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Abstract

Answering open-domain questions requires world knowledge about in-context1

entities. As pre-trained Language Models (LMs) lack the power to store required2

knowledge, external knowledge sources, such as knowledge graphs, are often used3

to augment LMs. In this work, we propose knOwledge REasOning empowered4

Language Model (OREOLM), which consists of a novel Knowledge Interaction5

Layer that can be flexibly plugged into existing Transformer-based LMs to interact6

with a differentiable Knowledge Graph Reasoning module collaboratively. In7

this way, LM guides KG to walk towards the desired answer, while the retrieved8

knowledge improves LM. By adopting OREOLM to RoBERTa and T5, we show9

significant performance gain, achieving state-of-art results in the Closed-Book10

setting. The performance enhancement is mainly from the KG reasoning’s capacity11

to infer missing relational facts. In addition, OREOLM provides reasoning paths12

as rationales to interpret the model’s decision.13

1 Introduction14

Open-Domain Question Answering (ODQA), one of the most knowledge-intensive NLP tasks,15

requires QA models to infer out-of-context knowledge to the given single question. Following the16

pioneering work by Chen et al. (2017), ODQA systems often assume to access an external text corpus17

(e.g., Wikipedia) as an external knowledge source. Due to the large scale of such textual knowledge18

sources (e.g., 20GB for Wikipedia), it cannot be encoded in the model parameters. Therefore, most19

works retrieve relevant passages as knowledge and thus named Open-Book models (Roberts et al.,20

2020), with an analogy of referring to textbooks during an exam. Another line of Closed-book21

models (Roberts et al., 2020) assume knowledge could be stored implicitly in parameters of Language22

Models (LM, e.g. BERT (Devlin et al., 2019) and T5 (Raffel et al., 2020)). These LMs directly generate23

answers without retrieving from an external corpus and thus benefit from faster inference speed and24

simpler training. However, current LMs still miss a large portion of factual knowledge (Pörner et al.,25

2020; Lewis et al., 2021a), and are not competitive with Open-Book models.26

To improve the knowledge coverage of LM, one natural choice is to leverage knowledge stored in27

Knowledge Graph (KG, e.g. FreeBase (Bollacker et al., 2008) and WikiData (Vrandecic and Krötzsch,28

2014)), which explicitly encodes world knowledge via relational triplets between entities. There are29

several good properties of KG: 1) a KG triplet is a more abstract and compressed representation of30

knowledge than text, and thus KG could be stored in memory and directly enhance LM without using31

an additional retrieval model; 2) the structural nature of KG could support logical reasoning (Ren32

et al., 2020) and infer missing knowledge through high-order paths (Lao et al., 2011; Das et al., 2018).33

Taking the question “what cheese is used to make the desert cannoli?” as an example, even if this34

relational fact is missing in KG, we could still leverage high-order relationships, e.g., both Ricotta35

Cheese and Cannoli are specialties in Italy, to infer the answer “Ricotta Cheese.”36
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Figure 1: An Illustrative figure of OREOLM. Compared with previous KBQA systems that stack
reasoner on top of LM, OREOLM enables interaction between the two.

In light of the good properties of KG, there are several efforts to build Knowledge Base Question37

Answering (KBQA) systems. As is illustrated in Figure 1(a), most KBQA models use LM as a parser38

to map textual questions into a structured form (e.g., SQL query or subgraph), and then based on39

KG, the queries could be executed by symbolic reasoning (Berant et al., 2013) or neural reasoning40

(e.g. Graph Neural Networks) (Sun et al., 2019) to get the answer. Another recent line of research41

Verga et al. (2021); Yu et al. (2022b) tries to encode the knowledge graph as the memory into LM42

parameters. However, for most methods discussed above, LM is not interacting with KG to correctly43

understand the question, and the answer is usually restricted to a node or edge in KG.44

In this paper, we propose knOwledge REasOning empowered Language Model (OREOLM), a model45

architecture that can be applied to Transformer-based LMs to improve Closed-Book ODQA. As is46

illustrated in Figure 1(b), the key component is the Knowledge Interaction Layers (KIL) inserted47

amid LM layers, which is like cream filling within two waffles, leading to our model’s name OREO.48

KIL interacts with a KG reasoning module, in which we maintain different reasoning paths for each49

entity in the question. We formulate the retrieval and reasoning process as a contextualized random50

walk over the KG, starting from the in-context entities. Each KIL is responsible for one reasoning51

step. It first predicts a relation distribution for every in-context entity, and then the KG reasoning52

module traverses the graph following the predicted relation distribution. The reasoning result in each53

step is summarized as a weighted averaged embedding over the retrieved entities from the traversal.54

By stacking T layers of KIL, OREOLM can retrieve entities that are T -hop away and help LM to55

answer open questions that require out-of-context knowledge or multi-hop reasoning. The whole56

procedure is fully differentiable, and thus OREOLM learns and infers in an end-to-end manner. We57

further introduce how to pre-train OREOLM over unlabelled Wikipedia corpus. In addition to the58

salient entity span masking objective, we introduce two self-supervised objectives to guide OREOLM59

to learn better entity and relation representations and how to reason over them.60

We test OREOLM with RoBERTa and T5 as our base LMs. By evaluating on several single-hop ODQA61

datasets in closed-book setting, we show that OREOLM outperforms existing baselines with fewer62

model parameters. Specifically, OREOLM helps more for questions with missing relations in KG, and63

questions that require multi-hop reasoning. We further show that OREOLM can serve as a backbone64

for open-book setting and achieves comparable performance compared with the state-of-the-art QA65

systems with dedicated design. In addition, OREOLM has better interpretability as it can generate66

reasoning paths for the answered question and summarize general rules to infer missing facts.67

This key contributions are as follows: (1) We propose OREOLM to integrate symbolic knowledge68

graph reasoning with neural LMs. Different from prior works, OREOLM can be seamlessly plugged69

into existing LMs. (2) We pretrain OREOLM with RoBERTa and T5 to on the Wikipedia corpus.70

OREOLM can bring significant performance gain on ODQA. (3) OREOLM offers interpretable71

reasoning paths for answering the question and high-order reasoning rules as rationales.72

2 Methodology73

Preliminary We denote a Knowledge Graph KG =
(
E ,R,A = {Ar}r∈R

)
, where each e ∈ E74

and r ∈ R is entity node and relation label. Ar ∈ {0, 1}|E|×|E| is a sparse adjacency matrix75
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Figure 2: Model architecture of OREOLM. Three key procedures are highlighted in red dotted box:
1) Relation Prediction (Sec. 2.1.1): Knowledge Interaction Layers (KIL) predicts relation action for
each entity mention. 2) One-step State Transition (Sec. 2.1.2): Based on the predicted relation, KG
re-weights each graph and conduct contextualized random walk to update entity distribution state.
3) Knowledge Integration (Sec. 2.2): An weighted aggregated entity embedding is added into a
placeholder token as retrieved knowledge.

