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Abstract

Graph Neural Networks (GNNs), which aggregate features from neighbors, are
widely used for graph-structured data processing due to their powerful representa-
tion learning capabilities. It is generally believed that GNNs can implicitly remove
the non-predictive noises. However, the analysis of implicit denoising effect in
graph neural networks remains open. In this work, we conduct a comprehensive
theoretical study and analyze when and why the implicit denoising happens in
GNNs. Specifically, we study the convergence properties of noise matrix. Our
theoretical analysis suggests that the implicit denoising largely depends on the
connectivity, the graph size, and GNN architectures. Moreover, we formally define
and propose the adversarial graph signal denoising (AGSD) problem by extending
graph signal denoising problem. By solving such a problem, we derive a robust
graph convolution, where the smoothness of the node representations and the im-
plicit denoising effect can be enhanced. Extensive empirical evaluations verify our
theoretical analyses and the effectiveness of our proposed model.

1 Introduction

Graph Neural Networks (GNNs) [15, 28, 10] have been widely used in graph learning and achieved
remarkable performance on graph-based tasks, such as traffic prediction [9], drug discovery [6], and
recommendation system [35]. A general principle behind Graph Neural Networks (GNNs) [15, 28, 10]
is to perform a message passing operation that aggregates node features over neighborhoods, such
that the smoothness of learned node representations on the graph is enhanced.

By promoting graph smoothness, the message passing and aggregation mechanism naturally leads
to GNN models whose predictions are not only dependent on the feature of one specific node, but
also the features from a set of neighboring nodes. Therefore, this mechanism can, to a certain extent,
protect GNN models from noises: real-world graphs are usually noisy, e.g., Gaussian white noise
exists on node features [37], however, the influence of feature noises on the model’s output could be
counteracted by the feature aggregation operation in GNNs. We term this effect as implicit denoising.

While many works have been conducted in the empirical exploration of GNNs, relatively fewer
advances have been achieved in theoretically studying this denoising effect. Early GNN models, such
as the vanilla GCN [15], GAT [28] and GraphSAGE [10], propose different designs of aggregation
functions, but the denoising effect is not discussed in these works. Some recent attempts [20] are
made to mathematically establish the connection between a variety of GNNs and the graph signal
denoising problem (GSD) [5]:

q(F) = min
F

∥F−X∥2F + λ tr
(
F⊤L̃F

)
, (1)
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where X = X∗ + η is the observed noisy feature matrix, η ∈ Rn×d is the noise matrix, X∗ is the
clean feature matrix, and L̃ is the graph Laplacian. The second term encourages the smoothness of
the filtered feature matrix F over the graph., i.e., nearby vertices should have similar vertex features.
By regarding the feature aggregation process in GNNs as solving a GSD problem, more advanced
GNNs are proposed, such as GLP [18], S2GC [38], and IRLS [33]. Despite these prior attempts, little
efforts have been made to rigorously study the denoising effect of message passing and aggregation
operation. This urges us to think about a fundamental but not clearly answered question:

Why and when implicit denoising happens in GNNs?

In this work, we focus on the non-predictive stochasticity of noise in GNNs’ aggregated features
and analyze its properties. We prove that with the increase in graph size and graph connectivity
factor, the stochasticity tends to diminish, which is called the “denoising effect” in our work. We
will address this question using the tools from concentration inequalities and matrix theories, which
are concerned with the study of the convergence of noise matrix. It offers a new framework to
study the properties of graphs and GNNs in terms of the denoising effect. In order to facilitate our
theoretical analysis, we derive Neumann Graph Convolution (NGC) from GSD. Specifically, to study
the convergence rate, we introduce an insightful measurement on the convolution operator, termed
high-order graph connectivity factor, which reveals how uniform the nodes are distributed in the
neighborhood and reflects the strength of information diluted on a single neighboring node during
the feature aggregation step. Intuitively, as the General Hoeffding Inequality [11] (Lemma. D.1)
suggests, a larger high-order graph connectivity factor, i.e., nodes are more uniformly distributed in
the neighborhood, accelerates the convergence of the noise matrix and a larger graph size leads to
faster convergence. Besides, GNN architectures also affect the convergence rate. Deeper GNNs can
have a faster convergence rate.

To further strengthen the denoising effect, inspired by the adversarial training method [22], we
propose the adversarial graph signal denoising problem (AGSD). By solving such a problem, we
derive a robust graph convolution model based on the correlation of node feature and graph structure to
increase the high-order graph connectivity factor, which helps us improve the denoising performance.
Extensive experimental results on standard graph learning tasks verify our theoretical analyses and
the effectiveness of our derived robust graph convolution model.

Notations. Let G = (V, E) represent a undirected graph, where V is the set of vertices {v1, · · · , vn}
with |V| = n and E is the set of edges. The adjacency matrix is defined as A ∈ {0, 1}n×n, and
Ai,j = 1 if and only if (vi, vj) ∈ E . Let Ni = {vj |Ai,j = 1} denote the neighborhood of node vi
and D denote the diagonal degree matrix, where Di,i =

∑n
j=1 Ai,j . The feature matrix is denoted as

X ∈ Rn×d where each node vi is associated with a d-dimensional feature vector Xi. Y ∈ {0, 1}n×c

denotes the matrix, where Yi ∈ {0, 1}c is a one-hot vector and
∑c

j=1 Yi,j = 1 for any vi ∈ V .

2 A Simple Unifying Framework: Neumann Graph Convolution

A General Framework. In this section, we discuss a simple yet general framework for solving
graph signal denoising problem, namely Neumann Graph Convolution (NGC). Note that NGC is not a
new GNN architecture. There also exist similar GNN architectures, such as GLP [18], S2GC [38], and
GaussianMRF [14]. We focus on the theoretical analysis of the denoising effect in GNNs in this work.
NGC can facilitate our theoretical analysis. By taking the derivative ∇q (F) = 2L̃F+ 2(F−X) to
zero, we obtain the solution of GSD optimization problem as follows:

F = (I+ λL̃)−1X. (2)

To avoid the expensive computation of the inverse matrix, we can use Neumann series [27] expansion
to approximate Eq. (2) up to up to S-th order:(

I+ λL̃
)−1

=
1

λ+ 1

(
I− λ

λ+ 1
Ã
)−1

≈ 1

λ+ 1

S∑
s=0

(
λ

λ+ 1
Ã
)s

, (3)

where Ã can take the form of Ã = D̃− 1
2 ÃD̃− 1

2 or Ã = D̃−1Ã, and the proof can be found in
Appendix B. Based on the Neumann series expansion of the solution of GSD, we introduce a general
graph convolution model – Neumann Graph Convolution defined as the following expansion:
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H = ÃSXW =
1

λ+ 1

S∑
s=0

(
λ

λ+ 1
Ã
)s

XW, (4)

where ÃS = 1
λ+1

∑S
s=0

(
λ

λ+1Ã
)s

and W is the weight matrix. Our spectral convolution ÃSX on
graphs is a multi-scale graph convolution [1, 19], which covers the single-scale graph convolution
models such as SGC [30] since the graph convolution of SGC is Ã

2
X and Ã

2
is the third term of

ÃS . Besides, if we remove the non-linear functions in GCN [15], it also can be covered by our model.
Therefore, we can draw the conclusion that our proposed NGC is a general framework.

High-order Graph Connectivity Factor. Based on NGC, we obtain the filtered graph signal via
F = ÃSX. Intuitively, ÃS captures not only the connectivity of the graph structure (represented by

Ã), but also the higher order connectivity (represented by Ã
2
, Ã

3
, . . . , Ã

S
). As will be discussed

in Sec. 3, larger high order graph connectivity can accelerate the convergence of the noise feature
matrix. To formally quantify the high order graph connectivity, we give the following definition:
Definition 1 (High-order Graph Connectivity Factor). We define the high-order graph connectivity
factor τ as

τ = max
i

τi, where τi = n

n∑
j=1

[
ÃS

]2
ij

/(
1−

(
λ

λ+ 1

)S+1
)2

. (5)

Remark 1. Here we give some intuitions about why Eq. (5) represents high-order graph connectivity.
Note that each element in ÃS is non-negative and each row sum satisfies1

n∑
j=1

[
ÃS

]
ij
= 1−

(
λ

λ+ 1

)S+1

. (6)

Based on Eq. (6), the sum of squares of elements in each row satisfy:(
1−

(
λ

λ+ 1

)S+1
)2/

n ≤
n∑

j=1

[
ÃS

]2
ij
≤

(
1−

(
λ

λ+ 1

)S+1
)2

. (7)

When the high-order graph has a high connectivity, i.e., the elements in row i of ÃS are more
uniformly distributed, Eq. (7) reaches its lower bound. Meanwhile, if the graph is not connected
and there is only one element whose value is larger than 0 in row i, Eq. (7) reaches its upper bound.
Therefore, the value of τ ∈ [1, n] is determined as follows: when the high-order graph connectivity is
high, τ → 1 and when the graph is less connected, τ → n.

