
ProSST: Protein Language Modeling with Quantized
Structure and Disentangled Attention

Mingchen Li2,3,5∗ Yang Tan2,3,5,∗ Xinzhu Ma2,4 Bozitao Zhong1,4 Huiqun Yu3

Ziyi Zhou1 Wanli Ouyang2,4 Bingxin Zhou1 Pan Tan1,2 Liang Hong1,2,5

1 Shanghai Jiao Tong University, China
{zy-zhou,bingxin.zhou,hongl3liang}@sjtu.edu.cn, tpan1039@gmail.com,

2 Shanghai Artificial Intelligence Laboratory, China
{ouyang-wanli,maxinzhu}@pjlab.org.cn

3 East China University of Science and Technology, China
{lmc,tyang}@mail.ecust.edu.cn, yhq@ecust.edu.cn

4 The Chinese University of Hong Kong, China
zbztzhz@gmail.com;

5 Chongqing Artificial Intelligence Research Institute of Shanghai Jiao Tong University, China

Abstract

Protein language models (PLMs) have shown remarkable capabilities in various
protein function prediction tasks. However, while protein function is intricately tied
to structure, most existing PLMs do not incorporate protein structure information.
To address this issue, we introduce ProSST, a Transformer-based protein language
model that seamlessly integrates both protein sequences and structures. ProSST
incorporates a structure quantization module and a Transformer architecture with
disentangled attention. The structure quantization module translates a 3D protein
structure into a sequence of discrete tokens by first serializing the protein structure
into residue-level local structures and then embeds them into dense vector space.
These vectors are then quantized into discrete structure tokens by a pre-trained
clustering model. These tokens serve as an effective protein structure representation.
Furthermore, ProSST explicitly learns the relationship between protein residue
token sequences and structure token sequences through the sequence-structure
disentangled attention. We pre-train ProSST on millions of protein structures using
a masked language model objective, enabling it to learn comprehensive contextual
representations of proteins. To evaluate the proposed ProSST, we conduct extensive
experiments on the zero-shot mutation effect prediction and several supervised
downstream tasks, where ProSST achieves the state-of-the-art performance among
all baselines. Our code and pre-trained models are publicly available 2.

1 Introduction

Predicting the functions of proteins is one of the most critical areas in life sciences [1]. In recent
decades, protein sequence databases have experienced exponential growth [2], making it possible
to learn the fundamental representations of protein sequences with large-scale models in a data-
driven manner. Inspired by pre-trained language models in natural language processing [3, 4],
many pre-trained Protein Language Models (PLMs) have emerged [5, 6, 7, 8, 9]. Benefiting from
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remarkable protein representation capabilities, they have become fundamental tools for bioinformatics
in protein-related tasks.

The function of a protein is determined by its structure [10]. However, most PLMs mainly focus on
modeling protein sequences, neglecting the importance of structural information, and one significant
reason for this phenomenon is the lack of structural data. Fortunately, some excellent works, such
as AlphaFold [11] and RoseTTAFold [12], are proposed, which can accurately predict protein
structures. These works significantly expand the protein structure dataset [13] to millions and enable
the pre-training of large-scale structure-aware PLMs. After that, the major challenge is how to
effectively integrate protein structure information into PLMs. Specifically, existing structure-aware
PLMs [14, 15] first use Foldseek [16] to convert protein structures into discrete structure tokens and
then integrate these structural data into the Transformer architecture. However, despite achieving
promising performance on several tasks, this approach still faces two main issues. First, Foldseek
encodes the structure of a residue within a protein by considering only the features of its previous
and next residues. This representation is insufficient and may overlook subtle differences in the
local structure of proteins, such as catalytic sites or binding pockets, which are crucial for protein
function [17]. Second, the naive Transformer architecture lacks the ability to explicitly model the
relationship between protein sequences and structure token sequences, making it challenging to
effectively leverage structural cues.

In this paper, we develop ProSST (Protein Sequence-Structure Transformer), a structure-aware
pre-trained protein language model. Specifically, ProSST mainly consists of two modules: a structure
quantization module and a Transformer with sequence-structure disentangled attention. The structure
quantization module is based on a GVP (Geometric Vector Perceptron) [18] encoder, which can
encode a residue structure along with its neighborhoods in its local structure and quantize the
encoding vectors into discrete tokens. Compared to Foldseek, which only considers individual
residues, this encoder can take into account more information from the micro-environment of residue.
The sequence-structure disentangled attention module replaces the self-attention module in the
Transformer model. This can make Transformer model explicitly model the relationship between
protein sequence tokens and structure tokens, enabling it to capture more complex features of protein
sequences and structures. To enable ProSST to learn the contextual representation comprehensively,
we pre-train our model with the Masked Language Modeling (MLM) objective on a large dataset
containing 18.8 million protein structures. To summarize, our main contributions are as follows:

• We propose a protein structure quantizer, which can convert a protein structure into a
sequence of discrete tokens. These token sequences effectively represent the local structure
information of residues within a protein.

• We propose a disentangled attention mechanism to explicitly learn the relationship between
protein structure and residue, facilitating more efficient integration of structural token
sequences and amino acid sequences.

To evaluate the proposed ProSST, we conduct extensive experiments on zero-shot mutation effect
prediction and multiple supervised downstream tasks, where the proposed model achieves state-of-
the-art results among all baselines. Besides, we also provide detailed ablations to demonstrate the
effectiveness of each design in ProSST.

2 Related Work

2.1 Protein Representation Models

Based on the input modality, protein representation models can be divided into three categories:
sequence-based models, structure-based models, and structure-sequence hybrid models.

Sequence-based models. Sequence-based models treat proteins as a sequence of residue tokens,
using the Transformer model [19] for unsupervised pre-training on extensive datasets of sequence.
According to the pre-training objective, current models can be further divided into BERT-based
models [4], GPT-based models [3], and span-mask based models. Specifically, BERT-style models,
including ESM-series models [5, 6, 7], ProteinBert[9], and TAPE [20], aim to recover the masked
tokens in the training phase. The GPT-style models, such as Tranception [21], ProGen2 [22], and
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ProtGPT2 [23], progressively generate the token sequences in an auto-regressive manner. Lastly,
models that use span-mask as the training objective include Ankh [24], ProtT5 [8], and xTrimo [25].

