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Abstract
Graph neural networks have become the default choice by practitioners for graph
learning tasks such as graph classification and node classification. Nevertheless,
popular graph neural network models still struggle to capture higher-order infor-
mation, i.e., information that goes beyond pairwise interactions. Recent work has
shown that persistent homology, a tool from topological data analysis, can enrich
graph neural networks with topological information that they otherwise could
not capture. Calculating such features is efficient for dimension 0 (connected
components) and dimension 1 (cycles). However, when it comes to higher-order
structures, it does not scale well, with a complexity of O(nd), where n is the
number of nodes and d is the order of the structures. In this work, we introduce a
novel method that extracts information about higher-order structures in the graph
while still using the efficient low-dimensional persistent homology algorithm.
On standard benchmark datasets, we show that our method can lead to up to 31%
improvements in test accuracy.

1 Introduction
The research area of Graph Neural Networks (GNNs) has received a huge amount of interest in
the past few years [1, 2]. As a result, GNNs are now the first choice for many graph-related tasks,
like graph classification, node classification, and link prediction. Nevertheless, GNNs present some
shortcomings when it comes to modeling higher-order structures (i.e., structures in the graph that go
beyond pairwise interactions, like cliques and cycles [3, 4]). In fact, GNNs follow a message-passing
framework [5] in which each node communicates with its neighbors, but there is no mechanism
to go beyond pairwise interactions, which limits the expressiveness of these models [6]. However,
information regarding certain topological structures like cycles and cliques, can be of great importance
to graph-related tasks, significantly improving performance [7].

Topological data analysis (TDA) [8] is an emerging area of study that uses techniques from topology,
and in particular the tool of persistent homology, to study the shape of the data at multiple scales.
TDA is particularly well-suited for capturing higher-order information in graphs, as it can provide
information related to structures of different orders, including cliques and cycles, which are known
to be particularly informative for several graph-related tasks [7]. Recent works have incorporated
topological information related to persistent homology into graph learning tasks with great success
[9]. These methods are however limited to persistent homology up to dimension 1, due to the high
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computational cost that is required for higher dimensions. While this already empowers the model
with important structural information that GNNs cannot capture, it is still missing a vast amount of
higher-order information.

In this paper we introduce CliquePH, a new topological layer that can be added to any GNN, and that
provides information about persistent homology on higher-order structures. Performing persistent
homology up to dimension 1 is extremely efficient and scalable, while higher-dimensional persistent
homology is prohibitively expensive [9]. We then devise a strategy that captures higher-order
information while still using the efficient low-dimensional persistent homology. In more detail, we
first “lift” the graph into multiple clique graphs describing the connections of higher-order structures,
and then apply persistent homology up to dimension 1 to each “higher-order” graph. This strategy
allows us to use the very efficient (with complexity linear in the number of nodes) persistent homology
of dimension 1, while still extracting information from higher-order structures.

The contributions of this paper can be summarized as follows:

• We introduce a topological layer named CliquePH that can be incorporated into any GNN and
that provides information related to persistent homology on higher-order graph structures.

• We highlight theoretical results that provide a strong motivation for the use of higher-order
persistent homology in graph learning tasks.

• We evaluate our method applied to three popular GNNs on standard graph classification bench-
marks, and show performance improvements of up to 31%.

2 Preliminaries
We denote a graph with G = (V,E), where V is the set of nodes, with |V |= n, and E is the set of
edges. We consider attributed graphs, in which every node has a set of d features. The features for
each node in a graph are contained in a matrix X ∈ Rn×d. We use Nv to indicate the neighbors of
node v (i.e., the nodes connected to v by an edge).

Clique Graphs. A k-vertex clique in a graph G = (V,E) is a subset of vertices such that every two
distinct vertices in the clique have an edge between them, i.e., k = {v1, v2, . . . , vk}, with vi ∈ V , is
a k-vertex clique if (vi, vj) ∈ E ∀i ̸= j; i, j = 1, . . . , k. Let k1, k2, . . . kz be the r-vertex cliques
in the graph G, then the r-vertex clique graph of G is a graph K(r)(G) = (VK(r) , EK(r)), with
VK(r) = {k1, k2, . . . kz}, and (ki, kj) ∈ EK(r) if and only if i ̸= j and ki ∩ kj ̸= ∅. In other words,
the r-vertex clique graph K(r)(G) summarizes the structure of the r-vertex cliques in the graph G.

Table 1: Runtime comparison for one epoch of
training of exact higher-order persistent homology
up to dimension 2 (denoted with “FullPH”), and
our proposed method CliquePH. Results are for the
same architecture and hyperparameters trained for
one epoch on MNIST dataset. All results are run
on NVIDIA A100.

Method Time (h:m:s/epoch) # Iteration/sec Speedup
FullPH 9:24:14 0.05 it/s 1
CliquePH 00:02:57 2.42 it/s ∼191

