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Abstract

Molecular pretraining, which learns molecular representations over massive unlabeled data,
has become a prominent paradigm to solve a variety of tasks in computational chemistry
and drug discovery. Recently, prosperous progress has been made in molecular pretraining
with di�erent molecular featurizations, including 1D SMILES strings, 2D graphs, and 3D
geometries. However, the role of molecular featurizations with their corresponding neural
architectures in molecular pretraining remains largely unexamined. In this paper, through
two case studies—chirality classification and aromatic ring counting—we first demonstrate
that di�erent featurization techniques convey chemical information di�erently. In light
of this observation, we propose a simple and e�ective MOlecular pretraining framework
with COllaborative featurizations (MOCO). MOCO comprehensively leverages multiple
featurizations that complement each other and outperforms existing state-of-the-art models
that solely relies on one or two featurizations on a wide range of molecular property prediction
tasks.

1 Introduction
Molecular representation learning, which automates the process of feature learning for molecules, is fast
driving the development of computational chemistry and drug discovery. It has been recognized as crucial for
a variety of downstream tasks, spanning from molecular property prediction to molecule design (Yang et al.,
2019; Du et al., 2022). Deep neural models, on the other hand, rely on a substantial amount of labeled data,
which require expensive wet lab experiments in chemical domains. With insu�cient annotated data, deep
models easily overfit to such small training data and tend to learn spurious correlations (Sagawa et al., 2020).

In recent years, self-supervised pretraining has emerged as a promising strategy to alleviate the label scarcity
problem and improve model robustness (Jing & Tian, 2021). A typical framework pretrains the encoder model
with training objectives over large-scale unlabeled datasets and then fine-tunes the learned model on labeled
downstream tasks. Motivated by its success, many molecular pretraining models have been developed (Wang
et al., 2019; Chithrananda et al., 2020; Hu et al., 2020b; You et al., 2020a; Xu et al., 2021a; Fang et al.,
2022; Stärk et al., 2021; Liu et al., 2022a). To capture chemical semantics of molecules, these models
design several pretraining strategies based on di�erent molecular featurizations, which translate chemical
information into representations that can be recognized by machine learning algorithms. For example, early
models (Wang et al., 2019; Chithrananda et al., 2020) propose to leverage masked language modeling (Bengio
et al., 2003) to pretrain Simplified Molecular-Input Line-Entry System (SMILES) strings (Weininger, 1988),
while others study contrastive learning on 2D graphs (Hu et al., 2020b; You et al., 2020a; Xu et al., 2021a)
or 3D conformations (Fang et al., 2022). Some recent studies further propose to enrich 2D-topology-based
pretraining with 3D geometry information (Stärk et al., 2021; Liu et al., 2022a).

Despite encouraging progress, prior studies tend to emphasize on pretraining on molecular graphs and
overlook the impact of other molecular featurizations with their corresponding neural encoders, which
represent chemical information in di�erent ways. Consider SMILES strings as an example. It explicitly
represents informative structures in special characters such as branches, rings, and chirality (Ross et al.,
2022), which are di�cult to learn in graph-based representations (Chen et al., 2020b). Moreover, the utility
of di�erent featurizations may vary across downstream tasks. Therefore, most previous models relying on
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Figure 1: The proposed MOCO model. MOCO obtains four molecule featurizations with appropriate encoders.
After that, an attention network is employed to aggregate each view embedding and compute a final embedding.
The model is trained using a contrastive objective that maximizes the consistency between view embeddings
and the final embedding.

only one or two featurizations might achieve sub-optimal performance across various downstream tasks. For
example, 2D topology is important for many drug-related properties such as toxicity, while 3D geometry
arguably determines properties related to quantum mechanics, such as single-point energy, atomic forces, or
dipole moments (Zhang et al., 2018; Smith et al., 2017). Therefore, it is natural to ask whether we can enjoy
the benefits from multiple molecular featurizations and take the relative utilities of di�erent featurizations
into consideration during fine-tuning on downstream tasks.

In this work, we first revisit four commonly used featurizations techniques: (a) 2D topology graphs, (b) 3D
geometry graphs, (c) Morgan fingerprints, and (d) SMILES strings. We leverage four accompanying neural
encoders with proper inductive bias and conduct two case studies, classifying tetrahedral chiral centers and
counting aromatic rings, both of which are informative chemical descriptors, on representations obtained on
di�erent featurization techniques. The results show there is no one single featurization that dominates the
others, indicating that di�erent featurizations encode chemical semantics of molecules in di�erent ways.