Structure-based models. Protein structures play a dominant role in protein functionality. Therefore,
models leveraging structure information generally get more accurate predictions. Recently, various
techniques have been applied in learning protein structure representation, including CNN-based
models [26] and GNN-based models [18, 27, 28, 29, 30], where the GNN-based ones have demon-
strated significant versatility in integrating protein-specific features through node or edge attributes.
Moreover, the recent advancements in protein folding models [7, 11, 31] enable the structure-based
models access to extensive datasets of protein structures. This led to a growing interest in developing
PLMs that leverage protein structure cues [14, 15, 32].

Structure-sequence hybrid models. Hybrid models, which incorporate both sequence and structure
information of proteins, offer more effective representations of proteins. For example, the LM-
GVP[33] model employs ProtBERT-BFD [9] embeddings as input features for the GVP [18] model,
while ESM-GearNet [34] investigates various methods of integrating ESM-1b [5] representations
with GearNet [32]. Similarly, the recent ProtSSN [35] model leverages ESM-2 [7] embeddings
as input for the EGNN [36] model, resulting in notable advancements. Both ESM-IF1 [37] and
MIF-ST [38] target inverse folding, utilizing the structure to predict corresponding protein residues,
whereas ProstT5 [15] focuses on the transformation between residue sequences and their structure
token sequences [16] as a pre-training objective. SaProt [14] constructs a structure-aware vocabulary
using structure tokens generated by foldseek [16]. Both SaProt and ProstT5 extensively utilize large
structure databases [13] for their pre-training datasets. ProSST is also a hybrid structure-sequence
model. Compared to previous work, ProSST develops an advanced structure quantization method
and a better attention formulation to leverage the structure cues.

2.2 Protein Structure Quantization

The most intuitive way to represent a protein structure is using continuous features, such as coordi-
nates, dihedral angles and distance map. However, directly using these continuous features in the
pre-training may lead to overfitting [14]. This issue arises from the mismatched representations of
the structure between the training set (derived from model predictions) and the test set (measured by
wet-lab experiments). As the bridge to eliminate this gap, structure quantization has been investigated
by a few works. These methods can be divided into two groups based on the way to generate the
discrete secondary structure, including the methods based on physical computing, such as DSSP
[39], and the methods based on deep learning, such as Foldseek [16], which have been successfully
applied to structure-aware PLMs [14, 15]. The structure quantization module of ProSST also relies
on learning-based approaches but provides a more detailed residue structure representation than
Foldseek.

3 Method

In this section, we introduce the architecture of ProSST. ProSST mainly contains two modules:
structure quantization (Section 3.1) module and a-transformer-based model with sequence-structure
disentangled attention. (Section 3.2).

3.1 Structure Quantization Module

The structure quantization module aims to transform a residue’s local structure into a discrete token.
Initially, the local structure is encoded into a dense vector using a pre-trained structure encoder.
Subsequently, a pre-trained k-means clustering model assigns a category label to the local structure
based on the encoded vector. Finally, the category label is assigned to the residue as the structure
token. The pipeline of structure quantization is shown in Figure 1.

Structure representation. We categorize protein structures into two distinct levels: protein structure
and local structure. Protein structure denotes the complete architecture of a protein, including
all its residues. The local structure focuses on specific individual residues. It describes the local
environment of a residue by centering on a specific residue and including it along with the nearest
40 residues surrounding it in three-dimensional space [18]. Compared to protein structure, local
structures are in finer granularity, which allows for a more accurate description of the structure of
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Figure 1: The pipeline of structure quantization. (A) Training of the structure encoder. (B) Local
structure clustering and labeling. (C) Converting a protein structure to structure token sequence.

residue. Therefore, a protein containing L residues has one protein structure and L local structures.
Despite the different levels of structure, we can use graphs to represent it. Formally, we represent
a structure using graph G = (V ,E), where V and E denote the residue-level nodes and edges,
respectively. For any given node v ∈ V , it contains only the structure information of the residue,
without any residue type information of the residue itself. This ensures that the structure encoder is
solely focused on the structure cues. The edge set E = {eij} includes all i, j for which vj is one of
the top-40 nearest neighbors of vi, determined by the distance between their Cα atoms.

Structure encoder. Based on the above-mentioned definition of structure, we use geometric vector
perceptrons (GVP) [18] as the (local) structure encoder. In particular, the GVP can be represented
as a structure feature extraction function πθ(G) ∈ Rl×d, where l is the number of nodes, d is the
embedding dimension, and θ is trainable parameters. We integrate GVP with a decoder that includes
a position-wise multi-layer perceptron (MLP) to form an auto-encoder model. The entire model
is trained using a de-noising pre-training objective. In this process, we perturb Cα coordinates
with 3D Gaussian noise (Figure 1A) and use Brownian motion on the manifold of rotation matrices,
according to RF-Diffusion [40]. The model is then tasked with recovering the structure to its original,
noise-free state. After being trained on the C.A.T.H dataset [41] (see Appendix A.2), we exclude
the decoder and utilize solely the mean pooled output of the encoder as the final representation of
structures. Although the structure encoder is trained on protein structures, it can effectively encode
local structures. Therefore, for a graph G of a protein structure, the encoding is: r = 1

l

∑l
i=1 πθ(gi),

where gi represents the graph of the local structure associated with the i-th residue in the graph G,
and πθ(gi) ∈ Rd is the output of the encoder for the i-th node. Here, r ∈ Rd is the mean pooled
output of the encoder and the vectorized representation of the local structure.

