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Abstract

Deep neural networks (DNNs) have been applied
to a variety of regulatory genomics tasks. For in-
terpretability, attribution methods are employed to
provide importance scores for each nucleotide in a
given sequence. However, even with state-of-the-
art DNNs, there is no guarantee that these meth-
ods can recover interpretable, biological represen-
tations. Here we perform systematic experiments
on synthetic genomic data to raise awareness of
this issue. We find that deeper networks have
better generalization performance, but attribution
methods recover less interpretable representations.
Then, we show training methods promoting ro-
bustness – including regularization, injecting ran-
dom noise into the data, and adversarial training
– significantly improve interpretability of DNNs,
especially for smaller datasets.

1. Introduction
As powerful function approximators that autonomously
learn features, deep neural networks (DNNs) have been
applied to learn genomic sequence patterns that are pre-
dictive of a regulatory function, such as protein binding,
chromatin accessibility, and histone marks (Zhou & Troy-
anskaya, 2015; Quang & Xie, 2016; Kelley et al., 2016;
Hiranuma et al., 2017; Alipanahi et al., 2015; Koo et al.,
2018). To interpret a trained DNN, attribution methods –
which include in silico mutagenesis (Alipanahi et al., 2015;
Zhou & Troyanskaya, 2015), backpropagation to the in-
puts (Simonyan et al., 2013), Deeplift (Shrikumar et al.,
2016), SHAP (Lundberg & Lee, 2017), guided backprop
(Springenberg et al., 2014), and integrated gradients (Sun-
dararajan et al., 2017) – provide importance scores (to first
order approximation) for individual nucleotides (nts).
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One factor that tends not to be considered is the quality of
the DNN’s fit beyond test performance, i.e. the smooth-
ness of the decision boundary. Deeper networks are more
expressive (Raghu et al., 2016), which allows them to fit
more complicated functions, but also enables them to easily
overfit to “noisier” functions. Nevertheless, DNNs that learn
noisier functions to attain perfect accuracy on the training
set may still generalize well, irrespective of whether they
are regularized (Zhang et al., 2016).

It has also been observed that DNNs are susceptible to ad-
versarial perturbations (Goodfellow et al., 2014). This obser-
vation was made in the context of image recognition, where
a small – often imperceptible to the human eye – change to
an input image leads to a drastically different classification
by the model. Adversarial examples can be generated using
iterative gradient-based methods to perturb the natural data.
To defend against these adversarial examples, an effective
method is adversarial training, where adversarial examples
are computed at each epoch and injected into the dataset
during training of the neural network (Madry et al., 2017).
Many methods to generate adversarial examples have been
proposed (Dong et al., 2017; Moosavi-Dezfooli et al., 2016;
Goodfellow et al., 2014). These methods have been shown
to be effective in increasing the robustness of DNNs.

Motivated by this line of work, we apply similar ideas in
the context of regulatory genomic datasets and explore how
interpretability improves using methods aimed to promote
robustness, including regularization, random noise injection,
and adversarial training. We perform systematic experi-
ments on synthetic DNA sequences to test the efficacy of a
DNN’s ability to learn combinations of sequence motifs that
comprise so-called regulatory codes. We find that reliability
of gradient-based attribution methods varies significantly
with the depth of the network, even though the classifi-
cation performance is similar. We also find that training
procedures that promote robustness have a small impact on
classification performance, but can significantly improve
the interpretability of the model.

2. Experimental overview
We posit that robustness may not necessarily affect general-
ization performance, but is indicative of interpretability with
gradient-based attribution methods. To test this, we created
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a synthetic dataset that recapitulates a simple regulatory
code classification task.

Dataset. We generated 30,000 synthetic sequences by em-
bedding known motifs in specific combinations. Positive
class sequences were synthesized by embedding 3 to 5 “core
motifs” – randomly selected with replacement from a pool
of 10 position frequency matrices, which include the for-
ward and reverse complement motifs for CEBPB, Gabpa,
MAX, SP1, and YY1 (Mathelier et al., 2016) – along a
random sequence model. Negative class sequences were
generated following the same steps with the exception that
the pool of motifs include 100 non-overlapping “background
motifs” from the JASPAR database (Mathelier et al., 2016).
Background sequences can thus contain core motifs; how-
ever, it is unlikely to randomly draw motifs that resemble
a positive regulatory code. We randomly combined syn-
thetic sequences of the positive and negative class and ran-
domly split the dataset into training, validation and test
sets with a 0.7, 0.1, and 0.2 split, respectively. Availability
of dataset and code: github.com/p-koo/uncovering_
regulatory_codes

