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Abstract

Recent advancements in scientific machine learning have begun to explore the
potential of scientific foundation models (SFMs). Inspired by the in-context learn-
ing (ICL) framework of large language models (LLMs), we leverage prior data
and pre-training techniques to construct our SFM. It has been demonstrated that
ICL in LLMs can perform Bayesian inference, resulting in strong generalization
capabilities. Furthermore, LLMs do not exhibit intrinsic inductive bias; rather,
they inherit bias from the prior data, as confirmed experimentally. Building upon
these insights, our methodology is structured as follows: (i) we collect prior data
in the form of solutions of partial differential equations (PDEs) constructed by an
arbitrary linear combination of mathematical dictionaries, (ii) we utilize Trans-
former architectures with self-attention and cross-attention mechanisms to predict
PDE solutions without knowledge of the governing equations in a zero-shot setting,
and (iii) we provide experimental evidence on the one dimensional convection-
diffusion-reaction equation, which demonstrate that pre-training remains robust
even with noisy prior data, with only marginal impacts on test accuracy. Notably,
this finding opens the path to pre-training SFMs with realistic, low-cost data in-
stead of, or in conjunction with, numerical high-cost data. These results support
the conjecture that SFMs can improve in a manner similar to LLMs, where fully
cleaning the vast set of sentences crawled from the Internet is nearly impossible.

1 Introduction

In recent years, large language models (LLMs) have revolutionized the field of natural language
processing by introducing highly flexible and scalable architectures [5, 19, 37, 13, 10]. Notably, the
in-context learning (ICL) paradigm has demonstrated powerful generalization capabilities, enabling
LLMs to adapt to new tasks without explicit fine-tuning [5, 31, 11, 15]. This success has motivated
the application of such foundation models across a variety of domains [43, 42, 44]. Scientific Machine
Learning (SML) is one such emerging domain which merges physics-based models with machine
learning methodologies [32, 41, 36, 21, 20, 9]. SML aims to leverage the power of machine learning
to solve complex scientific problems, including those governed by partial differential equations
(PDEs). Recent efforts in this direction have led to the development of foundation models specifically
designed for scientific tasks, called Scientific Foundation Models (SFMs) [45, 42, 44, 24]. These
models aim to generalize across a wide range of scientific problems using prior data, much like how
LLMs generalize across various language tasks. For example, the versatility of in-context operator
networks (ICONs), as illustrated in studies like [47] and [45], underscores their generalization
capabilities in various PDE-related tasks, particularly in the context of few-shot learning. Moreover,
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Figure 1: End-to-end schematic diagram of our model. Our model performs in-context learning
based on the given observations, i.e., context, to infer the solution. Even when trained with noisy
prior data, our model can obtain clean solutions due to its Bayesian inference capability.

the integration of in-context operator learning into multi-modal frameworks, as demonstrated by
ICON-LM [46], has pushed the boundaries of traditional models by combining natural language with
mathematical equations. Additionally, several other studies have focused on solving a family of PDEs
with a single trained model [7]. However, all these studies are limited in their ability to fully harness
the capabilities of large foundation models. Our methodology addresses these limitations and offers
significant advantages in the following four aspects.

No prior knowledge of physical laws Our goal is to predict solutions from observed quantities,
such as velocity and pressure, without relying on governing equations, a common challenge in many
real-world scenarios [23, 28, 34, 3, 6]. In complex systems, such as those governing semiconductor
manufacturing, the exact governing equations are often unknown and may change over time [6, 30].
Therefore, excluding these equations from the model input is a strategic choice aimed at enhancing
the applicability of our method across various domains.

Zero-shot inference Our goal is to achieve zero-shot inference for predicting PDE solutions. For
instance, ICON-LM requires few-shot “demos3” for an unknown target operator before making
predictions. In contrast, our foundation model eliminates the need for such demos, as collecting them
implies that inference cannot occur until these few-shot examples are available; see e.g., Figure 1.
Our approach is designed to enable immediate inference as soon as the model is queried.

Bayesian inference We incorporate Bayesian inference into the prediction process by leveraging
prior knowledge obtained from numerical solutions in PDE dictionaries. This approach allows the
model to make more accurate and well-informed predictions by defining a prior distribution over
unseen PDE coefficients. During training, the model learns to capture relationships among known
data points using self-attention mechanisms, while cross-attention enables it to extrapolate and infer
solutions for new, unseen points. When tested, the model utilizes this prior knowledge to generalize
effectively to novel data points, achieving zero-shot predictions without the need for additional
fine-tuning.