Local structure codebook. The structure code book quantizes dense vectors representing protein
structure into discrete tokens (Figure 1B). To build this, we employ a structure encoder to embed the
local structures of all residues from the C.A.T.H dataset (See in Appendix A.2) into a continuous
latent space. Then we apply the k-means algorithm to identify K centroids within this latent space,
denoted as {ei}Ki=1. These centroids constitute the structure codebook, as shown in Figure 1B. For
any local-structure embedding, it is quantized by the nearest vector ej within the codebook and
j serving as the structure token. In this paper, the clustering number K is also referred to as the
structure vocabulary size.

Protein serialization and quantization. In general, for a residue at position i in a protein sequence,
we first build a graph gi only based on its local structure, and then use the structure encoder to embed
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it into a continuous vector ri. Then we use the codebook to assign a structure token si ∈ {1, 2, ...,K}
to this vector as the structure token of the residue. Overall, the entire protein structure can be serialized
and quantized into a sequence of structure tokens (Figure 1C).

3.2 Sequence-Structure Disentangled Attention
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Figure 2: Model architecture of ProSST. ProSST is a Transformer-style model and the difference is
that ProSST uses disentangled attention instead of self-attention [19].

Inspired by DeBerta [42], we use an expanded form of disentangled attention to combine the attention
of residual sequences and structure sequences as well as relative positions. Specifically, for a residue
at position i in a protein sequence, it can be represented by three items: Ri denotes its residue token
hidden state, Si represents the embedding of residue-level local structure, and P i|j is the embedding
of relative position with the token at position j. The calculation of the cross attention Ai,j between
residue i and residue j can be decomposed into nine components by:

Ai,j = {Ri,Si,P i|j} × {Rj ,Sj ,P j|i}⊤

= RiR
⊤
j +RiS

⊤
j +RiP

⊤
j|i

+ SiR
⊤
j + SiS

⊤
j + SiP

⊤
j|i

+ P i|jR
⊤
j + P j|iS

⊤
j + P j|iP

⊤
j|i.

(1)

As formulated in Equation 1, the attention weight of a residue pair can be calculated by separate
matrices, including residue tokens, structure tokens, and relative positions. These matrices are
utilized for various interactions such as residue-to-residue, residue-to-structure, residue-to-position,
structure-to-residue, structure-to-structure, structure-to-position, position-to-residue, position-to-
structure, and position-to-position. Since our model concentrates on learning contextual embeddings
for residues, the terms structure-to-structure (SiS

⊤
j ), structure-to-position (SiP

⊤
j|i), position-to-

structure (P j|iS
⊤
j ), and position-to-position (P j|iP

⊤
j|i) do not provide relevant information about
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residues and thus do not contribute significantly. Consequently, these terms are removed from our
implementation of the attention weight calculation. As shown in Figure 2, our sequence-structure
disentangled attention mechanism includes 5 types of attention.

In the following part, we use single-head attention as an example to demonstrate the operation of
sequence-structure disentangled attention. To begin, we define the relative position of the i-th to the
j-th residue, denoted as δ(i, j):

δ(i, j) =


0 if i− j ≤ −Lmax

2Lmax − 1 if i− j ≥ Lmax ,

i− j + Lmax otherwise
(2)

where, Lmax represents the maximum relative distance we consider, which is set to 1024 in the
implementation. Similar to standard self-attention operation [19], the computation of query, key for
structure, residue and relative position, and the value for residue is as follows:

Qr = RW q
r Kr = RW k

r V r = RW v
r

Qs = SW q
s Ks = SW k

s

Qp = PW q
p Kp = SW k

p

(3)

and the the attention score Âi,j from residue i to residue j can be calculated as follows:

Âi,j = Qr
iK

r
j
⊤︸ ︷︷ ︸

(a) residue-to-residue

+ Qr
iK

s
j
⊤︸ ︷︷ ︸

(b) residue-to-structure

+ Qr
iK

p
δ(i,j)

⊤︸ ︷︷ ︸
(c) residue-to-position

+ Kr
jQ

s
i
⊤︸ ︷︷ ︸

(d) structure-to-residue

+ Kr
jQ

p
δ(j,i)

⊤︸ ︷︷ ︸
(e) position-to-residue

(4)

where Qr
i represents the i-th row of the matrix Qr, and Kr

j denotes the j-th row of Kr. Qs
i and

Ks
j are the i-th and j-th rows of Qs and Ks, respectively. The term Kp

δ(i,j) refers to the row in Kp

indexed by the relative distance δ(i, j), and Qp
δ(j,i) refers to the row in Qp indexed by the relative

distance δ(j, i). To normalize the attention scores, a scaling factor of 1√
5d

is applied to Â. This
scaling is crucial for ensuring the stability of model training [42], particularly when dealing with
large-scale language models. All the Âij form the attention matrix, and the final output residue
hidden state is Ro:

Ro = softmax(
Â√
5d

)V r, (5)

which is used as the input for the hidden state of the next layer.

3.3 Pre-Training Objective

ProSST is pre-trained with the structure-conditioned masked language modeling. In this approach,
each input sequence x is noised by substituting a fraction of the residues with a special mask token
or other residues. The objective of ProSST is to predict the original tokens that have been noise in the
input sequence, utilizing both the corrupted sequence and its structure token sequence s as context:

LMLM = Ex∼XEM

∑
i∈M

−log p(xi|x/M , s). (6)

We randomly select 15% indices from the set M for nosing and computing loss for back-propagation.
At each selected index i, there is an 80% chance of substituting the residue with a mask token, a 10%
chance of replacing it with a random residue token, and the remaining residues are unchanged. The
training objective is to minimize the negative log-likelihood for each noised residue xi, based on
the partially noised sequence x/M and the un-noised structure tokens, serving as contextual cues.
Therefore, to accurately predict the noised tokens, this objective enables the model not only to learn
the dependencies between residues but also the relationship between residues and structures. The
details of pre-training dataset and hyper-parameter configuration can be found in Appendix A.2.
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Model Model Type ρs ↑ NDCG ↑ Top-recall ↑
EVE [49] 0.439 0.781 0.230