3 Main Theory

In this section, we analyze the denoising effect of NGC. Before we present our main theory, we first
present our aggregation on noisy feature matrix and formulate four assumptions, which are necessary
to construct our theory.

For the convenience of theoretical analysis, we adopt MSE loss2 for our main theory. Consider ÃS

as our aggregation scheme, the NGC training based on Eq. (4) can be formulated as

min
W

f(W) =
∥∥∥ÃSXW −Y

∥∥∥2
F
=
∥∥∥ÃS(X

∗ + η)W −Y
∥∥∥2
F
, (8)

where X∗ is the clean feature matrix, η denotes the noise added on X∗, and X = X∗ + η is the
observed data matrix. Intuitively, if ÃSη is small enough, the added noise will not change the
optimization direction on which the parameter is updated under the clean feature matrix X∗. Before
we present our main theory, we give four assumptions about noise η, ÃS , and parameters W.

1Note that this result is obtained by using Ã = D̃−1Ã for the ease of theoretical analysis while in
experiments we adopt more commonly used Ã = D̃− 1

2 ÃD̃− 1
2 . The proof can be found in Appendix C.

2We consider MSE loss since it gives easier form of gradient and it can be extended to other losses satisfying
certain conditions.
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Assumption 1. Each entry of the noise matrix η, i.e., [η]ij is i.i.d sub-Gaussian random variable
with variance σ and mean µ = 0, i.e.,

E
[
eλ([η]ij−µ)

]
≤ eσ

2λ2/2 for all λ ∈ R. (9)

Note that it is common to assume that the noise follows Gaussian distribution [37, 4, 36], which is
also covered by our sub-Gaussian assumption.
Assumption 2. The high-order graph connectivity factor τ is O (n), i.e., limn→∞

τ
n = 0.

As we have discussed in Sec. 2, τ depends on the graph structure. In a well-connected graph, τ is
usually relatively small compared with n. Only if all nodes of a graph are isolated, τ reaches its
upper bound n.
Assumption 3. The Frobenius norm of the parameter matrix W is bounded by a constant. There
exists C > 0 such that ∥W∥F ≤ C, which is unrelated to n.

We assume that the Frobenius norm of W is bounded by a constant. This is reasonable since recent
advances in Neural Tangent Kernel [13] indicate that over-parameterized network weights lie in the
neighborhood of the small random initialization, which justifies Assumption 3.
Assumption 4. The loss function in Eq. (8) is L-smooth,

∥∇f(W1)−∇f(W2)∥2 ≤ L∥W1 −W2∥2 for all W1,W2 ∈ Rd×c. (10)

The L-smoothness of f depends on the largest singular value of ÃSX. For conciseness, we start
with the smooth case. As the core part of our proof, we first derive the upper bound of the Frobenius
norm of ÃSη.

Lemma 1. Suppose we choose t = 2τ

(
1−

(
λ

λ+1

)S)2

(4 log n+ log 2d) /n. Then under Assump-

tions 1 and 2, with a high probability 1− 1/d, we have

∥∥∥ÃSη
∥∥∥2
F
≤

2τ

(
1−

(
λ

λ+1

)S+1
)2

σ2 (4 log n+ log 2d)

n
, (11)

where the proof can be found in Appendix D.

Lemma 1 implies that the norm of the aggregated noise matrix ÃSη is bounded by three terms:
the number of nodes of a graph n, the expansion order S, the high-order graph connectivity factor
τ . Intuitively, as the concentration bounds suggest, if we extract enough samples from the same
sub-Gaussian variable, the average of these samples will converge to zero with a high probability.
This requires our graph to be large enough and the sum of squares of the elements in the row of ÃS

to be small enough, which depends on the graph structure.

Now we start to present our main theorem for graph denoising. In order to demonstrate the effect of
graph denoising, we further consider another loss function g(·) with the clean feature matrix:

g(W) =
∥∥∥ÃSX

∗W −Y
∥∥∥2
F
. (12)

Let W∗
g = argminW g(W) be the minimizer of clean loss g, we aim to demonstrate that the learned

model (from gradient descent on the noisy data X) has essentially the same performance as W∗
g

which is the optimal solution for the clean loss g.

Theorem 1. Under Assumptions 1, 2, 3, 4 and Lemma 1, let W(k)
f denote the k-th step gradient

descent solution for minW f(W) with step size α ≤ 1/L, with probability 1− 1/d we have

g
(
W

(k)
f

)
− g

(
W∗

g

)
≤ O

(
1

2kα

)
+O

(
τ log n

n

)
, (13)

where W∗
g = argminW g(W) is the optimal solution of the clean loss function g(W), τ is the

high-order graph connectivity factor, and n is the number of nodes of a graph.
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𝑣!𝑣" 𝑣#

𝑣$

Graph

Metric 𝒢! 𝒢$ 𝒢" 𝒢#
#Nodes 4 4 4 8
𝜏 4 1.14 1 1.03

𝜏 log𝑛 /𝑛 1.39 0.39 0.35 0.27

Figure 1: An illustration of the graph structures on the implicit denoising performances. G1: nodes
are isolated; G2: a star graph with 4 nodes; G3: a complete graph with 4 nodes; G4: a ring graph with
8 nodes. For computing τ , λ and S are set to be 64.

The proof of Theorem 1 can be found in Appendix E.

Remark 2. Denoising Effect. Theorem 1 suggests that the k-th step gradient descent solution W
(k)
f

which is trained using the noisy feature matrix X enjoys a similar performance as the actual clean
loss minimizer W∗

g with large enough k and n. This implies the denoising effect of our proposed
solution in Eq. (4).
Remark 3. Effect of graph structure on denoising. Note that the second term in Eq. (13) suggests
that the denoising effect is linear with respect to τ , which is directly related to the dataset graph
structure. Specifically, as will be shown in Sec. 3, refer to Sec. 3 on how graph structure affects
the value of τ , and thus the denoising effect. A large well-connected graph tend to have a better
denoising performance since n is large and τ is close to 1.

Case Study: the Influence of Graph Structure on Implicit Denoising. Remark 3 suggests that τ
plays an important role on the implicit denoising effect. In this case study, we give four illustration
samples in Figure 1. G1, G2, and G3 have the same number of nodes. But the nodes on G1 are
isolated. G2 has only one connected component and has a center node v1 on the graph. G3 is a
complete graph such that there is an edge between any two nodes. In addition, we give a larger
illustration graph G4 to understand the influence of graph size.

From Figure 1, we can extract the following insights: 1) There is no denoising effect (the value of
τ log n/n is quite large) on G1 since the nodes are isolated. And GNNs will degrade to MLP under
such graph structure, leading to no aggregation. 2) The complete graph G3 has the best denoising
effect among the graphs of the same size if we only consider the influence of graph structure. Since
the values of elements in each row are distributed uniformly, leading to the lower bound of τ . 3)
Although G2 has only one connected component, there is a center node v1 on the graph. The existence
of the center node makes the value of elements in each row imbalanced, which means that τ tends to
have a larger value compared with G3. 4) The decentralized graph like G4 also can get a smaller τ .
5) In terms of graph size, the graph with a larger size has a better denoising effect.

4 Robust Neumann Graph Convolution

In this section, we propose a new graph signal denoising problem - adversarial graph signal denoising
(AGSD) problem to improve the denoising performance by deriving a robust graph convolution
model.

