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Abstract

Topological analysis reveals meaningful structure in data from a variety of do-
mains. Tasks such as image segmentation can be effectively performed on the
network structure of an image’s topological complex using graph neural networks
(GNNs). We propose two methods for using GNNs to learn from the hierarchical
information captured by complexes at multiple levels of topological persistence:
one modifies the training procedure of an existing GNN, while one extends the
message passing across all levels of the complex. Experiments on real-world data
from three different domains shows the performance benefits to GNNs from using
a hierarchical topological structure.

1 Introduction

Topological data analysis has been used in many application domains, such as segmentation of
neurons (1), structural components of interest in metallic foams (2), eddies in ocean currents (3),
bubble formation in mixing fluids (4), and ignition kernels in combustion (5). It has also served as
a preprocessing step for machine learning tasks (6), and topological principles have influenced the
design of loss functions (7) and architectures (8; 9) for deep neural networks.

In each case, semantic objects appear as elements (or collections thereof) of the data structures
encoding the topological abstraction, such as nodes within a graph encoding of a topological complex.
We thus formulate the task of scientific image segmentation as a node classification problem, which
we solve using graph neural networks (GNNs). Instead of deriving only one high-granularity complex,
we model multiple scales of topological information in an image using a nested hierarchy of graph
representations, each derived from different levels of topological persistence. Our work makes the
following contributions:

• We propose two different methods for applying GNNs to a hierarchy of topological graphs:
one trains a conventional GNN on each successive level, and the other extends the message
passing to take place jointly across all levels.

• We use GNNs to perform scientific image segmentation operating on the topological com-
plex, for which we use an interactive tool developed to allow a human to label training data.
We show a performance improvement by learning from hierarchical topological structure.

∗Work partially performed while an intern at Lawrence Livermore National Laboratory

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



2 Background: Computational Topology

The Morse-Smale Complex (MSC) A Morse function f : M → R is a smooth function on a
manifold with non-degenerate, distinct critical points. The gradient, ∇ f defines a vector field whose
zeroes are critical points. Each non-critical point in the domain of M belongs to a single integral line,
or path tangent to ∇ f that has upper and lower limits at critical points of f (called the destination,
and origin, respectively). Partitioning the domain into monotonic connected components defined by
integral lines sharing a common origin and destination defines the MSC. Cells of this complex have a
dimension equal to the difference between the number of source directions between the destination
and origin critical points of their constituent integral lines. The 1-skeleton of the complex is formed
by critical points and the arcs or integral lines that connect them which differ in index by 1. Concepts
from continuous functions can be applied to a discrete pixel space using discrete Morse theory (10),
for which we use the open-source MSCEER library (11) to compute a discrete MSC complex. We
provide an illustration of the (continuous and discrete) MSC in Appendix A.

Topological Simplification Topological abstractions come equipped with well-understood tech-
niques to order and simplify their elements to obtain successively coarser representations. For
example, topological persistence allows for a multiscale simplification by pairing the critical point
that creates a connected component with the critical point that destroys that component during a
filtration (12). The time span in the filtration in which the connected component lives, i.e. the
difference in function value between the birth and death critical points, is called persistence. The
admissible persistence defining this filtration defines the granularity of the resulting MSC. To simplify
the MSC and minimize the effects of image noise, nodes connected by a single arc in the 1-skeleton
are canceled (12; 13; 14).

Topological Priors Graph We represent an image with a refinement of its MSC 1-skeleton called
the ridge graph (1), whose edges are poly-line segments of the MSC. Our priors graph is the line
graph representation (15) of the ridge graph, in that vertices of the ridge graph become edges and
polylines become nodes which are classified as foreground or background. This allows us to segment
the image using its topological structure (16). We provide an illustration of the construction of the
ridge graph and the priors graph we introduce in Appendix A.