EVmutation [53] 0.395 0.777 0.222
DeepSequence [51] 0.407 0.774 0.225

WaveNet [50] 0.373 0.761 0.203
GEMME [47] 0.457 0.777 0.211

MSA-Transformer [48]

Evolution-based

0.434 0.779 0.217
Tranception [21] 0.434 0.779 0.220

RITA [44] 0.372 0.751 0.193
UniRep [45] 0.190 0.647 0.139
ESM-1v [6] 0.374 0.732 0.211
ESM-2 [7] 0.414 0.747 0.217

ProGen2 [22] 0.391 0.767 0.199
VESPA [46]

Sequence-based

0.394 0.759 0.201
ESM-IF [37] 0.422 0.748 0.223
MIF-ST [38] Inverse-folding 0.401 0.765 0.226

Trancepiton-EVE [52] 0.457 0.786 0.230
ESM-1v* [6] 0.407 0.749 0.211

DeepSequence* [51]
Ensemble Models

0.419 0.776 0.226
SaProt [14] 0.457 0.768 0.233

ProSST Sequence-Structure models 0.504 0.777 0.239
Table 1: Comparison of zero-shot mutation prediction performance on ProteinGYM benchmark [43]
between ProSST and other models. ρs is the Spearman rank correlation.

4 Experiments

In this section, we comprehensively evaluate the representation ability of ProSST in several bench-
marks, covering zero-shot mutant effective prediction tasks (Section 4.1) and various supervised
function prediction tasks (Section 4.2). Additionally, we also provide ablation studies and discussions
to further show the effectiveness of the detailed designs in our model (Section 4.3).

4.1 Zero-Shot Mutant Effect Prediction

Datasets. To evaluate the effectiveness of ProSST in zero-shot mutant effect prediction, we conduct
experiments on ProteinGym [43] and utilize AlphaFold2 [11] to generate the structures of wild-type
sequences. See Appendix A.2 for the details of the dataset and Appendix A.1 for scoring method.

Baselines. We compare ProSST with the current state-of-the-art models, including sequence-based
models [6, 7, 21, 44, 45, 22, 46], sequence-structure model [14], inverse folding models [37, 38],
evolutionary models [47, 48, 49, 50, 51], and ensemble models [6, 52, 51].

Results. Table 1 shows the performance of zero-shot mutant effect prediction on ProteinGYM. Based
on the results, we draw several noteworthy conclusions:

• ProSST outperforms all baselines on zero-shot mutant effect predictions of ProteinGYM. We
used the non-parametric bootstrap method to calculate the standard error of the difference
in Spearman performance between each model and ProSST. The results showed that all
standard errors were less than 0.01. This calculation was based on 10,000 bootstrap samples
extracted from proteins in the ProteinGym benchmark. Furthermore, ProSST was compared
against other models on subsets of ProteinGYM categorized by function, such as stability,
activity, binding, and expression. ProSST achieves state-of-the-art (SOTA) performance
in the stability, binding, and expression subsets, as detailed in Appendix A.4. Notably,
ProSST achieves the best performance in predicting stability, aligning with the previous
findings that models incorporating structure information typically perform better in stability
predictions [43].

• The degraded version of ProSST (without structure) gets results similar to other sequence-
based models. This demonstrates that the performance improvement of our model stems
from the efficient modeling of structure information, rather than other factors such as more
powerful backbones.
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DeepLoc Metal Ion Binding Thermostability GO-MF GO-BP GO-CC

Model # Params Acc% ↑ Acc% ↑ ρs ↑ F1-Max ↑ F1-Max ↑ F1-Max ↑
ESM-2 650M 91.96 71.56 0.680 0.670 0.473 0.470

ESM-1b 650M 92.83 73.57 0.708 0.656 0.451 0.466

MIF-ST 643M 91.76 75.08 0.694 0.633 0.375 0.322

GearNet 42M 89.18 71.26 0.571 0.644 0.481 0.476

SaProt-35M 35M 91.97 74.29 0.692 0.642 0.431 0.418

SaProt-650M 650M 93.55 75.75 0.724 0.682 0.486 0.479

ESM-GearNet 690M 93.55 74.11 0.651 0.676 0.516 0.507

ProSST 110M 94.32(±0.10) 76.37(±0.02) 0.726(±0.04) 0.682(±0.003) 0.492(±0.004) 0.501(±0.002)

Table 2: Comparison of supervised fine-tuning on downstream tasks. ρs denotes the Spearman
correlation coefficient.

4.2 Supervised Fine-Tuning Tasks

Downstream tasks. For supervised learning, we choose four protein downstream tasks, including
thermostability prediction, Metal Ion Binding prediction, protein localization prediction (DeepLoc)
and GO annotations prediction (three settings including MF, BO, and CC). More details of the tasks,
datasets, and metrics can be found in Appendix A.2

Baselines. We compared ProSST with other PLMs including ESM-2[7], ESM-1b [5], and the
sequence-structure model SaProt [14] (two parameter versions, 35M and 650M), MIF-ST [38], as
well as the protein structure representation model GearNet [32] and ESM-GearNet [34].

Results. The results of the supervised fine-tuning tasks are shown in Table 4.2, and we can get the
following conclusions:

• ProSST gets the best results among all models with 4 firsts in all 6 settings. For the tasks
(settings) of DeepLoc, Metal Ion Binding, ProSST largely surpasses other methods, and
ESM-GearNet gets comparable (or slightly better) results for thermostability and GO-BP
and GO-CC with ProSST, at the price of more than 6× model size.

• The sequence-structure models, ESM-GearNet, SaProt and ProSST, show better results than
other counterparts, which suggests the importance of the structure cues in protein modeling.
Furthermore, ProSST is more capable of integrating sequence and structure information of
proteins than SaProt, which confirms the effectiveness of our designs.

Combined with the results in Section 4.1, ProSST exhibits powerful ability in multiple settings.