Persistent Homology. Persistent homol-
ogy [10, 11], a technique for capturing
topological features of data, constitutes the
foundation of our proposed method. In contrast
to other graph learning techniques, persistent
homology permits us to quantify topological
features at different scales. The crucial element
enabling multi-scale calculations is a filtration,
i.e., a consistent ordering of the vertices and
edges of a graph, defined using a function
f : G → R. Filtrations can be either obtained
from static descriptor functions that measure
certain aspects of a graph, such as its number of connected components or its curvature [12], but
recent work also demonstrates that it is possible to learn filtrations in an end-to-end fashion [9, 13].
Regardless of the origin of a filtration, the crucial insight is that, since a graph is a discrete object, its
topology can only change at a finite number of critical thresholds t1, . . . , tk. Thus, any function
f : G → R that gives rise to a filtration enables us to turn a graph into a sequence of nested
subgraphs G1 ⊆ G2 ⊆ . . . ⊆ Gk = G, where each Gi is defined based on the critical points
of f via Gi := {x ∈ V ∪ E | f(x) ≤ ti}. Intuitively, each subgraph consists of all elements
of the graph G whose function value is less than or equal to the critical threshold. Alongside
this sequence of subgraphs, we now calculate the homology groups. These groups capture the
topological features—connected components, cycles, voids, and higher-order features—of each
subgraph. Persistent homology represents all topological features arising from the filtration in a
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Figure 1: Overview of our method. CliquePH is composed of four stages. (1) First we “lift” the
original graph by extracting its clique graphs. (2) We construct node embeddings using a graph
neural network. (3) We use learnable functions to generate filtration values for all nodes and edges in
all the lifted graphs. We then perform persistent homology (up to dimension 1) on all lifted graphs.
(4) We incorporate the information from persistent homology and message-passing into a single
representation. The whole model is trained end-to-end.

set of persistence diagrams. Each persistence diagram consists of a multiset of intervals of the
form (ci, di) with ci, di ∈ R ∪ {∞}, with ci denoting the “creation time” (in terms of the critical
thresholds ) and di denoting the “destruction time.” Features with an infinite destruction time are
called essential; these denote topological features that appear at all scales. Prior work in leveraging
topological features from graphs ignored clique information due to computational issues: while it is
possible to work with higher-order topological features arising from cliques, a naive application
of the persistent homology scales with O(nd), where n denotes the number of vertices in a graph,
and d denotes the order of cliques2 (we refer to this as exact higher order persistent homology).
Our proposed method instead lifts cliques into individual skeleton graphs, and then performs the
efficient persistent homology up to dimension 1. In Table 1 we show a time comparison for one
epoch of training, of our proposed method CliquePH with a lifting of the original graph up to 3-vertex
clique graphs, and a modified version making use of exact persistent homology up to dimension 2
(dimension 2 corresponds to triangles, i.e., 3-vertex cliques – hence the comparison). The exact
persistent homology computations take about 190 times more than our method CliquePH3.

Graph Neural Networks. GNNs are deep learning models that operate on graphs. Most popular
GNNs adhere to the message-passing framework [5]. Let H(ℓ) ∈ Rn×d′

be the matrix of node
representations at iteration ℓ (with H(0) = X, and H

(i)
v used to indicate the representation of node v

at iteration i). Given a permutation-invariant aggregation function Φ, and a learnable update function
Ψθ (usually a neural network), a message passing layer updates node representations via

m(ℓ)
v = Φ({{H(ℓ)

u | u ∈ Nv}}) (1)

H(ℓ+1)
v = Ψθ(H

(ℓ)
v ,m(ℓ)

v ) (2)

2This complexity is due to the number of possible simplices of dimension d.
3The output of CliquePH is not the same as performing exact higher-order persistent homology; Table 1 is

meant to show the impracticality of performing the latter.
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where {{·}} indicates a multiset, and mv is the message received by node v from its neighbours.
After L message-passing layers, the node embeddings H(L) are used to perform a given task (e.g.,
they are fed to a classifier network), and the whole system is trained end-to-end. For graph-level
tasks, it is common to adopt a permutation invariant readout function that aggregates all the node
representations into a unique graph embedding (e.g., through averaging).

Topological Graph Neural Networks. TOGL [9] is a layer that can be added in-between message
passing iterations in GNNs to incorporate global topological information extracted by persistent
homology up to dimension 1. Given the node embedding at layer ℓ, TOGL uses a learnable filtration
function4 fθ : H

(ℓ)
v → R,∀v ∈ V to assign a filtration value to each node. Filtration values

for each edge are then obtained by taking the maximum filtration value between the two nodes
connected by the edge. Successively, persistent homology up to dimension 1 is computed, returning a
persistence diagram for dimension 0 and one for dimension 1: D(0),D(1). The persistence diagrams
are then embedded using DeepSet [14] networks S(0)

θ , S
(1)
θ , encoding each diagram into a vector:

A0 = S
(0)
θ (D(0)),A1 = S

(1)
θ (D(1)). The information from the diagrams is then incorporated into

node embeddings (for dimension 0), and to the graph embedding (for dimension 1). All the operations
in TOGL are differentiable, and the network is learned end-to-end.

3 Our Method
Our proposed method aims at introducing information from persistent homology on higher-order
structures into GNNs. Our method can be decomposed into four components (as shown in Figure 1),
which we present below.

3.1 Graph Lifting

Starting from the original graph G, we perform a “lifting” operation to extract its clique graphs:

lift(G) = {G,K(3)(G),K(4)(G), . . . ,K(r)(G)}

the maximum size r for the clique graphs can be defined arbitrarily according to the data at hand (e.g.,
by taking the value that leads to a clique graph with a number of nodes that is least 5% the number of
nodes in the original graph). We start from the 3-vertex clique graph, as the information about nodes
and edges is already present in the original graphs, while the higher dimensions are the ones in which
GNNs struggle. This step can be done just once, as pre-processing on all graphs in the dataset.

The motivation behind the use of clique graphs is threefold: (1) several works have proposed methods
for efficiently enumerating all cliques in large graphs [15–18], (2) cliques are heavily studied in graph
theory and have a vast amount of applications (e.g., see [19]), and (3) cliques have already been used
successfully to improve performance on GNNs [7].