Multi-Persistence Topological Graph Hierarchy To model multiscale topological information,
we compute the MSC at P levels of persistence. In contrast to hierarchical graph-level representation
learning methods that learn to pool each input graph (17; 18), this gives us several graph representa-
tions of the underlying data to use as input to a GNN or to inform the learning process for a GNN
topologically. Computationally, a smaller persistence value produces a graph higher in the MSC
hierarchy with finer granularity. Thus, we obtain a hierarchy of graphs G1, . . . ,GP where ∀pi for
i ∈ [1, . . . ,P] each node in Gpi is obtained as either a copy of a node in Gpi+1 or by merging 2 or more
nodes. That is, we obtain the subgraph Gpi−1 from the merging and deletion of vertices in Gpi . Node
neighborhoods thus share this property: for each node vi ∈ Vpi ∩Vp j , e.g. Npi(vi) for vi ∈ Vpi and
Np j(vi) for vi ∈ Vp j , we have that Npi(vi)⊆ Np j(vi). We give all graphs the full node set found at
the lowest persistence level of the hierarchy, but nodes that would not otherwise exist in the graph at
a higher persistence level are disconnected.

3 Methodology

3.1 Identifying and Labeling Topological Graph Hierarchies

A single topological primitive in a higher-level persistence subgraph may span multiple topological
primitives in a lower-level persistence supergraph. Given a labeled priors supergraph, a topological
primitive in a priors subgraph is assigned the majority class label assigned to primitives within the
corresponding part of the supergraph as long the proportion of primitives in the supergraph exceeds
a user-specified percentage which we call a union threshold. By doing so, finer granularity priors
that more accurately cover the semantic object as represented in the supergraph are identified and
labeled correspondingly in the subgraph. Formally, for persistence levels pi and p j ≥ pi, the class
ℓ j of a topological prior vp j in the priors subgraph of persistence p j is subset to priors supergraph
of persistence pi with labeling scheme ℓi. Given a union threshold u the label ℓ j is given as follows:
ℓ j = ℓi if 1

|vpi : vpi∈ vp j |
∑

vpi⊆vp j

1(ℓ(vpi) = ℓi) ≥ u. In short, each prior in the subgraph is given the

2



predominant label of priors in the supergraph that correspond to it, so long as the majority label of
priors exceeds a user-specified threshold u.

3.2 Hierarchical Learning with Topological Priors Graphs

We consider two methods for learning node representations for classification using graph neural
networks while exploiting the full hierarchy of topological information. The first method modifies the
training of a graph neural network (GNN), while the second modifies the architecture to pass messages
jointly on all hierarchical levels. With both approaches, each GNN learns node features via message
passing in the spatial domain (19). For the ith persistence level pi (moving from sparsest to densest),
the aggregated node embedding for node vi from neighbors ui ∈ Npi(vi) of persistence subgraph
Gi is given by hki

Npi (vi)
= σ

(
AGGR(hki−1

ui : ∀ ui ∈ Npi(vi) )
)
. Node vi’s updated embedding is

concatenated with the target node embedding from the previous iteration of aggregation hki
vi and the

aggregated neighbor features, parameterized with target embedding and neighbor embedding weight
matrices W ki

s and W ki
n respectively. Similarly, the target node embeddings and neighboring node

embeddings are passed through a two-layer multilayer perceptron (MLP), which after sum-pooling,
are multiplied with weight matrices Ws and Wn to complete the AGGR step.

Hierarchical Successive Training (HST) For HST we exploit the induced subgraph structure
of the persistence graph hierarchies and take the naive approach of aggregating node embeddings
between subgraphs by iteratively introducing higher-level subgraphs in later training epochs. Instead
of training a GNN for N epochs on the finest graph GP, we train it for N

P epochs each on graphs
G1, . . . ,GP, using the embeddings from Gi−1 to initialize the embeddings of corresponding nodes in
Gi ∀ i ∈ [1 . . . ,P]. The MLPs and node embedding weight matrices for target and neighboring node
embeddings are shared between graph hierarchies. Training begins with the smallest subset graph
and iteratively increases in graph size. We also successively share the learned embedding weight
matrices and matrices of the MLPs as well. When we begin training on graph Gp, the embedding
for node vp ∈ V (Gp) is the combined embedding from previous aggregations at lower persistence

subgraphs: hkp
vp =COMB

(
h

kp−1
vp−1 ,h

kp−1
vp

)
where we implement COMB with concatenation.

Hierarchical Joint Training For node vi belonging to node set Vpi of subgraph Gpi , the
feature representation hk

vi
at GNN layer k ∈ {1, · · · ,K} first combines self-representations

from the previous level of aggregation with aggregated neighbor information: hk
vi

=

COMB
(

W k−1
s hk−1

v , AGGR
(
{W k−1

n hk−1
u : u ∈ Npi(vi)}

))
. Once this is done, the resulting

embedding is combined with the embedding representation from other persistence subgraphs, that
is, node embeddings culminate from message passing between levels in the graph hierarchies. As
an example for two persistence levels pi and p j where vi ∈ Vpi ⊂ Gpi and v j ∈ Vp j ⊂ Gp j , we have
hk

v = σ
(
COMB(hk

vi
,hk

v j

))
.