Models. Leveraging recent progress on representation
learning of genomic sequence motifs (Koo & Eddy, 2018),
we designed two convolutional neural networks (CNNs),
namely LocalNet and DistNet, to learn “local” representa-
tions (whole motifs) and “distributed” representations (par-
tial motifs), respectively. Both take as input a 1-dimensional
one-hot-encoded sequence with 4 channels, one for each
nt (A, C, G, T), and have a fully-connected (dense) output
layer with a single sigmoid activation. The hidden layers
for each model are:

1. LocalNet
1. convolution (24 filters, size 19, stride 1, ReLU)

max-pooling (size 50, stride 50)
2. fully-connected layer (96 units, ReLU)

2. DistNet:
1. convolution (24 filters, size 7, stride 1, ReLU)
2. convolution (32 filters, size 9, stride 1, ReLU)

max-pooling (size 3, stride 3)
3. convolution (48 filters, size 6, stride 1, ReLU)

max-pooling (size 4, stride 4)
4. convolution (64 filters, size 4, stride 1, ReLU)

max-pooling (size 3, stride 3)
5. fully-connected layer (96 units, ReLU)

We created two variations of each model, without regular-
ization and with regularization. For the regularized models,
we incorporate batch normalization (Ioffe & Szegedy, 2015)
in each hidden layer; dropout (Srivastava et al., 2014) with
probabilities corresponding to: LocalNet (layer1 0.1, layer2
0.5) and DistNet (layer1 0.1, layer2 0.2, layer3 0.3, layer4
0.4, layer5 0.5); and L2-regularization on all parameters in
the network with a strength equal to 1e-6.

Training. We uniformly trained each model by minimiz-
ing the binary cross-entropy loss function with mini-batch
stochastic gradient descent (100 sequences) for 100 epochs.
We updated the parameters with Adam using default settings
(Kingma & Ba, 2014). All reported performance metrics are
drawn from the test set using the model parameters which
yielded the lowest loss on the validation set.

Attribution methods. To test interpretability of trained
models, we generate attribution scores by employing back-
prop from the logits – prior to the sigmoid activation – to the
inputs (Simonyan et al., 2013). We also employ smoothgrad
(Smilkov et al., 2017), a technique that builds upon standard
backprop to mitigate noise in attribution scores. Smooth-
grad adds Gaussian noise to the inputs and then averages
the resulting attribution scores. In practice, we generate 50
noisy samples for each sequence by adding noise drawn
from a Gaussian distribution N (0, 0.1) to each nt variant.
We note that while the inputs are no longer categorical, we
do not expect pathological behavior from the model since
DNNs treat the inputs as continuous values.

Quantifying interpretability. Since we have the ground
truth of embedded motif locations in each sequence, we can
test the efficacy of attribution scores. To quantify the inter-
pretability of a given attribution map, we calculate the area
under the receiver-operator characteristic curve (AU-ROC)
and the area under the precision-recall curve (AU-PR), com-
paring the distribution of attribution scores where ground
truth motifs have been implanted (positive class) and the
distribution of attribution scores at positions not associated
with any ground truth motifs (negative class). Specifically,
we first multiply the attribution scores (Sij) and the input
(Xij) and reduce the dimensions to get one score per posi-
tion (see Fig. 1A), according to Cj =

∑
i SijXij , where

i is the alphabet and j is the position. We then calculate
the information of the sequence model, Mij , according to
Ij = log2 4−

∑
iMij log2Mij . Positions that are given a

positive label are defined by Ij > 0, while negative labels
are given by Ij = 0. The AU-ROC and AU-PR is then
calculated separately for each sequence using the distribu-
tion of Cj at positive label positions against negative label
positions. For reference, Figure 1B shows representative
examples of attribution maps and ground truth for various
AU-ROC and AU-PR values.

