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Abstract

We compared neural responses to naturalistic videos and representations in deep1

network models trained with static and dynamic information. Models trained with2

dynamic information showed greater correspondence with neural representations3

in all brain regions, including those previously associated with the processing of4

static information. Among the models trained with dynamic information, those5

based on optic flow accounted for unique variance in neural responses that were not6

captured by Masked Autoencoders. This effect was strongest in ventral and dorsal7

brain regions, indicating that despite the Masked Autoencoders’ effectiveness at a8

variety of tasks, their representations diverge from representations in the human9

brain in the early stages of visual processing.10

1 Introduction11

The human visual system is organized into distinct processing streams Ungerleider et al. [1982],12

Pitcher and Ungerleider [2021]: a ventral stream that extends from early visual regions into the13

inferior portions of temporal cortex, and a dorsal stream that extends into lateral occipital cortex and14

branches into a lateral stream (along the superior temporal sulcus) and a parietal stream (reaching15

the inferior parietal lobule). This organization likely results from the computational requirements of16

visual perception. Therefore, understanding the representations encoded by different visual streams17

could offer insights about the human brain and also about more general principles of vision.18

The ventral stream has been proposed to encode static object identity Grill-Spector and Weiner [2014],19

while dynamic information has been associated with the dorsal, lateral and parietal streams Ganel and20

Goodale [2003], Culham et al. [2003]. Indeed, static images of objects are known to drive responses21

in ventral temporal regions in macaques Pasupathy and Connor [2002], Logothetis et al. [1995],22

Tanaka [1996], Hung et al. [2005] and in humans Edelman et al. [1998], Haxby et al. [2001]. Moving23

stimuli drive stronger responses in dorsal and lateral regions Zeki et al. [1991], Tootell et al. [1995],24

Saito et al. [1986]. In addition, disruption to lateral regions using TMS affects the processing of25

dynamic information Beckers and Hömberg [1992], Pitcher et al. [2014] as well as motion prediction26

Vetter et al. [2015].27

However, other studies have challenged the hypothesis that visual streams in the human brain differ28

based on whether they encode static or dynamic visual features. These studies suggested that both29

static and dynamic features are represented in multiple visual streams Kourtzi et al. [2002], Freud30

et al. [2017], Cornette et al. [1998], Sunaert et al. [1999], Robert et al. [2023]. Here, we investigated31

the contribution of static and dynamic information to the representations encoded by different visual32

streams, by quantifying the convergence between neural representations and representations learned33

by deep network models.34

Previous work compared neural responses to deep network models trained with static images Yamins35

et al. [2013], Khaligh-Razavi and Kriegeskorte [2014], Zhuang et al. [2021], Konkle and Alvarez36
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[2022]. The present work studies the additional contribution of dynamic information during the37

observation of quasi-naturalistic videos, by comparing neural responses to deep networks whose38

inputs are static images (e.g. convolutional ResNets He et al. [2016], image masked autoencoders He39

et al. [2022]) and to deep networks whose inputs are videos (e.g. hidden two-stream networks, video40

masked autoencoders Zhu et al. [2019], Tong et al. [2022], Feichtenhofer et al. [2022]). Critically, we41

include in our analyses a family of self-supervised models that are widely used in Computer Vision,42

but that are understudied in Cognitive Neuroscience: masked autoencoders (MAEs). We investigate43

the correspondence of representations in MAEs and Video MAEs to neural representations in the44

human brain.45

2 Methods46

2.1 Data47

BOLD fMRI responses (3×3×3 mm) to eight movie segments of ‘Forrest Gump’ were obtained48

from the publicly available studyforrest audiovisual dataset (http://studyforrest.org). Fifteen49

right-handed participants took part in the study (6 females; age range 21-39 years, mean 29.4 years).50

The data was acquired with a T2*-weighted echo-planar imaging sequence, using a whole-body 351

Tesla Philips Achieva dStream MRI scanner equipped with a 32 channel head coil.52

2.2 Preprocessing53

Data were first preprocessed using fMRIPrep (https://fmriprep.readthedocs.io/en/54

latest/index.html): a robust pipeline for the preprocessing of diverse fMRI data. Anatomi-55

cal images were skull-stripped with ANTs (http://stnava.github.io/ANTs/), and FSL FAST56

was used for tissue segmentation. Functional images were corrected for head movement with FSL57

MCFLIRT (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MCFLIRT), and were subsequently58

coregistered to their anatomical scan with FSL FLIRT. Finally, the skull-stripped anatomical images59

were normalized to the MNI template using SPM. We denoised the data with CompCor Behzadi et al.60

[2007] using 5 principal components extracted from the union of cerebrospinal fluid and white matter.61

Figure 1: Masks of the visual streams in the human brain projected on an inflated cortical surface in
MNI space.