4.3 Ablation Study

In this section, we provide additional ablation studies and discussions to show the necessity and effec-
tiveness of the detailed designs in ProSST. Specifically, we use zero-shot mutant effect prediction on
ProteinGYM, supervised downstream task DeepLoc, and the perplexity in the pre-training validation
set to conduct corresponding experiments.

Ablations on quantized structure. The ablation results of quantized structure are shown in Table 3
and Figure 3(a), and we can get the following findings:

• We can find, as the increases of K (the size of local structure vocabulary), the performance
of ProSST shows an upward trend on all metrics, and most metrics achieve the best results
with K = 2048. Based on that, we set K = 2048 as our default setting.

• As the increase of K, the convergence of ProSST improves progressively (Figure 3(a)),
which suggests incorporating structure cues can improve the representation capabilities of
models.

• Based on the same network architecture, the proposed structure quantization method (with
an appropriate hyper-parameter K) performs better than Foldseek [16] and DSSP [39],
which shows the effectiveness of our design.
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DeepLoc ProteinGYM Pretraining

Acc% ↑ ρs ↑ NDCG ↑ Top-Recall ↑ Perplexity ↓
ProSST (K=4096) 93.88 (±0.15) 0.498 0.773 0.233 8.880

ProSST (K=2048) 94.32 (±0.10) 0.504 0.777 0.239 9.033

ProSST (K=1024) 93.43 (±0.15) 0.485 0.760 0.231 9.333

ProSST (K=512) 93.70 (±0.16) 0.471 0.759 0.223 9.577

ProSST (K=128) 93.14 (±0.04) 0.469 0.753 0.228 10.021

ProSST (K=20) 93.05 (±0.13) 0.438 0.744 0.210 10.719

ProSST (K=1) 89.48 (±0.24) 0.390 0.738 0.181 12.182

ProSST (K=0) 89.77 (±0.26) 0.392 0.741 0.184 12.190

ProSST (Foldseek) 93.08 (±0.22) 0.468 0.759 0.228 10.049

ProSST (DSSP) 93.16 (±0.16) 0.439 0.760 0.204 10.009

Table 3: Ablation studies on quantized structure. We first show the performance of our models with
K centroids of local structures. ProSST (K=0) refers to the model without structure token sequence.
We also replace the proposed quantization method with existing Foldseek and DSSP, and show the
results of these variants.

DeepLoc ProteinGYM Pretraining

Acc% ↑ ρs ↑ NDCG ↑ Top-Recall ↑ Perplexity ↓
ProSST 94.32 (±0.10) 0.504 0.777 0.239 9.033

ProSST (- P2R) 91.31 (±0.14) 0.478 0.778 0.227 9.173

ProSST (- R2P) 92.17 (±0.32) 0.466 0.772 0.216 9.410

ProSST (- R2S) 90.48 (±0.41) 0.438 0.766 0.208 12.142

ProSST (- S2R) 91.27 (±0.20) 0.475 0.779 0.226 9.355

ProSST (- PE) 86.05 (±0.65) 0.095 0.634 0.126 13.885

ProSST (self-attention) 90.37 (±0.21) 0.401 0.728 0.189 12.346

Table 4: Ablation studies on disentangled attention. The term "-S2R" denotes the removal of structure-
to-residue in our attention formulation, similar to other terms, and "- PE" denotes the removal of
positional encoding. ProSST (self-attention) refers to the model trained with standard attention (with
structure cues).
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Figure 3: Perplexity curves of ProSST under different settings. We ablate the components of quantized
structure and disentangled attention, and show their perplexity curves on the validation set.
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• ProSST (Foldseek), ProSST (DSSP), and all ProSST (K>0) models significantly surpass
ProSST (K=0) in all metrics, which confirms the importance of the structure cues again.

• There is almost no difference in performance between ProSST (K=1) and ProSST (K=0),
indicating that the improvement does not come from the rise in parameters of disentangled
attention.

Ablations on disentangled attention. Here we show detailed ablations and comparisons of disentan-
gled attention in Table 4 and Figure 3(b), and we can get the following observations:

• All items in Equation 4 are necessary to our attention formulation. Also note that ‘P2R’
attention has the least impact on model capacity, with the Perplexity slightly increasing
from 9.033 to 9.173, suggesting that positional attention to amino acids is relatively less
critical than other items. Conversely, removing ‘R2S’ item results in a significant increase
in Perplexity from 9.033 to 12.142, underscoring the important role of structure information
in enhancing the model’s representation capability.

• Compared with standard self-attention, our attention formulation gets better results for all
metrics, indicating that explicitly modeling structure cues is crucial for integrating such
information. Besides, positional encoding is also necessary in our design.

As we have mentioned in the Section 2, our disentangled should learn the connections between
structure and residue sequence. To valid these, we conduct further experiments to analyze disentangled
attention in the Appendix A.5.

5 Conclusion and Limitations

This paper introduces ProSST, a protein sequence-structure transformer for PLM. ProSST includes
two key techniques, protein structure quantization and sequence-structure disentangled attention. The
structure quantization module contains an encoder and a k-means clustering model. The encoder is
trained with a denoising objective and is utilized for encoding protein structures. Leveraging this
encoder, we embed the local structures of each residue within every protein in the C.A.T.H dataset into
a continuous latent space. Then we utilize k-means clustering algorithm to obtain K (default setting
is 2048) centroids. These centroids are then utilized to discretize the local structures of residues
based on the index of the nearest centroid of its structure embedding vectors. A protein structure
can be transformed into a sequence of discrete numbers (or referred to tokens) and each token
representing the corresponding local structure of residue. The sequence-structure attention enhances
standard self-attention by not only considering self-attention residues but also incorporating attention
between residues and structures, and vice versa. This enables the model to learn the relationships
between residues and structures, thereby acquiring improved adequate contextual representations
of residues. Furthermore, we pre-train ProSST with 18.8 million protein structures using a MLM
objective. Experimental results show that ProSST can outperform existing models in ProteinGYM
benchmark and other supervised learning tasks. Despite of this, there are some limitations of ProSST.
For example, the local structure construction and encoding requires heavy computations. In the
future work, we aim to speed up the protein structure quantization process. Another threat is that
the structural and sequential data are required for ProSST to derive the final protein representations,
since the amount of available structural data is lower than that of sequence data. We provide solutions
in the Appendix Section A.6. Additionally, we plan to enhance ProSST by training it with larger
structure datasets and expanding its parameter, which may further improve its performance.
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A Appendix

