{stage1} Wang et al. (2024b)	1037	IV-1.1M+K710ft	56.7	<u>75.6</u>	77.5	53.1	<u>45.4</u>	47.2	55.5	66.2	33.2
2	InternVideo2-1B _{stage2} Wang et al. (2024b)	1037	IV-1.1M+IV-25.5M	53.6	66.0	71.1	38.5	50.0	53.6	54.7	64.3	30.3

464 465

130

466

467

limited diversity of the current video training data. (4) For models trained on single-modal visual data,
 incorporating additional weak-supervised post-pretraining with visual-text data leads to significant improvements in adaptation capabilities. This is evident in the performance gains observed from
 UMT-L_{stage1} to UMT-L_{stage2} (+3.6) and from InternVideo2-1B_{stage1} to InternVideo2-1B_{stage2}
 (+8.0). Interestingly, this finding contradicts previous conclusions drawn from commonly used action
 recognition benchmarks, suggesting that these benchmarks may introduce bias.

473 For the pre-training paradigms of model, (5) The effectiveness of pre-training paradigms in 474 scaling model size might not be adequately validated on popular action recognition benchmarks. 475 While VideoMAEv2 successfully scaled a model to 1B parameters using the dual masking strat-476 egy Wang et al. (2023b), its adaptation performance (37.7 vs 44.4) significantly declined compared to VideoMAEv1-H. Interestingly, VideoMAEv2-g demonstrated remarkable performance after fine-477 tuning on Kinetics-710 (0.66M), suggesting that the abundant labeled data may have compensated 478 for the shortcomings of its pre-training performance. (6) Single-modal self-supervised pre-training 479 paradigms exhibit superior data efficiency compared to multimodal weakly-supervised pre-training 480 paradigms. Notably, V-JEPA and VideoMAEv1, trained solely on relatively small-scale unlabeled 481 video data via self-supervised pre-training, demonstrate comparable or even superior performance to 482 ViCLIP, which is trained on a massive dataset of video-text pairs. 483

In addition, (7) *Effective adaptation method for FMs is crucial*. Three image-to-video methods
 based on CLIP-L achieved significant performance improvements compared to using an attentive probe directly. We believe this represents a promising avenue for future research.

Table 6: Evaluation of State-of-the-Art Foundation Models on the VidEB Dataset. "K400pt" and "K400ft" denote that the model is pre-trained and fine-tuned, respectively, using the labeled action recognition dataset Kinetics-400 (0.31M). MCL: Multi-modal Contrastive Learning, SCL: Self-supervised Contrastive Learning, MVM: Masked Video Modeling, SFT: Supervised Fine-tuning. Other notations are consistent with those in Table 5.

491						Scene		
		Pretrain Tasks	# Pretrain Data	Average	Duplicate	Complementary	Incident	Copyright
492	Image Foundation Model							
102	CLIP-L Radford et al. (2021)	MCL	I-400M	43.0	41.1	46.4	52.0	32.3
495	EVA-g Fang et al. (2023)	MCL	I-2B	37.1	41.4	46.1	51.7	9.3
494	SigLiP-SO Zhai et al. (2023)	MCL	I-4.11B	38.6	40.6	45.5	51.5	16.9
	DINOv2-L Oquab et al. (2023)	SCL	I-142M	45.6	<u>49.0</u>	<u>53.5</u>	54.3	25.6
495	DINOv2-g Oquab et al. (2023)	SCL	I-142M	<u>48.6</u>	50.5	55.1	56.0	32.8
496	Video Foundation Model							
100	VideoMAEv1-L Tong et al. (2022)	MVM	K400pt	12.9	14.5	15.1	13.2	8.8
497	VideoMAEv1-L-K400ft Tong et al. (2022)	MVM+SFT	K400pt+ft	27.4	27.6	30.2	30.3	21.6
400	VideoMAEv2-g Wang et al. (2023b)	MVM	V-1.35M	11.6	14.8	15.4	13.4	2.8
498	VideoMAEv2-g-K710ft Wang et al. (2023b)	MVM+SFT	V-1.35M+K710ft	37.4	33.8	37.1	37.1	<u>41.7</u>
499	UMT-Lstage1 Li et al. (2023)	MVM	V -0.66M	41.1	42.2	46.6	49.6	25.7
-100	UMT-L _{stage1} -K710ft Li et al. (2023)	MVM+SFT	V-0.66M+K710ft	29.0	26.4	29.4	30.3	30.0
500	UMT-Lstage2 Li et al. (2023)	MVM+MCL	V-0.66M+IV-25M	34.2	33.4	37.3	40.6	25.4
504	V-JEPA-L Bardes et al. (2023)	MVM	V-2M	19.7	21.3	23.9	21.7	12.0
100	V-JEPA-H Bardes et al. (2023)	MVM	V-2M	20.2	21.5	23.7	21.2	14.3
502	InternVideo2-1Bstage1 Wang et al. (2024b)	MVM	IV-1.1M	50.4	47.3	52.1	<u>54.9</u>	47.3
500	InternVideo2-1B _{stage1} -K710ft Wang et al. (2024b)	MVM+SFT	IV-1.1M+K710ft	33.9	30.5	34.2	34.1	36.9
503	InternVideo2-1Bstage2 Wang et al. (2024b)	MVM+MCL	IV-1.1M+IV-25.5M	34.6	32.4	36.8	39.9	29.3

504 505

486

487

488

489 490

4.3 RESULTS ON VIDEB

506 507

The main results of VidEB are presented in Table 6. We evaluate the embedding performance using
different pre-training paradigms for IFMs and VFMs as frozen feature extractors. Surprisingly, IFMs
performs better than most VFMs, likely due to the existing gap in spatial modeling capabilities
between VFMs and IFMs.