2.3 Regions of Interest (ROI)62

To identify the regions of interest (ROI), we used an atlas of probabilistic maps of visual topography63

in the human cortex from a previous study Wang et al. [2015]. The atlas contains twenty-five cortical64

regions and spans multiple visual streams: ventral, dorsal, parietal, and lateral (Figure 1).65

A list of probabilities is associated with each voxel to reflect the likelihood of that voxel being part of66

each of the twenty-five brain regions (Ri, i = 1, . . . , 25). We calculated the transformation from MNI67

space to each participant’s native space and co-registered the probability maps with each participant’s68

anatomy. To prevent overlap between the regions of interest in the participants’ native space, we69

followed a procedure analogous to Wang et al. [2015]. Specifically, we calculated the maximum70

probability map for each participant, using which we exclusively classified each voxel as either71

belonging to a specific ROI or as being outside of all the ROIs.72

The inclusion probability was computed as the probability of a voxel of being in any of the defined73

regions (P (∪25
i=1v ∈ Ri)), and The exclusion probability is the probability of a voxel not belonging to74

2

http://studyforrest.org
https://fmriprep.readthedocs.io/en/latest/index.html
https://fmriprep.readthedocs.io/en/latest/index.html
https://fmriprep.readthedocs.io/en/latest/index.html
http://stnava.github.io/ANTs/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MCFLIRT


Table 1: Models of visual cortex

Model Input Output Training
dataset

#Selected
layers

Supervised static image object identity Image-net 11

Supervised static image action identity HAA-500 11

Self-supervised
dynamic video optic flows HAA-500 11

Supervised dynamic optic flow action identity HAA-500 11

pre-trained
Masked Autoencoder (masked) image (unmasked) image Image-net 12

fine-tuned
Masked Autoencoder image object identity Image-net 12

pre-trained Masked
Video Autoencoder (masked) video (unmasked) video Kinetics-400 12

fine-tuned Masked
Video Autoencoder video action identity Kinetics-400 12

pre-trained Masked
Video Distillation (masked) video MAE & VideoMAE

high-level features Kinetics-400 12

any of the ROIs (P(∩25
i=1v ̸∈ Ri)). If the exclusion exceeded the inclusion probability, we discarded75

the voxel. Otherwise, we classified the voxel as belonging to the region with the highest probability.76

The resulting ROIs were grouped into four sets associated with distinct visual streams. The ventral77

stream contains V1v, V2v, V3v, hV4, VO1, VO2, PHC1, PHC2; the dorsal stream V1d, V2d, V3d,78

V3a, V3b; the lateral stream LO1, LO2, hMT, and finally the parietal stream IPS0, IPS1, IPS2, IPS3,79

IPS4, IPS5, SPL1, and FEF. While often the term “dorsal stream” is used to refer to the combination80

of the regions we labeled as “dorsal stream” and the regions we labeled as “parietal stream”, here81

we sought to distinguish between the initial branch of the dorsal stream and its parietal and lateral82

temporal continuations, without implying that the initial segment is disproportionately associated83

with one or the other.84

2.4 Models of human visual cortex85

To study representations of quasi-naturalistic visual stimuli, we used a variety of vision models,86

including feed-forward convolutional neural networks, as well as state-of-the-art foundation vision87

models. The models vary in architecture, learning objective, and training data (Table 1). Here, we88

propose an overview of the models. Training details for the HAA-trained CNNs are presented in89

supplementary materials. The trained versions of all other models are adopted from their official90

implementation repository. For model details, refer to the original papers.91

92

Supervised (sup) static net is the spatial stream of the hidden two-stream convolutional neural93

network model Zhu et al. [2019]. The sup static net has a resnet18 architecture and encodes static94

features of visual stimulus. Two versions of the model were included in the models’ pool: one is95

trained on Image-Net Deng et al. [2009] and predicts object identity, and the other is trained on96

HAA-500 action dataset Chung et al. [2021] and predicts action label. Both versions take a single97

frame as input.98

Self-supervised (s-sup) dynamic net is the first part of the temporal stream (i.e., motion net) in99

the hidden two-stream convolutional neural network model Zhu et al. [2019]. The self-supervised100

dynamic net takes 11 consecutive frames as input and infers the optic flow between each pair of101
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consecutive frames. The network is trained to minimize an self-supervised learning objective ob-102

tained by combining three loss functions:1) a pixel-wise reconstruction error, 2) a smoothness loss103

addressing the ambiguity problem of optic flow estimation (also known as the aperture problem), and104

3) a structural dissimilarity between the original and the reconstructed image patches (see Zhu et al.105

[2019] for details of loss functions). The models’ pool contains one version of the self-supervised106

dynamic net, trained on the HAA-500 action dataset Chung et al. [2021].107

Supervised (sup) dynamic net is the second part of the temporal stream in the hidden two-stream108

convolutional neural network model Zhu et al. [2019]. The model has resnet18 architecture and takes109

optic flows from the self-supervised dynamic net as input. We used the HAA-500 dataset Chung et al.110

[2021] and trained the supervised dynamic net to predict action labels using optic flows.111

Masked Autoencoder (MAE) learn image representations, required to reconstruct original uncor-112

rupted images from corrupted (masked) input through a series of transformer blocks He et al. [2022].113

The models’ pool contains two versions of the MAE model: 1) a pre-trained version, where the model114

is trained to reconstruct pixel values, and 2) a fine-tuned version, where the pre-trained model is115

further fine-tuned to predict object identities. Both versions were trained on Image-net Deng et al.116

[2009].117

Video Masked Autoencoder (VMAE) learns a spatiotemporal representation of videos, required118

to reconstruct original uncorrupted videos, from corrupted (tube masked) input through a series of119

transformer blocks Tong et al. [2022]. We added two versions of the VMAE to our models’ pool.120

