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ABSTRACT

Self-supervised learning converts raw perceptual data such as images to a compact
space where simple Euclidean distances measure meaningful variations in data. In
this paper, we extend this formulation by adding additional geometric structure to
the embedding space by enforcing transformations of input space to correspond
to simple (i.e., linear) transformations of embedding space. Specifically, in the
contrastive learning setting, we introduce an equivariance objective and theoret-
ically prove that its minima forces augmentations on input space to correspond
to rotations on the spherical embedding space. We show that merely combining
our equivariant loss with a non-collapse term results in non-trivial representa-
tions, without requiring invariance to data augmentations. Optimal performance is
achieved by also encouraging approximate invariance, where input augmentations
correspond to small rotations. Our method, CARE: Contrastive Augmentation-
induced Rotational Equivariance, leads to improved performance on downstream
tasks, and ensures sensitivity in embedding space to important variations in data
(e.g., color) that standard contrastive methods do not achieve. Code is available at
https://github.com/Sharut/CARE.

1 INTRODUCTION

It is only partially understood what structure neural network representation spaces should possess in
order to enable intelligent behavior to emerge efficiently (Ma et al., 2022). One known key ingredient
is to learn low-dimensional spaces in which simple Euclidean distances effectively measure the
similarity between data, as demonstrated by powerful self-supervised methods for web-scale learning
(Chen et al., 2020; Schneider et al., 2021; Radford et al., 2021). However, many use cases require the
use of richer structural relationships that similarities between data cannot capture. One example that
has enjoyed considerable success is the encoding of relations between objects (X is a parent of Y, A
is a treatment for B) as simple transformations of embeddings (e.g., translations), which has driven
learning with knowledge graphs (Bordes et al., 2013; Sun et al., 2019; Yasunaga et al., 2022). But
similar capabilities have been notably absent from existing self-supervised learning recipes.

Recent contrastive self-supervised learning approaches have explored ways to close this gap by
ensuring representation spaces are sensitive to certain transformations of input data, such as variations
in color (Dangovski et al., 2022; Devillers & Lefort, 2023; Garrido et al., 2023; Bhardwaj et al.,
2023) that earlier contrastive methods lacked. Encouraging sensitivity is especially important in
contrastive learning, as it is known to learn shortcuts that forget features that are not needed to
solve the pretraining task (Robinson et al., 2021). This line of work formalizes sensitivity in
terms of equivariance: transformations of input data correspond to predictable transformations
in representation space. Equivariance requires specifying a family of transformations a ∈ A in
the input space, a corresponding transformation Ta in representation space, and training f so that
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Figure 1: CARE is an equivariant contrastive learning approach that trains augmentations (cropping,
blurring, etc.) of input data to correspond to orthogonal transformations of embedding space.

f(a(x)) ≈ Taf(x). Prior works have considered a learnable feed-forward network for Ta, (Devillers
& Lefort, 2023; Garrido et al., 2023). However, we find that this approach suffers from geometric
pathologies, such as inconsistency under compositions: Ta2◦a1f(x) ̸= Ta2Ta1f(x). Furthermore,
encoding the relation between the embeddings of x and a(x) in a non-linear way conflicts with the
aim of learning a representation space where linear transformations relate different instances.

To address these concerns we propose CARE, an equivariant contrastive learning framework that
learns to translate augmentations in the input space (such as cropping, blurring, and jittering) into
simple linear transformations in feature space. Here, we use the sphere as our feature space (the
standard contrastive learning space) and hence consider the isometries of the sphere: rotations
and reflections, i.e., orthogonal transformations. As orthogonal transformations are less expressive
(by design), our learning problem is more constrained, meaning that prior approaches for learning
non-linear transforms cannot be used (see Section 3). Instead, CARE trains f to preserve angles,
i.e., f(a(x))⊤f(a(x′)) ≈ f(x)⊤f(x′), a property that must hold if f is orthogonally equivariant.
We show that achieving low error on this seemingly weaker property also implies approximate
equivariance and enjoys consistency under compositions. Critically, we can easily integrate CARE
into contrastive learning workflows since both operate by comparing pairs of data.

The key contributions of this work include:

• Introducing CARE, a novel equivariant contrastive learning framework that trains transfor-
mations (cropping, jittering, blurring, etc.) in input space to approximately correspond to
local orthogonal transformations in representation space.

• Theoretically proving and empirically demonstrating that CARE places an orthogonally
equivariant structure on the embedding space.

• Showing that CARE increases sensitivity to features (e.g., color) compared to invariance-
based contrastive methods, and also improves performance on image recognition tasks.

2 RETHINKING HOW AUGMENTATIONS ARE USED IN SELF-SUPERVISED
LEARNING

Given access only to samples from a marginal distribution p(x) on some input space X such as images,
the goal of representation learning is commonly to train a feature extracting model f : X → Sd−1

mapping to the unit sphere Sd−1 = {z ∈ Rd : ∥z∥2 = 1}. A common strategy to automatically
generate supervision from the data is to additionally introduce a space of augmentations A, containing
maps a : X → X which slightly perturb inputs x̄ (blurring, cropping, jittering, etc.). Siamese self-
supervised methods learn representation spaces that reflect the relationship between the embeddings
of x = a(x̄) and x+ = a+(x̄), commonly by training f to be invariant or equivariant to the
augmentations in the input space (Chen & He, 2021).

Invariance to augmentation. One approach is to train f to embed x and x+ nearby—i.e., so that
f(x) = f(x+) is invariant to augmentations. The InfoNCE loss (van den Oord et al., 2018; Gutmann
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& Hyvärinen, 2010) used in contrastive learning achieves precisely this:

LInfoNCE(f) = Ex,x+,{x−
i }N

i=1

[
− log

ef(x)
⊤f(x+)/τ

ef(x)⊤f(x+)/τ +
∑N

i=1 e
f(x)⊤f(x−

i )/τ

]
, (1)

where τ > 0 is a temperature hyperparameter, and x−
i ∼ p are negative samples from the marginal

distribution on X . As noted by Wang & Isola (2020), the contrastive training mechanism balances
invariance to augmentations with a competing objective: uniformly distributing embeddings over the
sphere, which rules out trivial solutions such as constant functions.

Whilst contrastive learning has produced considerable advances in large-scale learning (Radford et al.,
2021), several lines of work have begun to probe the fundamental role of invariance in contrastive
learning. Two key conclusions of recent investigations include: 1) invariance limits the expressive
power of features learned by f , as it removes information about features or transformations that
may be relevant in fine-grained tasks (Lee et al., 2021; Xie et al., 2022), and 2) contrastive learning
actually benefits from not having exact invariance. For instance, a critical role of the projection head
is to expand the feature space so that f is not fully invariant (Jing et al., 2022), suggesting that it is
preferable for the embeddings of x and x+ to be close, but not identical.

Equivariance to augmentation. To address the limitations of invariance, recent work has addition-
ally proposed to control equivariance (i.e., sensitivity) of f to data transformations (Dangovski et al.,
2022; Devillers & Lefort, 2023; Garrido et al., 2023). Prior works can broadly be viewed as training
a set of features f (sometimes alongside the usual invariant features) so that f(a(x)) ≈ Taf(x)
for samples x ∼ p from the data distribution where Ta is some transformation of the embedding
space. A common choice is to take Taf(x) = MLP(f(x), a), a learnable feed-forward network,
and optimize a loss ∥MLP(f(x), a)− f(a(x))∥2. Whilst a learnable MLP ensures that information
about a is encoded into the embedding of a(x), it permits complex non-linear relations between
embeddings and hence does not necessarily encode relations in a linearly separable way. Furthermore,
it does not enjoy the beneficial properties of equivariance in the formal group-theoretic sense, such as
consistency under compositions in general: Ta2◦a1f(x) ̸= Ta2Ta1f(x).