A.1 Zero-Shot Scoring

Previous studies have demonstrated that PLMs, when trained on extensive and varied protein sequence
databases, are capable of predicting experimental measurements of protein mutants function without
further supervision [6, 14]. For those PLMs that are trained with masked language modeling objective,
the calculation of mutation scores can be formalized as follows:

Score(F ) =

|F |∑
i=1

logP (xpi
= f i|x)− logP (xpi

= wi|x) (7)

Here F is a single or multi-point mutant, and F = {(pi,f i,wi)|i = 1, 2, ..., |F |} is a set of triplets,
where pi ∈ N represents the mutation position, f i is the residue after the point mutation, and wi is
the original residue of the point mutation. x is the sequence of residues of the wild type. We slightly
modify the formula above to adapt to ProSST, where the structure sequence is an additional condition
to score mutants:

Score(F ) =

|F |∑
i=1

logP (xpi
= f i|x, s)− logP (xpi

= wi|x, s) (8)

Here, s is the structure token sequence of the wild type.

A.2 Details of the Datasets and Metrics

Dataset for pre-training. The pre-training data is collected from AlphaFoldDB [13], which contains
more than 214 million structures predicted by AlphaFold [11]. We downloaded the 90% reduced
version, containing 18.8 million structures.3. From this collection, we randomly select 100,000
structures for validation (sequences with a similarity of over 30 to the training set will be removed for
data deduplication.), enabling us to monitor the perplexity in the training phase. During pre-training,
proteins with more than 2048 resiudes (594 samples) are removed for training efficacy.

Dataset for training structure encoder. The dataset used for training the structure encoder originates
from CATH43-S40 4. This dataset is manually annotated and comprises protein crystal structural
domains that have been deduplicated for sequence similarity by 40%. The original dataset contains
31,885 structures. After removing structural domains missing atoms such as Cα and N, the dataset
is reduced to 31,270 entries. From this, 200 structures were randomly selected to serve as a validation
set. The auto-encoder model was then trained using the configuration that yielded the lowest loss on
this validation set.

Dataset for training structure codebook. The dataset for training the structure codebook consists
of local structures extracted from CATH43-S40. Given a protein structure, slide along the residue
sequence to select a segment with a chosen residue as the anchor. Connect up to 40 residues
within 10 Å [54] to form a star-shaped graph. As shown in Figure A4, local structures with more
than 40 neighbors account for only 0.00052%, indicating that our choice covers most cases. For
pairwise amino acid pairs in this graph, if the Euclidean distance is less than 10 Å, a link will be
assigned to them. This process yields a number of protein local structures equal to the length of the
protein multiplied by the total number of proteins, resulting in 4,735,677 local structures from the
protein structures in CATH43-S40. These sub-structures are fed into a structural encoder to obtain
embeddings. By setting various quantities for K, different structure codebooks are obtained using
the k-means clustering algorithm.

Dataset and metrics for zero-shot mutant effect prediction.

We utilize the ProteinGYM benchmark [43] to assess the zero-shot mutant effect prediction capabili-
ties of ProSST. ProteinGYM offers comprehensive benchmarks specifically collected for predicting

3https://cluster.foldseek.com/
4http://download.cathdb.info/cath/releases/all-releases/v4_3_0/non-redundant-data-sets/

15



Figure A4: The distribution of the number of residues within 10 Å distance of a local structure.

protein fitness. It contains a wide range of deep mutational scanning assays with millions of mutated
sequences. ProSST is evaluated using the most extensively utilized datasets for substitution mutations,
which include 217 experimental assays. Each assay incorporates both the sequence and structure of
the protein, with a particular emphasis on 66 datasets that focus on thermo-stability. The evaluation
metrics employed are the Spearman coefficient, Top-recall, and NDCG, where higher values signify
superior model performance. These metrics are computed using scripts 5 provided by ProteinGYM.

Datasets and metrics for downstream tasks. The downstream datasets have the same train, valid,
and test splits as SaProt’s and are downloaded from SaProt. Data statistics are provided in Table A5.

• Thermostability. The task is to predict the thermostability values of proteins using the
"Human-cell" divisions from the Thermostability task in FLIP [55]. For this regression
task, the Spearman correlation coefficient is utilized as the evaluation metric to evaluate the
prediction results.

• DeepLoc (Protein Sub-cellular Localization). The task is to output a probability distribution
across two sub-cellular localization categories for a protein. This is a binary classification
task, and we utilize accuracy as the metric to evaluate the predictions. This dataset was
introduced by DeepLoc [56] and we use the original data split.

• Metal Ion Binding. The task is to predict whether metal ion-binding sites exist within a
protein. This is also a binary classification task, and we utilize accuracy as the metric to
evaluate the predictions. This dataset was introduced by TAPE [20], and we use the original
data split.

• GO annotations prediction. This task is to predict Gene Ontology terms to evaluate the
model’s ability to predict protein functions. This task was introduced by DeepFRI [26],
and we use three types of GO labels: Molecular Function (MF), Biological Process (BP),
and Cellular Component (CC). This is a multi-label classification task, and we evaluate the
model using the Max F1-Score.