In practice, we use r = 5 in our experiments as available datasets tend to have a very small number of
cliques larger than that. In all considered datasets, we have been able to perform this pre-processing
step up to r = 5, within 1 hour. For instance, complete preprocessing time on MNIST dataset for up
to 3-cliques, up to 4-cliques, and up to 5-cliques takes 36.4 minutes, 58.1 minutes, and 60.7 minutes.

3.2 Message-Passing

In this step, we obtain node embeddings for the original graph G. In more detail, we perform Lm

steps of message passing on G. Any GNN could be used for this step, and the output is a matrix of
node embeddings H(Lm).

3.3 Learnable Persistent Homology

Once we have obtained embeddings for the nodes in G, we incorporate information from persistent
homology for all graphs in lift(G). This step is composed of three sub-components presented below.

4TOGL actually uses a set of filtration functions, but we introduce the method with only one for clarity.
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1 - Filtration values for nodes and edges. To perform persistent homology, we first need to
compute filtration values for dimension 0 (nodes), which we indicate with F

(·)
0 , and dimension 1

(edges), which we indicate with F
(·)
1 , in all graphs in the lifted set. We first describe how we obtain

filtration values for the original graph G, and then for the clique graphs K(·)(G).

Original graph G. For dimension 0, we use a two-layer MLP f0 to map the embedding of each node
into df filtration values: F(G)

0 (v) = f0(H
(Lm)
v ). For dimension 1, we first obtain a representation

rei for each edge ei = (u, v) by concatenating the representations of the nodes it connects: rei =
cat(H(Lm)

v (u),H
(Lm)
v (v)). We then obtain the filtration value for the edge using a 2-layer MLP

function f1 as follows:

F
(G)
1 (ei) = max({F(G)

0 (u),F
(G)
0 (v)}) + f1(rei) (3)

Clique graphs K(·)(G). For the lifted graphs, we obtain filtration values in a similar way. Let ki be
a node in a clique graph, related to a clique between the nodes {u1, u2, . . . , uj}, we first obtain the
embedding for ki as eki

= cat(H(Lm)
v (u1), . . . ,H

(Lm)
v (uj)). We then compute the filtration value

as
FK(·)

0 (ki) = max({F(G)
0 (u1), . . . ,F

(G)
0 (uj)}) + f

k
(·)
0
(eki

) (4)

where f
k
(·)
0

is a two-layer MLP (a separate one for each clique graph). We then obtain the filtration
values for dimension 1 following an analogous procedure to the one used for dimension 1 on the
original graph G, using a separate learnable function for each clique graph.

2 - Persistent homology. We now have filtration values for all the nodes and edges in all the
graphs in the lifted set. We can then perform the efficient persistent homology up to dimen-
sion 1 to all the graphs, obtaining two persistence diagrams for each graph in the lifted set:
{(D(0)

G , D
(1)
G ), (D

(0)

K(3) , D
(1)

K(3)), . . . , (D
(0)

K(r) , D
(1)

K(r))}. The diagrams for dimension 0 have a number
of entries equal to the number of nodes in the respective graph, while the diagrams for dimension 1
have a number of entries equal to the number of independent cycles in the respective graph. In other
words, these diagrams are summarizing the evolution (according to the learned filtration values) of
the connected components and cycles in each graph.

3 - Embed persistence diagrams. The diagrams for dimension 0 of the original graph G are passed
to a permutation equivariant (set-to-set) DeepSet network (a separate network for each graph in the
lifted set is used), which returns a vector for each node. These vectors are stored in a matrix E

(0)
G . The

diagrams for dimension 0 for all clique graphs are passed to a permutation invariant DeepSet network
(a separate network for each clique graph is used), which returns a single vector E(0)

K(·) for each
clique graph K(·)(G). The diagrams of dimension 1 for all graphs are passed through a permutation
invariant (set-to-vector) DeepSet network (a separate network for each graph in the lifted set is used)
to obtain a unique embedding, which returns a single vector for each graph: E(1)

G ,E
(1)

K(3) , . . . ,E
(1)

K(r) .

3.4 Information Combination

We summarize the information from the persistent homology of each clique graph into a unique
vector for each dimension. In more detail, we concatenate the vectors E(0)

K(·) and E
(1)

K(·) , and pass them
through a two-layer MLP to obtain a vector EK(j) for each dimension j ≥ 3. Finally, we combine
all the information from the persistent homology computations with the embeddings obtained in the
message passing step. This is done by adding the embeddings together:

H(Lm) +E
(0)
G + SCATTER(E

(1)
G ) + SCATTER(EK(3)) + · · ·+ SCATTER(EK(r)) (5)

where the function SCATTER indicates that the embeddings of each clique are added to all the node
embeddings of the nodes that form that clique. More formally, given a 3-vertex clique k = (u, v, z)
with embedding ek, the operation H+ SCATTER(ek) is doing the following

Hv = Hv + ek; Hu = Hu + ek; Hz = Hz + ek (6)
and leaving the rows of H related to other nodes unaltered. Additional round(s) of message passing
on G can then be performed before passing the embeddings to the final classifier. In the case of a
graph-level task, a standard graph pooling method (e.g., averaging) is used.
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Finally, we mention that CliquePH does not affect the permutation equivariance of GNNs, and is
fully differentiable (hence allowing end-to-end training). More details can be found in Appendix A.
We futher provide a comparison between CliquePH and TOGL in Appendix B.