Noisy prior data For LLMs, one of the most challenging steps is gathering prior data, typically
involving the crawling and cleaning of sentences from the Internet. However, this process is far
from perfect due to two key issues: (i) the Internet, as a data source, is inherently unreliable, and (ii)
cleaning such vast amounts of data requires significant manual effort. As a result, LLMs are often
trained on incomplete or imperfect prior data. Remarkably, this realistic yet critical issue has been
largely overlooked in the current literature related to SFMs despite their similarities to LLMs. For
instance, when generating data using numerical solvers for PDEs whose analytical solutions are not
known, it is inevitable to encounter numerical errors which present as a form of measurement noise.
In this work, we are the first to explore the potential of pre-training SFMs using noisy data, since
collecting high-fidelity solutions are frequently challenging for PDEs.

3In ICON and ICON-LM, a demo means a set of (input, output) pairs of an operator to infer.
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Figure 2: Schematic diagram of Transformer. (Left) The Transformer ũθ takes prior of solution-
known D and querying task T drawn from the prior distribution D and infers solutions of the queried
points in the training phase. ICL is leveraged with a self-attention among D (blue rods) and a
cross-attention from T to D (red rods). (Right) In the testing phase, ũθ takes an input of unseen data
D̃ and T̃ drawn from the ground truth distribution U , and the model predicts the queried points T̃ .

1D CDR Study For our empirical studies, we utilize the convection-diffusion-reaction (CDR)
equation and compare our approach with two state-of-the-art methods for solving parameterized
PDEs. Additionally, we introduce three different types of noise into the numerical solutions of the
CDR equation. Our method not only outperforms the two baseline methods but also demonstrates
stable performance, even when noise is added to the prior data during pre-training.

2 Problem Setup

Benchmark PDE The one-dimensional convection-diffusion-reaction (CDR) equation (1) with a
Fisher reaction term is used for the benchmark PDE,

1D CDR: ut + βux − νuxx − ρu(1− u) = 0. x ∈ [0, 2π], t ∈ [0, 1]. (1)
This equation consists of three key terms with distinct properties, i.e., convective, diffusive and
reactive, making it an ideal benchmark paradigm. It is commonly employed in the PINN literature
due to the diverse dynamics introduced by three parameters: β, ν, and ρ, including various failure
modes [22]. In this paper, we will use the following representation of the CDR equation (2):

ut = N (·), N (t, x, u, ux, uxx, α) = βux − νuxx − ρu(1− u), (2)
where α := (β, ν, ρ) according to [35].

Prior of PDE Solution Space We can then construct a parameter space, Ω, which is the collection
of α values [33]. Consequently, the target exact prior U represents the collection of solutions u(α)
for each parameter α ∈ Ω, where X and T correspond to the spatial and temporal domains of interest,
respectively

U =
⋃
α∈Ω

{u(α) |ut = N(t, x, u, ux, uxx, α)}, U : X × T → R. (3)
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Since the target exact prior data U is hard to obtain, we instead use a prior D that closely approximates
U as follows. The prior D consists of the approximated solutions r̃(α) for each α ∈ Ω,

D =
⋃
α∈Ω

{r̃(α)}, p(D) ∼ p(U). (4)

Subsequently, the model learns the posterior predictive distribution (PPD) of the generated prior p(D)
through ICL.

ICL of Transformer We use the capability of Transformers to perform Bayesian inference of
a PPD [25] through ICL on prior data. At inference time, the non-overlapping ND data points
D := {(x(i)

D , t
(i)
D , r̃(x

(i)
D , t

(i)
D ))}ND

i=1 and NT data points {(x(j)
T , t

(j)
T )}NT

j=1 are drawn i.i.d. from D and

given as an input to the Transformer. The task of the Transformer is to predict {r̃(x(j)
T , t

(j)
T )}NT

j=1

based on the dataset D ∪ {(x(j)
T , t

(j)
T )}NT

j=1. The context of the input data is interpreted by an encoder
attention mask with two attentions: a self-attention among D and a cross-attention from T to D
(Figure 2). Thus, the model can capture specific contextual information from the data points with
known solutions, enabling it to make an inference based on this learned context.