In light of this observation, we then propose a simple and e�ective MOlecular pretraining framework with
COllaborative featurizations to comprehensively leverage every featurization during both pretraining and
fine-tuning, which we term MOCO for brevity. Its graphical illustration is shown in Figure 1. The core
idea of MOCO is to dynamically adjust the contribution of each featurization through an attention network,
which selectively extracts information from each collaborative “view” of the raw molecular data. Besides,
we design a novel multiview contrastive pretraining strategy, which trains the model by maximizing the
consistency among di�erent views in a self-supervised manner. Contrary to previous studies (Stärk et al.,
2021; Liu et al., 2022a) that only consider 2D graph structures during fine-tuning, our MOCO utilizes multiple
featurizations in both pretraining and fine-tuning stages and further allows interpretation analysis of di�erent
downstream tasks for domain scientists. Note that our proposed MOCO framework is generic, allowing for
seamless integration of o�-the-shelf neural architectures. To the best of our knowledge, this is the first work
that studies how various featurization techniques should be utilized for molecular pretraining and downstream
tasks.

We evaluate the e�ectiveness of our MOCO model on widely-used benchmark datasets including Molecu-
leNet (Wu et al., 2018) and QM9 (Ramakrishnan et al., 2014) that cover a wide range of molecular property
prediction tasks. The results reveal that MOCO consistently improves non-pretraining baselines without
negative transfer and outperforms existing state-of-the-art molecular pretraining models, achieving a 1.1%
absolute improvement in terms of average ROC-AUC. Furthermore, the learned model weights of molecular
featurizations for di�erent end tasks are well aligned with prior chemical knowledge. We also suggest a series
of guidelines on choosing e�ective featurization techniques for molecular representations.

The main contributions of this work are three-fold:

• We explore the featurization spaces of molecules with appropriate neural encoders and highlight the
importance of incorporating di�erent featurizations for molecular pretraining.

• We propose a novel molecular contrastive pretraining framework that adaptively integrates information
from multiple collaborative featurizations during both pretraining and fine-tuning stages and provides
interpretability for downstream molecular property prediction tasks.
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• Extensive experiments conducted on public benchmark datasets validate the e�ectiveness of our
proposed model. MOCO is able to achieve the state-of-the-art across various downstream datasets
without negative transfer.

2 Preliminaries

2.1 A Brief Recapitulation of Molecular Featurization Techniques

Molecular featurizations translate chemical information of molecules into representations that can be under-
stood by machine learning algorithms. Concretely, we consider the following molecular featurizations covering
string-, graph-, scalar-, and vector-based representations for 1D/2D molecules and 3D structures, which are
popular in literature (Ramsundar et al., 2019; Atz et al., 2021):

• 2D topology graphs model atoms and bonds as nodes and edges respectively. It is arguably a
common technique, especially for capturing substructure information by means of graph topology.

• 3D geometry graphs incorporate atomic coordinates (conformations) in their representations and
are able to depict how atoms are positioned relative to each other in the 3D space. We consider
conformers in an equilibrium state, corresponding to the minima in a potential energy surface.

• Morgan fingerprints (Morgan, 1965; Glem et al., 2006) encode molecules in fixed-length binary
strings, with bits indicating presence or absence of specific substructures. They represent each atom
according to a set of atomic invariants and iteratively update these features among neighboring
atoms using a hash function.

• SMILES strings are a concise technique that represents chemical structures in a linear notation
using ASCII characters, with explicitly depicting information about atoms, bonds, rings, connectivity,
aromaticity, and stereochemistry.

2.2 Learning Representations with Di�erent Featurizations

Next, we introduce four encoders with di�erent inductive bias to capture the intrinsic information with each
featurization. Here we only discuss the high-level design of each encoder; please refer to Appendix A for
detailed implementations of each encoder.

Notations. Each molecule can be represented as an undirected graph, where nodes are atoms and edges
describe inter-atomic bonds. Formally, each graph is denoted as G = (A,R,X, E), where A œ {0, 1}N◊N is
the adjacency matrix of N nodes, R œ RN◊3 is the 3D position matrix, X œ RN◊K is the matrix of atom
attributes of K dimension, and E œ RN◊N◊E is the tensor for bond attributes of E dimension. Additionally,
each molecule is attached with a binary fingerprint vector f œ {0, 1}F of length F and a SMILES string
S = [sj ]S

j=1 of length S. In what follows, the subscript i is used to index the i-th molecule.