3.5 Limitations

There are three main limitations to our method. Firstly, for very large graphs, it may become difficult
computationally to use values of r larger than 3. While our experiments show that r = 3 is already
enough to provide benefits, this can prevent from exploiting the full potential of CliquePH. Secondly,
our method avoids the computational complexity of the exact higher order persistent homology
procedure, but it is not equivalent to it, and hence does not have the same theoretical guarantees
in terms of expressiveness. Finally, in tasks in which higher-order structures are not informative,
CliquePH may not be useful, or may even promote overfitting.

4 Theoretical Motivation

The expressivity of GNNs is measured by considering their ability of distinguishing non-isomorphic
graphs. This is done by relating GNNs to the Weisfeiler-Lehman algorithm (or WL algorithm) [20].
We refer to Morris et al. [21] for a complete introduction to WL, its variants, and its use in machine
learning. The WL algorithm cannot completely solve the graph isomorphism problem (in fact, there
is no known polynomial time solution), but it can still distinguish a large number of graphs [22].
Modifications to the WL algorithm have been made to increase its distinguishing power. In particular,
some “higher-order” variants have been proposed. These variants form a hierarchy of algorithms:
1-WL, 2-WL, ..., k-WL, each more expressive than the previous, i.e., i-WL can distinguish more
graphs than (i − 1)-WL. It has been shown that standard message-passing GNNs are strictly less
powerful than the 1-WL algorithm [6]. Two recent results, which we provide below, present a strong
motivation for using persistent homology to enhance the expressivity of GNNs.

Theorem 4.1 (Persistent Homology is at least as expressive as the 1-WL - Thm. 2 in Horn et al. [9]).
Persistent homology is at least as expressive as the 1-WL algorithm, i.e. if the 1-WL label sequences
for two graphs G and G′ diverge, there exists an injective filtration f such that the corresponding
0-dimensional persistence diagrams D(0)

G and D
(0)
G′ are not equal.

Theorem 4.2 (k-dimensional Persistent Homology is as expressive as k-WL - Thm. 3 in Ballester and
Rieck [23]). Given k-WL colorings of two graphs G and G′ that are different, there exists a filtration
of G and G′ such that the corresponding persistence diagrams in dimension k − 1 or dimension k
are different.

Theorem 4.1 entails that first-order persistent homology information can already make any GNN
strictly more expressive than the 1-WL. Theorem 4.2 is a weaker version of this result; it shows that
higher-order persistent homology can in fact match the expressiveness of higher-order variants of the
WL algorithm—without requiring an enumeration of all k-tuples.

As CliquePH makes use of first-order persistent homology information, it is straightforward to see
from Theorem 4.1 that a GNN empowered with CliquePH is strictly more powerful than the 1-WL
algorithm. While we cannot use Theorem 4.2 to theoretically prove that a version of CliquePH with
cliques up to order k leads to the expressiveness of k-WL (as CliquePH does not perform exact
higher-order persistent homology), we provide below some empirical evidence.

Empirical Validation of Expressiveness. We consider 6 datasets of strongly regular graphs [23]
(i.e., graphs in which all nodes have the same degree), which are known to be hard to distinguish with
the 1-WL test. We then randomly initialize a GCN [24], a GCN with TOGL [9], and a GCN with
CliquePH (with a lifting up to 3-vertex clique graphs), and use them to produce graph embeddings.
All models are set to have the same number of layers (set to 4), and the internal same dimensionalities
(set to 128). We then count the number of unique representations (a network that can distinguish all
graphs will provide a different representation for each graph). We show results averaged of 10 random
seeds in Table 3. CliquePH increases the capability of distinguishing regular graphs, improving
also over TOGL, which has an expressivity strictly higher than the 1-WL, empirically showing that
persistent homology information from clique graphs provides important performance benefits.
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Table 2: We report the test accuracy (following standard practice, we report ROC-AUC on OGBG-
molhiv) obtained on standard benchmark datasets when only structural information is considered
(i.e., no node attributes are used). We compare standard popular GNNs (GCN, GIN, GAT) alone,
and with the addition of TOGL and our proposed method, CliquePH. The highest performing model
of each dataset is highlighted with a grey background and the highest performing variant for each
architecture in bold. The last column on the right shows the average performance improvement
provided by TOGL and CliquePH with respect to the base GNN.

Graph classification
METHOD DD ENZYMES MNIST PROTEINS IMDB-B REDDIT-5K OGBG-molhiv Avg. ↑
GCN-4 68.0± 3.6 22.0± 3.3 76.2± 0.5 68.8± 2.8 65.1± 5.1 54.1± 0.8 66.4± 1.8 −
GCN-3-TOGL-1 75.1± 2.1 30.3± 6.5 84.8 ± 0.4 73.8 ± 4.3 72.5± 3.0 54.3± 1.4 69.4± 1.8 5.7
GCN-3-CliquePH-1 76.1 ± 1.3 34.3 ± 4.7 83.6± 0.7 72.6± 1.5 74.7 ± 1.2 57.7 ± 0.5 69.6 ± 2.0 6.9
GIN-4 75.6± 2.8 21.3± 6.5 83.4± 0.9 74.6 ± 3.1 71.1± 3.7 50.2± 2.4 68.7± 0.9 −
GIN-3-TOGL-1 76.2± 2.4 23.7± 6.9 84.4± 1.1 73.9± 4.9 74.4 ± 1.6 52.7± 0.9 65.1± 6.2 0.8
GIN-3-CliquePH-1 77.6 ± 1.7 24.7 ± 3.1 88.9 ± 0.6 72.9± 0.9 72.4± 2.8 55.0 ± 1.4 69.6 ± 1.8 2.3
GAT-4 63.3± 3.7 21.7± 2.9 63.2± 10.4 67.5± 2.6 63.6± 3.9 48.1± 1.1 51.8± 5.6 −
GAT-3-TOGL-1 75.7 ± 2.1 23.5± 6.1 77.2± 10.5 72.4± 4.6 71.2± 2.4 52.7± 1.4 68.6± 1.7 8.8
GAT-3-CliquePH-1 75.2± 1.9 27.5 ± 4.0 83.8 ± 0.9 72.6 ± 0.8 71.5 ± 2.6 53.7 ± 1.0 69.9 ± 1.7 10.7

Table 3: Number of strongly regular graphs distinguishable by untrained models. CliquePH can
enhance the ability of networks to distinguish “hard” non-isomorphic graphs.