4 Experiments
Data We use image datasets from three different application domains: biomedicine, neuroscience,
and materials science. For each image, to optimize the ridge/valley graph and corresponding
topological priors so as to best cover the semantic object, a functional operator is first applied to
the image. Performing this pre-processing step allows for a topologically informative scalar field
representation of the image, or scalar field image, allowing for a more robust and expressive MSC
summary of the target semantic object. For more details about each dataset, see Appendix B. The
foreground is labeled by a human expert using an interactive tool, described in Appendix C, where
a user can also provide a scalar field image deemed informative. As a basic demonstration of a
topological hierarchy, we use two levels of persistence in total (resulting in one subgraph and one
supergraph). We choose persistence levels per dataset such that the subgraph was sufficiently smaller
in size and sufficiently covered the semantic object (see Table 1 in Appendix B for specific persistence
values.)

Metrics We study several models for learning from pixel-level and topological features, detailed in
Appendix D (and described in (16)), and compare their class F1 scores. Training regions for each
image are grown and first centered in areas that illustrate the diversity of canonical representatives of
the semantic objects and train over potential confounding artifacts or morphologies. For details on
the training procedure and parameter selection, see Appendix E.
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Evaluation Figure 1 shows that our hierarchical approaches (GNN-HST and GNN-HJT for
hierarchical successive training and joint training, respectively) generally improve over the conven-
tional GNN and non-GNN baselines. This is particularly true for the Neuron and Retinal datasets,
where there is a larger difference between the topological summary of the computed subgraphs and
supergraphs (this can be seen by comparing their number of nodes and edges, shown in Appendix B).

(a) Neuron (b) Foam (c) Retinal
Figure 1: Class F1 vs. percent priors graph used in training. We see improvements from hierarchical
training on the Neuron and Retinal datasets with lower performance on Foam (perhaps due to larger
class imbalance and/or less informative topological priors).

Limitations: Hierarchical GNN training was less effective on the Foam dataset. On this dataset,
methods performing learning in the pixel space (Appendix D) achieved higher performance than
learning with topological priors. This may be due to the sparsity of the priors graphs and class
imbalance (see Appendix F for further discussion) or due to the simplicity of the segmentation
task for the Foam dataset leading low and high-level persistence priors graphs to vary marginally
in comparison to that of the Neuron and Retinal datasets. Future work should seek to understand
how well topological priors model semantic structure and how to represent informative topological
information.

Our GNN-HST variation also enjoys runtime gains compared to the conventional GNN using the
full supergraph for all of the training, due to the successive training scheme allowing us to perform
a portion of training on the smaller subgraph. Our joint training yields slightly higher accuracy as
the model simultaneously uses multiple scales of topological information, and the runtime remains
manageable. While non-network baselines, using famously fast ML models such as random forest
and few-layer MLPs (Appendix D), are faster, we have seen that they generally offer lower accuracy.

(a) Neuron (b) Foam (c) Retinal

Figure 2: Class F1 vs. time taken to train priors graph used in training. Times and accuracies
correspond to training region size and accuracy as provided in Figure 1. Among the GNN approaches,
the hierarchical methods, notably the successive training, perform the fastest.

5 Conclusion
We propose graph neural network methods that learn from hierachies of graphs representing the
multiscale topological structure of image data. Our results demonstrate promise for increased accuracy
and improvement in training time compared to conventional GNNs, while we provide exploratory
insights into the effect of class imbalance and heterophily in graph learning.