4.1 Adversarial Graph Signal Denoising Problem

Note that the second term in the GSD problem (Eq. (1)) which controls the smoothness of the feature
matrix over graphs, is related to both the graph Laplacian and the node features. Therefore, the
slight changes in the graph Laplacian matrix could lead to an unstable denoising effect. Inspired by
the recent studies in adversarial training [22], we formulate the adversarial graph signal denoising
problem as a min-max optimization problem:

min
F

[
∥F−X∥2F + λ ·max

L′
tr
(
F⊤L′F

)]
s. t.

∥∥∥L′ − L̃
∥∥∥
F
≤ ε. (14)
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Intuitively, the inner maximization on the Laplacian L′ generates perturbations on the graph struc-
ture3, and enlarges the distance between the node representations of connected neighbors. Such
maximization finds the worst case perturbations on the graph Laplacian that hinders the global
smoothness of F over the graph. Therefore, by training on those worse case Laplacian perturbations,
one could obtain a robust graph signal denoising solution. Ideally, through solving Eq. (14), the
smoothness of the node representations as well as the implicit denoising effect can be enhanced.

4.2 Minimization of the Optimization Problem

The min-max formulation in Eq. (14) also makes the adversarial graph signal denoising problem
much harder to solve. Fortunately, unlike adversarial training [21] where we need to first adopt PGD
to solve the inner maximization problem before we solve the outer minimization problem, here inner
maximization problem is simple and has a closed form solution. In other words, we do not need
to add random perturbations on the graph structure at each training epoch and can find the largest
perturbation which maximizes the inner adversarial loss function. Denote the perturbation as δ, and
L′ = L̃ + δ. Directly solving4 the inner maximization problem, we get δ = ε∇h(δ) = εFF⊤

∥FF⊤∥F
.

Plugging this solution into Eq. (14), we can rewrite the outer optimization problem as follows:

ρ(F) = min
F

[
∥F−X∥2F + λmax tr

(
F⊤L̃F

)
+ λε tr

F⊤FF⊤F

∥FF⊤∥F

]
. (15)

Taking the gradient of ρ(F) to zero, we get the solution of the outer optimization problem as follows:

F =

(
I+ λL̃+ λε

FF⊤

∥FF⊤∥F

)−1

X. (16)

Both sides of Eq. (16) contains F, directly computing the solution is difficult. Note that in Eq. (14)
we also require F to be close to X, we can approximate Eq. (16) by replacing the F with X in the
inverse matrix on the right hand side. With the Neumann series expansion of the inverse matrix, we
get the final approximate solution as

H ≈ 1

λ+ 1

S∑
s=0

[
λ

λ+ 1

(
Ã− εXX⊤

∥XX⊤∥F

)]s
XW. (17)

The difference between Eq. (17) and Eq. (4) is that there is one more term in Eq. (17) derived from
solving the inner optimization problem of Eq. (14). Based on this, we proposed our robust Neumann
graph convolution (RNGC).

Scalability. Although RNGC introduces extra computational burdens for large graphs due to the
XX⊤ term, if the feature matrix is sparse, the extra computational effort is minimal as the XX⊤

term can also be sparse. For the scalability of RNGC on large graphs with dense feature matrix, we
only compute the inner product of feature vectors (Xi,Xj|j∈Ni

) between adjacent neighbors like
masked attention in GAT. Compared with NGC, the additional computation cost is O(|E|).

5 Experiments

In this section, we conduct a comprehensive empirical study to understand the influence of different
factors on the denoising effect of various models. To quantify the denoising effect, we test the model
accuracy on noisy data on various GNN architectures and MLP for standard node classification tasks,
where the noisy data is synthesized by mixing Gaussian noise with the original feature matrix. We
also synthesize noisy data by flipping individual feature with a small Bernoulli probability on three
citation datasets with binary features.

5.1 Denoising Effectiveness Comparison of Various GNN Models

In this section, we compare the denoising effectiveness of different GNN models through their test
accuracy by training on the noisy feature matrix with Gaussian noise.

3Here we do not need exact graph structure perturbations as in graph adversarial attacks [39, 40] but a virtual
perturbation that could lead to small changes in the Laplacian.

4More details on how to solve the inner maximization problem can be found in Appendix A.
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Figure 2: Comparison of classification accuracy v.s. noise level for semi-supervised node classifi-
cation tasks. The noise level ξ controls the magnitude of the Gaussian noise we add to the feature
matrix: X+ ξη where η is sampled from standard i.i.d., Gaussian distribution.

Datasets. In our experiments, we utilize three public citation network datasets Cora, Citeseer,
and Pubmed [25] which are homophily graphs for semi-supervised node classification. For the
semi-supervised learning experimental setup, we follow the standard fixed splits employed in [34],
with 20 nodes per class for training, 500 nodes for validation, and 1,000 nodes for testing. We also use
four datasets: Cornell, Texas, Wisconsin, and Actor which are heterophily graphs for full-supervised
node classification. For each dataset, we randomly split nodes into 60%, 20%, and 20% for training,
validation, and testing as suggested in [24]. Moreover, we utilize three large-scale graph datasets:
Coauthor-CS, Coauthor-Phy [26], and ogbn-products [12] for evaluation. For Coauthor datasets, we
split nodes into 60%, 20%, and 20% for training, validation, and testing. For ogbn-products dataset,
we follow the dataset split in OGB [12].

Baselines. For the baselines, we consider graph neural networks derived from graph signal denois-
ing, including GLP [18], S2GC [38], and IRLS [33]; popular GNN architectures, such as GCN [15]
and GAT [28]; and MLP which has no aggregation operation.

Experimental Setup and Implementations. We assume that the original feature matrix is clean
and do not have noise and we synthesize the noise from the standard Gaussian distribution and
add them on the original feature matrix. By default, we apply row normalization for data after
adding the Gaussian noise5, and train all the models based on these noisy feature matrix. For the
hyper-parameters of each model, we follow the setting that reported in their original papers. To
eliminate the effect of randomness, we repeat such experiment for 100 or 10 times and report the
mean accuracy. Note that in each repeated run, we add different Gaussian noises. While for the same
run, we apply the same noisy feature matrix for training all the models. For our NGC and RNGC
model, the hyper-parameter details can be found in Appendix H.2.

Results on Supervised Node Classification. Figure 2 illustrates the comparison of classification ac-
curacy against the various noise levels for semi-supervised node classification tasks. The noise level ξ
controls the magnitude of the Gaussian noise we add to the feature matrix: X+ξη where η is sampled
from standard i.i.d., Gaussian distribution. For Cora and Citeseer, we test ξ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}
and for Pubmed, we test ξ ∈ {0.01, 0.02, 0.03, 0.04, 0.05}. From Figure 2, we can observe that the
test accuracy of MLP is close to randomly guessing (RG) when the noise level is relatively large.
This implies the weak denoising effect of MLP models. For shallow GNN models, such as GCN and
GAT (which usually contain 2 layers), their denoising performance is limited especially on Pubmed
since they do not aggregate information (features and noise) from higher-order neighbors. For models
with deep layers6, such as IRLS (≥ 8 layers), the denoising performance is much better compared to
shallow models. Lastly, our NGC and RNGC model with 16 layers (S = 16) achieve significantly
better denoising performance compared with other baseline methods, which backup our theoretical
analyses. In most cases, NGC and RNGC achieve very similar denoising performance but in general,
RNGC still slightly outperforms NGC, suggesting that we indeed gain more benefits by solving the
adversarial graph denoising problem.