The first is a pre-trained version, where the model is trained to reconstruct missing pixels of the input121

set of frames. The second version is the fine-tuned version obtained by fine-tuning the pre-trained122

version to predict action labels of input videos. Both models take a consecutive set of frames as input,123

and were trained on the Kinetics-400 action dataset Kay et al. [2017].124

Masked Video Distillation (MVD) learns a higher-level spatial and spatiotemporal representation of125

the input video, required to reconstruct the representation of teacher MAE and VMAE while taking126

corrupted (tube-masked) videos as input Wang et al. [2023a]. Unlike VMAE and MAE, the MVD127

model does not learn pixel-level features. Rather, it learns high-level features of the input video using128

pre-trained MAE and VMAE models’ features as masked prediction targets. Using the Kinetics-400129

action dataset Kay et al. [2017], a pre-trained version was obtained and added to the models’ pool.130

2.5 Models’ Representational Dissimilarity Matrices (RDM)131

In order to compare the models and the fMRI data, we computed representational dissimilarity132

matrices (RDMs) for the models’ layers with a multi-step procedure. First, since the temporal133

resolution of the models’ representations (25Hz) is much higher than the temporal resolution of fMRI134

data, we down-sampled each layer’s activation timecourses over time by selecting one data point135

every five time points(down to 5 Hz). Then, we convolved the layer’s activations with a standard136

Hemodynamic Response Function (HRF). Given that the fMRI data’s repetition time (TR) is 2137

seconds, we took a layer’s activation every 25× 2 = 50 time points.138

Finally, for each layer we computed the dissimilarities between all pairs of timepoints, obtaining139

RDMs in which the entry at column j and row i contains correlation dissimilarity (1-Pearson’s r)140

between the layer activations at time i and time j. We repeated this procedure for BOLD responses to141

all eight movie segments, resulting in eight RDMs.142

2.6 Brain Representational Dissimilarity Matrices (RDM)143

RDMs were constructed separately for each brain stream in the subject’s native space. The voxels for144

each brain stream were obtained as the union of the region voxels for individual regions within that145

stream. For each brain stream, we calculated the correlation dissimilarity (1− r where r is Pearson’s146

correlation) of fMRI response patterns for all pairs of TRs. This yielded eight RDMs, corresponding147

to BOLD responses in eight video segments.148

2.7 Measuring models similarity with brain data149

To evaluate how well each model accounts for the activity in the brain streams, we used a cross-150

validated linear regression to predict the left-out movie segment brain stream RDM and computed the151

correlation between the predicted and the true RDM in each brain stream. The correlation captures152

how well a model’s layers can predict a brain stream’s responses to the visual stimuli. First, we153
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used each model’s layers’ RDMs corresponding to seven (out of eight) video segments to train a154

linear regression model that predicts the corresponding seven RDMs in each brain stream. Then, we155

averaged the linear regression model’s coefficients along the seven segments and used the averaged156

coefficients to predict the brain stream RDM of the left-out segment, using the model layers’ RDMs157

of the corresponding segment. Finally, we calculated the Pearson’s correlation between the predicted158

and the true RDMs. We repeated the leave-one-out cross-validation process for all the segments and159

averaged over the obtained correlations.160

2.8 Measuring combined models similarity with brain data161

We sought to study whether a combination of features from two models can improve similarity with162

brain data. We followed the procedure in 2.7 and used RDMs of all the layers in a pair of combined163

models to estimate the coefficients of a linear regression model that best predicts the RDM of a164

brain stream in seven (out of eight) of the video segments. Using leave-one-out cross-validation, we165

predicted the brain stream RDM of the left-out video segment using the average of the coefficients166

obtained from the seven video segments during training. Finally, we measured the correlation between167

the predicted RDM and the actual brain stream RDM to measure the correspondence between the168

combined models’ features and the brain activity.169

2.9 Measuring unique and shared similarity of a pair of models with brain data170

To evaluate how well unique and shared features among a pair of computational models correspond171

to the brain data, we used Pearson’s r to measure the accuracy of a ”target” model’s layers prediction172

of a brain stream RDM while controlling for the variation of a ”control” model layers. Using leave-173

one-out cross-validation, first, we estimated the coefficients of a linear regression model that predicts174

a brain stream’s RDM from the control model’s layers in training video segments (seven out of eight).175

Second, we subtracted the predicted from the actual brain stream RDM in the training and the left-out176

video segments to obtain training and left-out residuals. Third, we estimated the coefficients of a177

linear regression model that predicts training residuals of each video segment using the target model178

layers. Finally, we measured Pearson’s correlation between the target model’s prediction of the179

left-out video segment residuals and the residuals obtained from the prediction of the control model.180

Figure 2: Pearson’s correlation between actual and predicted brain stream RDMs, averaged over par-
ticipants. Predicted RDMs were obtained by training and test a leave-one-out cross-validation linear
regression model using each model’s layers. Error bars show standard deviation over participants.
Lighter bars correspond to models containing static, and darker ones to models containing dynamic
visual information (sup: supervised, s-sup: self-supervised, †: Image-net-trained, ‡: HAA-500-
trained, +: Kinetics-400-trained, *: fine-tuned; MVD was trained on pre-trained MAE (Image-net)
and VideoMAE (Kinetics-400))
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3 Results181

The human visual system does not consist of a single processing stream. Instead, it is organized into182

distinct neural pathways. To the extent that the structure of the human visual system is shaped by183

computational optimality, understanding the visual representations encoded in these pathways can184

offer insights into more general principles of vision. The contribution of this work is to quantify185

the similarity between the representations in the different visual pathways in the human brain and186

representations in models of vision that are widely used in Computer Science but understudied in187

Cognitive Neuroscience (e.g. masked autoencoders, two-stream networks, masked video distillation).188

In a first set of analyses 3, we leverage differences between models to reveal differences between189

the information encoded in different visual pathways in the brain. In a second set of analyses, we190

quantify the unique contribution of different deep network models to account for neural responses191