Embedding 2D graphs. To capture the 2D topological information, we employ a widely-used Graph
Isomorphism Network (GIN) model (Xu et al., 2019) denoted by f2D, which receives as input the graph
adjacency matrix and attributes of atoms and bonds, and produces the embedding vector z2D

i
œ RD:

z2D
i

= f2D(Xi, Ei,Ai). (1)

Embedding 3D graphs. To model additional spatial coordinates associated with atoms, we leverage
SchNet (Schütt et al., 2017) as the backbone, which models message passing as continuous-filter convolutions
and is able to preserve rotational invariance for energy predictions. We denote its encoding function as f3D
which takes atom features and positions as input and produces the 3D embedding z3D

i
œ RD:

z3D
i

= f3D(Xi,Ri). (2)
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Table 1: Results of two case studies with di�erent featurizations: chirality classification and aromatic ring
count regression.

Target 2D 3D SM FP
Chirality (AP, ø) 0.4952 0.4959 0.5505 0.5246
#Rings (MAE, ¿) 0.1949 0.2021 0.3077 0.2590

Embedding molecular fingerprints. Since there is a lack of proper neural encoders for fingerprints,
we propose an attention-based network to model interactions of feature fields in fingerprint vectors, which
considers the discrete and extremely sparse nature of fingerprints. Specifically, we first transform all F

feature fields into a dense embedding matrix Fi œ RF ◊DF via embedding lookup. Then, we use a multihead
self-attention network fFP (Vaswani et al., 2017) to model the interaction among those feature fields, resulting
in an embedding matrix ‚ZFP

i
œ RF ◊DF . Following that, we perform sum pooling and use a linear model fLIN

to obtain the final fingerprint embedding z
FP
i

œ RD:

‚ZFP
i

= fFP(Fi), zFP
i

= fLIN

A
DFÿ

d=1

‚ZFP
i,d

B
. (3)

Embedding SMILES strings. To encode SMILES strings, we use a pretrained RoBERTa (Liu et al.,
2019b) as the backbone model. As SMILES strings do not possess consecutive relationships, the RoBERTa
model is pretrained using the masked language model as the only objective, unlike conventional natural
language models (Devlin et al., 2019). After that, in order to reduce the computational burden, we freeze the
RoBERTa encoder (denoted by fSM) in our model and employ an additional learnable MultiLayer Perceptron
(MLP) on the representation si œ RDS to get the final embedding zSM

i
œ RD:

si = fSM(Si), zSM
i

= fMLP(si). (4)

2.3 Case Studies

Figure 2: (a) Chirality: even if two graphs are
isomorphic, they can have two distinct stereo-
chemistry structures. (b) The aromatic ring is
an important functional group.

Mirror plane

(a) (R)-(−)-2-Butanol, (S)-(+)-2-Butanol (b) Adenine
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In this section, we present two case studies—chirality classifi-
cation and aromatic ring counting—to demonstrate that the
representation ability of each featurization with the correspond-
ing neural encoder is di�erent. For chirality classification, we
randomly select 10K molecules with one chirality center from
GEOM-Drugs (Axelrod & Gómez-Bombarelli, 2022) and test
whether the representations obtained using the four featuriza-
tions can classify tetrahedral chiral centers as R/S. For aromatic
ring counting, we randomly draw another 10K molecules and
test whether these models can recognize the number of aromatic
rings of each molecule. Note that both chirality properties and
ring counts are informative chemical descriptors (Ritchie &
Macdonald, 2009) and can be easily computed with existing
implementations such as RDKit (Landrum et al., 2022).

We report classification and regression performance in Average Precision (AP) and Mean Absolute Error
(MAE) respectively. The results are summarized in Table 1. It is seen from the table that no single
featurization performs the best on all targets and four representations contain collaborative information to
each other, suggesting us to leverage multiple featurizations for molecular pretraining.

3 Molecular Pretraining with Collaborative Featurizations

As with generic self-supervised learning pipelines, the MOCO framework is divided into two stages, pretraining
and fine-tuning. In the first stage, given an unlabeled dataset, we train an encoding function that learns

4



Under review as submission to TMLR

representations with the four featurization techniques. In the subsequent fine-tuning phase, we take the
weights of the encoders from the pretrained model and tune the model on molecules with annotations of
particular properties in a supervised fashion.