indicating whether relation r holds between a pair of entities. The task of knowledge graph76

reasoning aims at answering a factoid query (s, r, ?), i.e., which target entity has relation r with77

the source entity s. If KG is complete, we could simply get answers by checking the adjacency78

matrix, i.e., {∀t : Ar[s, t] = 1}. For incomplete KG where many relational facts are missing,79

path-based reasoning approaches Lao et al. (2011); Xiong et al. (2017); Das et al. (2018) have been80

proposed to answer the one-hop query via finding multi-hop paths. For example, to answer the81

query (s,Mother, ?), a path s
Father−−−→ j

Wife−−→ t could reach the target answer t. In this paper we try82

to integrate symbolic KG reasoning into neural LMs and help it deal with ODQA problems.83

Overview of OREOLM We illustrate the overall architecture of OREOLM in Figure 2. All the84

light blue blocks are our added components to support KG reasoning, while the dark blue Trans-85

former layers are knowledge-injected LM. The key component of OREOLM for conducting KG86

reasoning is the Knowledge Interaction Layers (KIL), which are added amid LM layers to enable87

deeper interaction with the KG.88

Given a question q = “The Bauhaus represented Germany’s recovery from which event?”, QA model89

needs to extract knowledge about all n in-context entity mentions M = {mi}ni=1, e.g., the history90

of “Germany” at the time when “Bauhaus” is founded, to get the answer a = “World War I”. Such91

open-domain Q&A can be abstracted as P (a|q,M). Starting from each mentioned entity mi, we92

desire the model to learn to walk over the graph to retrieve relevant knowledge and form a T -length93

reasoning path for answering this question, where T is a hyper-parameter denote the longest reasoning94

path required to answer the questions. We define each reasoning path starting from the entity mention95

mi as a chain of entities (states) random variables ρi = {eti}Tt=0, where each mentioned entity is the96

initial state, i.e., e0i = mi. The union of all paths for this question is defined as ϱ = {ρi}, which97

contains the reasoning paths from each mentioned entity to answer the question.98

OREOLM factorizes P
(
a|q,M

)
by incorporating possible paths ϱ as a latent variable, yielding:99

P
(
a|q,M

)
=

∑
ϱ
P
(
ϱ|q, {mi}ni=1

)
· P

(
a|q,M,ϱ

)
=

∑
ϱ

( n∏
i=1

P
(
ρi|q,mi

))
· P

(
a|q, {mi, ρi}ni=1

)
=

∑
ϱ

( n∏
i=1

T∏
t=1

P
(
eti|q, e<t

i

)︸ ︷︷ ︸
KG Reasoning (2.1)

)
P
(
a|q, {e0:Ti }ni=1

)
︸ ︷︷ ︸
knowledge-injected LM (2.2)
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We assume (1) reasoning paths starting from different entities are generated independently; and (2)100

reasoning paths can be generated autoregressively. In this way, the QA problem can be decomposed101

into two entangled steps: 1) KG Reasoning, which autoregressively walks through the graph to get a102

path ρi starting from each entity mention mi; and 2) knowledge-injected LM, which benefits from the103

reasoning paths to obtain the out-context knowledge for answer prediction.104

The relational path ρi in KG Reasoning requires the selection of next entity eti at each step t. We105

further decompose it into two steps: 1.a) relation prediction, in which LM is involved to predict the106

next-hop relation based on the current state and context; and 1.b) the non-parametric state transition,107

which is to predict the next-hop entity based on the KG and the predicted relation. Formally:108

P
(
eti|q, e<t

i

)︸ ︷︷ ︸
KG Reasoning (2.1)

=
∑
r

P rel

(
rti |q, e<t

i

)︸ ︷︷ ︸
relation prediction (2.1.1)

· Pwalk

(
eti|rti , e<t

i

)︸ ︷︷ ︸
contextualized random walk (2.1.2)

We keep track of the entity distribution at each step t via the probability vector1 π
(t)
i ∈ R|E|, with109

π
(t)
i [e] being the probability of staying at entity e, i.e., P

(
eti = e|q, e<t

i

)
.110

We highlight the three procedures in red dotted box in Figure 2. We take the first reasoning step111

starting from entity mention “Bauhaus” as an example. In the first red box within KIL, we predict112

which relation action should be taken for entity “Bauhaus”, and send the prediction (e.g. “Founded”)113

to KG. In the second red box, KG re-weights the graph and conducts contextualized random walk to114

update entity distribution, where “Walter” has the highest probability. Finally, weighted by the entity115

distribution, an aggregated entity embedding is sent back to KIL and added into a placeholder token116

as the knowledge, so the later LM layer knows to focus on the retrieved “Walter”. We introduce these117

steps in the following.118

Input. Initially, we first identify all N entity mentions {mi}Ni=1 in the input question q as well as the119

corresponding KG entities2.. For each mention mi we add three special tokens as the interface for120

Knowledge Interaction Layers (KIL) to send instruction and receive knowledge: we add a [S-ENT]121

token before, and [REL], [T-ENT] tokens after each entity mention mi. KIL can be flexibly inserted122

into arbitrary LM intermediate layer. By default, we just insert each KIL every N Transformer-based123

LM layers, thus the input to the t-th KIL are contextualized embeddings of each token k as LM(t)
k ,124

including added special tokens.125

2.1 LM involved KG Reasoning126

We first introduce the reasoning process P
(
eti|q, e<t

i

)
=
∑

r P
(
rti |q, e<t

i

)
· P

(
eti|rti , e<t

i

)
.127

2.1.1 Relation Prediction.128

For each entity mention mi, we desire to predict which relation action should take rti as instruction129

to transit state. We define the predicted relation probability vector γ(t)
i = P rel

(
rti |q, e<t

i

)
∈ R|R|130

representing the relation distribution to guide walking through the graph. Denote the corresponding131

[REL] token as REL[i] (and similarly for other special tokens). The contextual embedding LM(t)
REL[i]132

encode the relevant information in question q that hints next relation. We maintain a global relation133

key memory Krel ∈ R|R|×d storing each relation’s d-dimentional embedding. To calculate similarity,134

we first get relation query Q
(t)
REL[i] by projecting relation token’s embedding into the same space of135

key memory via a projection head Q-Proj3 followed by a LayerNorm (abbreviated as LN), and then136

calculate dot-product similarity followed by softmax:137

Q
(t)
REL[i] = LN(t)

(
Q-Proj(t)(LM(t)

REL[i])
)
, γ

(t)
i = P rel

(
rti |q, e<t

i

)
= Softmax

(
Q

(t)
REL[i] K

T
rel

)
.

Note that the relation queries LM(t)
REL[i] are different for every mention mi and reasoning step t138

depending on the context, and thus the the relation distributions γ(t)
i gives contextualized predictions139

1Throughout the paper, all vectors are row-vectors.
2For Wikipedia pretraining, we use the ground-truth entity label as one-hot initialization for π0

i . For
downstream tasks we use GENRE (Cao et al., 2021) to get top 5 entity links.