3.2.192

3.1 DNN models similarity with human brain streams193

While numerous research studies have been conducted on model-to-brain correspondence using static194

images Rose et al. [2021], Doshi and Konkle [2023], Tsao et al. [2006], the impact of dynamic195

information on neural responses to naturalistic videos is understudied. To fill this gap, we tested196

the correspondence between neural representations in different visual pathways (ventral, dorsal,197

lateral, and parietal) and deep network models that can process dynamic information (two-stream198

networks, video masked autoencoders, and masked video distillation). Comparing the correspondence199

of neural responses with these models and their correspondence with models that only process static200

information (standard convolutional ResNets, masked autoencoders) made it possible to study the201

contribution of dynamic information independently of whether the learning objective is supervised202

(as in two-stream networks) or unsupervised (as in masked autoencoders). In addition, the study of203

the correspondence between neural representations and representations in masked autoencoders is of204

interest in its own right: masked autoencoders are effective and widely used, but little is known about205

their similarity to neural representations.206

3.1.1 Static and dynamic information in brains and feed-forward convolutional neural207

networks (CNN)208

Functional MRI responses recorded during the observation of naturalistic videos in the ventral,209

dorsal, lateral and parietal visual pathways were compared to the representations in feed-forward210

convolutional neural networks. The same dataset (HAA-500) was used to train the different branches211

of a hidden-two-stream network: the “supervised static” branch (a ResNet that takes as input212

individual frames of a video and computes as output the action category), the “unsupervised dynamic”213

branch (a convolutional network trained to compute optic flow by minimizing a self-supervised loss),214

and the “supervised dynamic” branch (a ResNet that takes as input optic flow and computes as output215

the action category). In addition, to facilitate parallels with prior work, we compared neural responses216

to a widely studied feed-forward model: a ResNet trained with Image-net.217

Comparing deep network models trained with the same dataset (HAA-500) showed that models218

including dynamic information correlated with neural responses more than the Spatial model, that does219

not use dynamic information (Figure 2). This effect was observed for all visual pathways. In addition,220

representations in the lateral and parietal pathways correlated more with the supervised dynamic221

model than with the unsupervised dynamic model (fisher-transformed t-values with Bonferroni-222

corrected threshold). Lateral and parietal regions are located downstream compared to the dorsal223

regions, thus this result is complementary to earlier work that reported a correspondence between224

subsequent stages of processing in deep neural networks and in neural pathways in the case of static225

visual stimuli [Khaligh-Razavi and Kriegeskorte, 2014] and in the case of auditory stimuli [Kell et al.,226

2018].227

Supervised CNNs trained with Image-Net performed well, achieving correspondence with neural228

responses that was close to that of HAA-trained models that included dynamic information. This229

could indicate that some of the variance in neural responses that correlates with dynamic models230

might also be accounted for by models trained exclusively with static information, as long as a231

suitable training dataset is used (in this case, Image-Net). However, an alternative possibility is that232

the supervised static model trained with Image-Net and the dynamic models trained with HAA might233
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account for different portions of the variance in neural responses. We investigate these alternative234

possibilities in section 3.2.235

3.1.2 Static and dynamic information in brains and masked autoencoders236

Masked Autoencoders (MAE, He et al. [2022]) and Video Masked Autoencoders (VideoMAE,237

Tong et al. [2022], Feichtenhofer et al. [2022]) models are trained to reconstruct masked pixels of238

input (image or video) during pre-training and are further fine-tuned to predict object/action labels.239

MAE and VideoMAE models are very effective in learning visual representations and have been240

shown to outperform competing models in several visual tasks He et al. [2022], Tong et al. [2022],241

Feichtenhofer et al. [2022], Wang et al. [2023b], Venkatesh et al.. However, it is still unknown242

whether the representations learned by models based on masked autoencoding are similar to visual243

representations in the human brain. Here we investigated this question, quantifying the correlation244

between neural responses measured with fMRI while participants watched naturalistic videos, and245

representations learned by models trained with masked autoencoding.246

We compared the correspondence between neural responses and MAEs trained with images (which247

learn spatial relationships between component of an image, Wang et al. [2023a]) as well as Video-248

MAEs (which learn temporal relationships in videos, Wang et al. [2023a]). Finally, we also compared249

neural responses to masked video distillation (MVD, Wang et al. [2023a]), which combines image250

MAEs and videoMAEs to better capture both spatial and temporal relationships. Unlike MAE and251

VideoMAE, the MVD model does not aim to reconstruct missing patches at the level of pixel values.252

Instead, MVD adopts a knowledge-distillation approach, reconstructing missing information at the253

level of features extracted from pre-trained MAE and VideoMAE teachers.254

As in the case of supervised models trained with the HAA dataset, models that included dynamic255

information (VideoMAEs) outperformed models using only static information (Image MAEs). This256

pattern was observed across all visual pathways. Image MAEs did not correlate well with neural257

responses, even compared to supervised models trained with static inputs. Overall, the representations258

learned by Image MAEs were very different from neural representations. By contrast, VideoMAEs259

showed greater correspondence with neural responses. In particular, fine-tuning with an action260

recognition task (Figure 2, VideoMAE fine-tuned) improved the correspondence between Video-261

MAE representations and neural representations across all streams (fisher-transformed t-values with262