3. Results
We trained LocalNet and DistNet with and without regular-
ization and compared the classification performance using
the area the receiver-operator characteristic curve (AUC).
We also compared the interpretability performance using
the AU-ROC and AU-PR of attribution score distributions
using ground truth from sequence models.
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AU-ROC = 0.951
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AU-ROC = 0.600

AU-PR = 0.937

AU-PR = 0.777

AU-PR = 0.540

Figure 1. Quantifying interpretability. (A) Shows a representative sequence model M , the sequence generated from the model (X), and
an attribution map from a trained DNN (S). (B) Various examples of attribution maps by the same model (LocalNet with regularization)
for different interpretability scores given by AU-ROC (bottom left inset) and AU-PR (top right inset). The ground truth sequence model is
shown above for visual comparison.

Accuracy does not translate to interpretability. Classi-
fication AUC is comparable between DistNet (0.964) and
LocalNet (0.967). However, LocalNet is significantly more
interpretable with a higher AU-ROC (0.751±0.055) and
AU-PR 0.599±0.112) compared to DistNet which yields
0.561±0.068 and 0.442±0.105, respectively. We surmise
that DistNet, which has a higher expressivity to fit more
complicated functions (Raghu et al., 2016), has fit to a
“noisier” function, resulting in poorer interpretability with
gradient-based attribution methods. Smoothgrad is designed
to address this issue by sampling the gradients about the
local function of the input data; however, this technique
seems to only marginally improve interpretability (Table 1).

Regularization significantly improves interpretability.
Regularization can increase the smoothness of fitted func-
tions in over-parameterized models, so we suspect it could
improve interpretability. It has been found that regular-
ization plays a minor role in generalization performance
for neural networks (Zhang et al., 2016). We noticed a
similar trend for both networks trained with and without
regularization, which includes batch normalization, dropout,
and L2-regularization (Table 1). As expected, we found
that regularization significantly improves interpretability of
both networks, especially for LocalNet. To see how well
these findings hold for smaller datasets, we downsampled
the 30,000 sequence dataset to 10,000 sequences and reran
the same experiments. We find similar trends, albeit with

slightly lower interpretability results (Table 1).

Gaussian noise injection improves interpretability.
Gaussian noise injection to the inputs has been found to im-
prove the robustness of DNNs (Fawzi et al., 2016). Here, we
add noise – by sampling a Gaussian distributionN (0, 0.1) –
to every nt in each sequence. A new set of noise is added at
each training epoch, but not during testing. For the larger
dataset, noise injection only improves DistNet on a consis-
tent basis, while yielding mixed results for LocalNet (Table
1). For the smaller dataset, we find that noise injection dur-
ing training significantly improves interpretability for each
model. The most interpretable models use a combination of
regularization, Gaussian noise injection and smoothgrad for
both LocalNet and DistNet.

Adversarial training has potential to improve inter-
pretability. Another technique to improve the robustness
of DNNs is adversarial training. To implement this, we first
train the model for 20 epochs on clean data. Then we apply
mixed adversarial training for 80 epochs, where half of each
batch is clean and the other half is adversarially perturbed.
We create the adversarial examples at each epoch using
projected gradient descent (Madry et al., 2017) for 20 itera-
tions, initialized with learning rate of 0.01. The maximum
allowed perturbation is ε = 0.2 for `∞ norm. In contrast to
an image classification problem where adversarial examples
are generated by using the least likely label as the target
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Table 1. Performance summary. The table shows each model’s classification performance given by the area under the ROC curve (AUC),
and the interpretability performance given by the average area under the ROC curve (AU-ROC) and the average area under the PR
curve (AU-PR) using backprop and smoothgrad. Error bars are the standard deviation of the mean. Each model is annotated by training
condition: standard training (no annotation), Gaussian noise injection (noise) and adversarial training (adv). Results are organized for
models trained on 30,000 sequence dataset (top) and 10,000 sequence dataset (bottom), and further subdivided into whether the model is
trained with or without regularization.