Instead, this work introduces CARE, an equivariant contrastive learning approach respecting two key
design principles:
Principle 1. The map Ta satisfying f(a(x)) = Taf(x) should be linear.
Principle 2. Equivariance should be learned from pairs of data, as in invariant contrastive learning.

The first principle asks that f converts complex perturbations a of input data into much simpler
(i.e., linear) transformations in embedding space. Specifically, we constrain the complexity of Ta

by considering isometries of the sphere, O(d) = {Q ∈ Rd×d : QQT = QTQ = I}, containing all
rotations and reflections. Throughout this paper we define f(a(x)) = Taf(x) for Ta ∈ O(d) to be
orthogonal equivariance. This approach draws heavily from ideas in linear representation theory
(Curtis & Reiner, 1966; Serre et al., 1977), which studies how to convert abstract group structures
into matrix spaces equipped with standard matrix multiplication as the group operation.

The second principle stipulates how we want to learn orthogonal equivariance. Naively following
previous non-linear approaches is challenging as our learning problem is more constrained, requiring
learning a mapping a 7→ Ra to orthogonal matrices. Furthermore, for a single (a, x) pair, the
orthogonal matrix Ra such that f(a(x)) = Raf(x) is not unique, making it hard to directly learn Ra.
We sidestep these challenges by, instead of explicitly learning Ra, training f so that an augmentation
a applied to two different inputs x, x+ produces the same change in embedding space.

Our method, CARE, encodes data augmentations (cropping, blurring, jittering, etc.) as O(d) transfor-
mations of embeddings using an equivariance-promoting objective function. CARE can be viewed as
an instance of symmetry regularization, a term introduced by Shakerinava et al. (2022).

3 CARE: CONTRASTIVE AUGMENTATION-INDUCED ROTATIONAL
EQUIVARIANCE

This section introduces a simple and practical approach for training a model f : X → Sd−1 so that
f is orthogonally equivariant: i.e., a data augmentation a ∼ A (cropping, blurring, jittering, etc.)
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applied to any input x ∈ X causes the embedding f(x) to be transformed by the same Ra ∈ O(d)
for all x ∈ X : f(a(x)) = Raf(x).

To achieve this, we consider the following loss:

Lequi(f) = Ea∼AEx,x′∼X
[
f(a(x′))⊤f(a(x))− f(x)⊤f(x′)

]2
(2)

Lequi(f) = Ea∼AEx,x′∼X
[
f(a(x′))⊤f(a(x))− f(a′(x))⊤f(a′(x′))

]2
(3)

Since inner products describe angles on the sphere, this objective enforces the angles between the
embeddings of independent samples x and x′ to be the same as those between their transformed
counterparts a(x) and a(x′). This is necessarily true if f is orthogonally equivariant or, more
generally, Ra ∈ O(d) exists. But the converse—that Lequi = 0 implies orthogonal equivariance—
is non-obvious. In Section 3.1 we theoretically analyze Lequi, demonstrating that it does indeed
enforce mapping input augmentations to orthogonal transformations of embeddings. In practice,
we replace the f(x)⊤f(x′) term with f(a′(x))⊤f(a′(x′)) for a freshly sampled a′ ∼ A, noting
that minimizing this variant also minimizes Lequi, if we assume a′ can be the identity function
with non-zero probability. A trivial but undesirable solution that minimizes Lequi is to collapse
the embeddings of all points to be the same (see Figure 10). One natural approach to avoiding
trivial solutions is to combine the equivariance loss with a non-collapse term such as the uniformity
Lunif(f) = logEx,x′∼X exp

(
f(x)⊤f(x′)

)
(Wang & Isola, 2020) whose optima f distribute points

uniformly over the sphere:
L(f) = Lequi(f) + Lunif(f). (4)

This is directly comparable to the InfoNCE loss, which can similarly be decomposed into two terms:

LInfoNCE(f) = Linv(f) + Lunif(f) (5)

where Linv(f) = Ea,a′∼A∥f(a(x)) − f(a′(x))∥ is minimized when f is invariant to A—i.e.,
f(a(x)) = f(x). Figure 10 in the Appendix shows that training using Lequi + Lunif yields non-
trivial representations. However, the performance is below that of invariance-based contrastive
learning approaches. We hypothesize that this is because data augmentations—which make small
perceptual changes to data—should correspond to small perturbations of embeddings, which Lequi
does not enforce.

To rule out this possibility, we introduce CARE: Contrastive Augmentation-induced Rotational
Equivariance. CARE additionally enforces the orthogonal transformations in embedding space to be
localized by reintroducing an invariance loss term Linv to encourage f to be approximately invariant.
Doing so breaks the indifference of Lequi between large and small rotations, biasing towards small.
Specifically, we propose the following objective that combines our equivariant loss with InfoNCE:

LCARE(f) = Linv(f) + Lunif(f) + λLequi(f) (6)

where λ weights the equivariant loss. We note that many variations of this approach are possible.
For instance, the equivariant loss and InfoNCE loss could use different augmentations, resulting in
invariance to specific transformations while maintaining rotational equivariance to others, similar to
Dangovski et al. (2022). The InfoNCE loss can also be replaced by other Siamese self-supervised
losses. We leave further exploration of these possibilities to future work. In all, CARE consists of
three components: (i) a term to induce orthogonal equivariance; (ii) a non-collapse term; and (iii) an
invariance term to enforce localized transformations on the embedding space.

3.1 THEORETICAL PROPERTIES OF ORTHOGONALLY EQUIVARIANT LOSS

In this section, we establish that matching angles via Lequi leads to a seemingly stronger property.
Specifically, Lequi = 0 implies the existence of an orthogonal matrix Ra ∈ O(d) for any augmentation
a, such that f(a(x)) = Raf(x) holds for all x. The converse also holds and is easy to see. Indeed,
suppose such an Ra ∈ O(d) exists. Then, f(a(x′))⊤f(a(x)) = f(x′)⊤R⊤

a Raf(x) = f(x)⊤f(x′),
which implies Lequi(f) = 0. We formulate the first direction as a proposition.

Proposition 1. Suppose Lequi(f) = 0. Then for almost every a ∈ A, there is an orthogonal matrix
Ra ∈ O(d) such that f(a(x)) = Raf(x) for almost all x ∈ X .
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Figure 1 illustrates this result. Crucially Ra is independent of x, without which the Proposition 1
would be trivial. That is, a single orthogonal transformation Ra captures the impact of applying a
across the entire input space X . Consequently, exact minimization of Lequi loss converts “unstruc-
tured” augmentations in input space to have a structured geometric interpretation as rotations in the
embedding space. In Appendix B.1, we extend this result to the case where the loss is low but not
exactly minimized, in which case we have a guarantee of approximate equivariance.

This result can be expressed as the existence of a mapping ρ : A → O(d) that encodes the space of
augmentations within O(d). This raises a natural question: how much of the structure of A does
this encoding preserve? For instance, assuming A is a semi-group (i.e., closed under compositions
a′ ◦a ∈ A), does this transformation respect compositions: f(a′(a(x)) = Ra′Raf(x)? This property
does not hold for non-linear actions (Devillers & Lefort, 2023), but does for orthogonal equivariance:
Corollary 1. If Lequi(f) = 0 and {f(x) : x ∈ X} spans Rd, then ρ : A → O(d) given by ρ(a) = Ra

satisfies ρ(a′ ◦ a) = ρ(a′)ρ(a) for almost all a, a′. That is, ρ defines a group action on Sd−1 up to a
set of measure zero.