Bonferroni-corrected threshold). Across all the pre-trained models, pre-trained MVD showed the263

highest similarity to neural representations in all brain streams. Further, MVD showed comparable264

similarity with brain streams to that of fine-tuned VideoMAE.265

3.2 Vision models capture shared and unique neural activity variation in human brain266

streams267

The results described in 3 show that representations from models trained with dynamic information268

are more correlated with neural representations compared to representations from models trained269

with static information. This overall pattern is broken by the exception of ResNets trained with270

ImageNet, which performed on par with models trained with dynamic information. This raises271

the question of whether ResNets trained with ImageNet and dynamic models explain overlapping272

variance in neural responses or whether, instead, they are complementary, capturing non-overlapping273

portions of the variance. This question can be posed more generally for any pair of models studied in274

section 3. We investigated this first by combining layers from two models and measuring whether a275

combination of models can better predict the pattern of neural activity in visual pathways. Second,276

we measured the correspondence between a “target” model’s representations and the representations277

in each brain stream while controlling for the representations encoded in a “control” model. To this278

end, we predicted neural representations using the representations of the control model and obtained279

the residuals. Then, we predicted the residuals using the representations in the target model (see280

Methods for details).281

Each matrix in Figure 3.a shows how well a combination of models’ layers can predict the pattern282

of neural activity in a brain stream. Each column of each row demonstrates the correlation between283

the neural response pattern of a brain stream and the combined models’ layers’ prediction of that284

brain stream’s neural activity pattern. Model-to-brain-stream similarity increased in all brain streams285

when combining features from static models with features from dynamic models. Notably, the286

correspondence between combined models’ features with both dorsal and ventral streams improved287
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Figure 3: a) Model combination similarity with brain streams. The similarity was calculated using
Pearson’s correlation between a brain stream’s actual and predicted RDMs. These predictions were
obtained by combining layers from two models (corresponding to the row and column names), and
averaged across participants. A linear regression model was trained and tested using leave-one-out
cross-validation to generate the predictions.. b) Models unique similarity with brain streams. The
similarity was calculated using Pearson’s correlation between the actual RDM of a brain stream and
the RDM predicted by a target model while controlling for the variation explained by a control model
in the brain stream. These correlations were averaged across participants. Each row corresponds to a
different control model, and each column corresponds to a different target model used for prediction.
(sup: supervised, s-sup: self-supervised, †: Image-net-trained, ‡: HAA-500-trained, +: Kinetics-
400-trained, *: fine-tuned; MVD was trained on pre-trained MAE (Image-net) and VideoMAE
(Kinetics-400))

in two cases: 1) combined features from Image-net-trained static supervised models with dynamic288

features from self-supervised model and 2) features from the combination of the self-supervised289

dynamic model with either VideoMAE or MVD. These cases shows that, first, ventral and dorsal brain290

streams both represent static and dynamic visual features, and second, different types of dynamic291

information are represented in both of these human streams.292

Figure 3.b demonstrates the correspondence between a target model’s features and each brain stream293

when we controlled for the features of a control model in the brain stream’s neural responses. The294

results are visualized as a matrix in which each row corresponds to a control model and each column295

to a target model. The first row displays the correlations between models and neural responses after296

controlling for the Image-net-trained static model. The high values for the columns corresponding to297

the self-supervised dynamic and the supervised dynamic models indicate that these models and the298

Image-net-trained static model capture non-overlapping variance in neural responses. Representations299

learned by these models also capture non-overlapping variance with those learned by the unsupervised300

dynamic models: the VideoMAEs. This finding shows that despite VideoMAEs exhibit relatively301

high correlations with neural responses (outperforming Image MAEs), they nonetheless fail to capture302

some variance in human visual representations that is accounted for by self-supervised and supervised303

dynamic models.304

VideoMAEs and MVD accounted for additional variance in neural responses compared to MAEs305

(as expected given the results in Figure 2) but also compared to the HAA-trained static and self-306

supervised dynamic models. However, they accounted for a minimal amount (if any) of additional307
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variance compared to the supervised dynamic model, suggesting some degree of convergence on308

common representations across models trained with different learning objectives.309

4 Limitations310

This study focused on a set of models selected to enable comparing the contribution of static and311

dynamic information and the impact of supervised and unsupervised learning objectives. The selection312

of models in this study includes only a subset of the existing models, future work will be needed to313

expand the set of models tested. In addition, the present work centered on the comparison between314

models and entire visual streams. A finer-grained analysis comparing models to individual regions315

within each stream will require further work.316

5 Discussion317

Three main findings emerged. First, models including dynamic information outperformed models318

using exclusively static information, not only in the dorsal, lateral and parietal streams, but also in319

the ventral stream. This is in line with recent evidence of responses to dynamic features in ventral320

brain regions [Robert et al., 2023]. Patients with deficits for motion perception typically present321

with lesions affecting dorsal regions (such as area V5, [McLeod, 1996, Vaina et al., 1990, Zihl et al.,322

1983]) or parietal regions [Battelli et al., 2003]. By contrast, patients with damage to ventral regions323

typically do not present with deficits for motion perception [Gilaie-Dotan et al., 2015]. This raises324

the question of what might be the use of dynamic information represented in the ventral stream. We325

hypothesize that this information might be used to support object segmentation, as proposed in recent326

computational models [Chen et al., 2022] inspired by classic work in Developmental Psychology327

[Spelke, 1990].328

Second, Image MAEs showed little correspondence with neural representations, even compared329

to other models trained exclusively with static information. These results indicate that despite the330

effectiveness of Image MAEs for learning visual representations that can transfer to a variety of331

visual tasks [He et al., 2022], these models do not converge on representations that are similar to332

those observed in the human brain, suggesting that human vision and image MAEs rely on different333

computational mechanisms.334

Third, models based on optic flow representations accounted for unique variance in all streams, even335

compared to video masked autoencoders that can make use of dynamic information. Fine-tuning video336