5We also perform an analysis on the effect of row normalization in noisy feature matrix in Appendix I.1.
6We also perform an analysis on the denoising effect of depth in NGC and RNGC in Appendix I.2.
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Table 1: Summary of results (10 runs) on heterophily graphs in terms of classification accuracy (%)

Noise Level Cornell Texas Wisconsin Actor

0.01 1 0.01 1 0.01 1 0.01 1

MLP 69.7±8.6 55.3±7.6 69.7±8.6 55.3±7.6 78.6±6.5 44.6±6.2 33.3±1.1 25.1±1.0
GCN 56.9±8.4 51.7±14.9 56.6±8.1 52.5±11.7 48.0±6.1 41.2±9.0 26.4±1.0 23.8±3.0

GAT 55.8±8.9 55.0±7.5 56.4±8.1 54.7±8.2 53.4±7.2 48.2±7.2 27.3±1.2 24.3±0.7

GLP 65.3±8.6 54.2±7.6 60.0±9.3 52.8±8.0 59.0±5.4 42.6±5.4 31.0±1.3 25.1±0.8

S2GC 60.6±9.3 48.6±10.4 56.4±7.2 50.3±8.0 47.4±4.5 37.2±3.7 27.2±1.1 23.5±1.3

IRLS 48.1±8.5 46.7±6.2 65.6±8.4 42.8±15.9 65.2±6.0 37.4±8.5 36.1±0.9 21.5±4.1

NGC 72.8±8.7 56.4±8.1 73.9±6.9 56.4±8.1 74.8±6.8 46.8±6.6 34.0±1.6 25.1±1.0
RNGC 75.8±7.9 56.4±8.1 74.2±6.1 56.4±8.1 76.4±5.3 46.8±6.6 34.3±1.6 25.1±1.0

Table 2: Summary of results (10 runs) on Coauthor-CS
and Coauthor-Phy in terms of accuracy (%)

Noise Level Coauthor-CS Coauthor-Phy

0.1 1 0.1 1

MLP 82.5±1.8 22.3±0.1 81.6±8.1 47.0±10.0

GCN 87.3±0.5 61.3±14.3 94.2±0.4 78.6±10.6

GAT 86.8±3.6 57.9±20.2 94.0±0.4 63.7±16.7

GLP 91.3±0.4 52.4±17.3 93.3±2.5 81.3±10.6

S2GC 86.1±0.2 79.6±10.2 92.6±1.3 89.4±4.3

IRLS 78.8±5.1 62.1±17.8 89.2±3.4 87.0±4.5

NGC 95.3±0.2 87.1±3.1 95.7±0.2 93.1±1.4
RNGC 95.4±0.2 87.8±1.5 95.7±0.2 93.6±0.8

Table 3: Summary of results (10
runs) on ogbn-products in terms of
accuracy (%)

Noise Level ogbn-products

0.1 1

MLP 59.68±0.16 38.08±0.10

GCN 75.60±0.19 72.76±0.20

S2GC 74.95±0.13 63.17±0.12

NGC 77.56±0.15 73.36±0.11
RNGC 77.54±0.15 73.66±0.13

Table 1 reports the comparison of classification accuracy against the various noise levels for full-
supervised node classification tasks on heterophily graphs. The first- and second-highest accuracies
are highlighted in bold. For these datasets, we test ξ ∈ {0.01, 1}. From Table 1, we can observe
that MLP is better than most GNN models in most cases due to the heterophily properties of these
graphs. However, our proposed RNGC achieves significantly better or matches denoising performance
compared with other baseline methods, which demonstrates the superiority of our RNGC.

For ogbn-products, we only choose MLP, GCN, and S2GC as baselines, since the results are sensitive
concerning model size and various tricks from the OGB leaderboard. For fair comparison, the size
of parameters for these baselines and RNGC is the same. We also use full-batch training for the
baselines and our model. Table 2 and 3 report the comparison of classification accuracy against the
various noise levels for full-supervised node classification tasks on large-scale graphs. The first- and
second-highest accuracies are highlighted in bold. For these datasets, we test ξ ∈ {0.1, 1}. Compared
with the above small datasets, the node degree on these three datasets is larger, which means they
have better connectivity. From Table 2 and 3, we can observe that the test accuracy of MLP is far
lower than GCN and RNGC. This implies the weak denoising effect of MLP. The test accuracy of
GCN is slightly smaller than RNGC on these datasets since they are well-connected and have a large
graph size and we can achieve a good denoising performance with shallow-layer GNN models. For
the scalability of RNGC on large graphs such as ogbn-products, we use the acceleration method
mentioned in Sec. 4.2.

5.2 Denoising Performance on Feature Flipping Perturbation

In this section, we compare the denoising effectiveness of different models through their test accuracy
by training on the noisy feature matrix which is perturbated through flipping the individual feature
with a small Bernoulli probability on three citation datasets.

Setting and Results. We flip the individual feature on three citation datasets: Cora, Citeseer, and
Pubmed as the noise. And we compare the denoising performance of RNGC with MLP and GCN.
From Table 4, we can observe that the denoising performance of RNGC is much better than baselines
when the flip probability is 0.4. In fact, the added perturbations by flipping the individual feature
approximately follow a Bernoulli distribution, which is also a Sub-Gaussian distribution. The results
verify our theoretical analysis further.

8



Table 4: Denoising performance over 100 runs against
flipping perturbation

Flipping probability Cora Citeseer Pubmed

0.1 0.2 0.4 0.1 0.2 0.4 0.1 0.2 0.4

MLP 21.2 21.1 23.3 19.3 18.9 18.9 38.0 39.0 40.6
GCN 22.9 19.0 19.0 18.6 18.6 18.5 37.8 38.1 37.6
GAT 70.1 65.6 60.0 45.3 39.3 26.0 43.3 49.5 60.0
GLP 32.3 30.8 29.0 19.7 18.9 18.8 42.1 41.5 40.7

S2GC 75.0 71.5 63.8 49.9 46.4 43.4 50.4 60.2 69.3
IRLS 66.4 61.0 54.7 50.3 45.9 43.8 51.4 60.0 69.0
NGC 77.5 75.3 65.7 54.9 51.9 48.5 53.0 62.3 70.4

RNGC 77.6 75.2 72.8 55.0 51.8 48.7 54.3 63.9 71.6

Table 5: Defense performance over
100 runs against structure attck

Model Cora Citeseer Pubmed
GCN 47.53 56.94 75.50
GAT 54.78 61.85 65.41
RobustGCN 50.51 55.35 67.95
GCN-Jaccard 60.82 59.89 83.66
GCN-SVD 52.06 57.18 82.72
S2GC 51.60 54.11 64.04
RNGC 63.16 65.64 84.04

5.3 Defense Performance of RNGC against Graph Structure Attack

Although we do not perform actual graph structure perturbations as in graph adversarial attacks [39,
40] but a virtual perturbation in the Laplacian. Therefore, it’s not clear how much perturbations on the
Laplacian correspond to the actual perturbations on graph structure. Nevertheless, we still conduct
the experiments of RNGC against graph structure meta-attack where the ptb rate is 25%. As shown
in the Table 5, our RNGC model outperforms than GCN, GAT, RobustGCN [41], GCN-Jaccard [31],
GCN-SVD [7], and S2GC on Cora, Citeseer, and Pubmed.

6 Related Work

Implicit Denoising in GNNs. Existing graph denoising works are mainly based on the graph
smoothing technique [5, 37]. It is well known that GNNs can increase the smoothness of node
features through aggregating information from neighbors, thus the influence from noisy features can
be counteracted in GNN’s output. Some recent GNN models are derived from the perspective of
signal denoising, such as S2GC [38], GLP [18], and IRLS [33]. Moreover, Ma et al. [20] builds the
connection between signal denoising and existing popular GNNs by formulating message passing
as a process of solving the GSD problem. The relationship between GSD and GCN can be briefly
illustrated as follows [20]. This suggests a possibility for us to understand the behavior of GNNs
through the lens of signal denoising. To our best knowledge, we are the first to offer a theoretical
analysis to understand the denoising effect of GNNs. Besides, there is a recent work [36] to conduct
the empirical study of the denoising effect in GNNs. In this work, we perform an extensive analysis
to understand the denoising effect of GNNs from both theoretical and experimental perspectives.

Smoothing and Over-smoothing. One key principle of GNNs is to improve the smoothness of
node representations. But stacking graph layers can lead to over-smoothing [17], where the node
representations can not be distinguishable. There are some recent works that have been proposed
to address over-smoothing such as JKnet [32], GCNII [3], and RevGNN-Deep [16]. They add the
output of shallow layers to the final layers with a residual-style design. In this work, we will show
smoothing can help the denoising effect of GNNs.