Formally, this result states that if A is a semi-group, then ρ : A → O(d) de-
fines a group homomorphism (or linear representation of A in the sense of rep-
resentation theory (Curtis & Reiner, 1966; Serre et al., 1977), a branch of math-
ematics that studies the encoding of abstract groups as spaces of linear maps).

Ra f (x+
1 )

f (x)

f

f

a

f

f (x+
2 ) Ra′ 

Embedding space

a′ 

x

x+
1

x+
2

Figure 2: When Lequi = 0, compositions
of augmentations correspond to compo-
sitions of rotations.

To exactly attain Lequi(f) = 0, the space of augmenta-
tions A needs to have a certain structure, but this becomes
less restrictive if d is large. Assuming for simplicity that
A is a group, the first isomorphism theorem for groups
states that ρ(A) ≃ A/ ker(ρ). For instance, if ker(ρ) is
trivial, the equivariant loss can be exactly zero when the
group of augmentations is a subgroup of the orthogonal
group. Examples include orthogonal transformations or
rotations that fix a subspace—i.e., O(d′) or SO(d′) with
d′ ≤ d—or subgroups of the permutation group on d
elements. Furthermore, the Peter-Weyl theorem implies
that any compact Lie group can be realized as a closed
subgroup of O(d) for some d (Peter & Weyl, 1927). As
with Proposition 1, we also extend this result to the case
of low loss that is not exactly zero, where we show that
compositionality is approximately preserved.

3.2 EXTENSIONS TO OTHER GROUPS

Proposition 1 states that perfectly optimizing Lequi = 0 produces an f that is equivariant, encoding
augmentations in the input space as orthogonal transformation in the embedding space. Notably,
since the computation of Lequi solely relies on pairwise data instances x, x′ ∈ X , it naturally aligns
with the contrastive learning paradigm that already works with pairs of data.

In fact, it is possible to extend the idea of CARE and its benefits to some other group actions.
Mathematically, invariants of the action of O(d) on n points—seen in (Rd)n as Q (x1, . . . xn) =
(Qx1, . . . , Q xn)—can be expressed as a function of pairs of objects (x⊤

i xj)i,j=1...n. This is because
the orthogonal group is defined as the stabilizer of a bilinear form. In other words, letting B(x, x′) =
x⊤x′ denote the standard inner product, we have

O(d) = {A ∈ GL(d) : B(Ax,Ax′) = B(x, x′) for all x, x′ ∈ Rd}. (7)
This argument applies more generally to other groups that are defined as stabilizers of bilinear forms.
For instance, the Lorentz group, which has applications in the context of special relativity, can be
defined as the stabilizer of the Minkowski inner product. Additionally, the symplectic group, which
is used to characterize Hamiltonian dynamical systems, can be defined in a similar manner.

Such extensions to other groups allow to use CARE for different embedding space geometries. For
instance, several recent works have used a hyperbolic space as an embedding space for self-supervised
learners (Ge et al., 2022; Yue et al., 2023; Desai et al., 2023). If we constrain our embedding to a
hyperboloid model of hyperbolic space, then linear isometries of this space are precisely the Lorentz
group. Further discussions on extensions to other groups are given in Appendix D.
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Figure 3: Trajectories through embedding space of three randomly sampled protein point clouds,
rotated from 0 to 2π in three orthogonal axes. Rows correspond to different training methods.

4 MEASURING ORTHOGONAL ACTION ON EMBEDDING SPACE

To probe the geometric properties of CARE, we consider two efficiently computable metrics for
empirically measuring the orthogonal equivariance in the embedding space.

Wahba’s problem. A natural way to assess the equivariance of f is to sample a batch of data {xi}ni=1
and an augmentation a and test to what extent applying a transforms the embeddings of each xi the
same way. To measure this we compute a single rotation that approximates the map from f(xi) to
f(a(xi)) for all i. Let F and Fa ∈ Rd×n have ith columns f(xi) and f(a(xi)) respectively, then
we compute the error Wf = minR∈SO(d) ∥RF − Fa∥Fro, where ∥ · ∥Fro denotes the Frobenius norm.
If Wf = 0, then f(a(xi)) = Raf(xi) for all i. This is a well-studied problem known as Wahba’s
problem. The analytic solution to Wahba’s problem is computed easily. It is nearly R∗ = UV ⊤ where
UΣV ⊤ is a singular value decomposition of FaF

⊤. However, a slight modification is required as
this R∗ could have determinant ±1, and therefore may not belong to SO(d). The only modification
needed is to re-scale so that the determinant is one: R∗ = U · diag

{
1(n−1), det(U)det(V )

}
· V ⊤

where 1n denotes the vector in Rn of all ones.

Relative rotational equivariance. Optimizing for the CARE objective may potentially result in
learning invariance since for input image x, f(a(x)) = f(x) for a ∈ A is a trivial optimal solution
of argminf Lequi(f). To check that our model is learning non-trivial equivariance, we consider a
metric similar to one proposed by Bhardwaj et al. (2023)

γf = Ea∼AEx,x′∼X

{
(∥f(a(x′))− f(a(x))∥2 − ∥f(x′)− f(x)∥2)2

(∥f(a(x′))− f(x′)∥2 + ∥f(a(x))− f(x)∥2)2

}
. (8)

Here, the denominator measures the invariance of the representation, with smaller values corre-
sponding to greater invariance to the augmentations. The numerator, on the other hand, measures
equivariance and can be simplified to [f(a(x′))⊤f(a(x)) − f(x)⊤f(x′)

]2
(i.e., Lequi(f)) up to a

constant, because f maps to the unit sphere. The ratio γf of these two terms measures the non-trivial
equivariance, with a lower value implying greater non-trivial orthogonal equivariance.

5 EXPERIMENTS

We examine the representations learned by CARE, as well as those obtained from purely invariance-
based contrastive approaches. We describe our experiment configurations in Appendix F.

6



Published as a conference paper at ICLR 2024

5.1 LEARNING REPRESENTATIONS OF PROTEIN POINT CLOUDS

We consider the problem of learning representations of proteins from the Protein Data Bank (Burley
et al., 2021). Each protein is described by a point cloud X ∈ Rn×3. To respect the permutation
invariance of each point cloud, we take f to be a DeepSet (Zaheer et al., 2017), producing embeddings
in R16, and train CARE using random rotations of 3D space as the augmentations—i.e., X and XR
are a positive pair for R ∈ SO(3). We evaluate our models on the task of predicting the first
principal component of the point cloud, an important structural property of the input. This task is
rotation equivariant, so we expect that CARE should outperform the invariance-based methods such
as SimCLR, as is verified in Figure 4.

CARE Uniformity SimCLR Invariance EquiMod
0.16

0.18

0.20

0.22

0.24

0.26

Te
st

 M
SE

Figure 4: CARE achieves the
lowest error on the task of pre-
dicting the first principal com-
ponent of a protein

We test equivariance to rotations by randomly sampling a new pro-
tein X , and a sequence of rotations {Ri}100i=1 along each of the three
orthogonal axes, evenly spaced, tracing a full 360◦ rotation of the
point cloud. We then compute zi = f(XRi) for each i, and project
them into a 2D space. Each row of Figure 3 shows the trajectory of 3
different proteins, and three rotation trajectories, for a given training
method. We find that CARE exhibits a much more regular geome-
try than models trained with SimCLR, Lunif, or Linv. Learning the
SO(3) manifold is challenging, and previous works assume access
to the corresponding group action (Quessard et al., 2020; Park et al.,
2021) However, CARE learns it by merely using x and a(x), without
relying on the group action a.