Dataset Cubic12 Cubic14 Cubic16 Quartic10 Quartic11 Quartic12
# Graphs 85 509 4060 59 265 1544

GCN 78± 0.0 458± 0.0 3604± 0.0 56± 0.0 255± 0.0 1427± 0.0

GCN-TOGL 85± 0.0 507.2± 1.4 4049.4± 3.7 59± 0.0 264± 0.0 1540.1± 2.1

GCN-CliquePH 85± 0.0 509± 0.0 4057.1± 0.7 59± 0.0 265± 0.0 1542.3± 2.21

5 Experiments
To demonstrate the benefits provided by our method in practical scenarios, we follow prior liter-
ature [9] and apply our method to three GNNs among the most used by practitioners: GCN [24],
GIN [6], and GAT [25]. We report results for each GNN by itself, for the GNN with the addition of
TOGL [9], and for the GNN with the addition of our method CliquePH. The comparison with TOGL
is particularly useful, as TOGL is a topological method that can be used on top of any GNN (like
CliquePH), and it makes use of information coming from persistent homology up to dimension one.
This then allows us to analyze the benefit provided by the persistent homology information obtained
from the higher-order clique graphs that is present in our method. Finally, we provide an ablation
study to observe the effects of the position of the CliquePH layer in the model architecture.

Experimental Setup and Datasets. In order to ensure a fair performance comparison, we take the
optimal architectures and hyperparameters for the GNNs and for TOGL from prior work [9]. For
CliquePH we use the same architecture for the base GNN of TOGL, and we tune only the learning rate
and the maximum dimension of the lifted clique graphs (between 3, 4, and 5) using a random search
approach (using values in the interval: (10−6, 10−2)) by comparing the loss on the validation set.
Furthermore, the reported results are obtained by averaging over ten independent runs with varying
random seeds. The code to replicate our experiments will be publicly released upon acceptance. We
provide statistics about the used models and datasets in Appendix F. In Tables 2 and 4, the notation
“GCN-4” indicates a GCN architecture with 4 message passing layers, while “GCN-3-CliquePH-1”
indicates a GCN architecture with 3 message passing layers, and 1 CliquePH layer. We use the
analogous notation for the other GNNs, and for networks with TOGL. All experimental results were
conducted on a single NVIDIA A100 GPU, and 20 allocated AMD EPYC 7742 64-Core CPUs,
with the Adam optimizer, 4 workers, and a batch size of 32 for small datasets and 128 for large
datasets. We use standard graph classification benchmark datasets: DD [26], ENZYMES [27],
MNIST [28], PROTEINS [29], IMDB-B [30], Reddit-5k [31], and OGBG-Molhiv [32]. To ensure
the same training, evaluation, and data setup, we use the code provided by the authors of TOGL [9],
and we report results for TOGL and base models from their paper.

Performance on Structure-based Experiments. Following prior work [9], we perform “structure-
based” graph classification experiments, in which we assign random node features. This approach
removes the information present in the features, and allows us to assess the models’ effectiveness

7



CliquePH: Higher-Order Information for Graph Neural Networks

Table 4: We report the test accuracy (following standard practice, we report ROC-AUC on OGBG-
molhiv) obtained on standard graph classification benchmark datasets (considering node features).
We compare standard popular GNNs (GCN, GIN, GAT) alone, and with the addition of TOGL and
our proposed method, CliquePH. The highest performing model of each dataset is highlighted with
grey background and the highest performing variant for each architecture in bold. The last column
on the right shows the average performance improvement provided by TOGL and CliquePH with
respect to the base GNN.

Graph classification
METHOD DD ENZYMES MNIST PROTEINS-FULL IMDB-B REDDIT-5K OGBG-molhiv Avg. ↑
GCN-4 72.8± 4.1 58.3 ± 6.1 90.0± 0.3 76.1± 2.4 68.6± 4.9 53.7± 1.7 71.9± 1.1 −
GCN-3-TOGL-1 73.2± 4.7 53.0± 9.2 95.5± 0.2 76.0± 3.9 72.8 ± 2.3 54.5± 1.2 72.6± 2.0 0.9
GCN-3-CliquePH-1 75.0 ± 1.8 55.5± 4.2 95.9 ± 0.2 82.0 ± 0.5 71.1± 3.2 55.6 ± 1.2 75.2 ± 2.3 2.7
GIN-4 70.8± 3.8 50.0± 12.3 96.1± 0.3 72.3± 3.3 72.8± 2.5 53.3± 1.6 69.8± 1.1 −
GIN-3-TOGL-1 75.2± 4.2 43.8± 7.9 96.1± 0.1 73.6± 4.8 74.2 ± 4.2 53.7± 1.1 67.3± 4.0 −0.17
GIN-3-CliquePH-1 76.1 ± 2.6 54.8 ± 8.4 96.3 ± 0.1 81.4 ± 1.1 73.7± 2.1 55.1 ± 1.7 72.9 ± 1.6 3.6
GAT-4 71.1± 3.1 26.8± 4.1 94.1± 0.3 71.3± 5.4 73.2 ± 4.1 51.4± 1.4 74.0± 2.1 −
GAT-3-TOGL-1 73.7± 2.9 51.5± 7.3 95.9± 0.3 75.2± 3.9 70.8± 8.0 52.5± 0.9 74.7± 1.8 4.6
GAT-3-CliquePH-1 75.4 ± 3.1 57.5 ± 9.2 96.8 ± 0.2 80.8 ± 1.4 70.7± 3.0 53.8 ± 1.5 75.7 ± 1.1 7.0