MAEs with an action classification task increased their correspondence with neural representations,337

but did not fully bridge the gap with neural responses compared to optic flow models, which still338

explained additional unique variance compared to the fine-tuned video MAEs. The additional339

contribution of optic flow models was particularly strong in ventral and dorsal regions, suggesting340

that representations based on optic flow exhibit greater correspondence with representations in early341

stages of visual processing in the human brain compared to both image and video MAEs.342

343

References344

Leslie G Ungerleider, Mortimer Mishkin, et al. Two cortical visual systems. analysis of visual345

behavior. Ingle DJ, Goodale MA, Mansfield RJW, 1982.346

David Pitcher and Leslie G Ungerleider. Evidence for a third visual pathway specialized for social347

perception. Trends in Cognitive Sciences, 25(2):100–110, 2021.348

Kalanit Grill-Spector and Kevin S Weiner. The functional architecture of the ventral temporal cortex349

and its role in categorization. Nature Reviews Neuroscience, 15(8):536–548, 2014.350

Tzvi Ganel and Melvyn A Goodale. Visual control of action but not perception requires analytical351

processing of object shape. Nature, 426(6967):664–667, 2003.352

Jody C Culham, Stacey L Danckert, Joseph FX De Souza, Joseph S Gati, Ravi S Menon, and353

Melvyn A Goodale. Visually guided grasping produces fmri activation in dorsal but not ventral354

stream brain areas. Experimental brain research, 153:180–189, 2003.355

9



Anitha Pasupathy and Charles E Connor. Population coding of shape in area v4. Nature neuroscience,356

5(12):1332–1338, 2002.357

Nikos K Logothetis, Jon Pauls, and Tomaso Poggio. Shape representation in the inferior temporal358

cortex of monkeys. Current biology, 5(5):552–563, 1995.359

Keiji Tanaka. Inferotemporal cortex and object vision. Annual review of neuroscience, 19(1):109–139,360

1996.361

Chou P Hung, Gabriel Kreiman, Tomaso Poggio, and James J DiCarlo. Fast readout of object identity362

from macaque inferior temporal cortex. Science, 310(5749):863–866, 2005.363

Shimon Edelman, Kalanit Grill-Spector, Tammar Kushnir, and Rafael Malach. Toward direct364

visualization of the internal shape representation space by fmri. Psychobiology, 26:309–321, 1998.365

James V Haxby, M Ida Gobbini, Maura L Furey, Alumit Ishai, Jennifer L Schouten, and Pietro366

Pietrini. Distributed and overlapping representations of faces and objects in ventral temporal cortex.367

Science, 293(5539):2425–2430, 2001.368

Semir Zeki, JD Watson, CJ Lueck, Karl J Friston, C Kennard, and RS Frackowiak. A direct369

demonstration of functional specialization in human visual cortex. Journal of neuroscience, 11(3):370

641–649, 1991.371

Roger B Tootell, John B Reppas, Kenneth K Kwong, Rafael Malach, Richard T Born, Thomas J372

Brady, Bruce R Rosen, and John W Belliveau. Functional analysis of human mt and related visual373

cortical areas using magnetic resonance imaging. Journal of Neuroscience, 15(4):3215–3230,374

1995.375

Hide-aki Saito, Masao Yukie, Keiji Tanaka, Kazuo Hikosaka, Yoshiro Fukada, and Eiichi Iwai.376

Integration of direction signals of image motion in the superior temporal sulcus of the macaque377

monkey. Journal of Neuroscience, 6(1):145–157, 1986.378

G Beckers and V Hömberg. Cerebral visual motion blindness: transitory akinetopsia induced by379

transcranial magnetic stimulation of human area v5. Proceedings of the Royal Society of London.380

Series B: Biological Sciences, 249(1325):173–178, 1992.381

David Pitcher, Bradley Duchaine, and Vincent Walsh. Combined tms and fmri reveal dissociable382

cortical pathways for dynamic and static face perception. Current Biology, 24(17):2066–2070,383

2014.384

Petra Vetter, Marie-Helene Grosbras, and Lars Muckli. Tms over v5 disrupts motion prediction.385

Cerebral cortex, 25(4):1052–1059, 2015.386

Zoe Kourtzi, Heinrich H Bülthoff, Michael Erb, and Wolfgang Grodd. Object-selective responses in387

the human motion area mt/mst. Nature neuroscience, 5(1):17–18, 2002.388

Erez Freud, Jody C Culham, David C Plaut, and Marlene Behrmann. The large-scale organization of389

shape processing in the ventral and dorsal pathways. elife, 6:e27576, 2017.390

L Cornette, Patrick Dupont, A Rosier, Stefan Sunaert, P Van Hecke, J Michiels, Luc Mortelmans, and391

GA Orban. Human brain regions involved in direction discrimination. Journal of Neurophysiology,392

79(5):2749–2765, 1998.393

Stefan Sunaert, Paul Van Hecke, Guy Marchal, and Guy A Orban. Motion-responsive regions of the394

human brain. Experimental brain research, 127:355–370, 1999.395

Sophia Robert, Leslie G Ungerleider, and Maryam Vaziri-Pashkam. Disentangling object category396

representations driven by dynamic and static visual input. Journal of Neuroscience, 43(4):621–634,397