5.2 QUANTITATIVE MEASURES FOR ORTHOGONAL
EQUIVARIANCE

Wahba’s Problem We compare ResNet-18 models pretrained with CARE and with SimCLR on
CIFAR10. For each model, we compute the optimal value Wf of Wahba’s problem, as introduced in
Section 4, over repeated trials. In each trial, we sample a single augmentation a ∼ A at random and
compute Wf for f = fCARE and f = fSimCLR over the test data. We repeat this process 20 times and
plot the results in Figure 5, where the colors of dots indicate the sampled augmentation. Results show
that CARE has a lower average error and worst-case error. Further, comparing point-wise for each
augmentation, CARE achieves lower error in nearly all cases.

CARE (ours) SimCLR EquiMOD
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Figure 5: Measuring equivari-
ance using Wahba’s problem.
Lower score is more equivariant.

Figure 6: Histogram of co-
sine angles between data pairs.
CARE has much lower variance.
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Figure 7: Linear readout error as
the loss weightings vary.

Analyzing structure on a 2D manifold. To further study Lequi, we train an encoder f that projects
the input onto a unit circle S1, where orthogonal transformations are defined by angles. We measure
the cosine of the angle between pairs f(x) and f(a(x)) for all x in the test set, for 20 distinct sampled
augmentations a ∼ A. As shown in Figure 6, Both CARE and SimCLR exhibit high density close to
1, demonstrating approximate invariance. However, unlike CARE, SimCLR exhibits non-zero density
in the region −0.5 to −1.0, indicating that the application of augmentations significantly displaces
the embeddings. Further, CARE consistently exhibits lower variance of the cosine between f(x) and
f(a(x)) for a fixed augmentation, showing that it transforms all embeddings in the same way.

Ablation of loss terms. The CARE loss LCARE is a weighted sum of the InfoNCE loss LInfoNCE and the
orthogonal equivariance loss Lequi. Figure 7 evaluates the performance of ResNet-50 models trained
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Figure 8: Relative rotational equivariance (Lower is more equivariant). Both CARE and invariance-
based contrastive methods (e.g., SimCLR) produce approximately invariant embeddings. However,
CARE learns a considerably more rotationally structured embedding space.

on CIFAR10 using LInfoNCE+λLequi for varying λ, finding optimal λ in the range 0.01 ≤ λ ≤ 0.1. We
additionally split the InfoNCE loss into constituent parts Linv, Lunif, and test different combinations
of the three losses, including Lequi. We find that using all three jointly is optimal. See Figure 10 in
Appendix G.1 for detailed results.

Relative rotational equivariance. We measure the relative rotational equivariance for both CARE and
SimCLR over the course of pretraining by following the approach outlined in Section 4. Specifically,
we compare ResNet-18 models trained using CARE and SimCLR on CIFAR10. From Figure 8, we
observe that both the models produce embeddings with comparable non-zero invariance loss Linv,
indicating approximate invariance. However, they differ in their sensitivity to augmentations, with
CARE attaining a much lower relative equivariance error γf . Importantly, this shows that CARE is not
achieving lower equivariance error Lequi by collapsing to invariance, a trivial form of equivariance.

5.3 QUALITATIVE ASSESSMENT OF EQUIVARIANCE

A key property promised by equivariant contrastive models is sensitivity to specific augmentations.
To qualitatively evaluate the sensitivity, or equivariance, of our models, we consider an image retrieval
task on the Flowers-102 dataset (Nilsback & Zisserman, 2008), as considered by Bhardwaj et al.
(2023). Specifically, when presented with an input image x, we extract the top 5 nearest neighbors
based on the Euclidean distance of f(x) and f(a(x)), where a ∈ A. Figure 9 shows that retrieved
results for the CARE model exhibit greater variability in response to a change in query color compared
to the SimCLR model, which remains largely invariant. Additionally, Figure 21 compares CARE with
EquiMOD (Devillers & Lefort, 2023), an equivariant baseline.

CARE (ours) SimCLRInput Query

Figure 9: CARE exhibits sensitivity to features that invariance-based contrastive methods (e.g.,
SimCLR) do not. For each query input, we retrieve top 5 nearest neighbors in the embedding space.
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5.4 LINEAR PROBE FOR IMAGE CLASSIFICATION

Next, we examine the quality of features learned by CARE for solving image classification tasks. We
train ResNet-50 models on four datasets: CIFAR10, CIFAR100, STL10, and ImageNet100 using
SimCLR and MoCo-v2 (see Appendix F for details). We refer to the model trained using CARE with
SimCLR or MoCo-v2 backbone as CARESimCLR and CAREMoCo-v2 respectively. For each method and
dataset, we evaluate the quality of the learned features by training a linear classifier (i.e., probe (Alain
& Bengio, 2017)) on the frozen features of f and report the performance on the test set in Table 1.
We find consistent improvements in performance using CARE, showing the benefits of our structured
embedding approach for image recognition tasks.

Table 1: Top-1 and Top-5 linear probe accuracy (%) on CIFAR10, CIFAR100, STL10 and Ima-
geNet100 datasets. We report the mean performance from 3 different random initializations for the
linear classifer. * denote numbers from Devillers & Lefort (2023), and ** from Zhuo et al. (2023)

Method CIFAR10 CIFAR100 STL10 ImageNet100
Invariant prediction approaches
SimCLR 90.98±0.10 66.77±0.34 84.19±0.13 72.79±0.08

MoCo-v2 91.95±0.05 69.88±0.23 - 73.50±0.19

BYOL 90.44* 67.41** - -
Barlow Twins 84.54±0.02 55.54±0.05 90.62±0.02

Equivariant prediction approaches
EquiModSimCLR 91.28 67.59 83.67 -
EquiModBYOL 91.57* - - -
CARESimCLR 91.92±0.12 (↑ 0.94) 68.05±0.28 (↑ 1.28) 84.64±0.29 (↑ 0.45) 76.69±0.08 (↑ 3.90)
CAREMoCo-v2 92.19±0.01 (↑ 0.24) 70.56±0.15 (↑ 0.68) 88.97±0.48 74.30±0.07 (↑ 0.80)
CAREBarlow Twins 85.65±0.05 (↑ 1.11) 56.76±0.02 (↑ 1.22) 90.92±0.01 (↑ 0.30) -

6 DISCUSSION

Converting transformations that are complex in input space into simple transformations in embedding
space has many potential uses. For instance, modifying data (e.g., in order to reason about counterfac-
tuals) can be viewed as transforming one embedding to another. If the sought after transformation was
simple and predictable, it may be easier to find. Similarly, generalizing out-of-distribution is easier
when extrapolating linearly (Xu et al., 2021), suggesting that linear transformations of embedding
space may facilitate more reliable generalization. This work considers several design principles that
may be broadly relevant: 1) learned equivariance preserves the expressivity of backbone architectures,
and in some cases may be easier for model design than hard-coded equivariance, 2) linear group
actions are desirable, but require carefully designed objectives (similar in spirit to the principle of
parsimony (Ma et al., 2022), also advocated for by Shakerinava et al. (2022)), and 3) orthogonal (and
related) symmetries are a promising structure for Siamese network training as they can be efficiently
learned using pair-wise data comparisons.
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A RELATED WORK

Geometry of representation space. Equivariance is a key tool for encoding geometric structure—
e.g., symmetries—into neural network representations (Cohen & Welling, 2016; Bronstein et al.,
2021). Whilst hard-coding equivariance into model architectures is very successful, approximate
learned equivariance (Kaba et al., 2022; Shakerinava et al., 2022), has certain advantages: 1) it applies
when the symmetry is provided only by data, with no closed-form expression, 2) it can still be used
when it is unclear how to hard code equivariance into the architecture, and 3) it can exploit standard
high capacity architectures (He et al., 2016; Dosovitskiy et al., 2021), benefiting from considerable
engineering efforts to optimize their performance. Shakerinava et al. (2022) also consider learning
orthogonal equivariance but consider problems where both input and embedding space are acted
on by O(d). Our setting differs from this in two key ways: 1) we consider a very different set of
transforms of input space—jitter, crops, etc.—and 2) CARE can be naturally integrated into contrastive
learning, and 3) we theoretically study the minima of the angle-preserving loss. A related line of
work, mechanistic interpretability, hypothesizes that algorithmic structure—possibly including group
symmetries— emerges naturally within network connections during training (Chughtai et al., 2023).
Our approach is very different from this as we directly train models to have the desired structure
without relying on implicit processes.