Social Impact Our methods have the potential to minimize the amount of human effort required
to extract semantic structure from scientific images, which may contribute to socially beneficial
breakthroughs in medicine, materials science, and more. As training data comes from human
annotations, our methods are subject to reproducing annotators’ biases. A socially impactful future
direction will be to better understand how topological priors reflect semantic structure. It will also be
useful to extend the domain with which we can construct priors graphs by using higher-dimensional
topological connected components.
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A Illustration of the Morse-Smale Complex

Priors Graph

Figure 3: Morse-Smale complexes are defined for functions with continuous gradients (a-c). A
smooth function (a) can be partitioned based on the behavior of integral lines (b), with selected
integral lines shown in white. This partition forms a cell complex, where integral lines within each
cell share a common origin and destination. The 0-dimensional cells are maxima (red), saddles
(green), and minima (dark blue)), the 1-dimensional cells are formed by ascending (orange) and
descending lines (light blue) from saddles (green), and 2-dimensional cells are bounded by 0- and
1-cells (b). Elements of this complex often form semantic features of interest in a scientific domain,
such as valley-like lines (c). Real-world functions often come from noisy sources, and are available as
samples on a grid (d). Discrete Morse-theory-based methods allow practical computation of Morse-
Smale complexes (e), which encode both noise and discretization artifacts that may be simplified
to recover the coarse-scale behavior of the function (f). The valley-like structures may be extracted
from this complex (g), and converted to a set of priors between non-degree-2 vertices denoted the
valley graph (h). The priors graph (yellow), (i), represents each prior as a vertex with edges between
incident priors.

B Detailed Description of Datasets

Here we give more detailed descriptions of the three datasets we use for evaluation, along with some
summary statistics in Table 1.

Table 1: Dataset and Priors Graph Statistics
Name Image Shape |V| Sub/Supergraph |E| Sub/Sup pi Sub/Sup Total Length % Fgrnd.
Retinal 700×605 676 / 24,851 1,097 / 39,765 0.8 / 0.01 269,036 11.6%
Foam 828×846 1,703 / 8,069 2,429 / 13,234 80 / 20 142,895 69.9%
Neuron 1,737×1,785 323 / 23,038 480 / 34,527 45 / 11 425,441 15.5%

Retinal: Imaging and tracing of blood vessel arbors is used to classify disease states of the eye (20).
Obtaining a wire representation of the blood vessels is a first diagnostic step. For this we use the
Laplacian of the image with a kernel of size 2.0, producing a scalar field whose ridge lines, and priors
graph, capture even the faintest of blood vessels.
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Foam: A computed tomography (CT) image of a closed-cell foam is used to characterize the
deformation of cell walls that may result from its manufacturing process. The thin film polymer
boundaries are faint compared to the background CT noise. We compute the maximum convolution
with a rotating line 10px in length and a total of 16 directions to enhance linear structures and smooth
noise. The topological priors of this field include both cell boundaries and noise.

Neuron: Viral expression fluorescent proteins, combined with tissue clarification techniques, allow
imaging of sparse neurons and their projections. Understanding neural circuitry, neurons and their
constituent dendritic and axonal subtrees, is a central task in a wide range of biomedical and
neuroscience applications. We use a Gaussian smoothed image with a kernel size of 2.0 to generate
topological priors.

C Fast User Annotation of Topological Priors in 2D

We employ an interactive tool that facilitates and accelerates the labeling of priors graphs (16). A
screenshot of the painting is shown in Figure 4. The tool uses spatial acceleration structures to clamp
the user’s interaction to the nearest relevant topological element and uses shortest path algorithms to
facilitate drawing long paths, branching trees, and closed loops. Flood fill and region selection tools
allow rapid labeling of homogeneous regions.

1

2

2

1

1

3

4

5

(a) (b) (c)

Figure 4: Interactive tool allowing a human to specify a segmentation by labeling topological priors,
specifically polylines, as opposed to individual pixels. With the shortest-path tool, a user is six clicks
into labeling the foreground neurons (a). A user only needs 3 clicks to draw a closed loop (b). Finding
objects crossing a free-form stroke allows rapid labeling (c).

D Feature Statistics and Models

An image X is a 2-D tensor whose i, j-th entry Xi j represents the value (e.g. grayscale intensity) of
pixel (i, j) in that image. Images are first normalized prior to feature extraction in which additional
features for each pixel (i, j) are computed. We apply a series of transformations to the image,
each modeled as a function f (X) that returns an image of the same size, and consider the values
f (X)i j for various functions f as additional features for pixel (i, j). We create features of dimension
d = 47 by using d different choices of image transformation functions f . Our goal here is not to
perform exhaustive feature engineering, but to provide samples from widely used techniques. Our
transformations include the identity of the image, Gaussian blurring and differences of Gaussians with
standard deviation σ ∈ {2,4,8,16} to serve as a smoothing kernel for capturing pixel neighborhood
information, the maximum, minimum, median, and variance of pixel neighborhoods for radius sizes
{2,4,8,16}, Sobel filtration, Gaussian edge detection, and Hessian eigenvalue filtration.