512 For the pre-training paradigms of the model, (1) The contrastive learning (CL) based approach 513 consistently excels in embedding evaluation. Due to CL's emphasis on the relationships between 514 samples during training, DINOv2, which focuses solely on vision, outperforms vision-language 515 contrastive methods like CLIP across multiple tasks. (2) The effectiveness of masked video modeling is closely tied to the targets it reconstructs or aligns with. With higher semantic richness, it shows 516 progressive improvements in embedding quality for VideoMAE-L, V-JEPA-L, and UMT-L_{stage1}. (3) 517 Vision-centric pretraining outperforms Multi-modal pretraining in vision-centric scenarios. Com-518 paring UMT-L_{stage1} and InternVideo2-1B_{stage1} with their multi-modal counterparts UMT-L_{stage2} 519 and InternVideo2-1B_{stage2}, the introduction of visual-text pair data in multi-stage training does 520 not enhance performance in vision-centric scenarios. This is also consistent with the performance 521 differences observed between DINO and CLIP-style pre-training methods. 522

Additionally, we assess the **impact of fine-tuning on the embedding evaluation of these pretrained models**. (4) *Labels bring new semantic information or disrupt existing finer-grained semantic information*. The performance variations after fine-tuning differ based on the pre-training strategy. For UMT-L_{stage1} and InternVideo2-1B_{stage1}, fine-tuning leads to a significant drop in performance (-12.1 for UMT and -16.5 for InternVideo) due to the introduction of more singular label information, which causes catastrophic forgetting. In contrast, VideoMAE and VideoMAEv2 show substantial performance gains (+14.5 and +25.8, respectively) because the low-level semantics learned during pre-training are less abstract and benefit more from the addition of high-level label information.

530 531 532

5 CONCLUSIONS

533 534

We present VideoEval, a comprehensive benchmark suite for efficiently evaluating the VFMs. To this
end, we establish VidTAB, which explores suitable evaluation tasks and protocols for VFMs from
the perspective of assessing their adaptability to unknown tasks with limited samples. Additionally,
we create VidEB to evaluate the capability of VFMs' feature embedding in directly supporting
downstream tasks. Utilizing VideoEval, we conduct a large-scale study involving 20 popular opensource vision foundation models, providing valuable insights for future research directions.

540 REFERENCES

552

- 542 Syed Hammad Ahmed, Muhammad Junaid Khan, HM Qaisar, and Gita Sukthankar. Malicious or
 543 benign? towards effective content moderation for children's videos. *ArXiv*, abs/2305.15551, 2023.
- Max Bain, Arsha Nagrani, Gül Varol, and Andrew Zisserman. Frozen in time: A joint video and image encoder for end-to-end retrieval. In *ICCV*, 2021.
- Adrien Bardes, Quentin Garrido, Jean Ponce, Xinlei Chen, Michael Rabbat, Yann LeCun, Mido
 Assran, and Nicolas Ballas. V-jepa: Latent video prediction for visual representation learning.
 2023.
- Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention all you need for video understanding? In *ICML*, 2021.
- Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 few-shot learners. In *NeurIPS*, 2020.
- Soravit Changpinyo, Piyush Sharma, Nan Ding, and Radu Soricut. Conceptual 12m: Pushing
 web-scale image-text pre-training to recognize long-tail visual concepts. In *CVPR*, 2021.
- Sihan Chen, Xingjian He, Longteng Guo, Xinxin Zhu, Weining Wang, Jinhui Tang, and Jing Liu. VALOR: vision-audio-language omni-perception pretraining model and dataset. *Arxiv*, abs/2304.08345, 2023.
- Sihan Chen, Handong Li, Qunbo Wang, Zijia Zhao, Mingzhen Sun, Xinxin Zhu, and Jing Liu. Vast:
 A vision-audio-subtitle-text omni-modality foundation model and dataset. *NeurIPS*, 2024a.
- Tsai-Shien Chen, Aliaksandr Siarohin, Willi Menapace, Ekaterina Deyneka, Hsiang-wei Chao, Byung Eun Jeon, Yuwei Fang, Hsin-Ying Lee, Jian Ren, Ming-Hsuan Yang, and Sergey Tulyakov. Panda-70m: Captioning 70m videos with multiple cross-modality teachers. *Arxiv*, abs/2402.19479, 2024b.
- Feng Cheng, Xizi Wang, Jie Lei, David J. Crandall, Mohit Bansal, and Gedas Bertasius. Vindlu: A recipe for effective video-and-language pretraining. *ArXiv*, abs/2212.05051, 2022.
- Andong Deng, Taojiannan Yang, and Chen Chen. A large-scale study of spatiotemporal representation
 learning with a new benchmark on action recognition. In *ICCV*, 2023.
- Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In *CVPR*, 2009.
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
 bidirectional transformers for language understanding. *ArXiv*, abs/1810.04805, 2018.
- Matthijs Douze, Giorgos Tolias, Ed Pizzi, Zoë Papakipos, Lowik Chanussot, Filip Radenovic, Tomas Jenicek, Maxim Maximov, Laura Leal-Taixé, Ismail Elezi, et al. The 2021 image similarity dataset and challenge. *arXiv preprint arXiv:2106.09672*, 2021.
- Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li, Zhicheng Yan, Jitendra Malik, and
 Christoph Feichtenhofer. Multiscale vision transformers. In *ICCV*, 2021.
- Yuxin Fang, Wen Wang, Binhui Xie, Quan Sun, Ledell Wu, Xinggang Wang, Tiejun Huang, Xinlong Wang, and Yue Cao. Eva: Exploring the limits of masked visual representation learning at scale. In *CVPR*, 2023.
- Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast networks for video recognition. In *ICCV*, 2019.
- Christoph Feichtenhofer, Haoqi Fan, Yanghao Li, and Kaiming He. Masked autoencoders as
 spatiotemporal learners. *NeurIPS*, 2022.
- ⁵⁹³ Rohit Girdhar, Alaaeldin El-Nouby, Mannat Singh, Kalyan Vasudev Alwala, Armand Joulin, and Ishan Misra. Omnimae: Single model masked pretraining on images and videos. In *CVPR*, 2023.