3We denote different non-linear MLP projections as X-Proj(h) = WX
2 σ(WX

1 h+ b1) + b2.
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based on the question q. The predicted relations are sent to the knowledge graph reasoning module as140

instruction to conduct state transition.141

2.1.2 Contextualized KG Random Walk142

Next, we introduce how we conduct state transition Pwalk

(
eti|rti , e<t

i

)
. One classic transition143

algorithm is random walk, which is a special case of markov chain, i.e. the transition probability144

only depends on previous state. Consider a state at entity s, the probability walking to target t145

is 1
deg(s) if A[s, t] = 1. Based on it, we define the Markov transition matrix for random walk as146

Mrw = D−1
A A, where the degree matrix DA ∈ R|E|×|E| is defined as the diagonal matrix with147

the degrees deg(1), . . . , deg(|E|) on the diagonal. With random walk Markov matrix Mrw we can148

transit the state distribution as: π(t) = π(t−1)M , The limitation of random walk is that the transition149

strategy is not dependent on the question q. We thus propose a Contextualized Random Walk (CRW).150

Based on the predicted relation distribution γ
(t)
i , we calculate a different weighted adjacency matrix151

Ã
(t)
i ∈ R|E|×|E| by adjusting the edge weight:152

Ã
(t)
i =

∑
r∈R

wr · γ(t)
i,r ·Ar, Mcrw

(t)
i = D−1

Ã
(t)
i

Ã
(t)
i , ∀i ∈ [1, N ],

where wr is a learnable importance weight for relation r that helps solving downstream tasks, and153

γ
(t)
i,r is the probability corresponding to relation r in γ

(t)
i . With the transition matrix Mcrw

(t)
i , the154

state transition is defined as π(t)
i = π

(t−1)
i Mcrw

(t)
i .155

CRW allows each reasoning path ρi to have its transition matrix. However, as the total number156

of entity nodes |E| could be huge (e.g., 5M for WikiData), we cannot afford to update the entire157

adjacency matrix for every in-batch mention. We thus adopt a scatter-gather pipeline to implement158

graph walking, as shown in Algorithm 1 in Appendix. The complexity is # of in-batch entities159

times # of edges in T -hop subgraph starting from these entities, i.e., O(n×#edge), and thus this160

operation is not expensive. Another concern is why not using Graph Neural Networks (GNNs). We161

provide discussion in Sec. D.3 in Appendix.162

2.2 Knowledge-Injected LM163

After we get the updated entity distribution π
(t)
i , we want to inject such information back to the164

LM without harming its overall structure. We maintain a global entity embedding value memory165

Vent ∈ R|E|×d storing entity embeddings. We only consider the entities within the sampled local166

subgraph in each batch. We thus get an entity index list I as the query to sparsely retrieve a set of167

candidate entity embeddings and then aggregate them weighted by entity distribution and embedding168

table. We then use a Value Projection block to map the aggregated entity embedding into the space of169

LM, and then directly add the transformed embedding back to the output of T-ENT.170

V
(t)
i = V-Proj(t)

(
π

(t)
i · Vent[I]

)
, L̂M

(t)

T-ENT[i] = LN(t)
(
LM(t)

T-ENT[i] + V
(t)
i

)
. (1)

Then, we just take all L̂M
(t)

T-ENT as input to next Transformer-based LM layer to learn the interaction171

between the retrieved knowledge with in-context words via self-attention.172

By repeating the KIL for T times, the final representation L̂M
T

is conditioned on the reasoning173

paths ρi = e0:Ti , which reaches entities that are T -hop away from initial entity mi in the question.174

Finally, we can predict the answer of open questions P
(
a|q, {e0:Ti }ni=1

)
by taking knowledge-injected175

representation L̂M
T

for span extraction, entity prediction or direct answer generation.176

2.3 Pre-Train OREOLM to Reason177

The design of OREOLM allows end-to-end training given QA datasets. However, due to the small178

coverage of knowledge facts for existing QA datasets, we need to pretrain OREOLM on a large-scale179

corpus to get good entity embeddings.180

Salient Span Masking. One straightforward approach is to use Salient Span Masking (SSM)181

objective (Guu et al., 2020) masks out entities or noun tokens requiring specific out-of-context182
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knowledge. We mainly mask out entities for guiding OREOLM to reason. Instead of randomly183

masking entity mentions, we explicitly sample a set of entity IDs and mask every mentions linking184

to these entities. This could prevent the model copy the entity from the context to fill in the blank.185

We also follow (Yang et al., 2019) to mask out consecutive token spans. We then calculate the186

cross-entropy loss on each salient span masked (SSM) token as LSSM .187

2.3.1 Weakly Supervised Training of KIL188

Ideally, OREOLM can learn all the entity knowledge and how to access the knowledge graph by189

solely optimizing LSSM . However, without a good initialization of entity and relation embeddings,190

KIL makes a random prediction, and the retrieved entities by KG reasoning are likely to be191

unrelated to the question. In this situation, KIL does not receive meaningful gradients to update192

the parameters, and LM learns to ignore the knowledge. To avoid this cold-start problem and provide193

entity and relation embedding a good initialization, We utilize the following two external signals194

as self-supervised guidance.195

Entity Linking Loss. To initialize the large entity embedding tables in Vent, we use other entities196

that are not masked as supervision. Similar to Févry et al. (2020), we force the output embedding197

of [S-ENT] token before the first KIL followed by a projection head E-Proj to be close to its198

corresponding entity embedding:199

ES-ENT[i] = LN
(
E-Proj(LM(1)

S-ENT[i])
)
, Lent =

∑
i
−logSoftmax

(
ES-ENT[i] Vent[I]

T
)
π0

i [I]. (2)

Similar to Section 2.2, we only consider entities within the batch, denoted by index I . This contrastive200

loss guides each entity’s embedding Vent[e] closer to all its previously mentioned contextualized201

embedding, and thus memorizes those context as a good initialization for later knowledge integration.202

Weakly Supervised Relation Path Loss. Entity mentions within each Wikipedia passage are203

naturally grounded to WikiData KG. Therefore, after we mask out several entities, we can utilize the204

KG to get all paths from other entities to the masked entities as weakly supervised relation labels.205

Formally, we define a Grounded Dependency Graph DG, which contains all reasoning paths within206

T -step from other in-context entities to masked entities, and then define RDG(mi, t) as the set of207

all relations over every edges for entity mention mi at t-th hop. Based on it, we define the weakly208

supervised relation label q(t)i ∈ R|R| as the probabilistic vector which uniformly distributed on each209

relation in set. Note that we call uniformly-weighted q
(t)
i as weakly supervised because 1) some210

paths lead to multiple entities rather than only the target masked entity; 2) the correct relation is211

dependent on the context. Therefore, q(t)i only provides all potential candidates for reachability, and212

more fine-grained signals for reasoning should be learned from unsupervised LSSM . We adopt a213

list-wise ranking loss to guide the model to assign a higher score on these relations than others.214

Lrel =
∑

mi

∑T

t=1
− logP

(t)
rel

(
r|mi, q

)
· q(t)i .