when relying only on structural information. Results are shown in Table 2. Firstly, we observe
that CliquePH and TOGL significantly improve the performance of standard GNNs. CliquePH in
particular leads to the highest average improvement across datasets (right-most column), with an
improvement of 6.9% with respect to the base GCN model, 2.3% for the base GIN, and 10.7% for
the base GAT. Looking at individual datasets, we then notice that a CliquePH model is the best
performing model on 6 out of 7 datasets. Furthermore, it can be seen that in most cases, the results for
CliquePH present a lower variance across runs, showing an increased stability with respect to TOGL.

Performance on Benchmark Datasets. We now investigate the effect of CliquePH layer on
standard benchmark datasets making use of node attributes. We use the same datasets used for the
structure-based experiments, except for MNIST, which does not have node attributes. Results are
shown in Table 4. We notice that CliquePH can significantly improve the performance of GNNs
even in the presence of rich feature information, while this is not the case for TOGL. In fact, the
average performance improvement across datasets for CliquePH is always positive (while for TOGL
it is negative for the GIN model) and in 90% of the cases, the addition of CliquePH improves the
performance of the baseline GNN, with improvements of up to 31%. As above, we notice that
in the majority of cases, the results for CliquePH have a lower variance than the ones for TOGL,
highlighting the increased stability of our method.

Ablation Study. We investigate the effects of the position of the CliquePH layer inside a GNN
architecture, and the maximum dimension r of the lifted clique graphs. We provide below an
overview of the results and we refer to Appendix C for the full results. Furthermore, in Appendix
D we compare against a version CliquePH with static (non-learnable) embedding functions for the
persistence diagrams, instead of (learnable) DeepSet networks, to highlight the benefits provided by
the latter. We start by considering a 4-layer GNN, with 3 message passing layers and 1 CliquePH
layer, and we change the position of the latter. We consider the structure-based scenario to exclude
the influence of node features. Results are shown in Figure 2 (Left) for the DD dataset (other datasets
are in the Appendix). We notice that the effects are highly dataset dependent: for DD using CliquePH
as the first layer is more effective, while, e.g., for Enzymes the best performance is when the layer is
3rd, similar to PROTEINS. We then consider a GNN with a number of layers that vary from 1 to 5
and with CliquePH as the last layer. Results are shown in Figure 2 (Center). Again we notice that the
performance is highly dependent on the dataset, as for DD there is little change in performance for
different numbers of layers, while, e.g., for ENZYMES it is important to have 2 to 4 layers prior to
CliquePH. On IMDB-B we notice how the addition of CliquePH significantly increases performance
even for a 1-layer architecture. Finally, we notice how in all cases the addition of CliquePH always
leads to performance improvements. Finally, we apply CliquePH with a maximum dimension of the
lifted clique graphs varying from 3 to 5 on the DD dataset. Results are shown in Figure 2 (Right).
We observe that tuning this parameter is important to avoid overfitting. These results suggest that
tuning the position of CliquePH, and the value of r, is important to obtain the best results, and that
CliquePH always leads to performance improvements when no node features are available.
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Figure 2: Ablation Results for different architectures. (Left) Test accuracy for the structure-based
experiments while changing the position of CliquePH layer. (Center) Test accuracy for the structure-
based experiments while increasing the total number of layers in the model. Error bars show standard
deviation over 10 runs. (Right) Test accuracy for the structure-based experiments while changing the
maximum dimension of the lifted clique graphs of CliquePH.

6 Related Work
Graph neural networks and topological data analysis have become very popular and prolific research
fields. In this section, we review works at the intersection of graph machine learning and topology,
and we refer the interested reader to comprehensive surveys for the latest advancements in graph
neural networks [1, 2] and topological data analysis [33–35].

In the context of graph neural networks augmented with topological information, Bouritsas et al.
[7] show that adding information about the number of higher-order structures that a node belongs to
can improve the theoretical expressivity and practical performance of a model. Similarly, Immonen
et al. [36] use a topological descriptor based on filtrations as additional node features for GNNs. Zhao
et al. [37] use persistent homology to weight messages in GNNs in the message passing procedure.
He et al. [38] use sheaf theory to produce node position encodings that improve the performance of
graph neural networks on several tasks. Song et al. [39] propose a feature augmentation method by
obtaining topology embedding of nodes through Node2vec. This introduces topological structure
information into an end-to-end model to improve node representation learning.

In addition, several works discuss message-passing on topological spaces. Bodnar et al. [40]
introduce a model that performs message passing over simplicial complexes. Bodnar et al. [41]
successively extended this to cellular complexes. Later work [42] has also introduced models
operating on cellular sheaves. We further mention the work of Hajij et al. [43] which provides a
unifying framework for deep learning on topological domains. While these works are related to
CliquePH, there are some important differences. Firstly, our method keeps the message passing on
the original graph. Secondly, these methods require a specific model, while our method CliquePH
can be applied in conjunction with any existing GNN. Thirdly, CliquePH makes use of Persistent
Homology, which provides access to information (e.g., the exact number of cliques and cycles in the
original graph and in each lifted graph) that is not guaranteed to be accessible to the above methods.