594 595 596 597	Micah Goldblum, Hossein Souri, Renkun Ni, Manli Shu, Viraj Prabhu, Gowthami Somepalli, Prithvi- jit Chattopadhyay, Mark Ibrahim, Adrien Bardes, Judy Hoffman, Rama Chellappa, Andrew Gordon Wilson, and Tom Goldstein. Battle of the backbones: A large-scale comparison of pretrained models across computer vision tasks. In <i>NeurIPS</i> , 2023.
599 599 600 601 602	Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Susanne Westphal, Heuna Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag, et al. The" something something" video database for learning and evaluating visual common sense. In <i>ICCV</i> , 2017a.
603 604 605 606	Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Susanne Westphal, Heuna Kim, Valentin Haenel, Ingo Fründ, Peter Yianilos, Moritz Mueller-Freitag, Florian Hoppe, Christian Thurau, Ingo Bax, and Roland Memisevic. The "something something" video database for learning and evaluating visual common sense. In <i>ICCV</i> , 2017b.
607 608 609 610	Chunhui Gu, Chen Sun, Sudheendra Vijayanarasimhan, Caroline Pantofaru, David A. Ross, George Toderici, Yeqing Li, Susanna Ricco, Rahul Sukthankar, Cordelia Schmid, and Jitendra Malik. Ava: A video dataset of spatio-temporally localized atomic visual actions. <i>CVPR</i> , 2017.
611 612	Tengda Han, Weidi Xie, and Andrew Zisserman. Self-supervised co-training for video representation learning. In <i>NeurIPS</i> , 2020a.
613 614 615	Tengda Han, Weidi Xie, and Andrew Zisserman. Memory-augmented dense predictive coding for video representation learning. In <i>ECCV</i> , 2020b.
616 617 618 619	Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, and Justin Gilmer. The many faces of robustness: A critical analysis of out-of-distribution generalization. In <i>ICCV</i> , 2021a.
620 621	Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial examples. In <i>CVPR</i> , 2021b.
623 624 625	Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for NLP. In <i>ICML</i> , 2019.
626 627 628	Badr Youbi Idrissi, Diane Bouchacourt, Randall Balestriero, Ivan Evtimov, Caner Hazirbas, Nicolas Ballas, Pascal Vincent, Michal Drozdzal, David Lopez-Paz, and Mark Ibrahim. Imagenet-x: Understanding model mistakes with factor of variation annotations. In <i>ICLR</i> , 2023.
629 630 631	Yu-Gang Jiang, Yudong Jiang, and Jiajun Wang. Vcdb: a large-scale database for partial copy detection in videos. In <i>ECCV</i> , 2014.
632 633 634 635	Will Kay, João Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola, Tim Green, Trevor Back, Apostol Natsev, Mustafa Suleyman, and Andrew Zisserman. The kinetics human action video dataset. <i>ArXiv</i> , abs/1705.06950, 2017a.
636 637 638	Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human action video dataset. <i>ArXiv</i> , abs/1705.06950, 2017b.
639 640	Giorgos Kordopatis-Zilos, Symeon Papadopoulos, Ioannis Patras, and Ioannis Kompatsiaris. Fivr: Fine-grained incident video retrieval. <i>IEEE Transactions on Multimedia</i> , 21, 2019.
642 643	Hilde Kuehne, Ali Arslan, and Thomas Serre. The language of actions: Recovering the syntax and semantics of goal-directed human activities. In <i>CVPR</i> , 2014.
644 645	Jiyoung Lee, Seungryong Kim, Sunok Kim, Jungin Park, and Kwanghoon Sohn. Context-aware emotion recognition networks. In <i>ICCV</i> , 2019.
647	Kunchang Li, Yali Wang, Yizhuo Li, Yi Wang, Yinan He, Limin Wang, and Yu Qiao. Unmasked teacher: Towards training-efficient video foundation models. In <i>ICCV</i> , 2023.