Nodes having originated from topological priors also afford aggregate pixel statistics for those
covered by priors. For these, we compute the median, minimum, maximum, standard deviation, and
variance among pixel intensities. If the original pixels then have d−dimensional features, the priors
are represented by a 5×d−dimensional feature vector resulting in 235 features per topological prior.

We train a random forest and multilayer perceptron (MLP) on these pixel-level feature statistics,
which we denote by RF Pixel and MLP Pixel. We also investigate the performance of pixel-level
classification using a U-Net (21), which takes considerably longer to train.

We construct features for each topological prior using the aggregate statistics (median, minimum,
maximum, standard deviation, and variance) for pixel intensities of the pixels covered by the geometry
of the topological prior. We again perform classification in this space of topological priors (without
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Table 2: Homophily and class balance ratio for subgraph and entire graphs.
Data Homophily Ratio Class Ratio

Subgraph Full Graph Subgraph Full Graph
Neuron 0.35 0.86 1.32 0.28
Foam 0.38 0.76 5.12 1.93
Retinal 0.39 0.91 0.55 0.16

using the graph structure) using a random forest and a MLP, denoted RF Priors and MLP Priors.
To use the graph structure as well as the topological priors’ features, we use GraphSAGE (19) as
a baseline GNN model to learn node representations. We denote our hierarchical GNN methods
as GNN-HJT and GNN-HST for hierarchical joint training and hierarchical successive training,
respectively.

E Experimental Procedure

Hyperparameters We performed a parameter sweep of learning rates {1,2,3} × {1e−2,1e−3,1e−4}
finding 3e−3 to be the best. We trained each model for 10 epochs following the original GraphSAGE
paper (19) and use a weight decay of 1e−7. For each variant of graph neural network we use hidden
vertex embedding dimensions of 512 and 1024 with output vertex embedding of 256, and aggregate
neighbors’ embeddings by maximum pooling. We also add jumping knowledge between aggregation
layers of the GNN (22), which has been shown beneficial to combat high class heterophily that our
datasets exhibit (23), leading us to use four layers total.

Computing Environment All experiments were run on a laptop with 3 GB GeForce GTX 970M
with 1280 CUDA Cores GPU and 3.5 GHz i7-6700HQ (2.6 up to 3.5 GHz – 6MB Cache – 4 Cores –
8 Threads) processor running Ubuntu, Linux.

Training and Inference Procedure For each model and inference run, we perform a parameter
sweep for the foreground/background probability threshold to maximize the class F1 score - which
directly correlates to the Dice score and is functionally equivalent to the mean IOU class score.

For training, we chose sub-regions that accurately capture the diversity of geometric information
and variability within each dataset, starting with size 64×64. We then grow the training boxes by
approximately 10% of the image until terminating once the percentage of training exceeded more
than 60% of the image. Topological priors belonging to the priors graph entirely within the regions of
intersecting tiles of size 64×64 was used for training, and the remainder for inference probabilities
are assigned to all priors as belonging to the foreground target object class.

F Homophily and Class Balance

To gain an understanding of how homophily and class imbalance may affect the performance of the
methods we study, in Table 2 we report the homophily and class balance ratios for the priors graphs
(at higher and lower levels of persistence) derived from the datasets we consider. The class balance
ratio is defined as the number of total nodes positively labeled as foreground over the total number
of negatively labeled. For nodes u and v with labels yu and yv and edge set Ei for graph Gi in the
persistence hierarchy, the homophily ratio (23) is given by hi =

1
|Ei| ∑

v∈Ei

|{u∈N (v):yu=yv}|
|N (v)|

Intuitively, we expect the class imbalance to be larger in the subgraphs due to being associated to
sparser persistence subgraph. Namely, the ridge/valley graph from which these graphs originate
spans larger “ridge like” connectivity regions in the image space which are more likely, and with less
accuracy, associated to the semantic object. We anticipate the homophily ratio to be lower for this
same reason for lower-level persistence graphs since the loss of precision in expansive topological
priors may result in a mixture of adjacent class labels in the priors graph. Note that for the Foam
dataset, class imbalance is much higher. This may be one reason for our hierarchical methods’ low
relative performance on this dataset (and indeed the lower performance of all graph-based methods),
to be explored in future work.
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