We next introduce the MOCO pretraining framework in detail. We first use obtain four “view” representations
based on the aforementioned four featurizations. Then, we integrate these four embeddings to compute a
final representation for each molecule through an attention network. Finally, we pretrain the whole model
using a contrastive objective.

3.1 Representation Aggregation from Multiple Featurizations

Since each featurization technique reflects the molecule from one certain aspect, we take weighted average of
every view embedding to obtain a comprehensive final representation:

zi =
ÿ

mœM
–

mzm

i
, (5)

where M = {2D, 3D, FP, SM} is the set of all views. We leverage an attention network (Bahdanau et al.,
2015) that learns to adjust the contribution of each view. Formally, the attention coe�cient –

m denoting the
contribution of the m-th view is computed by:

–
m = exp(wm)q

mÕœM exp(wmÕ) , w
m = 1

|B|
ÿ

iœB
q€ · tanh

3
W

zm

i

Îzm

i
Î2

+ b

4
, (6)

where q, b œ RD, W œ RD◊D are trainable parameters in the attention network, and B denotes the set
of molecules in the current training batch. Note that we perform ¸2 normalization on all embeddings to
regularize the scale across di�erent views when computing the attention scores.

3.2 Contrastive Objectives for Pretraining

Finally, we train the model using a contrastive objective by aligning the aggregated embedding with all
view-specific embeddings. Particularly, for one molecule i, we designate its four view embeddings zm

i
as the

anchors and the aggregated embeddings zi as the positive instance. Other aggregated embeddings {zj}i ”=j

in the same batch are then chosen as the negative samples. Following prior studies (Chen et al., 2020a; He
et al., 2020; Bachman et al., 2019; Zhu et al., 2020; You et al., 2020a; Zhu et al., 2021a), we leverage the
Information Noice Contrastive Estimation (InfoNCE) objective, which can be formally written as:

L = 1
|B|

ÿ

iœB

C
1

|M|
ÿ

mœM
≠ log exp(◊(zm

i
,zi)/·)q

jœB exp(◊(zm

i
,zj)/·)

D
, (7)

where the critic function ◊ computes the likelihood scores of contrastive pairs and the hyperparameter ·

adjusts the dynamic range of the likelihood scores of contrastive pairs. Specifically, the critic function ◊

performs non-linear transformation via an MLP function g (Chen et al., 2020a) and then measures their
cosine similarity:

◊(x,y) = g(x)€
g(y)

Îg(x)Î2Îg(y)Î2
. (8)

After pretraining the model with the self-supervised objective function L, we fine-tune the model weights of
view encoders along with the attentive representation aggregation module with the supervision of downstream
tasks at a smaller learning rate.

4 Experiments

In this section, we present empirical evaluation of our proposed work. Specifically, the experiments aim to
investigate the following three key questions.
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• RQ1 (Overall performance). Is the proposed MOCO able to improve non-pretraining baselines
and outperform state-of-the-arts on molecular property prediction tasks?

• RQ2 (Interpretation). Are the learned attention weights of molecular featurizations on di�erent
downstream tasks consistent with chemical knowledge?

• RQ3 (Ablation studies). How do the representation aggregation module and the fine-tuning
strategy a�ect the model performance?

In the following, we first summarize experimental setup and proceed to results and analysis.

4.1 Experimental Configurations

Datasets. We closely follow the experimental setup of GraphMVP (Liu et al., 2022a) for fair comparison.
Specifically, we pretrain the model using the GEOM-Drugs dataset (Axelrod & Gómez-Bombarelli, 2022)
containing both 2D and 3D information. For fine-tuning, we choose a variety datasets extracted from
MoleculeNet (Wu et al., 2018), ChEMBL (Gaulton et al., 2011), and CEP (Hachmann et al., 2011), that
cover a wide range of applications, including physiological, biological, and pharmaceutical tasks, and
QM9 (Ramakrishnan et al., 2014) that focuses on quantum property prediction. These downstream tasks
include 8 binary classification and 12 regression tasks. For those datasets for fine-tuning, we follow OGB (Hu
et al., 2020a) that uses sca�olds to split training/test/validation subsets with a split ratio of 80%/10%/10%.
For detailed description, we refer readers of interest to Appendix B.

Baselines. For comprehensive comparison, we select the following two groups of SSL methods as primary
baselines in our experiments.

• Generic graph SSL models: GraphSAGE (Hamilton et al., 2017), InfoGraph (Sun et al., 2020a),
GPT-GNN (Hu et al., 2020c), AttrMask, ContextPred (Hu et al., 2020b), GraphLoG (Xu et al.,
2021a), GraphCL (You et al., 2020a), JOAO (You et al., 2021), and GraphMAE (Hou et al., 2022).