674

688

689

- Kinhao Li and Limin Wang. Zeroi2v: Zero-cost adaptation of pre-trained transformers from image to video. *ArXiv*, abs/2310.01324, 2023.
- Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin, and Han Hu. Video swin transformer. In *CVPR*, 2022.
- Mathew Monfort, Bolei Zhou, Sarah Adel Bargal, Alex Andonian, Tom Yan, Kandan Ramakrishnan,
 Lisa M. Brown, Quanfu Fan, Dan Gutfreund, Carl Vondrick, and Aude Oliva. Moments in time
 dataset: One million videos for event understanding. *TPAMI*, 2020.
- Xun Long Ng, Kian Eng Ong, Qichen Zheng, Yun Ni, Si Yong Yeo, and Jun Liu. Animal kingdom:
 A large and diverse dataset for animal behavior understanding. In *CVPR*, 2022.
- Yongxin Ni, Yu Cheng, Xiangyan Liu, Junchen Fu, Youhua Li, Xiangnan He, Yongfeng Zhang,
 and Fajie Yuan. A content-driven micro-video recommendation dataset at scale. *arXiv preprint arXiv:2309.15379*, 2023.
- 662 663 OpenAI. Gpt-4 technical report. *ArXiv*, abs/2303.08774, 2023a.
- OpenAI. Gpt-4v(ision) system card. https://api.semanticscholar.org/CorpusID:
 263218031, 2023b.
- Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 robust visual features without supervision. *ArXiv*, abs/2304.07193, 2023.
- Junting Pan, Ziyi Lin, Xiatian Zhu, Jing Shao, and Hongsheng Li. Parameter-efficient image-to-video transfer learning. *arXiv*, abs/2206.13559, 2022.
- Tian Pan, Yibing Song, Tianyu Yang, Wenhao Jiang, and Wei Liu. Videomoco: Contrastive video
 representation learning with temporally adversarial examples. In *CVPR*, 2021.
- Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya Kamath, Ivan Vulić, Sebastian Ruder,
 Kyunghyun Cho, and Iryna Gurevych. Adapterhub: A framework for adapting transformers. In
 EMNLP, 2020.
- Ed Pizzi, Giorgos Kordopatis-Zilos, Hiral Patel, Gheorghe Postelnicu, Sugosh Nagavara Ravindra,
 Akshay Gupta, Symeon Papadopoulos, Giorgos Tolias, and Matthijs Douze. The 2023 video
 similarity dataset and challenge. *Computer Vision and Image Understanding*, 2024.
- Bryan A Plummer, Liwei Wang, Chris M Cervantes, Juan C Caicedo, Julia Hockenmaier, and
 Svetlana Lazebnik. Flickr30k entities: Collecting region-to-phrase correspondences for richer
 image-to-sentence models. In *ICCV*, 2015.
- Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 models from natural language supervision. In *ICML*, 2021.
 - Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers generalize to imagenet? In *ICML*, 2019.
- Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High resolution image synthesis with latent diffusion models, 2021.
- Andreas Rossler, Davide Cozzolino, Luisa Verdoliva, Christian Riess, Justus Thies, and Matthias
 Nießner. Faceforensics++: Learning to detect manipulated facial images. In *ICCV*, 2019.
- Chaitanya Ryali, Yuan-Ting Hu, Daniel Bolya, Chen Wei, Haoqi Fan, Po-Yao Huang, Vaibhav Aggarwal, Arkabandhu Chowdhury, Omid Poursaeed, Judy Hoffman, Jitendra Malik, Yanghao Li, and Christoph Feichtenhofer. Hiera: A hierarchical vision transformer without the bells-and-whistles. In *ICML*, 2023.
- Madeline Chantry Schiappa, Naman Biyani, Prudvi Kamtam, Shruti Vyas, Hamid Palangi, Vibhav
 Vineet, and Yogesh S Rawat. A large-scale robustness analysis of video action recognition models. In *CVPR*, 2023.

702 703 704	Klaus Schoeffmann, Heinrich Husslein, Sabrina Kletz, Stefan Petscharnig, Bernd Muenzer, and Chris- tian Beecks. Video retrieval in laparoscopic video recordings with dynamic content descriptors. <i>Multimedia Tools and Applications</i> , 77:16813–16832, 2018.
705 706 707 708 709 710	Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick Schramowski, Srivatsa Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kaczmarczyk, and Jenia Jitsev. LAION-5B: an open large-scale dataset for training next generation image-text models. In <i>NeurIPS</i> , 2022.
711 712	Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A cleaned, hypernymed, image alt-text dataset for automatic image captioning. In <i>ACL</i> , 2018.
713 714 715	Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. UCF101: A dataset of 101 human actions classes from videos in the wild. <i>Arxiv</i> , abs/1212.0402, 2012.
716 717	Quan Sun, Yuxin Fang, Ledell Yu Wu, Xinlong Wang, and Yue Cao. Eva-clip: Improved training techniques for clip at scale. <i>ArXiv</i> , abs/2303.15389, 2023.
718 719 720	Fida Mohammad Thoker, Hazel Doughty, Piyush Bagad, and Cees G. M. Snoek. How severe is benchmark-sensitivity in video self-supervised learning? In ECCV, 2022a.
721 722	Fida Mohammad Thoker, Hazel Doughty, Piyush Bagad, and Cees GM Snoek. How severe is benchmark-sensitivity in video self-supervised learning? In <i>ECCV</i> , 2022b.
723 724	Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. VideoMAE: Masked autoencoders are data-efficient learners for self-supervised video pre-training. In <i>NeurIPS</i> , 2022.
726 727	Haohan Wang, Songwei Ge, Zachary C. Lipton, and Eric P. Xing. Learning robust global representa- tions by penalizing local predictive power. In <i>NeurIPS</i> , 2019.
728 729 730	Jinpeng Wang, Yixiao Ge, Rui Yan, Yuying Ge, Kevin Qinghong Lin, Satoshi Tsutsui, Xudong Lin, Guanyu Cai, Jianping Wu, Ying Shan, Xiaohu Qie, and Mike Zheng Shou. All in one: Exploring unified video-language pre-training. In <i>CVPR</i> , 2023a.
731 732 733	Limin Wang, Bingkun Huang, Zhiyu Zhao, Zhan Tong, Yinan He, Yi Wang, Yali Wang, and Yu Qiao. Videomae v2: Scaling video masked autoencoders with dual masking. In <i>CVPR</i> , 2023b.
734 735	Rui Wang, Dongdong Chen, Zuxuan Wu, Yinpeng Chen, Xiyang Dai, Mengchen Liu, Yu-Gang Jiang, Luowei Zhou, and Lu Yuan. Bevt: Bert pretraining of video transformers. <i>CVPR</i> , 2022a.
736 737 738 739	Rui Wang, Dongdong Chen, Zuxuan Wu, Yinpeng Chen, Xiyang Dai, Mengchen Liu, Lu Yuan, and Yu-Gang Jiang. Masked video distillation: Rethinking masked feature modeling for self-supervised video representation learning. In <i>CVPR</i> , 2023c.
740 741 742 743	Yi Wang, Kunchang Li, Yizhuo Li, Yinan He, Bingkun Huang, Zhiyu Zhao, Hongjie Zhang, Jilan Xu, Yi Liu, Zun Wang, Sen Xing, Guo Chen, Junting Pan, Jiashuo Yu, Yali Wang, Limin Wang, and Yu Qiao. Internvideo: General video foundation models via generative and discriminative learning. <i>ArXiv</i> , abs/2212.03191, 2022b.
744 745 746 747	Yi Wang, Yinan He, Yizhuo Li, Kunchang Li, Jiashuo Yu, Xin Jian Ma, Xinyuan Chen, Yaohui Wang, Ping Luo, Ziwei Liu, Yali Wang, Limin Wang, and Y. Qiao. Internvid: A large-scale video-text dataset for multimodal understanding and generation. <i>ICLR</i> , 2024a.
748 749 750	Yi Wang, Kunchang Li, Xinhao Li, Jiashuo Yu, Yinan He, Guo Chen, Baoqi Pei, Rongkun Zheng, Jilan Xu, Zun Wang, et al. Internvideo2: Scaling video foundation models for multimodal video understanding. <i>ArXiv</i> , abs/2403.15377, 2024b.
751 752 753	Chen Wei, Haoqi Fan, Saining Xie, Chao-Yuan Wu, Alan Yuille, and Christoph Feichtenhofer. Masked feature prediction for self-supervised visual pre-training. In <i>CVPR</i> , 2022.
754 755	Haoning Wu, Erli Zhang, Liang Liao, Chaofeng Chen, Jingwen Hou, Annan Wang, Wenxiu Sun, Qiong Yan, and Weisi Lin. Exploring video quality assessment on user generated contents from aesthetic and technical perspectives. In <i>ICCV</i> , 2023.