Overall, Lent and Lrel provide OREOLM with good initialization of the large KG memory. Afterward,215

via optimizing LSSM , the reasoning paths that provide informative knowledge receive a positive216

gradient, guiding OREOLM to reason.217

3 Experiments218

The proposed KIL layers can be pugged into most Transformer-based Language Models without219

hurting its original structure. In this paper, we experiment with both encoder-based LM, i.e.220

RoBERTa-base (d = 768, l = 12), and encoder-decoder LM, i.e. T5-base (d = 768, l = 12) and221

T5-large (d = 1024, l = 24). For all LMs, add 1 KIL layer or 2 KIL layers to the encoder layers.222

The statistics of KG are shown in Table 4 in Appendix. Altogether, it takes about 0.67B parameter223

for KG memory, which is affordable to load as model parameter. We pre-train all LMs using the224

combination of LSSM , Lent and Lrel for 200k steps on 8 V100 GPUs, with a batch size of 128 and225

default optimizer and learning rate in the original paper, taking approximately one week to finish226

pre-training of T5-large model, and 1-2 days for base model.227
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Models #param NQ WQ TQA ComplexWQ HotpotQA

T5 (Base) 0.22B 25.9 27.9 29.1 11.6 22.8
+ OREOLM (T=1) 0.23B + 0.68B 28.3 30.6 32.4 20.8 24.1
+ OREOLM (T=2) 0.24B + 0.68B 28.9 31.2 33.7 23.7 26.3

T5 (Large) 0.74B 28.5 30.6 35.9 16.7 25.3
+ OREOLM (T=1) 0.75B + 0.68B 30.6 32.8 39.1 24.5 28.2
+ OREOLM (T=2) 0.76B + 0.68B 31.0 34.3 40.0 27.1 31.4

T5-3B (Roberts et al., 2020) 3B 30.4 33.6 43.4 - 27.8
T5-11B (Roberts et al., 2020) 11B 32.6 37.2 50.1 - 30.2

Table 1: Closed-Book Generative QA of Encoder-Decoder LM on (Single/Multi)-hop Dataset.

3.1 Evaluate for Closed-Book QA228

OREOLM is designed for improving Closed-Book QA, so we first evaluate it in this setting. Genera-229

tive QA Following the hyperparameters and setting in Roberts et al. (2020), we directly fine-tune the230

T5-base and T5-large augmented by our OREOLM on the three single-hop ODQA datasets: Natural231

Question (NQ) (Kwiatkowski et al., 2019), WebQuestions (WQ) (Berant et al., 2013) and TriviaQA232

(TQA) (Joshi et al., 2017). To test OREOLM’s ability to solve complex questions, we also evaluate233

on two multi-hop QA datasets, i.e. Complex WQ (Talmor and Berant, 2018) and HotpotQA (Yang234

et al., 2018). Detailed dataset statistics and experimental setups are in Appendix C.235

Experimental results are shown in Table 7. We use Exact Match accuracy as the metric for all the236

datasets. On the three single-hop ODQA datasets, OREOLM with 2 KIL blocks achieves 3.3 absolute237

accuracy improvement to T5-base, and 3.4 improvement to T5-large. Compared with T5 model238

with more model parameters (e.g., T5-3B and T5-11B), our T5-large augmented by OREOLM could239

outperform T5-3B on NQ and WQ datasets. In addition, OREOLM could use the generated reasoning240

path to interpret the model’s prediction. We show examples in Table 10 in Appendix.241

For the two multi-hop QA datasets, the performance improvement brought by OREOLM is more242

significant, i.e., 7.8 to T5-base and 8.2 to T5-large. Notably, by comparing the T5-3B and T5-243

11B’s performance on HotpotQA (we take results from (Chen et al., 2022)), T5-large augmented by244

OREOLM achieves 1.2 higher than T5-11B. This shows that OREOLM is indeed very effective for245

improving Closed-Book QA performance, especially for complex questions.246

Entity Prediction. Encoder-based LM (i.e. RoBERTa) in most cases cannot be directly used for247

Closed-Book QA, but more serve as reader to extract answer span. However, Verga et al. (2021) pro-248

pose a special evaluation setting as Closed-Book Entity Prediction. They add a single [MASK] token249

after the question, and use its output embedding to classify WikiData entity ID. This restricts that an-250

swers must be entities that are covered by WikiData, which they call WikiData-Answerable questions.251

We follow Verga et al. (2021) to use such reduced version of WebQuestionsSP (WQ-SP) (Yih et al.,252

2015) and TriviaQA (TQA) as evaluation dataset, and finetune the RoBERTa (base) model augmented253

by OREOLM to classify entity ID. . We mainly compare OREOLM with EaE (Févry et al., 2020) and254

FILM (Verga et al., 2021), which are two KG memory augmented LM. We also run experiments on255

KEPLER (Wang et al., 2019), a RoBERTa model pre-trained with knowledge augmented task.256

Experimental results are shown in Table 2. Similar to the observation reported by Verga et al. (2021),257

adding KG memory for this entity prediction task could significantly improve over vanilla LM, as258

most of the factual knowledge required to predict entities are stored in KG. By comparing with259

FILM (Verga et al., 2021), which is the state-of-the-art model in this setup, OREOLM with reasoning260

step (T = 2) outperforms FILM by 2.9, with smaller memory consumption.261

3.2 Analyze KG Reasoning Module262

In our previous studies, we find that using a higher reasoning step, i.e. T = 2, generally performs263

better than T = 1. We hypothesize that the KG we use has many missing one-hop facts, and264

high-order reasoning helps recover them and empowers the model to answer related questions. To265

test whether OREOLM indeed can infer missing facts, we use EntityQuestions (EQ) (Sciavolino266

et al., 2021), which is a synthetic dataset by mapping each WikiData triplet to natural questions. We267

take RoBERTa-base model augmented by OREOLM trained on NQ as entity predictor and directly268

test its transfer performance on EQ dataset without further fine-tuning.269
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Figure 3: Testing the reasoning capacity of OREOLM to infer missing relations. On the left, the
barplot shows the transfer performance on EQ before and after removing relation, OREOLM (T = 2)
is less influenced. On the right shows reasoning paths (rules) automatically generated by OREOLM.

Models #param (B) WQ-SP TQA

EaE (Févry et al., 2020) 0.11 + 0.26 62.4 24.4
FILM (Verga et al., 2021) 0.11 + 0.72 78.1 37.3
KEPLER (Wang et al., 2019) 0.12 48.3 24.1

RoBERTa (Base) 0.12 43.5 21.3
+ OREOLM (T=1) 0.12 + 0.68 80.1 39.7
+ OREOLM (T=2) 0.13 + 0.68 80.9 40.3

Ablation Studies

RoBERTa + Concat KB + LSSM 0.12 47.1 22.6

+ OREOLM (T=2) w/o PT 0.13 + 0.68 46.9 22.7
w. LSSM 0.13 + 0.68 51.9 26.8
w. LSSM + Lent 0.13 + 0.68 68.4 35.7

Table 2: Closed-Book Entity Prediction performance
of Encoder LM on WikiData-Answerable Dataset.