7 Conclusion

Our work conducts a comprehensive study on the implicit denoising effect of graph neural networks.
We theoretical show that the denoising effect of GNNs are largely influenced by the connectivity
and the size of the graph structure, as well as the GNN architectures. Motivated by our analysis, we
also propose a robust graph convolution model by solving the robust graph signal denoising problem
which enhances the smoothness of node representations and the implicit denoising effect.
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A The details on how to solve the inner maximization problem in Sec. 4.2

Different from the non-concave inner maximization problem in the adversarial attack, our inner
maximization problem is indeed a convex optimization problem. Hence, we do not need to add
random perturbations on the graph structure at each training epoch and can find the largest perturbation
which maximizes the inner adversarial loss function. Denote the perturbation as δ, and L′ = L̃+ δ.
We can rewrite the inner maximization problem as

max
L′

tr
(
F⊤L′F

)
= ⟨L̃,F⊤F⟩+max

δ
⟨δ,F⊤F⟩ s. t. ∥δ∥F ≤ ε. (18)

We denote h(δ) = ⟨δ,F⊤F⟩. Obviously, h(δ) reaches the largest value when δ has the same
direction with the gradient of h(δ), e.g. δ = ε∇h(δ) = εFF⊤

∥FF⊤∥F
, which is illustrated in Fig. 3.

𝑥

𝑦

||𝛿||!
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Figure 3: The illustration of the inner maximization problem. The adversarial loss function reaches
the largest value when the direction of δ is the same with ∇h(δ)

B Additional Details on the Neumann Series

We provide additional details and derivations on how to obtain the Neumann Series which leads to
our Neumann Graph Convolution (NGC) method. Before we derive the Neumann Series, we first
introduce the following lemmas which are crucial to the derivation of the Neumann Series.

Lemma B.1. (Gelfand formula) [2] Given any matrix norm ∥| · |∥, then ρ(A) = lim
k→∞

∥|Ak|∥1/k =

inf
k≥1

∥|Ak|∥1/k ≤ ∥|A|∥.

Lemma B.1 describes the relationship between the spectral radius of a matrix and its matrix norm,
i.e. ρ(A) = lim

k→∞
∥|Ak|∥1/k.

Lemma B.2. Let A ∈ Cn×n, the spectral radius ρ(A) = max(abs(spec(A))), if ρ(A) < 1, then∑∞
k=0 A

k converges to (I−A)−1.

Proof. We first prove that (I −A)−1 exists as follows: Based on the definition of eigenvalues of
A, we have |λI−A| = 0 and the solution is the eigenvalue of A. Since ρ(A) < 1, if λ ≥ 1, then
|λI−A| ≠ 0, so |I−A| ≠ 0, which means (I−A)−1 exists.

Since ρ(A) < 1 and by Lemma B.1, we have lim
k→∞

∥|Ak|∥ = ρ(A)k = 0. Let Sk = A0 + A1 +

· · ·+Ak, then we have

lim
k→∞

(Sk −ASk) = lim
k→∞

(I−A)Sk

= lim
k→∞

(I−Ak+1)

= I

Since (I−A)−1 exists, so we have (I−A) lim
k→∞

Sk = I, and lim
k→∞

Sk = (I−A)−1, which finishes

the proof.
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Lemma B.2 describes the convergence of Neumann Series and the condition to get the convergence.

Lemma B.3. (Gerschgorin Disc) [2] Let A ∈ Cn×n, with entries aij . For any eigenvalue λ, there
exits i and the corresponding Gerschgorin disc D (aii, Ri) ⊆ C such that λ lies in this disc, i.e.

|λ− aii| ≤
n∑

j ̸=i

|aij |.

Lemma B.3 describes the estimated range of eigenvalues. Now we start to derive the Neumann Series
expansion of the solution of GSD as follows.

Lemma B.4. Let A ∈ {0, 1}n×n be the adjacency matrix of a graph and Ã = D̃− 1
2 ÃD̃− 1

2 or
Ã = D̃−1Ã, then

(I− λ

λ+ 1
Ã)−1 =

∞∑
k=0

(
λ

λ+ 1
Ã
)k

.

Proof. We first prove that ρ(Ã) ≤ 1 where Ã = D̃− 1
2 ÃD̃− 1

2 . Let λ be the eigenvalue of Ã, and v
be the corresponding eigenvector. Then we have(

D̃− 1
2 ÃD̃− 1

2

)
v = λv =⇒ D̃− 1

2

(
D̃− 1

2 ÃD̃− 1
2

)
v = λD̃− 1

2v

=⇒
(
D̃−1Ã

)
D̃− 1

2v = λD̃− 1
2v,

which means (λ, D̃− 1
2v) is the eigen-pair of D̃−1A. By Lemma B.3, there exists i, such that∣∣∣λ−

(
D̃−1Ã

)
ii

∣∣∣ ≤∑
j ̸=i

∣∣∣∣(D̃−1Ã
)
ij

∣∣∣∣
=⇒

(
D̃−1Ã

)
ii
−
∑
j ̸=i

∣∣∣∣(D̃−1Ã
)
ij

∣∣∣∣ ≤ λ ≤
(
D̃−1Ã

)
ii
+
∑
j ̸=i

∣∣∣∣(D̃−1Ã
)
ij

∣∣∣∣ .
Since

(
D̃−1Ã

)
ij
> 0 and

∑
j

∣∣∣∣(D̃−1Ã
)
ij

∣∣∣∣ =∑j

(
D̃−1Ã

)
ij
= 1, obviously

−1 <
(
D̃−1Ã

)
ii
−
∑
j ̸=i

∣∣∣∣(D̃−1Ã
)
ij

∣∣∣∣ ≤ λ ≤
(
D̃−1Ã

)
ii
+
∑
j ̸=i

∣∣∣∣(D̃−1Ã
)
ij

∣∣∣∣ = 1.

So if Ã = D̃− 1
2 ÃD̃− 1

2 , we have ρ(Ã) ≤ 1. When Ã = D̃−1Ã, we denote (λ,v) as the eigen-pair
of D̃−1A. Similarly, by Lemma B.3, there exists i, such that∣∣∣λ−

(
D̃−1Ã

)
ii

∣∣∣ ≤∑
j ̸=i

∣∣∣∣(D̃−1Ã
)
ij

∣∣∣∣
=⇒

(
D̃−1Ã

)
ii
−
∑
j ̸=i

∣∣∣∣(D̃−1Ã
)
ij

∣∣∣∣ ≤ λ ≤
(
D̃−1Ã

)
ii
+
∑
j ̸=i

∣∣∣∣(D̃−1Ã
)
ij

∣∣∣∣ .
Obviously, we can get the same conclusion for Ã = D̃−1Ã. So it is true for ρ

(
λ

λ+1Ã
)
≤ λ

λ+1 < 1

By Lemma B.2, we get the result (I− λ
λ+1Ã)−1 =

∑∞
k=0

(
λ

λ+1Ã
)k

, which finishes the proof.

By Lemma B.4, we approximate the inverse matrix (I+ λL̃)−1 up to S-th order with

(
I+ λL̃

)−1

=
1

λ+ 1

(
I− λ

λ+ 1
Ã
)−1

≈ 1

λ+ 1

S∑
s=0

(
λ

λ+ 1
Ã
)s

.
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C The Row Summation of the Neumann Series

We provide the derivations of the row sum of ÃS in this section. Before we derive the row summation

of ÃS , we first derive the row summation of Ã
k
.

Lemma C.1. Consider a probability matrix P ∈ Rn×n, where Pij ≥ 0. Besides, for all i, we have∑n
j=1 Pij = 1. Then for any s ∈ Z+, we have

∑n
j=1 P

s
ij = 1,

Proof. We give a proof by induction on k.
Base case: When k = 1, the case is true.
Inductive step: Assume the induction hypothesis that for a particular k, the single case n = k holds,
meaning Pk is true:

∀i,
n∑

j=1

Pk
ij = 1.

As Pk+1 = PkP, so we have

n∑
j=1

Pk+1
ij =

n∑
j=1

n∑
k=1

Pk
ikPkj =

n∑
k=1

n∑
j=1

Pk
ikPkj =

n∑
k=1

Pk
ik

 n∑
j=1

Pkj

 =

n∑
k=1

Pk
ik = 1,

which finishes the proof.

Lemma C.1 describes the row summation of Ã
k

is 1. Now we can obtain the row summation for ÃS .

Then for any i, we have

n∑
j=1

[
ÃS

]
ij
=

1

λ+ 1

S∑
s=0

(
λ

λ+ 1

[
Ã
]
ij

)s

=
1

λ+ 1

S∑
s=0

(
λ

λ+ 1

)s

= 1−
(

λ

λ+ 1

)S+1

.