756 757 758	Xiao Wu, Alexander G Hauptmann, and Chong-Wah Ngo. Practical elimination of near-duplicates from web video search. In <i>Proceedings of the 15th ACM international conference on Multimedia</i> , pp. 218–227, 2007.
760 761	Dejing Xu, Jun Xiao, Zhou Zhao, Jian Shao, Di Xie, and Yueting Zhuang. Self-supervised spatiotem- poral learning via video clip order prediction. In <i>CVPR</i> , 2019.
762 763 764	Hu Xu, Gargi Ghosh, Po-Yao Huang, Dmytro Okhonko, Armen Aghajanyan, Florian Metze, Luke Zettlemoyer, and Christoph Feichtenhofer. Videoclip: Contrastive pre-training for zero-shot video-text understanding. In <i>EMNLP</i> , 2021a.
765 766 767	Yuecong Xu, Jianfei Yang, Haozhi Cao, Kezhi Mao, Jianxiong Yin, and Simon See. Arid: A new dataset for recognizing action in the dark. In <i>IJCAI</i> , 2021b.
768 769 770	Shen Yan, Tao Zhu, Zirui Wang, Yuan Cao, Mi Zhang, Soham Ghosh, Yonghui Wu, and Jiahui Yu. Video-text modeling with zero-shot transfer from contrastive captioners. <i>ArXiv</i> , abs/2212.04979, 2022.
771 772 773	Taojiannan Yang, Yi Zhu, Yusheng Xie, Aston Zhang, Chen Chen, and Mu Li. Aim: Adapting image models for efficient video action recognition. In <i>ICLR</i> , 2023.
774 775	Bruce XB Yu, Jianlong Chang, Haixin Wang, Lingbo Liu, Shijie Wang, Zhiyu Wang, Junfan Lin, Lingxi Xie, Haojie Li, Zhouchen Lin, et al. Visual tuning. <i>ACM Computing Surveys</i> , 2023.
776 777 778 779	Liangzhe Yuan, Nitesh Bharadwaj Gundavarapu, Long Zhao, Hao Zhou, Yin Cui, Lu Jiang, Xuan Yang, Menglin Jia, Tobias Weyand, Luke Friedman, et al. Videoglue: Video general understanding evaluation of foundation models. <i>ArXiv</i> , abs/2307.03166, 2023.
780 781 782 783	Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario Lucic, Josip Djolonga, André Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, Lucas Beyer, Olivier Bachem, Michael Tschannen, Marcin Michalski, Olivier Bousquet, Sylvain Gelly, and Neil Houlsby. The visual task adaptation benchmark. <i>Arxiv</i> , abs/1910.04867, 2019.
784 785	Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language image pre-training. In <i>ICCV</i> , 2023.
787 788 789 790	Long Zhao, Nitesh B Gundavarapu, Liangzhe Yuan, Hao Zhou, Shen Yan, Jennifer J Sun, Luke Friedman, Rui Qian, Tobias Weyand, Yue Zhao, et al. Videoprism: A foundational visual encoder for video understanding. <i>ArXiv</i> , abs/2402.13217, 2024.
790 791	
792	
793	
794	
795	
796	
797	
798	
799	
800	
202	
803	
804	
805	
806	
807	
808	
809	