Models #param (B) NQ TQA

Graph-Retriever Min et al. (2019) 0.11 34.7 55.8
REALM Guu et al. (2020) 0.33 + 16 40.4 -

DPR Karpukhin et al. (2020) + BERT 0.56 + 16 41.5 56.8
+ OREOLM (DPR, T=2) 0.57 + 17 43.7 58.5

FiD (Base) = DPR + T5 (Base) 0.44 + 16 48.2 65.0
+ OREOLM (T5, T=2) 0.45 + 17 49.3 67.1
+ OREOLM (DPR & T5, T=2) 0.46 + 17 51.1 68.4

FiD (Large) = DPR + T5 (Large) 0.99 + 16 51.4 67.6
+ OREOLM (T5, T=2) 0.99 + 17 52.4 68.9
+ OREOLM (DPR & T5, T=2) 1.00 + 17 53.2 69.5

KG-FiD (Base) (Yu et al., 2022a) 0.44 + 16 49.6 66.7
KG-FiD (Large) (Yu et al., 2022a) 0.99 + 16 53.2 69.8
EMDR2 (Sachan et al., 2021b) 0.44 + 16 52.5 71.4

Table 3: Open-Book QA Evaluation.

To test whether OREOLM could recover missing relation, we mask all the edges corresponding to270

each relation separately and make the prediction again. The average results before and after removing271

edges are shown on the left part of Figure 3. When we remove all the edges to each relation, OREOLM272

with T = 1 drops significantly, while T = 2 could still have good accuracy. To understand why273

OREOLM (T = 2) is less influenced, in the right part of Figure 3, we generate a reasoning path274

for each relation by averaging the predicted probability score at each reasoning step and pick the275

relation with the top score. For example, to predict the “Capital” of a country, the model learns276

to find the living place of the president, or the location of a country’s central bank. Both are very277

reasonable guesses. Many previous works (Xiong et al., 2017) could also learn such rules in an278

ad-hoc manner and require costly searching or reinforcement learning. In contrast, OREOLM could279

learn such reasoning capacity for all relations end-to-end during pre-training.280

3.3 Evaluate for Open-Book QA281

Though OREOLM is designed for Closed-Book QA, the learned model can serve as backbone282

for Open-Book QA. We take DPR and FiD models as baseline. For DPR retriever, we replace the283

question encoder to RoBERTa + OREOLM, fixing the passage embedding and only finetune on284

each downstream QA dataset. For FiD model, we replace the T5 + OREOLM. We also changed285

the retriever with our tuned DPR. Results in Table 3 show that by augmenting both retriever and286

generator, OREOLM improves a strong baseline like FiD, for about 3.1% for Base and 1.8% for287

Large, and it outperforms the very recent KG-FiD model for 1.6% in base setting, and achieve288

comparative performance in a large setting. Note that though our results is still lower than some289

recent models (e.g., EMDR2), these methods are dedicated architecture or training framework for290

Open-Book QA. We may integrate OREOLM with these models to further improve their performance.291

4 Conclusion292

We presented OREOLM, a novel model that incorporates symbolic KG reasoning with existing LMs.293

We showed that OREOLM can bring significant performance gain to open-domain QA benchmarks,294

both for closed-book and open-book settings, as well as encoder-only and encoder-decoder models.295

Additionally, OREOLM produces reasoning paths that helps interpret the model prediction.296
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Figure 4: Pre-training sample w/ golden reasoning path. More real examples are shown in Table 8 in
Appendix.

Name Number dimension #param (M)
Number of Entity 4,947,397 128 633
Number of Relation 2,008 768 1.5
Number of Edges 45,217,947 - 47

Table 4: Statistics and parameter of KG Memory.

A Related Work534

To encode knowledge (significantly smaller than the web corpus) as memory into LM parameter, a535

line of works try compressed knowledge including QA pairs (Chen et al., 2022; Lewis et al., 2021b),536

entity embedding (Févry et al., 2020) and reasoning cases (Das et al., 2021, 2022). There’s also537

several works utilizing Knowledge Graph(KG). FILM (Verga et al., 2021) turns KG triplets into538

memory. Given a question, LM retrieves most relevant triplet as answer. GreaseLM (Zhang et al.,539

2022) propose to interact LM with KG via a interaction node. JAKET (Yu et al., 2022b) encode text540

and KG independently and fuse information at late stage. We introduce and discuss with other related541

works in Sec. D in Appendix.542

B Implementation Details543

Entity Linking durine pre-training We use the 2021 Jan. English dump of Wikidata and544

Wikipedia. For each wikipedia page, we link all entity mentions with hyperlinks to WikiData545

entity entry, augment all other mentions with same aliases, tokenize via each LM’s tokenizer and546

split into chunks with maximum token length allowed. We then construct induced k-hop subgraphs547

connecting entities within each chunk for quickly get grounded computational graph.548

For entities, Wikipedia provides hyperlinks with ground-truth entity ID, but it doesn’t cover all the549

entity mentions, mostly hyperlinks only appear when this entity appears for the first time. Therefore,550

we first collect all entities appeared in hyperlinks as well as their aliases stored in WikiData, and then551

search any mentions that have any of these alias and link it to the corresponding entity.552

Implementation of Contextualized Random Walk We first gather the entity and relation proba-553

bility to each edge, and then scatter the probability to target nodes. This allows us to simultaneously554

conduct message passing with modified adjacency weight Ãt
i for all entity mention mi in parallel.555
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Dataset Train Dev Test
Natural Questions 58880 8757, 3610
Trivia QA 60413 8837 11313
Web Questions 2474 361 2032
HotpotQA
Complex WebQ 27623 3518 3531
WebQ-SP (Wiki-answerable) 1388 153 841
FreebaseQA (Wiki-answerable) 12535 2464 2440

Table 5: Dataset Train/Valid/Test splits.

Models #param (B) WQ-SP TQA
RoBERTa (Base) 0.12 47.5 40.3
+ OREOLM (T=1) 0.12 + 0.68 89.7 61.4
+ OREOLM (T=2) 0.13 + 0.68 92.4 66.8

Table 6: Closed-Book Entity Prediction validation performance of Encoder RoBERTa on WikiData-
Answerable Dataset.