Zero-shot learning The attention-based ICL of the Transformer enables zero-shot learning, al-
lowing the model to make predictions when presented with unseen data. This is achieved through
the model’s Bayesian inference of the prior, which helps identify the relevant context from the new,
unseen data.

Training From a given parameter space Ω, the parameter α is randomly drawn i.i.d. from Ω. This
method is adopted from meta learning [12] which optimizes the model parameter to adapt to various
tasks, in our case the prediction over wide prior space D expressed as a dictionary of α. After that,
the prior r̃(α) is then given as an input of Transformer ũθ to minimize the mean squared error (MSE)
on predicted points (5). The MSE loss criterion is proposed as the Transformer’s task is to perform
regression of solution over spatial and temporal domain for given r̃(α),

Lα =
1

NT

NT∑
j=1

[
ũ(x

(j)
T , t

(j)
T )− r̃(x

(j)
T , t

(j)
T )

]2
. (5)

Evaluation After training, we assess the model’s performance using data sampled i.i.d. from U ,
ensuring no overlap with the training set D ∪ T , to illustrate the model’s zero-shot learning capability
in scenarios commonly encountered in practical applications. For evaluation, we employ both L1

mean absolute error and L2 relative errors between the model’s predicted solutions for test queries
and the numerically computed ground truth. These errors are then averaged over the target parameter
space Ω used during training.

3 Scientific Foundation Model via Bayesian Methods

When modeling complex systems, it is often impractical to assume that data originates from predefined
parametric equations. Real-world data exhibits complexity and variability that is difficult to capture
with strict assumptions. This has led to the development of more flexible Bayesian methods, which
do not rely on specific parametric forms but instead allow for adaptable modeling to better reflect the
underlying data distribution.

Consider a sequence of pairs (X1, Y1), (X2, Y2), . . ., each within the measurable space (X × Y,B),
where Xi represents the spatiotemporal coordinate, Yi denotes the corresponding solution in this
paper’s context and B denotes the Borel σ-algebra on the measurable space X × Y . For simplicity,
we adopt this notation in this section. These pairs are drawn from an unknown true density function
π. Lacking information about π, we adopt a Bayesian framework to establish a prior distribution Π
over the space H of density functions on (X ×Y,B). This prior is updated with the observed data to
form the posterior distribution Πn, which is defined as

Πn(A) =

∫
A
Ln(q)Π(dq)∫

H
Ln(q)Π(dq)

, (6)
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where Ln(q) =
∏n

i=1
q(Xi,Yi)
π(Xi,Yi)

for A ⊂ H . The resulting posterior density is

qn(X,Y ) =

∫
H

q(X,Y )Πn(dq). (7)

Adopting the notation Πn(dq) = dΠ(q | Dn), the posterior predictive distribution (PPD) is formu-
lated as

π(y | x,Dn) =

∫
H

q(y | x) dΠ(q | x,Dn). (8)

The behavior of Dn plays a crucial role in this formulation. As noted by [40, 39, 4, 38, 27], for
a well-behaved prior, PPD converges toward π as n increases. This aligns with findings in [4],
demonstrating that in well-specified scenarios, strong consistency is achieved as

Πn{q : H(π, q) > ϵ} → 0 almost surely, (9)

for any ϵ > 0. This indicates that the posterior distribution becomes concentrated in a small Hellinger
neighborhood around the true density function π.

Theorem 3.1. Suppose that for any n ∈ N and ϵ > 0, there exists a Transformer parameterized by θ̂
such that

θ̂ = argmin
θ

Ex [KL (pθ(· | x,Dn), π(· | x,Dn))] < ϵ.

If the posterior consistency condition holds, and for any q ∈ Q, q(x) = π(x) almost everywhere on
X , then the following holds almost surely then the following holds

Ex

[
H

(
pθ̂(· | x,Dn), π(· | x)

)] n→∞−−−−→ 0 almost surely.

Proof. The proof of Theorem 3.1 is provided in Appendix A.

This result demonstrates that as the amount of data increases, the neural network close to the posterior
distribution converges to the expected value under the prior distribution, highlighting the consistency
and robustness of the Bayesian inference process. Building upon the theoretical foundation established
in the previous theorem, our model performs the Bayesian inference with prior data. Ultimately,
our model’s goal is to read some ground-truth spatiotemporal points and infer an appropriate PDE
solution that accurately describes the dynamics under the given spatiotemporal conditions.