(19)

D Proof of Lemma 1

We first introduce the General Hoeffding Inequality [11], which is essential for bounding
∥∥∥ÃSη

∥∥∥2
F

.

Lemma D.1. (General Hoeffding Inequality [11]) Suppose that the variables X1, · · · , Xn are
independent, and Xi has mean µi and sub-Gaussian parameter σi. Then for all t ≥ 0, we have

P

[
n∑

i=1

(Xi − µi) ≥ t

]
≤ exp

{
− t2

2
∑n

i=1 σ
2
i

}
. (20)

Now let us prove Lemma 1.

Proof of Lemma 1. For any entry
[
ÃSη

]
ij

=
∑n

p=1

(
ÃS

)
ip
ηpj , where ηpj is a sub-Gaussian

variable with parameter σ2. By the General Hoeffding inequality D.1, we have

P

∣∣∣∣∣∣
[

1

λ+ 1

S∑
s=0

(
λ

λ+ 1
ÃS

)s

η

]
ij

∣∣∣∣∣∣ ≥ t

 ≤ 2 exp

− nt2

2τ

(
1−

(
λ

λ+1

)S+1
)2

σ2

 , (21)
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where τ = maxi τi and τi = n
∑n

j=1

[
ÃS

]2
ij

/(
1−

(
λ

λ+1

)S+1
)2

.

Applying union bound [29] to all possible pairs of i ∈ [n], j ∈ [n], we get

P
(∥∥∥ÃSη

∥∥∥
∞,∞

≥ t

)
≤
∑
i,j

P
([

ÃSη
]
ij
≥ t

)
≤ 2n2 exp

− nt2

2τ

(
1−

(
λ

λ+1

)S+1
)2

σ2

 .

(22)
Applying union bound again, we have

P
(∥∥∥ÃSη

∥∥∥2
F
≥ t

)
≤
∑
i,j

P
(∥∥∥ÃSη

∥∥∥
∞,∞

≥
√
t

)
≤ 2n4 exp

− nt

2τ

(
1−

(
λ

λ+1

)S+1
)2

σ2

 .

(23)

Choose t = 2τ

(
1−

(
λ

λ+1

)S+1
)2

(4 log n+ log 2d) /n and with probability 1− 1/d, we have

∥∥∥ÃSη
∥∥∥2
F
≤

2τ

(
1−

(
λ

λ+1

)S+1
)2

σ2 (4 log n+ log 2d)

n
, (24)

which completes the proof.

E Proof of the Main Theorem 1

We provide the details of proof of main theorem 1.
[Restatement of Theorem 1] Under Assumptions 1,2,3,4, let W(k)

f denote the k-th step gradient
descent solution for minW f(W) with step size α ≤ 1/L, with probability 1− 1/d we have

g
(
W

(k)
f

)
− g

(
W∗

g

)
≤ O

(
1

2kα

)
+O

(
τ log n

n

)
, (25)

where W∗
g = argminW g(W) is the optimal solution of the clean loss function g(W), τ is the

high-order graph connectivity factor, and n is the number of nodes of a graph.

Proof. By the definition of L-smooth, we can obtain the following inequality:

f(W
′

f ) ≤ f(Wf ) + ⟨∇f(Wf ),W
′

f −Wf ⟩+
1

2
L∥W

′

f −Wf∥2F . (26)

Let’s use the gradient descent algorithm with W
′

f = W+
f = Wf − α∇f(Wf ). We then get:

f
(
W+

f

)
≤ f(Wf ) + ⟨∇f(Wf ),W

+
f −Wf ⟩+

1

2
L
∥∥∥W+

f −Wf

∥∥∥2
F

= f(Wf ) + ⟨∇f(Wf ),Wf − α∇f(Wf )−Wf ⟩+
1

2
L∥Wf − α∇f(Wf )−Wf∥2F

= f(Wf )− ⟨∇f(Wf ), α∇f(Wf ⟩+
1

2
L∥α∇f(Wf )∥2F

= f(Wf )− α∥∇f(Wf )∥2F +
1

2
Lα2∥∇f(Wf )∥2F

= f(Wf )−
(
1− 1

2
Lα

)
α∥∇f(Wf )∥2F .

(27)
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With the fixed step size α ≤ 1/L, we know that −(1− 1
2Lα) =

1
2Lα−1 ≤ 1

2L(1/L)−1 = 1
2 −1 =

− 1
2 . Plugging this into Eq. (27), we have the following inequality:

f
(
W+

f

)
≤ f(Wf )−

1

2
α∥∇f(Wf )∥2F . (28)

If we choose t to be small enough such that t ≤ 1/L, this inequality implies that the loss function
value strictly decreases under each iteration of gradient descent since ∥∇f(Wf )∥ is positive unless
∇f(Wf ) = 0 e.g. Wf = W∗

f , where Wf reaches W∗
f .

Now, let’s bound the loss function value f(W+
f ). Since f is convex, we can write

f(Wf ) ≤ f
(
W∗

g

)
+ ⟨∇f(Wf ),Wf −W∗

g⟩. (29)

Introducing this inequality into Eq. (28), we can obtain the following:

f
(
W+

f

)
− f

(
W∗

g

)
≤ ⟨∇f(Wf ),Wf −W∗

g⟩ −
α

2
∥∇f(Wf )∥2F

≤ 1

2α

(
2α⟨∇f(Wf ),Wf −W∗

g⟩ − α2∥∇f(Wf )∥2F
)

≤ 1

2α

(
2α⟨∇f(Wf ),Wf −W∗

g⟩ − α2∥∇f(Wf )∥2F −
∥∥Wf −W∗

g

∥∥2
F

)
+

1

2α

∥∥Wf −W∗
g

∥∥2
F

≤ 1

2α

(∥∥Wf −W∗
g

∥∥2
F
−
∥∥Wf − α∇f(Wf )−W∗

g

∥∥2
F

)
.

(30)

Notice that by the definition of gradient descent update, we have W+
f = Wf −α∇f(Wf ). Plugging

this into the final inequality of Eq. (30), we can get:

f
(
W+

f

)
− f

(
W∗

g

)
≤ 1

2α

(∥∥Wf −W∗
g

∥∥2
F
−
∥∥∥W+

f −W∗
g

∥∥∥2
F

)
. (31)

This inequality holds for W+
f on every iteration of gradient descent. Summing over iterations, we

get:

k∑
i=1

[
f
(
W

(i)
f

)
− f

(
W∗

g

)]
≤

k∑
i=1

1

2α

(∥∥∥W(i−1)
f −W∗

g

∥∥∥2
F
−
∥∥∥W(i)

f −W∗
g

∥∥∥2
F

)
=

1

2α

(∥∥∥W(0)
f −W∗

g

∥∥∥2
F
−
∥∥∥W(k)

f −W∗
g

∥∥∥2
F

)
≤ 1

2α

(∥∥∥W(0)
f −W∗

g

∥∥∥2
F

)
.

(32)

With the inequality of Eq. (29), we know that f(Wf ) strictly decreases over each iteration. So we
have following:

f
(
W

(k)
f

)
− f

(
W∗

g

)
≤ 1

k

[
k∑

i=1

f
(
W

(i)
f

)
− f

(
W∗

g

)]

≤ 1

2kα

(∥∥∥W(0)
f −W∗

g

∥∥∥2
F

) (33)
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Equivalently, we have the inequality for the loss function g(Wf ):

g
(
W

(k)
f

)
− g

(
W∗

g

)
= f

(
W

(k)
f

)
− f

(
W∗

g

)
+ 2⟨ÃSηW

∗
g , ÃSX

∗W∗
g −Y⟩+ ⟨ÃSηW

∗
g , ÃSηW

∗
g⟩

− 2⟨ÃSηW
(k)
f , ÃSX

∗W
(k)
f −Y⟩ − ⟨ÃSηW

(k)
f , ÃSηW

(k)
f ⟩

≤ 1

2kα

(∥∥∥W(0)
f −W∗

g

∥∥∥2
F

)
+
∥∥∥ÃSη

∥∥∥2
F

∥∥W∗
g

∥∥2
F

(
2
∥∥∥ÃSX

∗W∗
g −Y

∥∥∥2
F
+
∥∥∥ÃSη

∥∥∥2
F

∥∥W∗
g

∥∥2
F

)
+
∥∥∥ÃSη

∥∥∥2
F

∥∥∥W(k)
f

∥∥∥2
F

(
2
∥∥∥ÃSXW

(k)
f −Y

∥∥∥2
F
+
∥∥∥ÃSη

∥∥∥2
F

∥∥∥W(k)
f

∥∥∥2
F

)
≤ O

(
1

2kα

)
+O

(
τ log n

n

)
,

(34)

which finishes the proof.