810		
811	AR in Dark Scene	Fake Face
812		
813		
814	Run	Real face
815		
816		
817	Wave	Fake face
818	AR in Long Video	Harmful Content
819		and and a little and a set
820		
821	Fridge egg	Video without any malicious content
822		
823		
824	Milk	Video with violent activity
825	Medical Surgery	Quality Assess
0∠0 827		
828		
829	Cutting	Low quality
830		
831		
832	Needle positioning	High quality
833	Animal Behavior	Emotion Analysis
834	·	
835	All the state	
836	Keeping still	
837		
838		
840	Swimming	Anger
841		
842	Figure 5: Exam	ples of vid IAB.
843 844	In this appendix, we provide more details of Video	Eval from the following aspects:
845	• Details of our benchmark are in § A.	
846	• Details of training and evaluation, can be	found in § B.
847	• Ethics etatement of the datasets are in &	n .
848	Limitations and natural practice assist	
849	• Limitations and potential negative society	al impacts are in § D
850		
851	A DETAILS OF BENCHMARK	
852		
854	Comparison of Current VFMs Benchmarks	As shown in Table 1, we compare our VideoEval
855	and benchmark diversity	or v Fivis from the perspectives of evaluation cost
856	and benefimark diversity.	
857	Examples of VidTAB As shown in Figure 5 we	e present some examples of tasks in VidTAB
858		
859	Details of VidTAB The details of task construct	tion are presented in Table 7. For each category
860	in one task, we sample 4, 16, and 100 samples, re	espectively. Given the limited volume of medical
861	surgery data, we only sample 4 samples from each	a category for few-shot evaluation. To mitigate the
862	impact of randomness, we sampled two sets of data	a for four tasks and obtained the benchmark results.
863	we found that the randomness of sampling had no the benchmark.	egligible effects on the final rankings of VFMs in

Table 7: Task details of VidTAB. All videos are collected from the public datasets for building tasks of VidTAB.

Task	Source	Num. test sample	Details of Task Construction
Action Recognition	ARID Xu et al. (2021b)	2011	We directly employ the original classification task definition. Specifically, 11 categories.
Action Recognition	BreakFast Kuehne et al. (2014)	822	We directly employ the original classification task definition. Specifically, 12 categories.
Medical Surgery	SurgicalActions160 Schoeffmann et al. (2018)	96	We directly employ the original classification task definition. Specifically, 16 categories.
Animal Babavior	Animal Kingdom Ng at al. (2022)	2268	Since the annotations in this dataset included multiple labels, we filtered out all categories with only single labels and then
Annual Denavior	Annual Ringdoni Ng et al. (2022)	2200	selected categories with more than 150 samples. This resulted in a final set of 12 categories.
	FaceForensics++ Rossler et al. (2019)		We used the original 1000 videos as positive samples. Then, we divided the original videos into five parts and used the Deepfakes,
Fake Face		1800	Face2Face, FaceShifter, FaceSwap, and NeuralTextures methods to generate 1000 negative samples by face-swapping. We then
			selected 1800 of these samples as the test set and the remaining as the training set.
			We categorized videos into three classes based on their content: those containing fast repetitive movements and violence activities,
Harmful Content	mob Ahmed et al. (2023)	1661	those containing unpleasant appearances and obscene scenes, and those containing no malicious information at all. This resulted in a
			three-class classification task.
Ouality Accase	DOVER Wu at al. (2023)	724	To convert the task into a classification problem, we sorted the "overall score" label and divided the videos into positive and negative
Quanty Assess	DOVER Walt al. (2025)	/24	samples, with the top and bottom 40% constituting the respective categories.
Emotion Analysis	CAER Lee et al. (2019)	3953	We directly employ the original classification task definition. Specifically, 7 categories.

B DETAILS OF TRAINING AND EVALUATION

Checkpoints of Evaluation Models We provide checkpoints of the models we evaluate for reproducibility of our results.

879	• CLIP Radford et al. (2021): https://huggingface.co/openai/
880	clip-vit-large-patch14
881 882 883	• EVA-CLIP Radford et al. (2021): https://huggingface.co/QuanSun/ EVA-CLIP
884	• ViCLIP Wang et al. (2024a): https://github.com/OpenGVLab/InternVideo/
885	tree/main/Data/InternVid
886	• InternVideo2 Wang et al. (2024b): https://huggingface.co/collections/
887	OpenGVLab/internvideo2-6618ccb574bd2f91410df5cd
888	• SigLiP Zhai et al. (2023): https://huggingface.co/google/
889	siglip-so400m-patch14-384
890 891 892	• DINOv2 Oquab et al. (2023): https://huggingface.co/facebook/ dinov2-giant
893	• VideoMAE Tong et al. (2022): https://github.com/MCG-NJU/VideoMAE/
894	blob/main/MODEL_ZOO.md
895	• VideoMAEv2 Wang et al. (2023b): https://github.com/OpenGVLab/
896	VideoMAEv2/blob/master/docs/MODEL_ZOO.md
897 898	 UMT Li et al. (2023): https://github.com/OpenGVLab/unmasked_teacher V-JEPA Bardes et al. (2023): https://github.com/facebookresearch/jepa
900 901	Trainging strategies Specific hyperparameter configurations are available in the configs provided in our code repository. In essence, we train all models for 25 epochs using a similar training strategy,
902 903	employing the Adam optimizer, a learning rate of 5e-5, and only utilizing RandomResizedCrop for data augmentation. And we use a single clip to obtain the final evaluation performance.
904 905	Total amount of compute and the type of resources used. Leveraging the low cost of our

Total amount of compute and the type of resources used Leveraging the low cost of our
 evaluation protocol, we conducted each experiment involving a single VFM and a single task on one
 A100-80G GPU. We performed approximately 300 such experiments, each taking around 1-2 hours,
 resulting in a total of around 400 GPU hours.

C ETHICS STATEMENT

912 license of the datasets The dataset we are using is collected from publicly accessible sources,
913 all licensed under Creative Commons (CC-BY) or other open-source licenses. We have diligently
914 followed all legal requirements to integrate this data into our research, emphasizing the importance of
915 transparency in data licensing for proper attribution and appropriate use. Although we have taken
916 steps to ensure the inclusion of suitable content, we recognize that some problematic content may
917 still exist. If you encounter any such content, please notify us immediately so we can take corrective
action to maintain a dataset free from inappropriate material. We are dedicated to maintaining a

Table 8: Evaluating state-of-the-art VFMs on the VidTAB with Full Finetuning. The best and
second-best results of foundation models are noted by blue and <u>underline</u>, respectively. We present
the results in the form of '4s/16s/100s,' representing the outcomes of 4-shot, 16-shot, and 100-shot
experiments.