• Molecular SSL models: GROVER-Contextual (GROVER-C), GROVER-Motif (GROVER-M) (Rong
et al., 2020), and GraphMVP1 (Liu et al., 2022a).

In the pretraining stage, all the above SSL approaches are trained on the same dataset based on GEOM-Drugs.
We also report performance with a randomly initialized model as the non-pretraining baseline. To ensure the
performance is comparable with existing work, we report all baseline performance from previously published
results (Liu et al., 2022a; Hou et al., 2022).

Implementation details. In the GEOM-Drugs dataset, since the original full set is too large (containing
317K molecules with over 9M conformations), we randomly select 50K molecules as the pretraining dataset.
For each molecule, we select to use its top-5 conformers of the lowest energy in virtue of their su�cient
geometry information. Since molecules in the fine-tuning datasets do not have 3D information available, we
use ETKDG (Riniker & Landrum, 2015) in RDkit (Landrum et al., 2022) to compute molecular conformations.
For both pretraining and fine-tuning datasets, we use RDkit to generate 1024-bit molecular fingerprints with
radius R = 2, which is roughly equivalent to the ECFP4 scheme (Rogers & Hahn, 2010). We would like to
emphasis that all dataset preprocessing and graph encoder architectures are kept in line with GraphMVP (Liu
et al., 2022a) to ensure fair comparison. Readers of interest may refer to Appendix C for implementation
details regarding software/hardware platforms, model training, and hyperparameter specifications.

Evaluation protocols. For classification tasks, we report the performance in terms of the Area Under the
ROC-Curve (ROC-AUC), where higher values indicate better performance. For quantum property and other
non-quantum regression tasks, we measure the performance in Mean Absolute Error (MAE) and Root Mean

1
In our experiments, we do not include its two variants GraphMVP-G and GraphMVP-C since they are essentially two

ensemble models that combine AttrMask and ContextPred (Hu et al., 2020b) respectively.
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Table 2: Results for eight molecule property prediction tasks in terms of ROC-AUC (%, ø). We highlight the
best- and the second-best performing results in boldface and underlined, respectively.

Pretraining BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE Avg.
— 71.0±0.5 75.9±0.3 64.7±2.3 57.7±3.1 71.5±5.3 77.7±1.0 75.9±0.7 71.5±2.7 70.63
GraphSAGE 64.5±3.1 74.5±0.4 60.8±0.5 56.7±0.1 55.8±6.2 73.3±1.6 75.1±0.8 64.6±4.7 65.64
AttrMask 70.2±0.5 74.2±0.8 62.5±0.4 60.4±0.6 68.6±9.6 73.9±1.3 74.3±1.3 77.2±1.4 70.16
GPT-GNN 64.5±1.1 75.3±0.5 62.2±0.1 57.5±4.2 57.8±3.1 76.1±2.3 75.1±0.2 77.6±0.5 68.27
InfoGraph 69.2±0.8 73.0±0.7 62.0±0.3 59.2±0.2 75.1±5.0 74.0±1.5 74.5±1.8 73.9±2.5 70.10
ContextPred 71.2±0.9 73.3±0.5 62.8±0.3 59.3±1.4 73.7±4.0 72.5±2.2 75.8±1.1 78.6±1.4 70.89
GraphLoG 67.8±1.7 73.0±0.3 62.2±0.4 57.4±2.3 62.0±1.8 73.1±1.7 73.4±0.6 78.8±0.7 68.47
GROVER-C 70.3±1.6 75.2±0.3 62.6±0.3 58.4±0.6 59.9±8.2 72.3±0.9 75.9±0.9 79.2±0.3 69.21
GROVER-M 66.4±3.4 73.2±0.8 62.6±0.5 60.6±1.1 77.8±2.0 73.3±2.0 73.8±1.4 73.4±4.0 70.14
GraphCL 67.5±3.3 75.0±0.3 62.8±0.2 60.1±1.3 78.9±4.2 77.1±1.0 75.0±0.4 68.7±7.8 70.64
JOAO 66.0±0.6 74.4±0.7 62.7±0.6 60.7±1.0 66.3±3.9 77.0±2.2 76.6±0.5 72.9±2.0 69.57
GraphMVP 68.5±0.2 74.5±0.4 62.7±0.1 62.3±1.6 79.0±2.5 75.0±1.4 74.8±1.4 76.8±1.1 71.69
GraphMAE 70.9±0.9 75.0±0.4 64.1±0.1 59.9±0.5 81.5±2.8 76.9±2.6 76.7±0.9 81.4±1.4 73.31
MOCO 71.6±1.0 76.7±0.4 64.9±0.8 61.2±0.6 81.6±3.7 78.5±1.4 78.3±0.4 82.6±0.3 74.41

Squared Error (RMSE) respectively, where lower values are better. We repeat every experiment on three
seeds with sca�old splitting and report the averaged performance with standard deviation, following previous
work (Liu et al., 2022a).