Self-supervised learning. Prior equivariant contrastive learning approaches extend the usual setup of
learning invariance by learning sensitivity to certain features known to be important for downstream
tasks. For instance, Dangovski et al. (2022) learns to predict the augmentation applied but only
considers a discrete group of 4-fold rotations. Lee et al. (2021) learns the difference of augmentation
parameters and Xiao et al. (2021) constructs separate embedding sub-spaces that capture invariances
to all but one augmentation. However, these approaches do not offer a meaningful structure to the em-
bedding space. Others attempt to control how this sensitivity occurs. Specifically, Devillers & Lefort
(2023); Garrido et al. (2023); Bhardwaj et al. (2023) learn a mapping from one latent representation
to another, predicting how data augmentation affects the embedding. But this does not constrain the
group action on embeddings, resulting in complex non-linear augmentation maps. Finally, the recent
work Suau et al. (2023) implements approximate equivariance using 2D representations.

B PROOFS OF THEORETICAL RESULTS

The aim of this section is to detail the proofs of the theoretical results presented in the main manuscript.
The key theoretical tools driving our analysis are prepared separately in Section C.

Throughout our analysis, we assume that all spaces (e.g., A and X ) are subspaces of Euclidean space
and therefore admit a Lebesgue measure. We also assume that all distributions (e.g., a ∼ A and
x ∼ X ) admit a density with respect to the Lebesgue measure. With these conditions in mind, we
recall the loss function that is the main object of study:

Lequi(f) = Ea∼AEx,x′∼X
[
f(a(x′))⊤f(a(x))− f(x)⊤f(x′)

]2
(9)

Next, we re-state and prove Proposition 1, our first key result.
Proposition 1. Suppose Lequi(f) = 0. Then for almost every a ∈ A, there is an orthogonal matrix
Ra ∈ O(d) such that f(a(x)) = Raf(x) for almost all x ∈ X .

Proof. Suppose that Lequi(f) = 0. This means that f(a(x′))⊤f(a(x)) = f(x)⊤f(x′) for almost all
a ∈ G, and x, x′ ∈ X . Setting ga(x) = f(a(x)), we have that ga(x′)⊤ga(x) = f(x)⊤f(x′). The
continuous version of the First Fundamental Theorem of invariant theory for the orthogonal group
(see Proposition 5) implies that there is an Ra ∈ O(d) such that f(a(x)) = ga(x) = Raf(x).

As discussed in greater detail in the main manuscript, these results show that minimizing Lequi
produces a model where an augmentation a corresponds to a single orthogonal transformation of
embeddings Ra, independent of the input. This result is continuous in flavor as it studies the loss
over the full data distribution p(x). There exists a corresponding result for the finite sample loss

Lequi,n(f) = Ea∼A

n∑
i,j=1

[
f(a(xj))

⊤f(a(xi))− f(xi)
⊤f(xj)

]2
.
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Proposition 2. Suppose Lequi,n(f) = 0. Then for almost every a ∈ A, there is an orthogonal matrix
Ra ∈ O(d) such that f(a(xi)) = Raf(xi) for all i = 1, . . . , n.

As for the population counterpart, the proof of this result directly follows from the application of the
First Fundamental Theorem of invariant theory for the orthogonal group.

Proof of Proposition 2. Suppose that Lequi(f) = 0. This means that for almost every a ∈ G, and
every i, j = 1, . . . , n we have f(a(xj))

⊤f(a(xi)) = f(xi)
⊤f(xj). In other words AAT = BBT

where A,B ∈ Rn×d are matrices whose ith rows are Ai = f(a(xi))
⊤ and Bi = f(xi)

⊤ respectively.
This implies, by the First Fundamental Theorem of invariant theory for the orthogonal group (see
Corollary 3), that there is an Ra ∈ O(d) such that A = BRa. Considering only the ith rows of A
and B leads us to conclude that f(a(xi)) = Raf(xi).

A corollary of Proposition 1 is that compositions of augmentations correspond to compositions of
rotations.

Corollary 1. If Lequi(f) = 0 and {f(x) : x ∈ X} spans Rd, then ρ : A → O(d) given by ρ(a) = Ra

satisfies ρ(a′ ◦ a) = ρ(a′)ρ(a) for almost all a, a′. That is, ρ defines a group action on Sd−1 up to a
set of measure zero.

Proof. Applying Proposition 1 on a′ ◦ a as the sampled augmentation, we have that f(a′ ◦ a(xi)) =
Ra′◦af(xi) = ρ(a′ ◦ a)f(xi). However, taking x̄ = a(xi) and applying Proposition 1 twice we also
know that f(a′ ◦ a(xi)) = f(a′(x̄)) = Raf(x̄) = Ra′f(a(xi)) = Ra′Raf(x) = ρ(a′)ρ(a)f(xi).
That is, ρ(a′ ◦ a)f(xi) = f(a′ ◦ a(xi)) = ρ(a′)ρ(a)f(xi). Since this holds for all i and the set of
f(xi) spans Rd, we have that ρ(a′ ◦ a) = ρ(a′)ρ(a).

This corollary requires us to assume that A is a semi-group. That is, A is closed under compositions,
but group elements do not necessarily have inverses and it does not need to include an identity
element.

B.1 APPROXIMATE EQUIVARIANCE FOR NONZERO LOSS

For Proposition 1, we show that when our equivariance loss is zero, the learned function is exactly
equivariant. In practice, the equivariance loss may not exactly be minimized. Here, we give an
approximate equivariance guarantee when the loss is small. The proof is based on Theorem 1 of
Arias-Castro et al. (2020) (see Section C.1). For that, define

Lequi(f, a) = Ex,x′∼X
[
f(a(x′))⊤f(a(x))− f(x)⊤f(x′)

]2
(10)

Proposition 3. Suppose we have a finite training set X = {x1, . . . , xn}. For an augmentation
a ∈ A, suppose that

Lequi, n(f, a) =

n∑
i=1

n∑
j=1

[
f(a(xi))

⊤f(a(xj))− f(xi)
⊤f(xj)

]2 ≤ ϵ4, (11)

and that the matrix A = [f(x1), . . . , f(xn)]
⊤ satisfies the conditions of Proposition 6. Let A‡ denote

the pseudoinverse of A. Then there is an Ra ∈ O(d) such that√√√√ n∑
i=1

∥f(a(xi))−Raf(xi)∥2 ≤ (1 +
√
2)

∥∥A‡∥∥ ϵ2, (12)

and hence for each xi,

∥f(a(xi))−Raf(xi)∥ ≤ (1 +
√
2)

∥∥A‡∥∥ ϵ2. (13)
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Proof. The first inequality is a direct application of Proposition 6, where A = [f(x1), . . . , f(xn)]
⊤

and B = [f(a(x1)), . . . , f(a(xn))]
⊤. The second inequality follows from the fact that ∥x∥∞ ≤ ∥x∥2

for vectors x ∈ Rn.