923		Action		Science		Safety		Quality	Emotion	
924				_	rgery	avior	ontent	,	ss	alysis
925			Scene	Video	ical Su	aal Bel	ıful Co	Face	ity Ass	ion A
926		Average	Dark	Long	Medi	Anim	Ham	Fake	Qual	Emol
927	Random Video Foundation Model	22.7	9.1	10.0	6.2	8.3	33.3	50.0	50.0	14.3
928	ViCLIP-L-10M Wang et al. (2024a) ViCLIP-L-200M Wang et al. (2024a)	37.9	22.6/18.9/29.5	16.4/24.8/45.7 13.6/21.2/53.0	30.2 30.2	26.3/29.7/41.5 25.1/30.6/43.6	35.1/38.2/54.2 36.6/40.2/46.8	51.2/50.8/53.7 50.4/51.5/53.7	56.9/65.9/72.5 57.2/67.7/71.6	20.3/17.2/32.7 19.8/19.7/32.2
929	VideoMAEv1-H Tong et al. (2022) VideoMAEv2-g Wang et al. (2023b)	34.0 34.0	12.8/13.5/72.1	9.6/10.0/36.7	39.6 18.8	18.5/22.0/47.8	32.5/33.1/37.2	50.3/50.3/50.7 50.8/50.6/50.6	44.2/50.8/66.6	15.2/14.3/19.0
930	VideoMAEv2-g ^{k710pt} Wanget al. (2023b) V-JEPA-L Bardes et al. (2023)	48.6 49.2	30.4/77.3/ 94.0 43.2/78.8/88.5	31.2/52.9/89.0 25.2/52.0/86.0	57.3 46.9	12.6/32.0/64.5 26.6/37.1/59.9	33.1/39.4/41.8 38.5/36.0/46.4	49.8/50.4/54.7 50.2/50.8/55.9	54.3/59.8/71.4 54.3/68.0/76.9	16.6/17.2/39.3 15.0/17.9/27.4
931	V-JEPA-H Bardes et al. (2023) InternVideo2-1B-ternal Wang et al. (2024b)	52.5 52.1	45.2/ 80.7 / <u>90.8</u> 20.3/56.0/80.6	24.7/48.5/87.1 27.7/70.0/92.5	46.9 66.7	26.7/38.1/60.6	40.4/ <u>41.7</u> / 58.5 41.5/36.0/50.0	50.4/51.2/68.2 52.6/52.4/75.0	<u>59.8/</u> 71.3 / 79.3 60.9 /69.0/77.8	20.9/20.4/43.4
932	InternVideo2-1B ^{k710pt} _{stage1} Wang et al. (2024b) InternVideo2-1B _{stage2} Wang et al. (2024b)	59.4 59.0	59.5 / <u>79.9</u> /88.9 55.1/75.6/89.3	60.8 / 82.6 / 95.6 55.4/77.7/93.7	71.9 60.4	<u>31.7/46.4</u> / 68.0 33.3 / 51.0 /67.7	<u>44.0</u> /37.7/50.1 54.2 / 42.2 /55.1	53.3 / 53.9 / 83.2 50.9/53.4/76.9	59.4/65.4/ <u>77.9</u> 58.5/67.0/77.4	22.9/28.0/ 45.8 23.9 / 34.6 /44.1
933										

high-quality, ethically responsible dataset and pledge to uphold principles of privacy and transparency in all our work.

Privacy or safety concerns in video For personally identifiable information or offensive content in video, our data collection sources have been carefully considered, and we believe these issues are not present. However, if you discover any oversights, please do not hesitate to contact us promptly.

D LIMITATIONS AND SOCIETAL IMPACTS

Limitations Firstly, due to the limitations of diversity and accuracy in our video sources and annotations, which were gathered from public resources, we plan to further enrich the task in the future by incorporating manual annotations and self-collected data. Secondly, considering the evaluation cost and simplicity, we currently only evaluate tasks like classification and retrieval, which primarily rely on VFMs' global information extraction capabilities. We have not yet considered tasks like spatio-temporal action detection and temporal grounding, which assess other aspects of VFMs' capabilities. We will expand the scope of evaluation in the future.

Potential negative societal impacts While our evaluation includes tasks like synthetic video recognition and harmful information recognition, these serve only as indicators of the model's overall performance in this area and cannot be used to accurately evaluate the actual performance of a specific task. If researchers or engineers in society attempt to use VFMs to perform these specific tasks, our benchmark can serve as a reference for their choice of VFMs, but it cannot be used as the final standard for evaluating that task. Otherwise, it may have negative impacts on the corresponding real-world applications.

Table 9: Evaluating state-of-the-art FMs on the VidTAB with Attentive Probe. The best and second-best results of foundation models are noted by **blue** and <u>underline</u>, respectively. We present the results in the form of '4s/16s/100s,' representing the outcomes of 4-shot, 16-shot, and 100-shot experiments.