Suppose dataset Dn = {(Xi, Yi)}ni=1 is independently and identically distributed (i.i.d.) and sampled
from some distribution qα ∼ π. Specifically, Yi ∼ u(Xi | α) + noise, where noise is a small
Gaussian noise. The PPD is then given by

q(y | x,Dn) =

∫
H

qα(y | x) dΠ(qα | x,Dn), (10)

where we consider q(y | X,Dn) as the solution likelihood distribution given Dn, representing the
distribution most likely to select the correct solution. Inspired by [26, 1, 27], we approximate the
PPD by minimizing the Kullback––Leibler (KL) divergence between the true distribution q(· | x,Dn)
and the approximating model pθ(· | x,Dn). To achieve this, we adjust our loss function as follows:

lθ,n := −EαEDn∼qαEy∼uα(x)+noise [log pθ(y | x,Dn)] .

4 Experiments

In this section, we study the model with the following four prior distributions p(D):

P1 (noiseless) : p(D) = p(U), P2 (Gaussian noise) : p(D) ∼ N (U , σ2I),

P3 (salt-and-pepper noise) : p(D) ∼ p(s · U) where s =


min(U) with probability γ

2 ,

max(U) with probability γ
2 ,

1 with probability 1− γ,

P4 (uniform noise) : p(D) ∼ p(U + U(−ϵ, ϵ)) (U : uniform distribution).
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Table 1: Major comparisons between Hyper-LR-PINN, P2INN, and our model. While both Hyper-
LR-PINN and P2INN require the knowledge of governing equation, our model only needs observed
quantities. The notations used in the table are fully aligned with those in Figure 2.

Properties Hyper-LR-PINN P2INN Ours

Target function u(x, t;α ∈ Ω) u(x, t;α ∈ Ω) u(x, t)|D
Governing equation N (·) given ✓ ✓ ✗

Train dataset D ∪ T ∪ D̃ D ∪ T ∪ D̃ D ∪ T

Test dataset T̃ T̃ D̃ ∪ T̃

Dataset with a solution None None D,T, D̃

Algorithm 1 Training a Transformer
1: Input: A prior dataset D ∪ T drawn from prior p(D)
2: Output: A Transformer ũθ which can approximate the PPD
3: Initialize the Transformer ũθ

4: for i = 1 to n do
5: Sample α ∈ Ω and D ∪ T ⊆ r̃(α) ∼ p(D)

6: (D := {(x(i)
D , t

(i)
D )}ND

i=1, T := {(x(j)
T , t

(j)
T )}NT

j=1)

7: Compute loss Lα = 1
NT

∑NT

j=1

{
ũ(x

(j)
T , t

(j)
T )− r̃(x

(j)
T , t

(j)
T )

}2

.

8: Update parameters θ with an Adam optimizer
9: end for

The study of models in the noiseless case P1 verifies the ICL capabilities of the Transformer with
various tasks such as predicting seen/unseen PDE solutions (5.2 ∼ 5.3) and extrapolating solutions in
the temporal domain (5.4). After that, we study three different noisy prior distributions P2, P3 and P4
(5.5) to reinforce the ICL property of our model by guaranteeing its capability for zero-shot learning.

4.1 Experimental Setup

Baseline methods We compare our model with 2 baselines: Hyper-LR-PINN [8] and P2INN
without fine tuning [7]. Both models are parametrized physics-informed neural networks (PINNs)
designed to learn parameterized PDEs. Hyper-LR-PINN emphasizes a low-rank architecture with a
parameter hypernetwork, while P2INN focuses on a parameter-encoding scheme based on the latent
space of the parameterized PDEs.

Following this, as shown in Figure 2, the model takes D ∪ T ∼ p(D) in training phase and
D̃ ∪ T̃ ∼ p(U) in testing phase. In addition, the dataset D ∪ T requires the prior r̃, and D̃ requires
the solution u. For a fair comparison, we use D, T , and D̃ as the training dataset for both Hyper-
LR-PINN and P2INN. Notably, while Hyper-LR-PINN and P2INN do not rely on solution points
during training and testing, our model operates without any knowledge of the governing equation
N (·). This setup ensures a valid and balanced comparison. (Table 1).

Training algorithm The concrete flow of training phase is described in Algorithm 1.