Corollary 2. If Lequi(f, a) ≤ ϵ4 for all a ∈ A and A = [f(x1), . . . , f(xn)]
⊤ satisfies the conditions

in Proposition 6 then ρ : A → O(d) given by ρ(a) = Ra satisfies ∥ρ(a′ ◦ a)− ρ(a′)ρ(a)∥ ≤ o(ϵ2)
for any a, a′ ∈ A.

Proof. Applying Proposition 3 on a′ ◦ a and using the triangle inequality, we have

∥Ra′◦af(x)−Ra′Raf(x)∥ ≤ ∥Ra′◦af(x)− f(a′ ◦ a(x)) + f(a′ ◦ a(x))−Ra′Raf(x)∥
≤ ∥Ra′◦af(x)− f(a′ ◦ a(x))∥+ ∥f(a′ ◦ a(x))−Ra′Raf(x)∥
≤ ∥f(a′ ◦ a(x))−Ra′Raf(x)∥+ (1 +

√
2)

∥∥A‡∥∥ ϵ2
Now, using triangle inequality again, we have

∥Ra′◦af(x)− f(a′ ◦ a(x))∥ = ∥f(a′ ◦ a(x))−Ra′f(a(x)) +Ra′f(a(x))−Ra′Raf(x)∥
≤ ∥f(a′ ◦ a(x))−Ra′f(a(x))∥+ ∥Ra′f(a(x))−Ra′Raf(x)∥

Taking x̄ = a(x), using the submultiplicativity property of matrix norms and applying Proposition 3
twice we have,

∥f(a′ ◦ a(x))−Ra′f(a(x))∥+ ∥Ra′f(a(x))−Ra′Raf(x)∥
= ∥f(a′(x̄))−Ra′f(x̄)∥+ ∥Ra′(f(a(x))−Raf(x))∥
≤ ∥f(a′(x̄))−Ra′f(x̄)∥+ ∥Ra′∥ ∥(f(a(x))−Raf(x))∥
≤ (1 +

√
2)

∥∥Ā‡∥∥ ϵ2 + (1 +
√
2)

∥∥A‡∥∥ ϵ2
Hence,

∥Ra′◦af(x)−Ra′Raf(x)∥ ≤ (1 +
√
2)

∥∥Ā‡∥∥ ϵ2 + (2 + 2
√
2)

∥∥A‡∥∥ ϵ2
where A = [f(x1), . . . , f(xn)]

⊤ and Ā = [f(a(x1)), . . . , f(a(xn))]
⊤

By our assumption, we can choose a basis f(xi1), f(xi2), ...f(xid) of Rd, where i1, i2, ...in ∈ [n].
We can then write any unit norm x in terms of this basis:

x =

d∑
j=1

cjf(xij ).

Letting B = [f(xi1), . . . , f(xid)]
⊤, we have B−1x = c. Thus, we can bound the 1-norm of c as

∥c∥1 ≤
√
d ∥c∥2 ≤

√
d
∥∥B−1

∥∥ . (14)

Then using the triangle inequality, we have

∥Ra′◦ax−Ra′Rax∥ =

∥∥∥∥∥∥
n∑

j=1

cj

(
Ra′◦af(xij )−Ra′Raf(xij )

)∥∥∥∥∥∥
≤

n∑
j=1

|cj |
∥∥Ra′◦af(xij )−Ra′Raf(xij )

∥∥
≤ ∥c∥1 (1 +

√
2)

∥∥A‡∥∥ ϵ2
≤

√
d(1 +

√
2)

∥∥A‡∥∥∥∥B−1
∥∥ ϵ2.

Taking the supremum over all unit norm x finishes the proof.
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C BACKGROUND ON INVARIANCE THEORY FOR THE ORTHOGONAL GROUP

This section recalls some classical theory on orthogonal groups and an extension that we use for
proving results over continuous data distributions.

A function f : (Rd)n → R is said to be O(d)-invariant if f(Rv1, . . . , Rvn) = f(v1, . . . , vn) for all
R ∈ O(d). Throughout this section, we are especially interested in determining easily computed
statistics that characterize an O(d) invariant function f . In other words, we would like to write f as a
function of these statistics. The following theorem was first proved by Hermann Weyl using Capelli’s
identity (Weyl, 1946) and shows that the inner products v⊤i vj suffice.

Theorem 4 (First fundamental theorem of invariant theory for the orthogonal group). Suppose that
f : (Rd)n → R is O(d)-invariant. Then there exists a function g : Rn×n → R for which

f(v1, . . . , vn) = g
(
[v⊤i vj ]

n
i,j=1

)
.

In other words, to compute f at a given input, it is not necessary to know all of v1, . . . , vn. Computing
the value of f at a point can be done using only the inner products v⊤i vj , which are invariant to O(d).
Letting V be the n× d matrix whose ith row is v⊤i , we may also write f(v1, . . . , nn) = g(V V ⊤).
The map V 7→ V V ⊤ is known as the orthogonal projection of V .

A corollary of this result has recently been used to develop O(d) equivariant architectures in machine
learning (Villar et al., 2021).

Corollary 3. Suppose that A,B are n × d matrices and AA⊤ = BB⊤. Then A = BR for some
R ∈ O(d).

Villar et al. (2021) use this characterization of orthogonally equivariant functions to parameterize
function classes of neural networks that have the same equivariance. This result is also useful in our
context; However, we put it to use for a very different purpose: studying Lequi.

Intuitively this result says the following: given two point clouds A,B of unit length vectors with some
fixed correspondence (bijection) between each point in A and a point in B, if the angles between the
ith and jth points in cloud A always equal the angle between the ith and jth point in cloud B, then A
and B are the same up to an orthogonal transformation.

This is the main tool we use to prove the finite sample version of the main result for our equivariant
loss (Proposition 2). However, to analyze the population sample loss Lequi (Proposition 1), we require
an extended version of this result to the continuous limit as n → ∞. To this end, we develop a simple
but novel extension to Theorem 4 to the case of continuous data distributions. This result may be
useful in other contexts independent of our setting.

Proposition 5. Let X be any set and f, h : X → Rd be functions on X . If f(x)⊤f(y) = h(x)⊤h(y)
for all x, y ∈ X , then there exists R ∈ O(d) such that Rf(x) = h(x) for all x ∈ X .

The proof of this result directly builds on the finite sample version. The key idea of the proof is that
since the embedding space Rd is finite-dimensional we may select a set of points {f(xi)}i whose
span has maximal rank in the linear space spanned by the outputs of f . This means that any arbitrary
point f(x) can be written as a linear combination of the f(xi). This observation allows us to apply
the finite sample result on each f(xi) term in the sum to conclude that f(x) is also a rotation of a
sum of h(xi) terms. Next, we give the formal proof.

Proof of Proposition 5. Choose x1, . . . , xn ∈ X such that F = [f(x1) | . . . | f(xn)]
⊤ ∈ Rn×d and

h = [h(x1) | . . . | h(xn)]
⊤ ∈ Rn×d have maximal rank. Note we use “|” to denote the column-wise

concatenation of vectors. Note that such xi can always be chosen. Since we have FF⊤ = HH⊤, we
know by Corollary 3 that F = HR for some R ∈ O(d).