4.2 Main Results on Molecular Property Prediction

The performance of molecular property prediction tasks is summarized in Table 2. It can be found that our
MOCO shows strong empirical performance across all eight low-data downstream datasets, delivering seven
out of eight state-of-the-art results and acquiring a 1.1% absolute improvement on average. The outstanding
results validate the superiority of our proposed model.

We make other observations as follows. Firstly, MOCO obtains more accurate and stabler predictions compared
to the randomly initialized baseline, indicating that our pretraining framework can transfer the knowledge from
large, unannotated datasets to smaller downstream datasets without negative transfer. Secondly, previous
work has already achieved pretty high performance. For example, the current state-of-the-art GraphMVP
only obtains a 0.8% absolute improvement over its best baseline ContextPred in terms of average ROC-AUC.
Our work pushes that boundary without extensive hyperparameter tuning, with an absolute improvement
of up to 3.4% over GraphMVP in terms of average ROC-AUC. Lastly, it is worth mentioning that, the
non-pretraining baseline even achieves better performance than some graph-based pretraining models. On
some challenging datasets (e.g., Tox21, MUV, and ToxCast), it even achieves the second to best performance.
This once more demonstrates the e�ectiveness of leveraging multiple featurization techniques.

4.3 Interpretation and Analysis

In order to analyze the correlation between tasks and featurization techniques, we visualize the attention
weights ↵ learned on di�erent downstream tasks in Figure 3. Note that most of the datasets in Molecu-
leNet (Wu et al., 2018) are ADMET property prediction tasks: chemical Absorption (A), Distribution (D),
Metabolism (M), Excretion (E), and Toxicity (T), and we thus group the eight end tasks according to their
prediction targets in the following analysis.

In general, we can interpret from the visualization that 2D-based features are more significant than 3D-based

features in the studied tasks, which is well aligned with chemical knowledge. We provide detailed analysis as
follows:

7
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• In Tox21, ClinTox, SIDER, and ToxCast, we find that 2D graphs play the most important role.
These four datasets are related to toxicity (or side e�ects). Although it is a very complex biological
issue to explain, such properties can still be partially deduced from certain functional groups patterns
contained in 2D graphs. Actually, medicinal chemists have developed such a database to provide
them with necessary alerts of potential side e�ects in drug design (Baell & Holloway, 2010).

• BBBP, which measures blood-brain barrier permeability, is mostly dominated by the following
properties: liposolubility/water-solubility, molecular weight, and interaction between molecules and
transporter proteins. Similarly, these properties can also be inferred from 2D topology, such as
molecules with too many hydrogen bond acceptors/donors are unlikely to break the blood-brain
barrier due to poor liposolubility (Suckling et al., 1986).

• On BACE and MUV we see 2D graphs and SMILES strings contribute most. These two datasets are
about predicting protein-ligand binding activities, which are theoretically relevant to 3D conformations.
However, it is still an open question that whether the conformation sampling methods can produce
conformations that resemble bioactive conformations, which provide the key information for protein-
ligand binding. Nevertheless, in each of these tasks, the target protein is fixed so that bioactivity
can be partially deduced from 2D structures, which is supported by the success of fragment-based
Quantitive Structure-Activity Relationship (QSAR) models (Manoharan et al., 2010).

• Due to the complicated pathogenetic mechanisms, it is hard to draw an explanation to why attention
weights of fingerprints outweigh the other three features in the HIV task. Given that the HIV dataset
is the largest one (over 40,000 molecules per task), one possible explanation of this phenomenon is
that we use a high-dimensional fingerprint representations (1024 bits).

Concerning the di�erence between three 2D-based features (namely 2D topological graphs, fingerprints, and
SMILES strings), we make the following findings, which we hope could serve as guidelines for future research
on molecular representation learning:

• 2D graph representations can encode local information explicitly by resembling chemical structures.
Besides, graph-based neural networks can capture long-range local chemical environment through
message passing. For example, with molecular graphs, it is more convenient to identify which part of
the molecule serves as a sca�old.