Algorithm 1: Pytorch Pseudocode of CRW

def ContextualizedRandomWalk(
i_init, KG, # initial entity index and Graph
w_deg, w_rel, # inv(degree) and relation weights
p_ent, p_rel # entity and predicted relation dis-

# tribution tensor @ t-th step.
): -> FloatTensor

# Get <src, rel, tgt> edge list of k-hop subgraph
i_src, i_rel, i_tgt = k_hop_subgraph(i_init, KG)
# Gather entity and relation probability to edge
p_src = (p_ent * w_deg)[:, i_src] # N x n_edge
p_rel = (p_rel * w_rel)[:, i_rel] # N x n_edge
p_edge = l1_normalize(p_src * p_rel, dim=1)
# Scatter edge probability to target node
p_ent = scatter_add(src=p_edge, idx=i_tgt, dim=1)
return p_ent #(t+1)-th step’s entity distribution

Hyperparameters In this work, we don’t have too much hyperparmaters to be tuned, as most556

parameters as well as optimizing setting of LM is fixed. Our random walk part is non-parametric.557

The only tunable hyperparamter is hidden dimension size. We simply choose one setting, which is558

128 for entity embedding, and 768 for relation embedding. The former is because entity is super large559

(over 5M), so we use a reletively smaller dimension size. Detailed statistics about wikidata memory560

is in Table 4.561

C Dataset Details562

Below shows details for each dataset, and the detailed dataset split is shown in Figure 5563

Natural Questions Kwiatkowski et al. (2019) contains questions from Google search queries, and564

the answers are text spans in Wikipedia. We report short answer Exact Match (EM) performance.565

The open version of this dataset is obtained by discarding answers with more than 5 tokens.566

WebQuestions (WQ) Berant et al. (2013) contains questions from Google Suggest API, and the567

answers are entities in Freebase.568

TriviaQA Joshi et al. (2017) contains trivia questions and answers are text spans from the Web. We569

report Exact Match (EM) performance. We use its unfiltered version for evaluation.570

HotpotQA Yang et al. (2018) is a multi-hop QA dataset. There are two evaluation settings. In the571

distractor setting, 10 candidate paragraphs are provided for each question, of which there are two572
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Models #param NQ WQ TQA ComplexWQ HotpotQA

T5 (Large) 0.74B - - - - -
+ OREOLM (T=2) 0.76B + 0.68B 33.6 38.9 42.7 29.6 35.5

Table 7: Closed-Book Generative QA validation performance of T5.

golden paragraphs. In the full-wiki setting, a model is required to extract paragraphs from the entire573

Wikipedia. We report Exact Match (EM) on full-wiki setting.574

Complex WebQuestions Talmor and Berant (2018) is a dataset that composite simple one-hot575

questions in WebQuestionsSP by extending entities or adding constraints, so that each question576

eequires complex reasoning to solve.577

WebQuestionsSP Yih et al. (2015) is annotated dataset from WebQuestions, such taht each quetsion578

is answerable using Freebase via a SQL query.579

D Other Related Works580

D.1 Introduce other related works581

Open-Domain Question Answering aims at answering factoid questions by refering to a large-582

scale corpus. Most works adopt a two-stage pipeline proposed in Chen et al. (2017) that combines583

a retriever with a neural reader. There also exists several QA works using KG to help ODQA. For584

example, Asai et al. (2020) and Min et al. (2019) expand the entity graph following wikipedia585

hyperlinks or triplets in knowledge base. Ding et al. (2019) extract entities from current context via586

entity-linking and turn them into a cognitive graph, and a graph neural network is applied on top of it587

to extract answer. Dhingra et al. (2020) and Lin et al. (2020) construct an entity-mention bipartite588

graph and then model the QA reasoning as graph traversal by filtering only the contexts that are589

relevant to the question.590

Knowledge-Base Question Answering Traditional parsing-based methods parse the question into591

some intermediate query (e.g., SQL language, query graphs), which can execute on a knowledge base592

to get answer (Berant et al., 2013; Yih et al., 2015; Reddy et al., 2016; Zhong et al., 2017; Liang593

et al., 2017). However, existing knowledge bases suffer from low coverage of entities and relations594

required for open-ended questions. As an alternative, several works try to incorporate the structured595

knowledge into neural QA models for differentiable reasoning. Lin et al. (2019) and Feng et al.596

(2020) parse the question into a sub-graph of knowledge base, and apply graph neural networks as597

reasoner to extract answers. Chen et al. (2020) integrates general symbolic operations as basic units,598

and parse questions into compositional programs to answer general questions.599

Knowledge-augmented Language Models explicitly incorporate external knowledge (e.g. knowl-600

edge graph) into LM. Overall, these approaches can be grouped into two categories: The first one is601

to explicitly inject knowledge representation into language model pre-training, where the represen-602

tations are pre-computed from external sources (Zhang et al., 2019; Liu et al., 2021). For example,603

ERNIE Zhang et al. (2019) encodes the pre-trained TransE Bordes et al. (2013) embeddings as604

input. The second one is to implicitly model knowledge information into language model by per-605

forming knowledge-related tasks, such as entity category prediction (Yu et al., 2022b) and graph-text606

alignment Ke et al. (2021). For example, JAKET jointly pre-trained both the KG representation607

and language representation by adding two self-supervised learning objectives (i.e., entity category608

prediction, relation type prediction) on knowledge graphs (Yu et al., 2022b).609

D.2 Discussion with Previous Works610

Compare with FILM Though FILM has the advantage of end-to-end training and easily modifica-611

tion of knowledge memory, it simply stacks KG module on top of LM without interaction, and can612

only handle one-hop relational query that is answerable by KG. Our approach, OREOLM, follows the613
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same memory idea by encoding KG into LM parameter, and we desire LM and KG reasoning module614

could interact and collaboratively improve each other.615

Notably, OREOLM with T = 1 shares a similar design with FILM. The major differences are: 1) they616

store every triplet as a key-value pair, while we explicitly keep the KG adjacency matrix and conduct617

a random walk, which has smaller search space and is more controllable. 2) They add the memory on618

top of LM, and thus the knowledge could not help language understanding, and FILM could mainly619

help wikipedia-answerable questions. Instead, we insert the KIL layer amid LM layers to encourage620

interaction, and thus the model could also benefit encoder-decoder model (as shown above).621

Compare with Previous Path-Based Reasoning and Retrieval Pre-Training Note that as our622

definition of entity state πi and relation action γi are both continuous probabilistic vector, the whole623

KG Reasoning is fully differentiable and thus could be integrated into LM seamlessly and trained624

end-to-end. This is different from previous path traversal works such as DeepPath Xiong et al. (2017)625

and MINERVA Das et al. (2018), which defines state and action as discrete and could only be trained626

via reinforcement learning rewards. The reasoner training is also different from passage retrieval627

pre-training Guu et al. (2020); Sachan et al. (2021a), as the passage are naturally consisted of discrete628

tokens, and thus the reader is still required to re-encode the question with each passage, and different629

objectives are required to train retriever and reader separately.630

D.3 Discussion of Graph Walking-based Reasoning vs Graph Neural Networks631

Recently, Graph Neural Networks (GNNs) have shown superior performance for structured represen-632

tation learning. There’s also a lot of works trying to use GNNs for Question Answering (Yasunaga633

et al., 2021; Zhang et al., 2022). The one that has very similar motivation with us is GreaseLM.634