Now consider an arbitrary x ∈ X and define F̃ = [F | f(x)]⊤ and H̃ = [H | h(x)]⊤, both of
which belong to R(n+1)×d. Note that again we have F̃ F̃⊤ = H̃H̃⊤ so also know that F̃ = H̃R̃
for some R̃ ∈ O(d). Since xi were chosen so that F and H are of maximal rank, we know that
h(x) =

∑n
i=1 cih(xi) for some coefficients ci ∈ R, since if this were not the case then we would

have rank(H̃) = rank(H) + 1.
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From this, we know that

R⊤h(x) =

n∑
i=1

ciR
⊤h(xi)

=

n∑
i=1

cif(xi)

=

n∑
i=1

ciR̃
⊤h(xi)

= R̃⊤
n∑

i=1

cih(xi)

= R̃⊤h(x)

= f(x).

So we have that Rf(x) = RR⊤h(x) = h(x) for all x ∈ X .

C.1 APPROXIMATE EQUIVARIANCE RESULTS

Here, we consider the setting when our equivariance loss is not exactly minimized. This corresponds to
when the pairwise dot products between representations do not exactly match. We use a generalization
of Corollary 3 to this case (Arias-Castro et al., 2020) Instead of the dot products AA⊤ and BB⊤

exactly matching, they match only up to some error. As a result, we can guarantee A is close to BR
for some orthogonal matrix R ∈ O(d) up to some error.

Proposition 6. (Arias-Castro et al., 2020) Let A,B ∈ Rn×d with n ≥ d, where A is full rank.
Suppose

∥∥AA⊤ −BB⊤
∥∥
F
≤ ϵ2 and

∥∥A‡
∥∥ ϵ ≤ 1√

2
Then there exists an orthogonal R ∈ O(d) such

that
∥A−BR∥F ≤ (1 +

√
2)

∥∥A‡∥∥ ϵ2, (15)

where A‡ is the pseudoinverse of A, ∥·∥F is the Frobenius norm, and ∥·∥ is the maximum singular
value norm.

In other words, for a fixed and full rank matrix A, we have that minR∈O(d) ∥A−BR∥F = o(ϵ),
where o(ϵ) → 0 as the error ϵ → 0.

D EXTENSIONS TO OTHER GROUPS: FURTHER DISCUSSION

In Section 3.2, we explore the possibility of formulating an equivariant loss Lequi for pairs of points
that fully captures equivariance by requiring the group to be the stabilizer of a bilinear form. In
this context, the invariants are generated by polynomials of degree two in two variables, and the
equivariant functions can be obtained by computing gradients of these invariants (Blum-Smith &
Villar, 2022). Section 3.2 notes that this holds true not only for the orthogonal group, which is the
primary focus of our research but also for the Lorentz group and the symplectic group, suggesting
natural extensions of our approach.

It is worth noting that the group of rotations SO(d) does not fall into this framework. It can be
defined as the set of transformations that preserve both inner products (a 2-form) and determinants (a
d-form). Consequently, some of its generators have degree 2 while others have degree d (see (Weyl,
1946), Section II.A.9).

Weyl’s theorem states that if a group acts on n copies of a vector space (in our case, (Rd)n for
consistency with the rest of the paper), its action can be characterized by examining how it acts
on k copies (i.e., (Rd)k) when the maximum degree of its irreducible components is k (refer to
Section 6 of (Schmid, 2006) for a precise statement of the theorem). Since our interest lies in
understanding equivariance in terms of pairs of objects, we desire invariants that act on pairs of
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points. One way to guarantee this is to restrict ourselves to groups that act through representations
where the irreducible components have degrees of at most two (though this is not necessary in all
cases, such as the orthogonal group O(d) that we consider in the main paper). An example of such
groups is the product of finite subgroups of the unitary group U(2), which holds relevance in particle
physics. According to Weyl’s theorem, the corresponding invariants can be expressed as polarizations
of degree-2 polynomials on two variables. Polarizations represent an algebraic construction that
enables the expression of homogeneous polynomials in multiple variables by introducing additional
variables to polynomials with fewer variables. In our case, the base polynomials consist of degree-2
polynomials in two variables, while the polarizations incorporate additional variables. Notably, an
interesting open problem lies in leveraging this formulation for contrastive learning.

E IMPLEMENTATION DETAILS

Algorithm 1 presents pytorch-based pseudocode for implementing CARE. This implementation
introduces the idea of using a smaller batch size for the equivariance loss compared to the InfoNCE
loss. Specifically, by definition, the equivariance loss is defined as a double expectation, one over data
pairs and the other over augmentations. Empirical observations reveal that sampling one augmentation
per batch leads to unstable yet superior performance when compared to standard invariant-based
baselines such as SimCLR. Since these invariant-based contrastive benchmarks generally perform
well with large batch sizes, we adopt the approach of splitting a batch into multiple chunks to
efficiently sample multiple augmentations per batch for the equivariance loss. Each chunk of the
batch is associated with a new pair of augmentations, ensuring a large batch size for the InfoNCE
loss and a smaller batch size for the equivariance loss.

Algorithm 1 PyTorch based pseudocode for CARE

1: Notations: f represents the backbone encoder network, λ is the weight on CARE loss, apply_same_aug
function applies the same augmentation to all samples in the input batch

2: for minibatch x in dataloader do
3: draw two batches of augmentation functions a1, a2 ∈ A
4: /* Functions a1, a2 apply different augmentation to each sample in batch x */
5: zinv

1 , zinv
2 = f(a1(x)), f(a2(x))

6: divide x into n_split chunks to form xchunks
7: /* Module for calculating orthogonal equivariance loss */
8: for ci in xchunks in parallel do
9: draw two augmentation functions ã1, ã2 ∈ A

10: /* Functions ã1, ã2 apply same augmentation to each sample in batch ci */
11: z̃i1, z̃i2 = f(apply_same_aug(ci, ã1)), f(apply_same_aug(ci, ã2))

12: /* Concatenate embedding vectors corresponding to all chunks */

13: merge z̃i1, z̃i2 into zequiv
1 , zequiv

2 respectively
14: /* Loss computation */
15: LInfoNCE(f) = infonce_loss(zinv

1 , zinv
2 )

16: Lequiv(f) = orthogonal_equivariance_loss(zequiv
1 , zequiv

2 ,n_split)
17: LCARE(f) = LInfoNCE(f) + λ · Lequiv(f)
18: /* Optimization step */
19: LCARE(f).backward()
20: optimizer.step()

F SUPPLEMENTARY EXPERIMENTAL DETAILS AND ASSETS DISCLOSURE

F.1 ASSETS

We do not introduce new data in the course of this work. Instead, we use publicly available widely
used image datasets for the purposes of benchmarking and comparison.

F.2 HARDWARE AND SETUP

All experiments were performed on an HPC computing cluster using 4 NVIDIA Tesla V100 GPUs
with 32GB accelerator RAM for a single training run. The CPUs used were Intel Xeon Gold 6248
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processors with 40 cores and 384GB RAM. All experiments use the PyTorch deep learning framework
(Paszke et al., 2019).

F.3 EXPERIMENTAL PROTOCOLS

We first outline the training protocol adopted for training our proposed approach on a variety of
datasets, namely CIFAR10, CIFAR100, STL10, and ImageNet100.

CIFAR10, CIFAR100 and STL10 All encoders have ResNet-50 backbones and are trained for
400 epochs with temperature τ = 0.5 for SimCLR and τ = 0.1 for MoCo-v2 *. The encoded
features have a dimension of 2048 and are further processed by a two-layer MLP projection
head, producing an output dimension of 128. A batch size of 256 was used for all datasets.
For CIFAR10 and CIFAR100, we employed the Adam optimizer with a learning rate of 1e−3

and weight decay of 1e−6. For STL10, we employed the SGD optimizer with a learning rate
of 0.06, utilizing cosine annealing and a weight decay of 5e−4, with 10 warmup steps. We
use the same set of augmentations as in SimCLR (Chen et al., 2020). To train the encoder
using LCARE-SimCLR, we use the same hyper-parameters for InfoNCE loss. Additionally, we use
4, 8 and 16 batch splits for CIFAR100, STL10 and CIFAR10, respectively. This allows us to
sample multiple augmentations per batch, effectively reducing the batch size of equivariance loss
whilst retaining the same for InfoNCE loss. Furthermore, for the equivariant term, we find it op-
timal to use a weight of λ = 0.01, 0.001, and 0.01 for CIFAR10, CIFAR100, and STL10, respectively.