4.2 Time Domain Interpolation for Seen PDE Parameters

In this section, we employ 6 different dynamics derived from 1D CDR equation. For
each dynamic, we set the parameter space Ω with three different coefficient (β, ν, ρ) range:
([1, 5] ∩ Z)m , ([1, 10] ∩ Z)m, and ([1, 20] ∩ Z)m where m is the number of nonzero coefficients.
The Transformer ũθ is trained with D ∪ T ⊆ r(α) where α ∈ Ω is selected at least once and
uniformly at random manner for each epoch. After that, we test ũθ with D̃ ∪ T̃ ⊆ u(α) for all α ∈ Ω
and evaluate average L1 mean absolute and L2 relative error (Table 2).

We can point out two notable facts: The model outperforms on diffusion, reaction, reaction-diffusion,
and convection-diffusion-reaction system, and it shows stable performance through the value of
coefficients. For instance, all baselines show difficulties in predicting accurate solutions for high
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Table 2: The L1 mean absolute and L2 relative errors over the 1D-CDR equation using P1 prior.
P2INN is tested without fine-tuning, and *-marked cases are evaluated with a reduced number of
parameters due to the extensive computational requirements.

System Coefficient range Hyper-LR-PINN P2INN Ours
Abs.err Rel.err Abs.err Rel.err Abs.err Rel.err

Convection
β ∈ [1, 5] ∩ Z 0.0104 0.0119 0.0741 0.1020 0.0192 0.0184
β ∈ [1, 10] ∩ Z 0.0172 0.0189 0.1636 0.1801 0.0250 0.0251
β ∈ [1, 20] ∩ Z 0.0340 0.0368 0.2742 0.2743 0.0764 0.0864

Diffusion
ν ∈ [1, 5] ∩ Z 0.0429 0.0570 0.3201 0.3652 0.0096 0.0120
ν ∈ [1, 10] ∩ Z 0.0220 0.0282 0.3550 0.4029 0.0108 0.0137
ν ∈ [1, 20] ∩ Z 0.1722 0.1991 0.4553 0.5166 0.0095 0.0134

Reaction
ρ ∈ [1, 5] ∩ Z 0.0124 0.0428 0.0109 0.0354 0.0102 0.0154
ρ ∈ [1, 10] ∩ Z 0.2955 0.3562 0.0192 0.0708 0.0129 0.0202
ρ ∈ [1, 20] ∩ Z 0.7111 0.7650 0.1490 0.2915 0.0160 0.0322

Convection-Diffusion
β, ν ∈ [1, 5] ∩ Z 0.0046 0.0055 0.1329 0.1554 0.0195 0.0231
β, ν ∈ [1, 10] ∩ Z 0.0268 0.0295 0.1609 0.1815 0.0211 0.0274
β, ν ∈ [1, 20] ∩ Z *0.1487 *0.1629 0.1892 0.2044 0.0226 0.0305

Reaction-Diffusion
ν, ρ ∈ [1, 5] ∩ Z 0.0817 0.1160 0.0579 0.1346 0.0139 0.0189
ν, ρ ∈ [1, 10] ∩ Z 0.0317 0.0446 0.4398 0.5457 0.0122 0.0189
ν, ρ ∈ [1, 20] ∩ Z *0.3228 *0.3844 0.1513 0.2955 0.0165 0.0331

Convection-Diffusion-Reaction
β, ν, ρ ∈ [1, 5] ∩ Z 0.0231 0.0307 0.0418 0.0595 0.0143 0.0209
β, ν, ρ ∈ [1, 10] ∩ Z *0.3135 *0.3732 0.0367 0.0624 0.0276 0.0411
β, ν, ρ ∈ [1, 20] ∩ Z *0.9775 *0.9958 0.0446 0.1211 0.0159 0.0310

Statistics Average 0.1805 0.2033 0.1709 0.2222 0.0196 0.0267
Standard Deviation 0.2581 0.2727 0.1423 0.1549 0.0147 0.0164

(a) convection (b) diffusion (c) reaction

Figure 3: L2 relative error measured at unseen parameters for (a) convection, (b) diffusion, and (c)
reaction. The result of seen parameters are plotted together. The grey area indicates the region where
the model extrapolates the coefficient β, ν, or ρ.

coefficient especially in diffusion and reaction system while ours do not. When we measure the
standard deviation of L2 relative error over three coefficient range for diffusion system, ours have
9.1× 10−4 while others show 10−2 scale value. These observations not only verify the effectiveness
of the Transformer’s ICL capability, but also suggest its potential to handle larger parameter space Ω.