Finally, several works also focus on the explicit connections between topological data analysis and
graph learning. O’Bray et al. [44] use graph filtrations to compute efficient graph representations
that can outperform those obtained from GNNs. Southern et al. [45] leverage topological tools to
robustly evaluate generative graph models. Coupette et al. [46] introduces the concept of curvature
for hypergraphs and show that they can be used to effectively perform clustering. Carriere et al.
[47] use extended persistent diagrams to produce graph embeddings. Srambical and Rieck [48] use
graph filtrations to classify dynamic graphs. Ye et al. [49] and Zhang et al. [50] introduce the use of
extended persistent homology, a variant of persistent homology, into graph-related tasks.

7 Conclusions
GNNs are powerful models operating on graph structures, but they lack the ability of extracting
information about higher-order structures. In this paper, we introduce a novel learnable topological
layer that provides GNNs with information from persistent homology on higher-order structures
present in a graph. Our experimental results show that our method leads to performance improvements
of up to 31% on standard benchmarks for the tasks of graph classification.
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A Permutation Equivariance & Differentiability
Permutation Equivariance. Most popular GNNs are permutation equivariant (as we do not want
the ordering of the nodes to affect the final output), and it is hence important to address whether our
proposed method impacts this property. Assuming the use of a permutation equivariant GNN for
the message passing operations in CliquPH, and noticing that persistent homology is permutation
equivariant by design, we can confirm that CliquePH does indeed preserve this property.

Differentiability. The persistent homology computations are differentiable (and hence allow end-
to-end training) only with an appropriate choice of function to embed the persistence diagrams. In
particular, we refer to the following theorem from Horn et al. [9, Theorem 1].
Theorem A.1. Let fθ be a vertex filtration function fθ : V → R with continuous parameters θ, and
let Ψ be a differentiable embedding function (used to embed persistence diagrams) of unspecified
dimensions. If the vertex function values of fθ are distinct for a specific set of parameters θ′, i.e.
fθ(v) ̸= fθ(w) for v ̸= w, then the map θ → Ψ(ph(G, fθ)) is differentiable at θ.

Differentiability thus hinges on unique function values at the vertices of the graph. We observe that
this condition is always satisfied in practice (as the chances of having all floating point values be
exactly the same are infinitesimally small); if need be, it can be enforced by a random perturbation
of function values, similar to the well known strategy of adding random features to GNNs [51, 52].
Since we use DeepSet (which is a differentiable architecture) as our function to embed the persistence
diagrams, we are guaranteed to be respecting Theorem A.1, thus ensuring the differentiability of our
CliquePH method.

B Differences Between CliquePH and TOGL
Our method CliquePH is strictly related to TOGL [9] as both methods provide a “plug-in” topological
layer for GNNs. Furthermore, both methods rely on a differentiable (and learnable) implementation
of persistent homology as the main tool for capturing topological information.

There are however several differences which we highlight below

• CliquePH introduces a lifting operation that allows the model to obtain persistent homology
information on the clique graphs representing the connectivity of higher-order structure in the
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graph. TOGL on the other hand is strictly limited to information up to dimension 1. This point
implies that CliquePH has several functions that are not present in TOGL (e.g., the functions
for computing filtration values for the lifted graphs, the functions for embedding higher-order
persistence diagrams, the functions for combining information from lifted graphs).

• In eq. 3, the learnable function f1 is not present in the original TOGL layer, and provides
CliquePH with more flexibility. In fact, this provides the model with an additional learnable
function that can modify the filtration value of the edge without modifying the values for the
nodes connected by that edge.

• CliquePH uses an MLP for combining information (section 3.4) from persistence diagrams into
node embeddings. TOGL does not use a learnable function for this step.

C Full Ablation results

We start by considering a 4-layer GNN, with 3 message passing layers and 1 CliquePH layer, and we
change the position of the latter. We consider the structure-based scenario to exclude the influence
of node features. Results are shown in Figure 3 (Center) for the DD, ENZYMES, and PROTEINS
datasets. We notice that the effects are highly dataset dependent: for DD using CliquePH as the first
layer is more effective, while for Enzymes the best performance is when the layer is 3rd, similar to
PROTEINS.

We then consider a GNN with a number of layers that vary from 1 to 5 and with CliquePH as the last
layer. Results are shown in Figure 4. Again we notice that the performance is highly dependent on
the dataset, as for DD there is little change in performance for different numbers of layers, while for
ENZYMES it is important to have 2 to 4 layers prior to CliquePH. On PROTEINS we notice how the
addition of CliquePH significantly increases performance even for a 1-layer architecture. Finally, we
notice how in all cases the addition of CliquePH always improves the final performance.

Finally, in Figure 5 we show the performance of a GCN, GIN, and GAT model with different
maximum dimension of the lifted graph (varying between 3, 4, and 5) on the DD dataset in a structure-
based setting. The results confirm the importance of tuning this parameter to avoid overfitting the
data. We also notice that GIN, the theoretically most expressive architecture of the three, achieves the
highest performance with a maximum dimension of 4, while GCN and GAT prefer 3.
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Figure 3: Comparison of test accuracy for the structure-based experiments while changing the
position of CliquePH layer in the GCN model architecture. Results averaged over 10 runs.
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Figure 4: Comparison of test accuracy for the structure-based experiments while increasing the total
number of layers in the model architecture. Error bars show the standard deviation over 10 runs.
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Figure 5: Comparison of test accuracy for the structure-based experiments while changing the
maximum dimension of the lifted clique graphs of CliquePH. Results averaged over 10 runs.