A.3 Details of Implementations

Structure encoder. We describe a structure with the graph G = (V ,E), adopting the characteriza-
tions of V and E as outlined in the GVP framework [18]. The GVP encoder includes a six-layer
message-passing graph neural network in which a geometric perceptron replaces the MLP to ensure
translational and rotational invariance of the input structure. Our GVP encoder is consistent with the
original GVP-GNN [18], except that we removed the residue type information. The GVP encoder
is trained from scratch. The dimensions for node and edge representations are set at 256 and 64,

5https://github.com/OATML-Markslab/ProteinGym/blob/main/scripts/
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Dataset Training Valid Test Total

Termostability 5,056 639 1,336 7,031

DeepLoc 5,477 1,336 1,731 8,544

Metal Ion Binding 5,067 662 665 6,394

Go annotations prediction 26,224 2,904 3,350 32,478

Table A5: Downstream datasets split statistics.

respectively, with the encoder comprising six layers. For optimization, we employ the Adam opti-
mizer in a mini-batch gradient descent approach. To manage computational load, batches are formed
by grouping structures of similar sizes, with each batch containing no more than 3000 nodes. The
learning rate is set to 1.0× 10−4. The dropout probability is set to 0.01. And The number of graph
layers is set at 6. The training and validation curves of the structure encoder are shown in Figure 5(a).

(a) (b)

Figure A5: (a) Training and validation curves of the local-structure auto-encoder. (b) Inference speed
of ProSST on different sequence lengths. (batch size = 16).

Pre-training. All ProSST models is trained on a DGX-A800 GPU (8×80G) server in BF16 precision
for about a month. The model has 12 transformer layers, 12 attention heads, and 768 embedding
dims with 3172 feed-forward embedding dimensions with the GELU activation function. We train
with 8192 tokens per mini-batch for 500,000 steps. We use AdamW [57] as our optimizer with β1

and β2 set to 0.9 and 0.999, and a weight decay value of 0.001. We warm up the learning rate from
0 to 0.0002 over the first 2000 steps, then decay it by a cosine schedule to the 0. We use a dropout
rate of 0.1 and clip gradients using a clipping value of 1.0. For the tokenization of the protein data,
we use the residue-level tokenizer which is adopted in several PLMs [5, 7, 6]. To make the structure
sequence the same length as the amino acid sequence, we also added special [SOS], [EOS], and
[PAD] token for the structure sequences.

Fine-tuning. To ensure fair comparisons, we fine-tuned ProSST using a fixed set of hyper-parameters.
We use for the Adam optimizer with β1 set to 0.9, β2 to 0.98, and applied an L2 weight decay of
0.001. The batch size was maintained at 64 (If 64 causes the GPU memory to explode, we will reduce
the batch size and then use gradient accumulation to achieve the same batch size.) and the learning
rate was set at 0.00003, except for Go annotation prediction, where it was adjusted to 0.00001.
We fine-tuned all model parameters for 200 epochs, and we choose the best checkpoints based on
validation set performance. Following SaProt [14]6, we downloaded all protein structures identified
by Uniprot IDs from AFDB [13], and any proteins not found in AFDB were excluded.

Inference Speed. We computed the inference speed of ProSST, SaProt (650M) and SaProt (35M)
on proteins of different lengths using a batch size of 16 on a server equipped with two Intel 6248R
processors and a 3090 GPU and the results are shown in Table 5(b).

6https://github.com/westlake-repl/SaProt
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Model Activity Binding Expression Organismal Fitness Stability

EVE 0.464 0.386 0.408 0.447 0.491

EVmutation 0.440 0.317 0.378 0.411 0.430

DeepSequence 0.455 0.363 0.390 0.413 0.476

WaveNet 0.379 0.325 0.350 0.365 0.449

GEMME 0.482 0.383 0.438 0.452 0.519

MSA-Transformer 0.469 0.337 0.446 0.421 0.495

Tranception 0.465 0.349 0.450 0.436 0.471

RITA 0.366 0.302 0.414 0.381 0.398

UniRep 0.182 0.202 0.216 0.141 0.210

ESM-1v 0.396 0.268 0.405 0.362 0.437

ESM-2 0.425 0.337 0.415 0.369 0.523

ProGen2 0.402 0.302 0.418 0.387 0.445

VESPA 0.429 0.347 0.326 0.404 0.461

ESM-IF 0.368 0.389 0.407 0.324 0.624

MIF-ST 0.390 0.321 0.438 0.366 0.485

Trancepiton-EVE 0.487 0.376 0.457 0.460 0.500

ESM-1v (ensemble) 0.420 0.320 0.429 0.387 0.477

DeepSequence (ensemble) 0.455 0.363 0.390 0.413 0.476

SaProt 0.458 0.378 0.488 0.367 0.592

ProSST 0.448 0.477 0.506 0.415 0.674

Table A6: Spearman’s rank correlation of baseline models and ProSST on the ProteinGym, separated
into five functional categories (Activity, Binding, Organismal Fitness, Stability and Expression).

Structure token ProteinGYM (ρs) Perplexity

Original 0.504 9.033

All-zero 0.112 14.524

Random 0.182 14.024

Table A7: Performance of ProSST (K=2048) using different structure tokens as inputs.

A.4 Performance of models on the ProteinGYM benchmark separated by functional
categories

Table A.4 shows the Spearman’s rank correlations on ProteinGYM, categorized by five function
types. ProSST achieves state-of-the-art (SOTA) performance in the Stability, Binding, and Expression
subsets.

A.5 Additional experiments on disentangled attention.

We conducted additional experiments to analyze the relationship between disentangled attention.

Experiment 1. We replaced all structure tokens in the ProteinGYM and the validation set with
zeros or random numbers from a uniform distribution and re-evaluated ProSST. The results are shown
in Table A7 The results show that the incorrect structure tokens harmed the performance of ProSST
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Figure A6: Different types of attentions on Green Fluorescent Protein (GFP). These attentions are the
average of each head in the final layer of the Transformer.

Model DeepLoc (Acc%) ProteinGYM (ρs) Perplexity

ProSST (K=2048) 94.32 (±0.10) 0.504 9.033

ProSST (K=1) 89.48 (±0.24) 0.390 12.182

ProSST (K=0) 89.77 (±0.26) 0.392 12.190

Table A8: Performance comparison of ProSST with special K values.

significantly, suggesting that disentangled attention learned the sequence-structure relationship.
Otherwise, the performance would only have a minimal impact.