4.3 Time Domain Interpolation for Unseen PDE Parameters

We test our model with unseen parameters at convection, diffusion, and reaction systems. For each
system, the model is trained with [1, 20] ∩ Z range coefficients and tested with unseen coefficient
1.5, 2.5, · · · , 19.5 which is included in interval [1, 20] and 20.5, 21.5, 22.5, · · · , 30.5 which is not
in range of [1, 20]. The measured L2 relative error for each coefficient value is plotted in Figure 3
with baselines Hyper-LR-PINN and P2INN. Both baselines are not fine-tuned for each parameter to
compare with our zero-shot learned model.
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Over the trained coefficient range, our model effectively interpolates the coefficients β, ν, and ρ,
achieving performance comparable to that seen with known coefficients. Moreover, the model
demonstrates stable extrapolation in diffusion and reaction systems. Compared to the baselines,
our model significantly outperforms it, particularly in diffusion and reaction systems. This result
indicates that the Transformer can effectively learn the posterior predictive distribution (PPD) of the
prior space D, even without observing the complete prior.

4.4 Time Domain Extrapolation for Seen PDE Parameters

Figure 4: (upper) The L2 relative error is evaluated for
each convection coefficient β = 1.5, 2.5, · · · , 19.5 as
an extrapolation task. (lower) The graph illustrates the
extrapolation of convection equation with β = 5.5 at
0.6 ≤ t ≤ 1.0.

One major limitation of the PINN is an
extrapolation at the temporal domain that
infer solutions at unknown points. Our
model demonstrates extrapolation capabil-
ity in the 1D convection equation, where
the solution exhibits wave-like fluctuations
in the inference region. In particular, the
model trained with the P1 prior over the
coefficient range β ∈ [1, 20] ∩ Z can pre-
dict β values in 1.5, 2.5, · · · , 19.5 for equa-
tions where the test points T̃ fall within
t ∈ (0.6, 1.0], even though D̃ is only dis-
tributed within t ∈ [0.0, 0.6]. We then eval-
uate the relative L2 error and plot for each
coefficient β with our baselines. Both base-
lines are not fine-tuned for each test β to
make a fair comparison with our zero-shot
model. (Figure 4, upper).

In practice, extrapolation is performed
in a section-by-section manner. The ex-
trapolation interval (0.6, 1.0] is divided
into 10 consecutive sections: (0.6, 0.64],
(0.64, 0.68], · · · , (0.96, 1.0]. For each sec-
tion, the model output from the previous
sections is added to D̃ to infer the current
section.

As a result, our model demonstrates effective extrapolation capabilities in convection equation (Figure
4). In addition, our model outperforms both Hyper-LR-PINN and P2INN across most values of β,
while maintaining a stable L2 relative error over a wider range. The diagram at Figure 4, lower
presents the detailed performance at β = 5.5. This capability emphasizes our model’s potential for
advancing solutions to PDEs in unknown spatial regions and for enhancing time series predictions.

4.5 In-Context Learning of Transformers with Noisy Prior

The use of P1 prior shows the capability of ICL of Transformer. Building upon the result, the
introduction of P2, P3, and P4 priors, which inject noises, further highlights the capability of our
model’s zero-shot inference.

In this section, we sample D ∪ T ∼ p(D), where D is a noisy prior, and train the Transformer ũθ.
We then test ũθ with D̃ ∪ T̃ ∼ p(U), demonstrating that the model can predict the true solution even
when trained on noisy prior data. The experiment is conducted on reaction and convection-diffusion-
reaction equations, which outperform other baselines, under three different noises: the Gaussian
noise (P2), the salt-and-pepper noise (P3), and the uniform noise (P4). The standard deviation σ of
Gaussian noise is set to 1%, 5%, and 10% of the mean value of the ground truth solution. Additionally,
for the experiment, the probe γ for salt-and-pepper noise and the range ϵ for uniform noise are also
set to 1%, 5%, and 10%.

Our model demonstrates robust performance across different types of noise injection as shown in
Table 3. For Gaussian noise, neither the L1 mean absolute nor L2 relative errors are significantly

8



Table 3: The L1 mean absolute error and L2 relative errors for the reaction and convection-diffusion-
reaction systems using the P2 prior with varying levels of Gaussian noise σ, P3 prior with varying
levels of noise probe γ, and P4 prior with varying levels of noise ϵ (1%, 5%, and 10%). For a
comparison, the result of using P1 prior is notated.