2023.398

Daniel L Yamins, Ha Hong, Charles Cadieu, and James J DiCarlo. Hierarchical modular optimization399

of convolutional networks achieves representations similar to macaque it and human ventral stream.400

Advances in neural information processing systems, 26, 2013.401

10



Seyed-Mahdi Khaligh-Razavi and Nikolaus Kriegeskorte. Deep supervised, but not unsupervised,402

models may explain it cortical representation. PLoS computational biology, 10(11):e1003915,403

2014.404

Chengxu Zhuang, Siming Yan, Aran Nayebi, Martin Schrimpf, Michael C Frank, James J DiCarlo, and405

Daniel LK Yamins. Unsupervised neural network models of the ventral visual stream. Proceedings406

of the National Academy of Sciences, 118(3):e2014196118, 2021.407

Talia Konkle and George A Alvarez. A self-supervised domain-general learning framework for408

human ventral stream representation. Nature communications, 13(1):491, 2022.409

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image410

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,411

pages 770–778, 2016.412

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked413

autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer414

vision and pattern recognition, pages 16000–16009, 2022.415

Yi Zhu, Zhenzhong Lan, Shawn Newsam, and Alexander Hauptmann. Hidden two-stream convolu-416

tional networks for action recognition. In Computer Vision–ACCV 2018: 14th Asian Conference417

on Computer Vision, Perth, Australia, December 2–6, 2018, Revised Selected Papers, Part III 14,418

pages 363–378. Springer, 2019.419

Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. Videomae: Masked autoencoders are data-420

efficient learners for self-supervised video pre-training. Advances in neural information processing421

systems, 35:10078–10093, 2022.422

Christoph Feichtenhofer, Yanghao Li, Kaiming He, et al. Masked autoencoders as spatiotemporal423

learners. Advances in neural information processing systems, 35:35946–35958, 2022.424

Yashar Behzadi, Khaled Restom, Joy Liau, and Thomas T Liu. A component based noise correction425

method (compcor) for bold and perfusion based fmri. Neuroimage, 37(1):90–101, 2007.426

Liang Wang, Ryan EB Mruczek, Michael J Arcaro, and Sabine Kastner. Probabilistic maps of visual427

topography in human cortex. Cerebral cortex, 25(10):3911–3931, 2015.428

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale429

hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,430

pages 248–255. Ieee, 2009.431

Jihoon Chung, Cheng-hsin Wuu, Hsuan-ru Yang, Yu-Wing Tai, and Chi-Keung Tang. Haa500:432

Human-centric atomic action dataset with curated videos. In Proceedings of the IEEE/CVF433

International Conference on Computer Vision, pages 13465–13474, 2021.434

Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan,435

Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human action video dataset.436

arXiv preprint arXiv:1705.06950, 2017.437

Rui Wang, Dongdong Chen, Zuxuan Wu, Yinpeng Chen, Xiyang Dai, Mengchen Liu, Lu Yuan, and438

Yu-Gang Jiang. Masked video distillation: Rethinking masked feature modeling for self-supervised439

video representation learning. In Proceedings of the IEEE/CVF conference on computer vision440

and pattern recognition, pages 6312–6322, 2023a.441

Olivia Rose, James Johnson, Binxu Wang, and Carlos R Ponce. Visual prototypes in the ventral442

stream are attuned to complexity and gaze behavior. Nature communications, 12(1):6723, 2021.443

Fenil R Doshi and Talia Konkle. Cortical topographic motifs emerge in a self-organized map of444

object space. Science Advances, 9(25):eade8187, 2023.445

Doris Y Tsao, Winrich A Freiwald, Roger BH Tootell, and Margaret S Livingstone. A cortical region446

consisting entirely of face-selective cells. Science, 311(5761):670–674, 2006.447

11



Alexander JE Kell, Daniel LK Yamins, Erica N Shook, Sam V Norman-Haignere, and Josh H448

McDermott. A task-optimized neural network replicates human auditory behavior, predicts brain449

responses, and reveals a cortical processing hierarchy. Neuron, 98(3):630–644, 2018.450

Limin Wang, Bingkun Huang, Zhiyu Zhao, Zhan Tong, Yinan He, Yi Wang, Yali Wang, and Yu Qiao.451

Videomae v2: Scaling video masked autoencoders with dual masking. In Proceedings of the452

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14549–14560, 2023b.453

Rahul Venkatesh, Honglin Chen, Klemen Kotar, Kevin Feigelis Wanhee Lee Daniel Bear, and Daniel454

Yamins. Climbing the ladder of causation with counterfactual world modeling.455

P McLeod. Preserved and impaired detection of structure from motion by a’motion-blind" patient.456

Visual Cognition, 3(4):363–392, 1996.457

Lucia M Vaina, Marjorie Lemay, Don C Bienfang, Albert Y Choi, and Ken Nakayama. Intact458

“biological motion” and “structure from motion” perception in a patient with impaired motion459

mechanisms: A case study. Visual neuroscience, 5(4):353–369, 1990.460

Josef Zihl, D Von Cramon, and Norbert Mai. Selective disturbance of movement vision after bilateral461

brain damage. Brain, 106(2):313–340, 1983.462

Lorella Battelli, Patrick Cavanagh, and Ian M Thornton. Perception of biological motion in parietal463

patients. Neuropsychologia, 41(13):1808–1816, 2003.464

Sharon Gilaie-Dotan, Ayse Pinar Saygin, Lauren J Lorenzi, Geraint Rees, and Marlene Behrmann.465