• In principle, SMILES strings contain all 2D information of certain molecules, but with atoms and
bonds represented in ASCII characters, neural networks may have di�culty in distilling semantic
meanings of chemical structures in a numerical way.

• Fingerprint representations are based on local structures and thus such features may be less e�ective in
circumstances where long-range e�ects induced by topologically distant functional groups predominate,
which accounts for relatively small attention weights of fingerprints in Figure 3.

4.4 More Experiments on Molecular Property Regression

BBBP
Tox21

BACE

ClinTox
SIDER

HIV
MUV

ToxCast

2D

3D

FP

SM

.44 .54 .51 .36 .52 .15 .64 .48

.10 .09 .02 .03 .03 .07 .02 .13

.23 .04 .13 .16 .16 .72 .02 .05

.23 .34 .35 .46 .30 .06 .32 .34
.20

.40

.60

Figure 3: Visualizing the learned attention
weights on eight molecular property prediction
datasets.

To demonstrate that the conformations generated by RDKit are
helpful, we further conduct an experiment on quantum property
regression on the QM9 dataset (Ramakrishnan et al., 2014),
where 3D conformations generated by RDKit are used for the
fine-tuning datasets. This task is known to be closely related to
3D structures. Table 3 presents the performance comparison of
MEMO with two non-pretraining (supervised) baselines SchNet
and MOCO (denoted by SchNet-NP and MOCO-NP) and two
state-of-the-art pretraining baselines GraphMVP (Liu et al.,
2022a) and 3D Infomax (Stärk et al., 2021).

It is seen that our MOCO model achieves the best performance
on all datasets. GraphMVP that consider only 2D structures

8
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Table 3: Results for eight molecule quantum property regression tasks in terms of Mean Absolute Error
(MAE, ¿). The highest performance is highlighted in bold.

Target µ – ‘HOMO ‘LUMO ‘gap U0 U
+
R

2,

Unit D Bohr3 meV meV meV meV meV Bohr3

SchNet-NP 0.4604 0.3251 95.9740 78.5870 136.4720 98.1240 100.1650 24.3277
MOCO-NP 0.3767 0.2439 73.0625 69.8780 102.2332 77.4708 92.8562 17.5842
GraphMVP 0.3726 0.4390 75.3750 72.3820 104.8370 278.8900 325.8021 22.6433
3D Infomax 0.3644 0.4190 72.0558 67.6203 99.4032 207.2148 219.5415 20.3934

MOCO 0.3618 0.2236 71.5120 58.5890 97.7440 64.3550 66.3958 15.5571

during fine-tuning even result in negative transfer on some
datasets. Our MOCO, on the contrary, achieves better performance than the supervised baseline, underscoring
the value of leveraging 3D structures (as well as other sources of 2D information) during fine-tuning.

We also perform experiments on non-quantum property regression tasks. Our proposed MOCO also obtains
promising improvements compared to the current state-of-the-art baselines. Please refer to Appendix D.1 for
performance comparison and analysis.

4.5 Ablation Studies

Finally, we conduct ablation studies on the representation aggregation module and the fine-tuning strategy.
We consider the following model variants for further inspection. Except the modifications in specific modules,
other implementations remain the same as previously described.

• MOCO–Max removes the attention network in the representation aggregation module in Equation (5)
and simply uses max pooling to combine view embeddings.

• MOCO–Mean modifies representation aggregation by taking average over view embeddings.

• MOCO–Freeze does not fine-tune the representation aggregation module but instead uses the frozen
weights of the pretrained model.

We report the performance of model variants in Figure 4. It is seen that all three variants achieve downgraded
performance, which empirically rationalizes the design choice of our molecular pretraining framework with
collaborative featurizations. Specifically, the performance of MOCO–Max and MOCO–Mean without attention
aggregation mechanisms of multiple featurizations is inferior to that of MOCO, demonstrating the necessity
of adaptively combining information from multiple featurizations. In addition, MOCO–Freeze occasionally
obtains better performance than the two other variants, which indicates that our proposed attention network is
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Figure 4: Ablation studies on representation aggregation and the fine-tuning strategy.
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able to select information from di�erent views. It does not, however, fine-tune the contribution of featurizations
with downstream datasets, where the optimal combination might di�er, resulting in performance deterioration.