System Prior Type
Noisy Prior with a Noise Level P1 Prior

1% Noise 5% Noise 10% Noise
Abs. err Rel. err Abs. err Rel. err Abs. err Rel. err Abs. err Rel. err

Reaction
P2 0.0210 0.0392 0.0213 0.0399 0.0210 0.0392

0.0160 0.0322P3 0.0309 0.0598 0.0286 0.0517 0.0354 0.0619

P4 0.0285 0.0568 0.0293 0.0583 0.0306 0.0607

Convection
-Diffusion
-Reaction

P2 0.0175 0.0296 0.0220 0.0431 0.0235 0.0431
0.0159 0.0310P3 0.0246 0.0459 0.0263 0.0453 0.0267 0.0496

P4 0.0210 0.0420 0.0215 0.0422 0.0230 0.0426

influenced by the noise level. Notably, the model with 10% prior noise consistently outperforms other
baselines, as shown in Table 2. Similarly, although salt-and-pepper noise is the most challenging
and our model encounters greater difficulty compared to P2 and P4 priors, it still achieves superior
performance even with 10% prior noise. For uniform noise, while the L1 mean absolute and L2

relative errors increase progressively with the noise level ϵ, our model with 10% prior noise remains
consistently better than the baselines. It shows our Transformer can perform ICL with zero-shot
learning even if it is trained with inaccurate or noisy prior D ∪ T ∼ p(D).

5 Related Works

In-context learning Transformers have shown remarkable ICL abilities across various studies.
They can generalize to unseen tasks by emulating Bayesian predictors [29] and linear models [49],
while also efficiently performing Bayesian inference through Prior-Data Fitted Networks (PFNs)
[26]. Their robustness extends to learning different function classes, such as linear and sparse
linear functions, decision trees, and two-layer neural networks even under distribution shifts [14].
Furthermore, Transformers can adaptively select algorithms based on input sequences, achieving
near-optimal performance on tasks like noisy linear models [2]. They are also highly effective ans
fast for tabular data classification [18].

Foundation model Recent studies have advanced in-context operator learning and PDE solving
through Transformer-based models. [48] introduces PDEformer, a versatile model for solving
1D PDEs with high accuracy and strong performance in inverse problems. In-context operator
learning has also been extended to multi-modal frameworks, as seen in [46], where ICON-LM
integrates natural language and equations to outperform traditional models. Additionally, [47] and
[45] demonstrate the generalization capabilities of In-Context Operator Networks (ICON) in solving
various PDE-related tasks, highlighting ICON’s adaptability and potential for few-shot learning
across different differential equation problems. Several other studies have addressed the problem of
solving various PDEs using a single trained model [16, 17] . However, many of these approaches rely
on symbolic PDE information, true or near-true solutions and/or do not support zero-shot in-context
learning, making their objectives different from ours.

6 Conclusions

In this work, we presented a foundation model for scientific machine learning that integrates in-
context learning and Bayesian inference for predicting PDE solutions. Our results demonstrate that
Transformers, equipped with self-attention and cross-attention mechanisms, can effectively generalize
from prior data, even in the presence of noise, and exhibit robust zero-shot learning capabilities.
These findings suggest that foundation models in SML have the potential to follow the development
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trajectory similar to that of natural language processing foundation models, offering new avenues for
further exploration and advancement in the field.

Limitations and future work In this workshop version of our on-going research, only 1D CDR
problems have been used for experiments. They have terms with different characteristics and have
been used widely in SML. In the future, however, we will extend our SFM for learning various PDEs
at the same time. Therefore, the prior data collection step should be extended as well.
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A The Proof of Theorem 3.1

Proof. For any n, ϵ, we derive that
Ex

[
H

(
pθ̂(· | x,Dn), π(· | x)

)]
≤ Ex

[
H

(
pθ̂(· | x,Dn), π(· | x,Dn)

)]
(1)

+ Ex [H (π(· | x,Dn), π(· | x))]

≤
√

1

2
Ex

[
KL

(
pθ̂(· | x,Dn), π(· | x,Dn)

)]
(2)

+ Ex [H (π(· | x,Dn), π(· | x))]

≤
√

ϵ

2
+ Ex

[
1−

∫
Y

√∫
q(y | x)π(y | x)dΠn(q)dy

]1/2

(3)

≤
√

ϵ

2
+

[
1−

∫
X
π(x)