Ventral aspect of the visual form pathway is not critical for the perception of biological motion.466

Proceedings of the National Academy of Sciences, 112(4):E361–E370, 2015.467

Honglin Chen, Rahul Venkatesh, Yoni Friedman, Jiajun Wu, Joshua B Tenenbaum, Daniel LK468

Yamins, and Daniel M Bear. Unsupervised segmentation in real-world images via spelke object469

inference. In European Conference on Computer Vision, pages 719–735. Springer, 2022.470

Elizabeth S Spelke. Principles of object perception. Cognitive science, 14(1):29–56, 1990.471

Michael Hanke, Nico Adelhöfer, Daniel Kottke, Vittorio Iacovella, Ayan Sengupta, Falko R Kaule,472

Roland Nigbur, Alexander Q Waite, Florian Baumgartner, and Jörg Stadler. A studyforrest exten-473

sion, simultaneous fmri and eye gaze recordings during prolonged natural stimulation. Scientific474

data, 3(1):1–15, 2016.475

5.1 Supplementary materials476

5.1.1 Training and testing the Two-stream CNN for action recognition477

We adopted the models in Zhu et al. [2019] and trained on the HAA500 dataset Chung et al. [2021].478

The dataset contains over 591k labeled frames with 500 action classes. 85% of the data points were479

used for training, 5% for validation, and 10% for testing 5.1.1. The training dataset was converted to480

the Webdataset format, i.e., shards of tar files. We used 4 V100 GPUs and 8 workers to load the481

dataset and train the models. All the analyses were performed on the same version of the movie that482

was used to acquire fMRI responses in the StudyForrest dataset Hanke et al. [2016].483

The supervised static model have a ResNet18 architecture He et al. [2016], and were trained for 47484

epochs with a batch size of 128. The training was done with the stochastic gradient descent algorithm485

with a 0.001 initial learning rate and a 0.0001 weight decay. During training, the gradients were486

accumulated and backpropagated for every two batches. Each frame in an input batch is a 224× 224487

frame and was randomly flipped horizontally.488

The unsupervised dynamic model was trained for 12 epochs with a batch size of 32 and an initial489

learning rate of 0.01. No weight decay was used during training. Input to this model consists of a set490

of 11 frames each with dimensions of 224× 224.491

The supervised dynamic model was trained for 50 epochs with a batch size of 128 and an initial492

learning rate of 0.001. A weight decay of 0.0005 was used to train the models, and the gradients493

were accumulated and backpropagated every 5 batches.494

495
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Table 2: Test performance of models on the HAA500 dataset

Performance
Model epochs Top-1 Top-3

sup static 47 30.80% 49.38%
unsup

dynamic + sup
dynamic 12, 50 22.72% 37.90%
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• The answer NA means that the paper does not use existing assets.748

• The authors should cite the original paper that produced the code package or dataset.749

• The authors should state which version of the asset is used and, if possible, include a750

URL.751

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.752

• For scraped data from a particular source (e.g., website), the copyright and terms of753

service of that source should be provided.754

• If assets are released, the license, copyright information, and terms of use in the755

package should be provided. For popular datasets, paperswithcode.com/datasets756

has curated licenses for some datasets. Their licensing guide can help determine the757

license of a dataset.758

• For existing datasets that are re-packaged, both the original license and the license of759

the derived asset (if it has changed) should be provided.760

• If this information is not available online, the authors are encouraged to reach out to761

the asset’s creators.762

13. New Assets763

Question: Are new assets introduced in the paper well documented and is the documentation764

provided alongside the assets?765

Answer: [NA]766

Justification: [TODO]767

Guidelines:768

• The answer NA means that the paper does not release new assets.769

• Researchers should communicate the details of the dataset/code/model as part of their770

submissions via structured templates. This includes details about training, license,771

limitations, etc.772

• The paper should discuss whether and how consent was obtained from people whose773

asset is used.774

• At submission time, remember to anonymize your assets (if applicable). You can either775

create an anonymized URL or include an anonymized zip file.776

14. Crowdsourcing and Research with Human Subjects777

Question: For crowdsourcing experiments and research with human subjects, does the paper778

include the full text of instructions given to participants and screenshots, if applicable, as779

well as details about compensation (if any)?780

Answer: [Yes] The human data is adopted from a publicly available dataset. For provided781

essential instruction for referring to the study and the accompanying dataset.782

Justification: [TODO]783

Guidelines:784

• The answer NA means that the paper does not involve crowdsourcing nor research with785

human subjects.786

• Including this information in the supplemental material is fine, but if the main contribu-787

tion of the paper involves human subjects, then as much detail as possible should be788

included in the main paper.789

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,790

or other labor should be paid at least the minimum wage in the country of the data791

collector.792

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human793

Subjects794

Question: Does the paper describe potential risks incurred by study participants, whether795

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)796

approvals (or an equivalent approval/review based on the requirements of your country or797

institution) were obtained?798

Answer: [NA]799
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Justification: [TODO]We did not collect any data and only used publicly available reposito-800

ries.801

Guidelines:802

• The answer NA means that the paper does not involve crowdsourcing nor research with803

human subjects.804

• Depending on the country in which research is conducted, IRB approval (or equivalent)805

may be required for any human subjects research. If you obtained IRB approval, you806

should clearly state this in the paper.807

• We recognize that the procedures for this may vary significantly between institutions808

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the809

guidelines for their institution.810

• For initial submissions, do not include any information that would break anonymity (if811

applicable), such as the institution conducting the review.812
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