Moreover, we conduct ablation studies on models that include only three view representations, where the
results can be found in Appendix D.2. Results demonstrate the necessity of comprehensively leveraging four
views in the proposed MOCO model.

5 Related Work

Traditional methods (Carhart et al., 1985; Nilakantan et al., 1987; Rogers & Hahn, 2010) represent molecular
structures with fingerprints. Some prior studies (Svetnik et al., 2004; Meyer et al., 2019; Wu et al., 2018)
employ tree-based machine leaning models such as random forests (Breiman, 2001) and XGBoost (Chen
& Guestrin, 2016) on fingerprints to predict the properties of molecules. With the development of deep
learning, neural approaches have been dominating the field given their strong representation ability. One
line of work (Wang et al., 2019; Chithrananda et al., 2020) leverages language modeling techniques such as
BERT (Devlin et al., 2019) to learn molecular representations based on SMILES strings (Weininger, 1988).
However, some argue that sequence-based representations cannot fully capture substructure information and
propose to leverage Graph Neural Networks (GNNs), which model molecules as graphs with atoms as nodes
and bonds as edges (Gilmer et al., 2017; Liu et al., 2019a; Ying et al., 2021). Despite the prosperous progress,
they only model 2D topological structures of molecules, without considering the 3D coordinates of atoms that
are known to determine certain chemical and physical functionalities of molecules. To address this deficiency,
recent work further explicitly considers such 3D geometry and designs equivariant networks to obtain the
representations (Schütt et al., 2017; Klicpera et al., 2020; Satorras et al., 2021; Fuchs et al., 2020; Schütt
et al., 2021; Du et al., 2021; Liu et al., 2021; Gasteiger et al., 2021; Batzner et al., 2021; Brandstetter et al.,
2022; Xu et al., 2021b).

Even though molecular representation learning techniques have been extensively investigated, there are
very few labeled datasets available for studying the molecular properties of interest (e.g., drug-likeness
or quantum properties). On the other hand, there are abundant unannotated molecules available, which
motivates researchers to study pretraining techniques that learn the model weights in a self-supervised manner
and transfer the knowledge to downstream datasets with limited annotations via fine-tuning. A series of
pretraining frameworks on 2D molecular graph representations have been developed so far (Rong et al., 2020;
Hu et al., 2020b; Zhang et al., 2021; Wang et al., 2022; Li et al., 2020). Recent work GEM (Fang et al.,
2022) studies large-scale pretraining for 3D geometry representations. Additionally, researchers also study
to supplement 2D-graph-based pretraining with 3D conformation information (Yang et al., 2021; Liu et al.,
2022a; Stärk et al., 2021).

A succinct comparison of our work with other representative methods is provided in Table 4. Compared to
the above studies, our proposed MOCO is the only model that can adaptively leverage multiple featurizations
for both pretraining and fine-tuning stages.

6 Conclusions and Discussions

This paper examines di�erent featurizations for molecular data and highlights the importance of incorporating
multiple featurizations during both pretraining and fine-tuning. Then, we develop a novel pretraining
framework MOCO with collaborative featurizations for molecular data, which is able to adaptively distill
information from each featurization and allows interpretability from the learned model weights. Extensive
experiments on a wide range of property prediction benchmarks show that MOCO consistently outperforms
existing baselines without negative transfer.

The study of featurization techniques for molecular machine learning in general remains widely open. We
would like to acknowledge that the relative utility of various featurizations for di�erent molecular predictive
tasks could be usefully explored in further work. Moreover, more future research should be undertaken to
specifically analyze the relationship between several featurizations, the representation ability of corresponding
neural architectures, as well as the task-featurization correlation.
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Table 4: Comparing MOCO with representative self-supervised methods on molecular pretraining.

Pretraining Fine-tuning
Method

2D 3D Fingerprint SMILES 2D 3D Fingerprint SMILES
SMILES-BERT (Wang et al., 2019) 3 3
ChemBERTa (Chithrananda et al., 2020) 3 3
AttrMask, ContexPred (Hu et al., 2020b) 3 3
GraphCL (You et al., 2020a) 3 3
GraphLoG (Xu et al., 2021a) 3 3
GROVER (Rong et al., 2020) 3 3
GEM (Fang et al., 2022) 3 3
3D Infomax (Stärk et al., 2021) 3 3 3
GraphMVP (Liu et al., 2022a) 3 3 3
MOCO (Ours) 3 3 3 3 3 3 3 3
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