ImageNet100 We use ResNet-50 as the encoder architecture and pretrain the model for 200 epochs.
A base learning rate of 0.8 is used in combination with cosine annealing scheduling and a batch size
of 512. For MoCo-v2, we use 0.99 as the momentum and τ = 0.2 as the temperature. All remaining
hyperparameters were maintained at their respective official defaults as in the official MoCo-v2 code.
While training with LCARE-SimCLR and LCARE-MoCo, we find it optimal to use splits of 4 and 8 and
weight of λ = 0.005 and 0.01 respectively on the equivariant term.

Linear evaluation We train a linear classifier on frozen features for 100 epochs with a batch size of
512 for CIFAR10, CIFAR100, and STL10 datasets. To optimize the classifier, we employ the Adam
optimizer with a learning rate of 1e−3 and a weight decay of 1e−6. In the case of ImageNet100, we
train the linear classifier for 60 epochs using a batch size of 128. We initialize the learning rate to
30.0 and apply a step scheduler with an annealing rate of 0.1 at epochs 30, 40, and 50. The remaining
hyper-parameters are retained from the official code.

G ADDITIONAL EXPERIMENTS

G.1 ABLATING LOSS TERMS

G.2 HISTOGRAM FOR LOSS ABLATION.

To accompany Figure 10, this section plots the cosine similarity between positive pairs. We provide
two plots for each experiment: the first plots the histogram of similarities of positive pairs drawn
from the test set; the second plots the average positive cosine similarity throughout training. The
results are reported in Figures 11, 12, 13, 14, 15, 16.

G.3 ADDITIONAL PROTEIN TRAJECTORIES

In the protein cloud experiment in Section 5.1, we use the Protein Data Bank (PDB)—the single
global repository of experimentally determined 3D structures of biological macromolecules and their
complexes, containing approximately 130,000 samples. The core objective is to assess whether our
method can effectively encode the SO(3) manifold, a highly challenging and critical aspect in drug
discovery. Each input point cloud is transformed through action of the SO(3) group. Consequently,
the desirect 2D trajectory is a circle corresponding to rotation along each of three orthogonal axes.
This is consistent with the structure of the SO(3) manifold. Figures 17, 18, 19 and 20 illustrate

*https://github.com/facebookresearch/moco
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Figure 10: Ablating different loss terms. Combining Lequi with a uniformity promoting non-collapse
term suffices to learn non-trivial features. However, optimal performance is achieved when encourag-
ing smaller rotations, as in CARE. ResNet-50 models pretrained on CIFAR10 and evaluated with
linear probes.
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Figure 11: (left) Histogram of positive cosine similarity values at the end of pre-training using the
invariance loss; (right) Evolution of positive cosine similarity values over pre-training epochs using
the invariance loss

additional trajectories observed through the embedding space of a DeepSet trained with the CARE,
SimCLR, Lunif and Linv loss respectively.

G.4 ADDITIONAL QUALITATIVE ASSESSMENT OF EQUIVARIANCE

Figure 21 qualitatively assesses sensitivity of the representation to changes in color in the Flowers-102
dataset. We compare CARE to a popular equivariant baseline, EquiMOD (Devillers & Lefort, 2023).
As anticipated, both CARE and EquiMOD demonstrate sensitivity to changes in query color and
hence are equivariant to color. However, as depicted in Figure 21, EquiMOD’s representation exhibits
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Figure 12: (left) Histogram of positive cosine similarity values at the end of pre-training using the
orthogonal equivariance loss; (right) Evolution of positive cosine similarity values over pre-training
epochs using the orthogonal equivariance loss
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Figure 13: (left) Histogram of positive cosine similarity values at the end of pre-training using the
uniformity loss; (right) Evolution of positive cosine similarity values over pre-training epochs using
the uniformity loss
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Figure 14: (left) Histogram of positive cosine similarity values at the end of pre-training using the
Uniformity + Equivariance loss; (right) Evolution of positive cosine similarity values over pre-training
epochs using the Uniformity + Equivariance loss
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Figure 15: (left) Histogram of positive cosine similarity values at the end of pre-training using the
InfoNCE (invariance + uniformity) loss; (right) Evolution of positive cosine similarity values over
pre-training epochs using the InfoNCE loss
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Figure 16: (left) Histogram of positive cosine similarity values at the end of pre-training using the
CARE (InfoNCE + orthogonal equivariance) loss; (right) Evolution of positive cosine similarity
values over pre-training epochs using the CARE loss
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Figure 17: Additional trajectories through the embedding space of a DeepSet trained with CARE.
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Figure 18: Additional trajectories through the embedding space of a DeepSet trained with SimCLR.
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Figure 19: Additional trajectories through the embedding space of a DeepSet trained with the
uniformity loss Lunif.

nearest neighbors with significantly different shades (e.g., red and orange) compared to those learned
by CARE, which are closer in color to the query images.
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Figure 20: Additional trajectories through the embedding space of a DeepSet trained with the
invariance loss Linv.

CARE (ours) EquiMOD (equivariant)Input Query

Figure 21: CARE exhibits sensitivity to features as with other equivariance-based contrastive methods
(e.g., EquiMOD). For each query input, we retrieve top 5 nearest neighbors in the embedding space.

H ADDITIONAL DISCUSSION

Limitations. While our method, CARE, learns embedding spaces with many advantages over prior
contrastive learning embedding spaces, there are certain limitations that we acknowledge here. First,
we do not provide a means to directly identify the rotation corresponding to a specific transformation.
Instead, our approach allows the recovery of the rotation by solving Wahba’s problem. However, this
requires solving an instance of Wahba’s for each augmentation of interest. Future improvements that
develop techniques for quickly and easily (i.e., without needing to solve an optimization problem)
identifying specific rotations would be a valuable improvement, enhancing the steerability of our
models. Second, it is worth noting that equivariant contrastive methods, including CARE, only
achieve approximate equivariance. This is a fundamental challenge shared by all such methods, as it
is unclear how to precisely encode exact equivariance. The question remains open as to a) whether
this approximate equivariance should be considered damaging in the first place, and if so, b) whether
scaling techniques can sufficiently produce reliable approximate equivariance to enable the diverse
applications that equivariance promises. Addressing this challenge is a crucial area for future research
and exploration in the field. Each of these limitations points to valuable directions for future work.

Broader impact. Through our self-supervised learning method CARE we explore foundational
questions regarding the structure and nature of neural network representation spaces. Currently,
our approaches are exploratory and not ready for integration into deployed systems. However, this
line of work studies self-supervised learning and therefore has the potential to scale and eventually
contribute to systems that do interact with humans. In such cases, it is crucial to consider the usual
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safety and alignment considerations. However, beyond this, CARE, offers insights into algorithmic
approaches for controlling and moderating model behavior. Specifically, CARE identifies a simple
rotation of embedding space that corresponds to a change in the attribute of the data. In principle, this
transformation could be used to "canonicalize" data, preventing the model from relying on certain
attributes in decision-making. Additionally, controlled transformations of embeddings could be used
to debias model responses and achieve desired variations in output. It is important to note that while
our focus is on the core methodology, we do not explore these possibilities in this particular work.
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