D Learnable vs. Static Embeddings for Persistence Diagrams

In this section, we investigate the effect of using a (learnable) DeepSet network instead of static
embeddings functions for persistence diagrams. In more details, for the static embeddings we
consider the following functions: relational hat [53], triangle point transformation, Gaussian point
transformation, and line point transformation [47]. We report results in Table 5. We notice that
learnable embeddings provide the highest results, and that static embeddings functions can even hurt
performance in some datasets.
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Table 5: We compare two approaches for embedding persistence diagrams: a (learnable) DeepSet
model and a method based on static (non-learnable) embeddings. Following standard practice, we
report ROC-AUC scores on the OGBG-molhiv dataset using Graph Convolutional Networks (GCN)
for evaluation.

Graph classification
METHOD ENZYMES PROTEINS-FULL IMDB-B MNIST REDDIT-5K OGBG-molhiv
GCN-4 58.3± 6.1 76.1± 2.4 68.6± 4.9 90.0± 0.3 53.7± 1.7 71.9± 1.1

GCN-3-CliquePH-1 (Static) 44.0± 7.0 77.3± 2.9 70.4± 4.8 93.8± 0.5 50.4± 2.2 74.5± 1.9

GCN-3-CliquePH-1 (Ours; DeepSet) 55.5± 4.2 82.0± 0.5 71.1± 3.2 95.9± 0.2 55.6± 1.2 75.2± 2.3

Table 6: We report the test accuracy for node classification. We compare standard popular GNNs
(GCN, GIN, GAT) alone, and with the addition of TOGL and our proposed method, CliquePH.
The highest performing model of each dataset is highlighted with grey background and the highest
performing variant for each architecture in bold.

METHOD Cora-ML Coauthor CS Coauthor Physics
GCN-4 92.4± 0.8 92.9± 0.1 96.1± 0.06

GCN-3-TOGL-1 93.0± 1.1 93.0± 0.1 96.4± 0.06

GCN-3-CliquePH-1 93.4 ± 0.6 93.7 ± 0.3 96.6 ± 0.07

GIN-4 92.9± 1.3 92.6± 0.2 95.9± 0.1

GIN-3-TOGL-1 93.2± 0.6 93.2± 0.3 96.3± 0.05

GIN-3-CliquePH-1 94.2 ± 1.0 94.3 ± 0.3 96.4 ± 0.01

GAT-4 93.7± 1.2 93.2± 0.2 96.2± 0.2

GAT-3-TOGL-1 93.8± 0.7 93.3± 0.4 96.1± 0.2

GAT-3-CliquePH-1 94.4 ± 0.8 94.3 ± 0.3 96.4 ± 0.07

E Node Classification Experiments
While we believe the benefits of CliquePH are more visible for graph classification tasks (in which
higher-order structural information usually plays a much more important role), we performed a
small experiment on the Cora-ML [54], Coauthor CS [55], and Coauthor Physics [55] datasets. We
followed the same practices and architectures we used for the graph classification datasets plus an
additional 0.2 drop-out on all architectures to prevent overfitting. We adhered to the widely accepted
practice of training-validation-test splits of 60%-20%-20%. We report results in Table 6, and show
that CliquePH can provide benefits also for node-level tasks.

F Architecture & Datasets Statistics
We report statistics for the datasets in Table 7.

In Tables 8, 9, 10, we report the parameter count for the considered GCN-TOGL, GCN-CliquePH,
and base GCN. Notice how the number of parameters remains almost equal between all models. This
is due to our choice of replacing a GCN layer with a topological layer (rather than adding a layer on
top), and ensures a fairer comparison.
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Table 7: Dataset statistics
Graph classification

METHOD #graphs #nodes #edges #features #classes max clique size
DD 1178 284.32 1431.32 89 2 7
ENZYMES 600 32.63 124.27 3 6 5
MNIST 55000 70.56 564.50 1 10 8
PROTEINS 1113 39.06 145.63 3 2 5
IMDB-B 1000 19.77 193.06 0 2 30
REDDIT-5K 4999 508.52 1189.75 0 5 6
OGBG-molhiv 41127 25.51 54.94 9 2 4
Coauthor CS 1 18333.00 163788.00 6805 15 20
Coauthor Physics 1 34493.00 495924.00 8415 5 12
Cora ML 1 2995.00 16316.00 2879 7 7

Table 8: GCN-3-CliquePH-1 Model Parameters
and Summary

Model Components
Name Type Params
Embedding Linear 1.2 M
Layers ModuleList 125 K
Classif Sequential 13.3 K
CliquePH SimpleSetTopoLayer 34.5 K

Summary
Trainable params 1.4 M
Non-trainable params 0
Total params 1.4 M
Total estimated model params size 5.540 MB

Table 9: GCN-3-TOGL-1 Model Parameters and
Summary

Model Components
Name Type Params
Embedding Linear 1.2 M
Layers ModuleList 65.3 K
Classif Sequential 13.6 K
Togl SimpleSetTopoLayer 16.1 K

Summary
Trainable params 1.3 M
Non-trainable params 0
Total params 1.3 M
Total estimated model params size 5.295 MB

Table 10: GCN Model Parameters and Summary
Model Components

Name Type Params
Embedding Linear 1.2 M
Layers ModuleList 87.0 K
Classif Sequential 13.6 K

Summary
Trainable params 1.3 M
Non-trainable params 0
Total params 1.3 M
Total estimated model params size 5.317 MB
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