Therefore, a natural question is, whether could we use GNN instead of the non-parametric random635

walk module, for ODQA?636

To answer this question, let’s consider a simplest setup of GNN. We could identify initial entities,637

connected them via a k-hop subgraph, and encode graph with text (Zhang et al., 2022) or indepen-638

dently (Yu et al., 2022b). When we want to retrieve knowledge from graph to LM, normally we just639

take the contextualized node embedding as input for knowledge fusion.640

In this setup, say the answer is K-hop away from an initial entity, the ground-truth reasoning path641

is e0, r1, e1, r2, ..., ek−1, rk, ek = a. Using our method, we first predict r1, transit to e1, and step642

by step conduct reasoning via walking. However, if we use GNN’s final embedding, it requires to643

pass information from neighbor to itself. Therefore, suppose we have a K-layer GNN, the first step644

should be identify rk, and pass information from answer ek = a to ek−1. This is conter-intuitive645

as we normally cannot assume to know the answer, nor knowling the last step to reach the answer.646

In situations where all candidate answer is given, like CommonSenseQA, where GreaseLM mainly647

works on, this problem is less harmful as it’s guaranteed to contain the answer in a restricted small648

graph. However, in open-domain setup, we need to try best to narrow down the search space by649

following the forward reasoning instead of the backward manner. Therefore, in this work we adopt650

walking-based reasoning.651

E Illustration of Pre-Trained Data and Reasoning Paths652

The pre-training samples and reasoning paths (generated by T5-large on NQ dataset) is shown from653

Table 8-11.654

F Ablation Studies655

We conduct several ablation studies to evaluate which model design indeed contributes to the model.656

As shown in the bottom blocks in Table 2, we first remove the KG reasoning component and provide657

RoBERTa base model via concatenated KB triplets and train such a model using LSSM over the658

same WikiDataset. Such a model’s results are close to the KEPLER results but much lower than659

other models with explicit knowledge memory. We further investigate the role of pre-training tasks.660

Without pre-training, the OREOLM only performs slightly better than RoBERTa baseline, due to the661

cold-start problem of entity and relation embedding. We further show that removing Lent and Lent662
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could significantly influence final performance. The current combination is the best choice to train663

OREOLM to reason.664

G Limitations665

Limited Reasoning Steps In our experiments, we show that using reasoning step T = 2 has better666

performance to T = 1 on one-hop and multi-hop (mostly two) QA datasets. Thus, it’s a natural667

question about whether we could extending reasoning steps more? As previous KG reasoning mostly668

could support very long path (with LSTM design)669

Though we didn’t spend much time exploring before the paper submission, we indeed try using670

T = 3, but currently it didn’t get better results. We hypothesize the following reasons: 1) A large671

portion of our current model’s improvement relies on the weakly supervised relation pre-training. To672

do it, we construct a K-hop (K=2 now) subgraph, and sample dependency graph based on it. The673

larger K we choose, the more noise is included into the generated relation label, in an exponential674

increasing speed. Thus, it’s harder to get accurate reasoning path ground-truth for high-order T .675

Another potential reason is that within Transformer model, the representation space in lower and676

upper layer might be very different, say, encode more syntax and surface knowledge at lower layers,677

while more semantic knowledge at upper layers. Currently we adopt a MLP projection head, wishing678

to map integrated knowledge into the same space, but it might have many flaws and need further679

improvement.680

Large Entity Embedding Table requires Pre-Training and GPU resources Our current design681

has a huge entity embedding table, which should be learned through additional supervision and could682

not directly fine-tune to downstream tasks. This is restricts our approach’s usage.683

Require Entity Linking Current model design requires an additional step of entity linking for684

incoming questions, and then add special tokens as interface. A truly end-to-end model should685

identify which elements to start conducting reasoning by its own without relying on external models.686

Only support relational path-based reasoning Though there are lots of potential reasoning tasks,687

such as logical reasoning, commonsense reasoning, physical reasoning, temporal reasoning, etc. Our688

current model design mainly focus on path-based relational reasoning, and it should not work for689

other reasoning tasks at current stage.690

Unreasonable Assumption of Path In-dependency When we derive equation 1, we have the691

assumption that reasoning paths starting from different entities should be independent. This is not692

always correct, especially for questions that require logical reasoning, say, have conjunction or693

disjunction operation over each entity state. And thus our current methods might not work for those694

complex QA with logical dependencies.695
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Title Masked Text Ground Truth Dependency Graph 2-Hop Graph

Poolbeg the lighthouse was [mask] [s-
ent] [mask] [rel] [t-ent] com-
pleted in 1795. overview.
the [s-ent] poolbeg[rel] [t-ent]
“peninsula” is home to a num-
ber of landmarks including
the [s-ent] [mask][rel] [t-ent]
, the [s-ent] pool[mask] light-
house[rel] [t-ent] , the [s-ent]
irishtown nature park[rel] [t-
ent] , the southern part of [s-
ent] [mask][rel] [t-ent] ...

[ ’ connected to land
by the’, ’ great south
wall’, ’ great south
wall’, ’beg’, ’ dublin
port’, "’s main
power station,", ’
structures in’, ’48’, ’
a process to list the’,
’ after the station’,
’, including 3,’, ’
dublin city council’,
’ quarter” on the’]

Rylstone it is situated very
near to [s-ent]
[mask][rel] [t-
ent] and about
6 miles south
west[mask] [s-ent]
[mask]ington[rel] [t-
ent] . the population
of the [s-ent] civil
parish[rel] [t-ent] as
of the 2011 census
was 160. [s-ent]
rylstone railway
station[rel] [t-ent]
opened in 1902,
closed to passen-
gers in 1930, and
closed completely in
1969....

[’ craven’, ’ cracoe’,
’ of’, ’ grass’, ’
the inspiration for’,
’ tour de france’,
’stone’, ’ by will’...]

Karpinsk ologist [s-ent]
[mask] [rel] [t-ent]
. history.[mask]the
settlement of bo-
goslovsk () was
founded in either
1759 or in 1769. it
remained one of
the largest [s-ent]
copper[rel] [t-ent]
production cen-
ters in the [s-ent]
urals[rel] [t-ent]
[mask] [s-ent]
[mask][rel] [t-ent]
deposits started to
be mined in 1911.....

[’ alexander karpin-
sky’, ”, ’ until 1917.’,
’ coal’, ’erman civil-
ians, who’, ’ and’, ’
years of’, ’ forest la-
borers. moreover’, ’
in’, ’ the’, ’ frame-
work of the’, ’ dis-
tricts’, ’ karpinsk’,
’insk’...]

3 (The X-
Files)

[s-ent]
[mask][mask][rel]
[t-ent] ". [s-ent]
gillian ander-
son[rel] [t-ent] is
absent[mask][mask]
episode as she was
on leave to give
birth to her daughter
piper at the time.
this episode was
the first[mask] not
appear. reception.
ratings. "3" pre-
miered on the [s-ent]
fox network[rel]
[t-ent] on, and was
first broadcast in the
[s-ent] united king-
dom[rel] [t-ent].....