F More Details on Equation (1).

We provide more details on how to obtain Equation (1).

Note that if we set L̃ = I− D̃− 1
2 ÃD̃− 1

2 , we have tr
(
F⊤L̃F

)
= tr

(
F⊤(I− D̃− 1

2 ÃD̃− 1
2 )F

)
=

tr
(
F⊤F

)
− tr

(
F⊤D̃− 1

2 ÃD̃− 1
2F
)

= tr
(
FF⊤) − tr

(
D̃− 1

2 ÃD̃− 1
2FF⊤

)
. On the other hand,

if we set L̃ = I − D̃−1Ã, we have tr
(
F⊤L̃F

)
= tr

(
F⊤(I− D̃−1Ã)F

)
= tr

(
F⊤F

)
−

tr
(
F⊤D̃−1ÃF

)
= tr

(
FF⊤) − tr

(
D̃−1ÃFF⊤

)
. We denote F =

 F1

...
Fn

 and F⊤ =

[
F⊤

1 · · ·F⊤
n

]
, where Fi = [Fi1 · · ·Fid], then we have tr

(
FF⊤) =∑n

i=1 FiF
⊤
i .

When L̃ = I− D̃− 1
2 ÃD̃− 1

2 , we have

tr
(
D̃− 1

2 ÃD̃− 1
2FF⊤

)

= tr




A11√
d1+1

√
d1+1

A12√
d1+1

√
d2+1

· · · A1n√
d1+1

√
dn+1

A21√
d2+1

√
d1+1

A22√
d2+1

√
d2+1

· · · A2n√
d2+1

√
dn+1

...
. . . . . .

...
An1√

dn+1
√
d1+1

An2√
dn+1

√
d2+1

· · · Ann√
dn+1

√
dn+1




F1F
⊤
1 F1F

⊤
2 · · · F1F

⊤
n

F2F
⊤
1 F2F

⊤
2 · · · F2F

⊤
n

...
. . . . . .

...
FnF

⊤
1 FnF

⊤
2 · · · FnF

⊤
n




=

n∑
i=1

n∑
j=1

Aij√
di + 1

√
dj + 1

FjF
⊤
i .

On the other hand, when L̃ = I− D̃−1Ã, we have

tr
(
D̃−1ÃFF⊤

)

= tr




A11

d1+1
A12

d1+1 · · · A1n

d1+1
A21

d2+1
A22

d2+1 · · · A2n

d2+1
...

. . . . . .
...

An1

dn+1
An2

dn+1 · · · Ann

dn+1




F1F
⊤
1 F1F

⊤
2 · · · F1F

⊤
n

F2F
⊤
1 F2F

⊤
2 · · · F2F

⊤
n

...
. . . . . .

...
FnF

⊤
1 FnF

⊤
2 · · · FnF

⊤
n




=

n∑
i=1

n∑
j=1

Aij

di + 1
FjF

⊤
i .
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So when L̃ = I− D̃− 1
2 ÃD̃− 1

2 , we have

tr
(
F⊤L̃F

) (
L̃ = I− D̃− 1

2 ÃD̃− 1
2

)
= tr

(
F⊤(I− D̃− 1

2 ÃD̃− 1
2 )F

)
= tr

(
FF⊤)− tr

(
D̃− 1

2 ÃD̃− 1
2FF⊤

)
=

n∑
i=1

FiF
⊤
i −

n∑
i=1

n∑
j=1

Aij√
di + 1

√
dj + 1

FjF
⊤
i

=
1

2

n∑
i=1

FiF
⊤
i +

1

2

n∑
j=1

FjF
⊤
j −

n∑
i=1

n∑
j=1

Aij√
di + 1

√
dj + 1

FjF
⊤
i

=
1

2

 n∑
i=1

FiF
⊤
i +

n∑
j=1

FjF
⊤
j − 2

n∑
i=1

n∑
j=1

Aij√
di + 1

√
dj + 1

FjF
⊤
i


=

1

2

 n∑
i=1

n∑
j=1

AijFiF
⊤
i

di + 1
+

n∑
i=1

n∑
j=1

AijFjF
⊤
j

dj + 1
− 2

n∑
i=1

n∑
j=1

Aij√
di + 1

√
dj + 1

FjF
⊤
i

 undirected graph

=
1

2

 n∑
i=1

n∑
j=1

(
AijFiF

⊤
i

di + 1
+

AijFjF
⊤
j

dj + 1
− Aij√

di + 1
√
dj + 1

FjF
⊤
i − Aij√

di + 1
√
dj + 1

FiF
⊤
j

)
=

1

2

 n∑
i=1

n∑
j=1

Aij

(
FiF

⊤
i

di + 1
+

FjF
⊤
j

dj + 1
− FjF

⊤
i√

di + 1
√
dj + 1

−
FiF

⊤
j√

di + 1
√
dj + 1

)
=

1

2

 n∑
i=1

n∑
j=1

Aij

(
Fi√
di + 1

− Fj√
dj + 1

)(
F⊤

i√
di + 1

−
F⊤

j√
dj + 1

)
=

1

2

 n∑
i=1

n∑
j=1

Aij

∥∥∥∥∥ Fi√
di + 1

− Fj√
dj + 1

∥∥∥∥∥
2

2

 =
∑

(i,j)∈E

Aij

∥∥∥∥∥ Fi√
di + 1

− Fj√
dj + 1

∥∥∥∥∥
2

2

.

On the other hand, when L̃ = I− D̃−1Ã, we have

tr
(
F⊤L̃F

) (
L̃ = I− D̃−1Ã

)
= tr

(
F⊤(I− D̃−1Ã)F

)
=

n∑
i=1

FiF
⊤
i −

n∑
i=1

n∑
j=1

Aij

di + 1
FjF

⊤
i

=
1

2
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FiF
⊤
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1
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⊤
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n∑
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⊤
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=
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i=1

n∑
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⊤
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n∑
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AijFjF
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n∑
j=1

Aij√
di + 1

√
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⊤
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=
1

2
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i=1
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(
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)(
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i√
di + 1

−
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)
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1

2
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Aij

∥∥∥∥ Fi√
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G Datasets Details

Cora, Citeseer, and Pubmed are standard citation network benchmark datasets [25]. Coauthor-CS and
Coauthor-Phy are extracted from Microsoft Academic Graph [26]. Cornell, Texas, Wisconsin, and
Actor are constructed by [24]. ogbn-products is a large-scale product, constructed by [12].

Table 6: Datasets statistics

Dataset # Nodes # Edges # Features # Classes

Cora 2708 5429 1433 7
Citeseer 3327 4732 3703 6
Pubmed 19717 44338 500 3
Cornell 183 295 1703 5
Texas 183 309 1703 5
Wisconsin 251 499 1703 5
Actor 7600 33544 931 5
Coauthor-CS 18333 81894 6805 15
Coauthor-Phy 34493 247962 8415 5
ogbn-products 2449029 61859140 100 42

H Reproducibility

H.1 Implementation Details

We use Pytorch [23] and PyG [8] to implement NGC and RNGC. The codes of baselines are
implemented referring to the implementation of MLP78, GCN910, GAT11, GLP12, S2GC13, and
IRLS14. All the experiments in this work are conducted on a single NVIDIA Tesla A100 with 80GB
memory size. The software that we use for experiments are Python 3.6.8, pytorch 1.9.0, pytorch-
scatter 2.0.9, pytorch-sparse 0.6.12, pyg 2.0.3, ogb 1.3.4, numpy 1.19.5, torchvision 0.10.0, and
CUDA 11.1.

H.2 Hyperparameter Details

We provide details about hyparatemeters of NGC and RNGC in Table 7, 8, 9, 10, and 11.