∫
Y

1

π(x)

√∫
q(y, x)π(y, x)dΠn(q)dydx

]1/2

≤
√

ϵ

2
+

[
1−

∫
X

∫
Y

∫ √
q(y, x)π(y, x)dΠn(q)dydx

]1/2
=

√
ϵ

2
+

[∫
H (q, π)

2
dΠn(q)

]1/2
≤

√
ϵ

2
+

[∫
H (q, π) dΠn(q)

]1/2
=

√
ϵ

2
+

[∫
{q:H(π,q)>ϵ}

H (q, π) dΠn(q)

]1/2

+

[∫
{q:H(π,q)≤ϵ}

H (q, π) dΠn(q)

]1/2

(4)

=

√
ϵ

2
+ (Πn({q : H(π, q) > ϵ}) + ϵ)1/2 →

√
ϵ

2
+
√
ϵ a.s.

(5)

The first inequality (1) is derived from the triangle inequality for the Hellinger distance, which states
that for any intermediate distribution q(· | x,Dn), we have

H
(
pθ̂(· | x,Dn), π(· | x)

)
≤ H

(
pθ̂(· | x,Dn), q(· | x,Dn)

)
+H (q(· | x,Dn), π(· | x)) .

The second inequality (2) uses the fact that the Hellinger distance H(p, q) is bounded above by the
square root of the KL divergence KL(p ∥ q), such that

H(p, q)2 ≤ 1

2
KL(p ∥ q).

Thus, we can bound the Hellinger distance by the KL divergence. In the third inequality (3), we make
use of assumption

Ex

[
KL

(
pθ̂(· | x,Dn), π(· | x,Dn)

)]
< ϵ,

and utilize the definition of the Hellinger distance. In (4), we partition the domain into two regions–
one where the Hellinger distance H(π, q) exceeds ϵ and another where it is less than or equal to
ϵ–and use this partitioning to demonstrate the inequality.

Finally, in (5), by posterior consistency, the region where the Hellinger distance is greater than ϵ
vanishes as n → ∞ such that

Πn {q : H(π, q) > ϵ} → 0 almost surely.
Since ϵ is arbitrary, we can conclude that

Ex

[
H

(
pθ̂(· | x,Dn), π(· | x)

)] n→∞−−−−→ 0 almost surely.
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B Experiments at PINN Failure Modes

Referring to [7] and [22], we test our method on PINN’s major failure modes: β ∈ [30, 40] with an
initial condition 1 + sin(x) and ρ ∈ [1, 10] with an initial condition N

(
π,

(
π
2

)2)
. We have trained

our model with this range with P1 prior and evaluate L1 mean absolute and L2 relative errors. The
following are major results and solution profiles at failure modes.

Table 4: The L1 mean absolute and L2 relative error at PINN failure modes.

Trained Coefficient Range Test Coefficient Value L2 Error Type Average Error
Abs.err Rel.err Abs.err Rel.err

β ∈ [30, 40]

β = 30 0.2483 0.2516

0.1280 0.1328β = 31 0.1029 0.1111

β = 32 0.0803 0.0882

β = 33 0.0806 0.0801

ρ ∈ [1, 10]

ρ = 4 0.0071 0.0160

0.0048 0.0097ρ = 5 0.0029 0.0054

ρ = 6 0.0033 0.0063

ρ = 7 0.0058 0.0112

(a) β = 30 (b) β = 31 (c) β = 32 (d) β = 33

(e) ρ = 4 (f) ρ = 5 (g) ρ = 6 (h) ρ = 7

Figure 5: The solution profiles at PINN failure modes: (a), (b), (c) and (d) for β ∈ [30, 40] with
initial condition 1+ sin(x) and (e), (f), (g) and (h) for ρ ∈ [1, 10] with initial condition N

(
π,

(
π
2

)2)
.

The solution profile is constructed using the union of 1,000 test prediction points and the remaining
ground truth points.

15


	Introduction
	Problem Setup
	Scientific Foundation Model via Bayesian Methods
	Experiments
	Experimental Setup
	Time Domain Interpolation for Seen PDE Parameters
	Time Domain Interpolation for Unseen PDE Parameters
	Time Domain Extrapolation for Seen PDE Parameters
	In-Context Learning of Transformers with Noisy Prior

	Related Works
	Conclusions
	The Proof of Theorem 3.1
	Experiments at PINN Failure Modes