Experiment 2. To verify if disentangled attention can indeed enhance performance, we train
ProSST (K=1) by substituting the structural tokens with a constant value of 1. This configuration
maintains the disentangled attention mechanism even though the structure input is useless. If ProSST
(K=1) still improves performance, it indicates that the improvement is solely due to the disentangled
attention. We evaluate this model on DeepLoc, ProteinGYM and the valid set. The results are
shown in Table A8 There is little difference between K=1 and K=0 since their perplexity curves
(refer to Figure 3(a)) nearly overlap. This suggests that disentangled attention alone cannot enhance
performance without correct structure tokens.

Experiment 3. We visualize the learned different types of attentions on Green Fluorescent Protein
(GFP, Unipro ID:P42212 7), including 238 residues, in Figure A6. We can see that disentangled
attention learns different attention patterns, with notable differences between “R2S” and “S2R”.

7https://www.uniprot.org/uniprotkb/P42212/entry
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Model Structure Source ProteinGYM (ρs) BLP (Acc%) Perplexity

ProSST (K=2048) AlphaFold2 0.504 94.32 9.033

ProSST (K=2048) ESMFold 0.471 92.73 9.144

ProSST (MST) Missing 0.438 91.84 10.325

ProSST (MST) AlphaFold 0.456 92.31 9.447

ProSST (K=0) Missing 0.392 89.65 12.190

Table A9: Performance comparison of ProSST with different special K.

We can conclude from Experiment 1 and Experiment 2 that the disentangled attention and structure
tokens sequence are inseparable. The disentangled attention mechanism cannot function without
correct structure tokens. This also indicates that the performance improvement of our model stems
from the design of the model rather than increasing its parameters of the attention layer. Furthermore,
the Experiment 3 shows that our disentangled attention actually learned different patterns of attentions.

A.6 Solutions to Sequence-only Datasets

In conclusion, we offer two solutions for obtain representations of the sequence-only protein datasets:

• Utilize AlphaFold 2 [11] or ESMFold [7]8 for structure prediction as they are highly reliable
methods.

• Use ProSST (MST), which is trained with structure masking and supporting sequence-only
inputs. The MST denotes “Masked Structure Training (MST)”, which means that during
pre-training, each sample’s structure sequence has a 50% probability of being replaced by
a fully masked sequence [1,1,1,1,1,...,1], simulating missing protein structure. Therefore,
when applying ProSST to sequence-only datasets, we need to use the masked sequence
[1,1,1,1,1,...,1] as a substitute for the structure token sequence.

We have evaluated the two approaches on the ProteinGym benchmark, binary localization prediction
(BLP) from a sequence-only benchmark, PEER [58], and perplexity on the validation set. The results
are show in Table A9: In the Table A9, the first two rows show the performance differences between
AlphaFold and ESMFold. Rows 3-4 show the performance of the new model ProSST(MST). And
row 5 shows the performance of the sequence-only model.

A.7 AlphaFold pLDDT versus Zero-shot mutant effect performance

(a) (b) (c)

Figure A7: (a) pLDDT vs. Spearman of ProSST on ProteinGYM. (b) pLDDT vs. Spearman of
SaProt on ProteinGYM. (c) pLDDT vs. Spearman of ESM-IF1 on ProteinGYM.

Protein structures containing disorder region may not be accurately predicted by AlphaFold 2,
potentially leading to reduced performance of structure-aware models. Here, we test the relationship

8https://esmatlas.com/resources?action=fold
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between AlphaFold pLDDT scores and the performance of structure-aware models including ProSST,
SaProt, and ESM-IF on ProteinGYM, as illustrated in Figures A7. Our findings reveal a positive
correlation between pLDDT values and model performance: a correlation coefficient of 0.30 for
ProSST, 0.31 for SaProt, and 0.42 for ESM-IF1, where the correlation coefficient (ρp) represents the
strength of the relationship. These results suggest that structure-aware models may exhibit limitations
in accurately predicting the structures of disordered proteins.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes] We state clearly the scope and contribution of both communities of protein
language modeling and computer science in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] See Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA] This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes] This paper has disclosed all the necessary information to reproduce the main
experimental results, including the dataset (See Appendix A.2), network architecture (See
Section 3.2), and network hyper-parameters (See Appendix A.3).

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes] Our code and pre-trained models is available at https://github.com/
ai4protein/ProSST.
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Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes] We provide implementation details of our model in Section A.3. Baseline
methods are pre-trained by their authors, which requires no further supervision or learning
procedures.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA] Measurements used to in this work return fixed results on a determined
model, and a pre-trained model barely trains a set of models under the same dataset or
hyper-parameter settings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes] Details for the running machine are provided at the beginning of Ap-
pendix A.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes] The general ethical conduct has been carefully gone through to make sure
the listed concerns are avoided or not applicable in this research.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA] There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes] The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] We cite all the papers for baseline methods. The baseline results of Prote-
inGYM are copied from the latest release on their GitHub repositories, which we attached
URLs in Appendix A.2. The baselines results of supervised fine-tuning are copied from the
latest reviewed version of SaProt.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] The paper does not release new assets.
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Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

27


	Introduction
	Related Work
	Protein Representation Models
	Protein Structure Quantization

	Method
	Structure Quantization Module
	Sequence-Structure Disentangled Attention
	Pre-Training Objective

	Experiments
	Zero-Shot Mutant Effect Prediction
	Supervised Fine-Tuning Tasks
	Ablation Study

	Conclusion and Limitations
	Appendix
	Zero-Shot Scoring
	Details of the Datasets and Metrics
	Details of Implementations
	Performance of models on the ProteinGYM benchmark separated by functional categories
	Additional experiments on disentangled attention.
	Solutions to Sequence-only Datasets
	AlphaFold pLDDT versus Zero-shot mutant effect performance