I Additional Experiments

I.1 Analysis on Row Normalization

In this section, we analyze the influence of row normalization on denoising performance. The
noise level ξ controls the magnitude of the Gaussian noise we add to the feature matrix: X + ξη
where η is sampled from standard i.i.d., Gaussian distribution. For Cora, Citeseer, and Pubmed, we
test ξ ∈ {1, 10, 100}. From Table 12, we can observe that the denoising performance of w/ row
normalization is better than w/o row normalization. Since row normalization can shrink the value
of elements in η, thus reducing the variance σ. In other words, row normalization make

∥∥∥ÃSη
∥∥∥2
F

converge to zero faster.

7https://github.com/tkipf/pygcn
8https://github.com/snap-stanford/ogb/blob/master/examples/nodeproppred/products/mlp.py
9https://github.com/tkipf/pygcn

10https://github.com/snap-stanford/ogb/blob/master/examples/nodeproppred/products/gnn.py
11https://github.com/pyg-team/pytorch_geometric/blob/master/examples/gat.py
12https://github.com/liqimai/Efficient-SSL
13https://github.com/allenhaozhu/SSGC
14https://github.com/FFTYYY/TWIRLS
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Table 7: The hyper-parameters for NGC and RNGC on three citation datasets.

Model dataset runs lr epochs wight decay hidden dropout S λ ϵ

NGC Cora 100 0.2 100 1e-5 0 0 16 32 -
NGC Citeseer 100 0.2 100 1e-5 0 0 16 32 -
NGC Pubmed 100 0.2 100 1e-5 0 0 16 32 -
RNGC Cora 100 0.2 100 1e-5 0 0 16 32 1
RNGC Citeseer 100 0.2 100 1e-5 0 0 16 32 1
RNGC Pubmed 100 0.2 100 1e-5 0 0 16 32 1

Table 8: The hyper-parameters for NGC and RNGC on four heterophily graphs.

Model dataset noise level runs lr epochs wight decay hidden dropout S λ ϵ +MLP

NGC Cornell 0.01 10 0.2 200 5e-4 16 0.5 16 1 - y
NGC Cornell 1 10 0.2 200 5e-4 16 0.5 16 1024 - y
NGC Texas 0.01 10 0.2 200 5e-4 16 0.5 16 1 - y
NGC Texas 1 10 0.2 200 5e-4 16 0.5 16 1024 - y
NGC Wisconsin 0.01 10 0.2 1000 5e-4 16 0.5 2 1 - y
NGC Wisconsin 1 10 0.2 1000 5e-4 16 0.5 2 1024 - y
NGC Actor 0.01 10 0.2 1000 5e-4 16 0.5 2 1 - y
NGC Actor 1 10 0.2 1000 5e-4 16 0.5 2 1024 - y
RNGC Cornell 0.01 10 0.2 200 5e-4 16 0.5 16 1 1 y
RNGC Cornell 1 10 0.2 200 5e-4 16 0.5 16 1024 1 y
RNGC Texas 0.01 10 0.2 200 5e-4 16 0.5 16 1 1 y
RNGC Texas 1 10 0.2 200 5e-4 16 0.5 16 1024 1 y
RNGC Wisconsin 0.01 10 0.2 1000 5e-4 16 0.5 2 1 1e-5 y
RNGC Wisconsin 1 10 0.2 1000 5e-4 16 0.5 2 1024 1e-5 y
RNGC Actor 0.01 10 0.2 1000 5e-4 16 0.5 2 1 1e-5 y
RNGC Actor 1 10 0.2 1000 5e-4 16 0.5 2 1024 1e-5 y

I.2 Analysis on the Depth of NGC and RNGC

In this section, we analyze the influence of the depth of NGC and RNGC model on denoising
performance by testing the classification accuracy on semi-supervised node classification tasks. We
conduct two sets of experiments: with/without noise in feature matrix. For experiment with feature
noise, we simple fix the noise level ξ = 1. In each set of experiments, we evaluate the test accuracy
with respect to NGC and RNGC model depth, which corresponding to the value of S in ÃS . From
Figure 4 and 5, we can observe that the test accuracy barely changes with depth if the model is
trained on the clean features on Cora and Pubmed but changes greatly if the model is trained on
the clean feature on Citeseer. In this regard, the over-smoothing issue exists in RNGC model on
citeseer. However, the denoising performance of shallow RNGC is not good as deeper RNGC models,
especially on the large graph like Pubmed. This suggests that we do need to increase the depth of
GNN model to include more higher-order neighbors for better denoising performances.
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Table 9: The hyper-parameters for NGC and RNGC on two co-author datasets.

Model dataset noise level runs lr epochs wight decay hidden dropout S λ ϵ

NGC Coauthor-CS 0.1 10 0.2 1000 1e-7 0 0 16 1 -
NGC Coauthor-CS 1 10 0.2 1000 1e-7 0 0 16 128 -
NGC Coauthor-Phy 0.1 10 0.2 200 5e-4 16 0.5 16 1 -
NGC Coauthor-Phy 1 10 0.2 200 5e-4 16 0.5 16 1024 -
RNGC Coauthor-CS 0.1 10 0.2 1000 1e-7 0 0 16 1 1
RNGC Coauthor-CS 1 10 0.2 1000 1e-7 0 0 16 128 1
RNGC Coauthor-Phy 0.1 10 0.2 200 5e-4 16 0.5 16 1 1
RNGC Coauthor-Phy 1 10 0.2 200 5e-4 16 0.5 16 1024 1

Table 10: The hyper-parameters for NGC and RNGC on ogbn-products dataset.

Model noise level runs lr epochs hidden dropout S λ ϵ layers +MLP

NGC 0.1 10 0.01 300 256 0.5 128 32 - 3 y
NGC 1 10 0.01 300 256 0.5 128 256 - 3 y
RNGC 0.1 10 0.01 300 256 0.5 128 32 1e-2 3 y
RNGC 1 10 0.01 300 256 0.5 128 256 1e-2 3 y

Table 11: The hyper-parameters for NGC and RNGC on three citation datasets of the flipping
experiments.

Model dataset flip probability runs lr epochs wight decay hidden dropout S λ ϵ

NGC Cora 0.1 100 0.2 100 1e-5 0 0 32 64 -
NGC Cora 0.2 100 0.2 100 1e-5 0 0 16 32 -
NGC Cora 0.4 100 0.2 100 1e-5 0 0 16 32 -
NGC Citeseer 0.1 100 0.2 100 1e-5 0 0 16 32 -
NGC Citeseer 0.2 100 0.2 100 1e-5 0 0 16 32 -
NGC Citeseer 0.4 100 0.2 100 1e-5 0 0 16 32 -
NGC Pubmed 0.1 100 0.2 100 1e-5 0 0 16 32 -
NGC Pubmed 0.2 100 0.2 100 1e-5 0 0 16 32 -
NGC Pubmed 0.4 100 0.2 100 1e-5 0 0 16 32 -
RNGC Cora 0.1 100 0.2 100 1e-5 0 0 32 64 1e-5
RNGC Cora 0.2 100 0.2 100 1e-5 0 0 16 32 1e-5
RNGC Cora 0.4 100 0.2 100 1e-5 0 0 16 32 1e-1
RNGC Citeseer 0.1 100 0.2 100 1e-5 0 0 16 32 1e-5
RNGC Citeseer 0.2 100 0.2 100 1e-5 0 0 16 32 1e-5
RNGC Citeseer 0.4 100 0.2 100 1e-5 0 0 16 32 1e-5
RNGC Pubmed 0.1 100 0.2 100 1e-5 0 0 16 32 1e-1
RNGC Pubmed 0.2 100 0.2 100 1e-5 0 0 16 32 1e-1
RNGC Pubmed 0.4 100 0.2 100 1e-5 0 0 16 32 1e-1

Table 12: Summary of results of NGC w/o raw normalization on three datasets in terms of classifica-
tion accuracy (%)

Noise Level Cora Citeseer Pubmed

1 10 100 1 10 100 1 10 100

w/o RN 68.3 59.7 56.1 43.5 40.4 37.6 43.1 38.8 37.4
w RN 66.1 65.5 66.2 45.3 45.1 44.8 62.3 62.7 62.1
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Figure 4: Comparison of classification accuracy v.s. NGC model depth on semi-supervised node
classification tasks. The experiments are conducted on clean and noisy features.
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Figure 5: Comparison of classification accuracy v.s. RNGC model depth on semi-supervised node
classification tasks. The experiments are conducted on clean and noisy features.
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