993										
004			Action		Science		Safety		Quality	Emotion
994					T.	io.	ti i		20	ysi
995			сепе	Ideo	d Surge	Behav	I Cont	ace	Asses	n Anal
996		Average	Dark S	Long V	Medica	Animal	Harmfu	Fake Fi	Quality	Emotic
997	Random	22.7	9.1	10.0	6.2	8.3	33.3	50.0	50.0	14.3
998	Image Foundation Model CLIP-L Radford et al. (2021) Siel ID SO Zhei et al. (2022)	44.3	20.5/21.6/53.5	15.1/21.8/76.6	32.3	29.5/36.3/46.4	49.5/48.1/65.1	52.8/57.1/64.6	60.2/69.4/70.3	21.8/22.8/38.2
999	EVA-g Fang et al. (2023) DINOv2-L Oguab et al. (2023)	45.9 46.9 42.9	26.8/33.5/60.3 26.2/37.3/58.9	22.1/36.7/82.5 17.0/37.1/80.8	34.4 39.6	25.0/55.0/47.4 <u>31.9</u> /39.9/51.3 26.5/36.3/45.4	49.6/45.5/60.4 37.1/31.6/48.0	51.6/55.1/58.8 51.0/52.0/53.6	54.7/69.3/74.6 54.7/64.5/70.3	23.2/24.2/39.7 21.8/22.5/32.4
1000	DINOv2-g Oquab et al. (2023)	44.5	23.7/33.7/56.1	17.7/38.4/83.2	42.7	26.6/36.1/45.4	40.9/44.2/60.3	51.8/51.8/55.9	54.5/65.5/72.8	21.8/22.7/34.4
	Image Foundation Model with image-to-vid	leo adaptati	on method							
1001	ST-Adapter-CLIP-L Pan et al. (2022)	47.9	21.2/37.3/68.6	17.4/35.1/80.5	31.2	30.1/39.6/50.7	48.0/42.9/51.4	53.3/ <u>59.6</u> /80.8	62.4/ <u>71.9</u> /80.1	20.3/22.1/48.7
	AIM-CLIP-L Yang et al. (2023)	49.7	22.4/39.3/62.8	21.2/47.5/81.3	38.5	29.7/39.1/51.7	44.3/38.9/55.9	57.4 / 67.2 / 83.8	64.9 / 73.0 / 83.2	21.8/24.7/45.2
1002	ZeroI2V-CLIP-L Li & Wang (2023)	47.6	22.2/37.8/61.0	21.2/40.6/79.1	31.2	31.0/39.4/50.1	40.9/37.9/59.5	<u>55.5</u> /57.7/ <u>82.3</u>	58.8/70.4/ <u>80.4</u>	20.1/22.6/ 48.7
	Video Foundation Model									
1003	ViCLIP-L-10M Wang et al. (2024a)	42.8	22.4/25.2/46.1	19.6/35.3/73.2	30.2	26.3/34.4/45.2	38.0/46.9/58.8	51.6/53.4/56.8	59.5/68.0/71.0	21.2/22.4/37.1
1004	VICLIP-L-200M Wang et al. (2024a) VideoMAEv1-L Tong et al. (2022) VideoMAEv1-H Tong et al. (2022)	44.5	25.9/32.4/56.2 19.0/35.1/82.6 17.7/35.4/83.4	21.1/38.0/74.7 12.8/14.6/65.1 11.8/15.7/65.6	30.2 31.2 35.4	28.2/37.0/48.6 25.6/31.1/55.4 24.8/32.8/58.2	45.8/44.6/51.8 62.1/49.6/57.9 56.0/45.6/ 65.9	50.5/51.1/54.2 50.4/51.3/53.6	57.9/70.3/77.9 62.6/70.4/78.4	21.0/25.2/38.2 18.9/16.7/36.5 261/264/34.8
1005	VideoMAEv2-g Wang et al. (2023b) VideoMAEv2-g ^{k710pt} Wanget al. (2023b)	39.6 54.4	15.9/19.6/70.0 63.4/76.9/ 88.8	14.2/14.0/26.8	18.8	25.2/26.1/49.7 26.5/41.3/59.3	<u>63.1/52.9</u> /62.7 41.0/41.4/49.1	50.9/50.5/51.2 52.9/55.2/62.6	56.5/62.6/74.9 52.3/65.3/72.1	16.7/21.9/26.2
1006	UMT-L _{stage1} Li et al. (2023) UMT-L _{stage2} Li et al. (2023)	41.6 45.9	25.5/21.8/55.5 25.2/26.6/50.8	14.8/22.4/68.9 23.6/35.2/72.8	30.0 22.9	24.9/32.8/44.8 29.6/35.4/53.3	42.4/41.4/53.0 66.6 / 61.8 /63.3	51.1/52.9/56.9 50.6/51.4/56.9	59.3/66.3/68.5 58.9/68.5/74.4	24.2/20.0/36.9 25.0/20.5/36.6
1007	V-JEPA-L Bardes et al. (2023) V-JEPA-H Bardes et al. (2023)	43.8 46.0	26.8/46.7/77.8 28.1/47.5/ <u>85.7</u>	18.1/27.5/57.4 17.2/26.9/68.6	39.6 35.4	28.0/36.0/55.2 27.6/36.6/57.0	37.1/41.3/53.2 40.4/42.0/59.6	50.9/50.9/53.4 51.3/52.5/55.3	55.2/67.6/77.2 58.0/68.4/77.9	18.5/17.8/27.8 22.1/20.3/32.9
1008	InternVideo2-1B _{stage1} Wang et al. (2024b) InternVideo2-1B ^{k710pt} _{stage1} Wang et al. (2024b)	47.2 57.0	27.4/38.5/69.7 66.4 / 77.9 /82.4	22.2/42.5/ <u>86.1</u> 65.3 / 77.5 / 89.8	33.3 53.1	28.5/36.3/51.3 31.3/44.1/60.7	44.7/48.2/64.1 43.9/42.4/55.4	50.8/53.0/56.8 51.9/54.7/59.9	57.6/67.1/73.1 57.1/66.5/75.0	23.0/24.0/40.9 23.3/ 33.3 /43.0
1009	InternVideo2-1B _{stage2} Wang et al. (2024b)	54.9	54.4/66.6/76.9	56.0/71.7/85.6	38.5	37.2 / 50.4 / 62.5	51.0/46.2/63.6	51.6/54.4/58.2	53.9/65.8/73.2	21.8/29.3/39.9