CLASSIFICATION BACKPROP SMOOTHGRAD
MODEL AUC AU-ROC AU-PR AU-ROC AU-PR

30
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DISTNET 0.964 0.561±0.068 0.442±0.105 0.566±0.065 0.464±0.099
LOCALNET 0.967 0.751±0.055 0.599±0.122 0.760±0.053 0.634±0.111
DISTNETnoise 0.970 0.604±0.057 0.482±0.112 0.622±0.055 0.521±0.108
LOCALNETnoise 0.963 0.759±0.053 0.611±0.118 0.769±0.050 0.649±0.108
DISTNETadv 0.972 0.691±0.112 0.439±0.142 0.664±0.098 0.509±0.128
LOCALNETadv 0.961 0.731±0.065 0.576±0.124 0.769±0.051 0.644±0.103

W
IT

H
R

E
G

. DISTNET 0.984 0.576±0.063 0.482±0.102 0.563±0.067 0.504±0.096
LOCALNET 0.975 0.864±0.056 0.744±0.119 0.869±0.051 0.758±0.110
DISTNETnoise 0.984 0.617±0.064 0.499±0.116 0.617±0.057 0.535±0.106
LOCALNETnoise 0.979 0.856±0.067 0.752±0.126 0.862±0.060 0.767±0.112
DISTNETadv 0.980 0.618±0.068 0.490±0.129 0.506±0.054 0.488±0.086
LOCALNETadv 0.942 0.746±0.087 0.561±0.159 0.751±0.078 0.546±0.156
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DISTNET 0.925 0.502±0.066 0.334±0.086 0.493±0.065 0.339±0.089
LOCALNET 0.861 0.689±0.066 0.416±0.117 0.705±0.066 0.445±0.120
DISTNETnoise 0.927 0.514±0.069 0.361±0.092 0.512±0.071 0.369±0.094
LOCALNETnoise 0.941 0.747±0.056 0.532±0.119 0.761±0.054 0.580±0.113
DISTNETadv 0.945 0.755±0.100 0.604±0.153 0.789±0.066 0.646±0.129
LOCALNETadv 0.915 0.737±0.080 0.501±0.141 0.760±0.059 0.550±0.127

W
IT

H
R

E
G

. DISTNET 0.974 0.564±0.057 0.449±0.092 0.578±0.056 0.491±0.087
LOCALNET 0.947 0.833±0.064 0.663±0.129 0.841±0.060 0.687±0.124
DISTNETnoise 0.977 0.605±0.073 0.513±0.108 0.613±0.071 0.541±0.102
LOCALNETnoise 0.958 0.849±0.064 0.713±0.131 0.858±0.058 0.735±0.122
DISTNETadv 0.970 0.596±0.076 0.555±0.110 0.608±0.064 0.547±0.096
LOCALNETadv 0.941 0.801±0.058 0.638±0.132 0.805±0.052 0.659±0.120

for the direction of the gradient, we maximize the loss for
the true label to create the adversarial attack, effectively
generating perturbed data that is misclassified.

In general, we find adversarial training consistently im-
proves DistNet’s interpretability, while LocalNet exhibits
mixed results (Table 1). Surprisingly, the largest gain in
interpretability was for DistNet trained without regulariza-
tion for the small dataset, which yields an AU-ROC and
AU-PR of 0.789±0.066 and 0.646±0.129 with smoothgrad.
We verified this anomaly across multiple independent tri-
als with different initializations (data not shown), leading
us to believe that we may have unintentionally chosen a
favorable combination of hyperparameters. Nevertheless,
LocalNet trained with regularization and noise still yields
an overall higher interpretability with an AU-ROC and an
AU-PR of 0.858±0.058 and 0.735±0.122, respectively. It
is challenging to find optimal hyperparameter settings for
adversarial training and to determine an optimal stopping
point during training. We did not fully explore alternative
adversarial techniques or optimize the CNN design here.
We hypothesize that further optimization could improve per-

formance. The scope of this analysis was to explore whether
adversarial training can improve interpretability.

Conclusion
Although attribution methods have been shown to provide
access to representations learned by a DNN, we raise the
important issue that their interpretability is not necessar-
ily reliable across architectures even when the DNN yields
high classification performance. We showed regularization,
Gaussian noise injection, and adversarial training – all of
which have been demonstrated to improve robustness of
DNNs in computer vision – are promising avenues to im-
prove interpretability for genomics. Further work is required
to optimize each of these training procedures specifically for
genomic sequence data. Moreover, it would also be interest-
ing to explore how other, non-gradient-based interpretability
methods, such as in silico mutagenesis, are affected by net-
work depth and training procedure. Further work is required
to understand how to design DNNs to balance the expres-
siveness to fit data and the ability to also interpret them.
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