[ ’ny had’, ’
episode’, ’born
again’, ’ from the’, ’
in which scully did’,
’. it was’, ’egall’,
’ metacritic’, ’ as
"wretched’, ’ fact
that’, ’ background
noise for a’, ’ heavy-
handed attempts
at’, ’ glen morgan’,
’ doing an episode
on’]

Table 8: Example of Pre-training data points (Part 1).
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Title Masked Text Ground Truth Dependency Graph K-Hop Graph

Shen
Chun-
shan

his memoirs, he
suffered his second
stroke[mask][mask],
even after his second
stroke, he continued
writing; his series of
biographies of five
go masters [s-ent]
[mask][mask][mask][rel]
[t-ent] , [s-ent] mi-
noru kit[mask][rel]
[t-ent] .....

[’. however’, ’
go seigen’, ’ani’, ’
2007, he’, ’ was hos-
pital’, ’ hsinchu’, ’af-
ter surgery’, ’ scale’,
’ continuing to im-
prove.’, ’ his coma.
in’...]

2007
Florida
Gators
football
team

[s-ent]
tim[mask][mask][rel]
[t-ent] completed 22
of 27 passes for 281
yards passing and
also ran for[mask]
yards on 6 carries.
[s-ent] [mask] [rel]
[t-ent] carried the
ball 11 times for 113
yards[mask] two
touchdowns and also
caught 9 passes for
110[mask] receiving,
becoming the first
player in school
history .....

[’ tebow’, ’ 35’, ’
percy harvin’, ’ and’,
’ yards’, ’ 30–9’, ’
renewed their bud-
ding’, ’ gamecocks’,
’gator’, ’ quarter-
back’, ’ set a career-
high’, ’ of these five
rushing’, ’.’, ’ percy
harvin’, ’ sinus in-
fection.’, ’ators’, ’
touchdown’]

Judgment
Day
(Awe-
some
Comics)

[s-ent] alan
moore[rel] [t-
ent] used "judgment
day" to reject the
violent, deconstruc-
tive clichés of 1990s
comics inadvertently
caused by his own
work on " [s-ent]
watchmen[rel]
[t-ent] ", "" and
" [s-ent] saga of
the[mask][mask][rel]
[t-ent] " and uphold
the values of classic
superhero comics.
the series deals with
a metacommentary
of the notion of ret-
cons to super-hero
histories as [s-ent]
alan moore[rel] [t-
ent] [mask] for the
characters of [s-ent]
[mask][mask][rel]
[t-ent] , to replace
the shared universe
they left when [s-
ent] rob liefeld[rel]
[t-ent] left image
several years earlier.
plot. in[mask],
mick tombs/ [s-ent]
knightsabre[rel]
[t-ent].....

[ ’ swamp thing’,
’ himself creates a
new backstory’, ’
awesome comics’,
’ 1997’, ’riptide’,
’ knightsabre ap-
pears to be’, ’ and
sw’, ’ badrock’, ’
supreme’, ’by’, ’
analyzing’, ’ cyber-
netic young’, ’ it,
and it has’, ’ue out’,
’, administrator for
youngblood’]

Table 9: Example of Pre-training data points (Part 2).
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Question Answer Reasoning Paths as Rationale

southern soul was considered
the sound of what indepen-
dent record label

[’Motown’] soul music
genre-R−−−−→ ?

label−−→ ?

independent record label
belong−−−→ ?

is a-R−−−→ ?

who is the bad guy in lord of
the rings

[’Sauron’] the lord of the rings (film series) theme−−−→ ?
characters−−−−−→ ?

where was the mona lisa kept
during ww2

[’the Ingres
Museum’,
"Château
d’Amboise",
’Château de
Chambord’,
’the Loc -
Dieu Abbey’]

mona lisa creator−−−→ ?
tomb−−→ ?

world war 2
take place−−−−−→ ?

located-R−−−−−→ ?

who have won the world cup
the most times

[’Brazil’] fifa world cup
parts−−→ ?

land−−→ ?

who wrote the song the beat
goes on

[’Sonny
Bono’]

song
album type-R−−−−−−−→ ?

author−−−→ ?

who plays mrs. potato head
in toy story

[’Estelle Har-
ris’]

toy story series−−−→ ?
VO−−→ ?

who plays caroline on the
bold and beautiful

[’Linsey God-
frey’]

the bold and the beautiful in work-R−−−−−→ ?
actor−−→ ?

where are the fruits of the
spirit found in the bible

[’Epistle to
the Gala-
tians’]

bible
parts−−→ ?

parts−−→ ?

who is the only kaurava who
survived the kurukshetra war

[’Yuyutsu’] kaurava in work−−−−→ ?
in work-R−−−−−→ ?

Kurukshetra War location−−−−→ live in-R−−−−→

what is the deepest depth in
the oceans

[’Mariana
Trench’]

ocean in−→ ?
lowest point−−−−−−→ ?

where did the french national
anthem come from

[’Strasbourg’] national anthem is a-R−−−→ ?
released in−−−−−→ ?

Table 10: Example of QA prediction with reasoning path on NQ (part 1).
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Question Answer Generated Reasoning Paths as Rationale

who sings the song where
have all the flowers gone

[’Pete
Seeger’]

song
album type-R−−−−−−−→ ?

actor−−→ ?

who discovered some islands
in the bahamas in 1492

[’Christopher
Columbus’]

the bahamas
entry−−→ ?

entry-R−−−−→ ?

which type of wave requires
a medium for transmission

[’mechanical
waves’, ’heat
energy’,
’Sound’]

wave
belong-R−−−−−→ ?

belong-R−−−−−→ ?

land conversion through
burning of biomass releases
which gas

[’traces of
methane’,
’carbon
monoxide’,
’hydrogen’]

gas
belong-R−−−−−→ ?

as-R−−→ ?

the sum of the kinetic and po-
tential energies of all parti-
cles in the system is called
the

[’internal en-
ergy’]

kinetic energy
belong−−−→ ?

belong-R−−−−−→ ?

potential energy
belong−−−→ ?

belong-R−−−−−→ ?

who did seattle beat in the
super bowl

[’Denver
Broncos’]

super bowl
organizer−−−−−→ ?

league-R−−−−→ ?

what is the name of the girl
romeo loved before juliet

[’Rosaline’] romeo in work−−−−→ ?
in work-R−−−−−→ ?

who will get relegated from
the premier league 2016/17

[ ’Hull City’,
’Sunderland’,
’Middles-
brough’]

premier league
league-R−−−−→ ?

POB−−→ ?

actress in the girl with the
dragon tattoo swedish

[’Noomi Ra-
pace’]

sweden
speaking−−−−→ ?

mother tongue-R−−−−−−−−→ ?

Table 11: Example of QA prediction with reasoning path on NQ (part 2).
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