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Abstract

Effectively designing molecular geometries is essential to advancing pharmaceu-
tical innovations, a domain, which has experienced great attention through the
success of generative models and, in particular, diffusion models. However, current
molecular diffusion models are tailored towards a specific downstream task and
lack adaptability. We introduce UniGuide, a framework for controlled geometric
guidance of unconditional diffusion models that allows flexible conditioning during
inference without the requirement of extra training or networks. We show how
applications such as structure-based, fragment-based, and ligand-based drug design
are formulated in the UniGuide framework and demonstrate on-par or superior
performance compared to specialised models. Offering a more versatile approach,
UniGuide has the potential to streamline the development of molecular generative
models, allowing them to be readily used in diverse application scenarios.

1 Introduction

Diffusion models have emerged as an important class of generative models in various domains,
including computer vision [1], signal processing [2], computational chemistry, and drug discovery
[3–8]. By gradually adding noise to data samples and learning the reverse process of removing noise,
diffusion models effectively transform noisy samples into structured data [9, 10]. In the context of
drug discovery, it is essential to effectively address downstream tasks, which often pose specific
geometric conditions. Examples of this include (i) Structure-based drug design (SBDD) that aims
to create small ligands that fit given receptor binding sites [11], (ii) Fragment-based drug design
(FBDD) that designs molecules by elaborating known scaffolds [12, 13], or (iii) Ligand-based drug
design (LBDD) which generates molecules that fit a certain shape [14]. Recent works address these
tasks by either incorporating specialised models or focusing on conditions that directly resemble
molecular structures. In both cases, this narrow focus restricts their adaptability to new or slightly
altered settings.

We address the challenge of adaptability by introducing UniGuide, a method that unifies guidance for
geometry-conditioned molecular generation, see Fig. 1. The key element for achieving this unification
is the condition map, which transforms complex geometric conditions to match the diffusion model’s
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Figure 1: UniGuide handles diverse conditioning modalities for guidance, including: (i) a target
receptor for SBDD, (ii) additional molecular fragments for FBDD, or (iii) a predefined 3D shape
for LBDD. It combines a source condition s ∈ S and the unconditional model ϵθ(zt, t) within its
condition map to enable self-guidance. The flexible formulation of our approach can be generalised
to new geometric tasks, for example, conditioning on atomic densities.

configuration space, thereby enabling self-guidance without the need for external models. Like
other guidance-based approaches, UniGuide does not constrain the generality of the underlying
model. Moreover, our method is the most versatile, extending beyond guiding molecular structures to
leveraging complex geometric conditions such as volumes, surfaces, and densities, thereby enabling
the unified tackling of diverse drug discovery tasks. For complex conditions specifically, previous
works primarily rely on conditional diffusion models for effective condition encoding [12–14]. With
our method, we are able to tackle the same tasks, while overcoming major drawbacks: UniGuide
eliminates the need for additional training and, more importantly, avoids constraining the model to
specific tasks.

We demonstrate the wide applicability of UniGuide by tackling a variety of geometry-constrained
drug discovery tasks. With performance either on par with or superior to tailored models, we conclude
that UniGuide offers advantages beyond its unification. Firstly, while the novelty of conditional
models often stems from the condition incorporation, our method redirects focus to advancing
unconditional generation, which directly benefits multiple applications. Furthermore, this separation
of model training and conditioning allows us to tackle tasks with minimal data, a common scenario
in the biological domain.

In summary, our contributions are as follows:

• We present UniGuide: A unified guidance method for generating geometry-conditoned molecular
structures, requiring neither additional training nor external networks used to guide the generation.

• We demonstrate UniGuide’s wide applicability by tackling various conditioning scenarios in
structure-based, fragment-based, and ligand-based drug design.

• We show UniGuide’s favourable performance over task-specific baselines, highlighting the
practical relevance of our approach.

2 Related work
Diffusion models and controllable generation Diffusion models [9, 10] are generative models
achieving state-of-the-art performance across various domains, including the generation of images
[1, 9], text [15], or point clouds [16]. Conditional diffusion models [17–21] are based on the same
principle but incorporate a particular condition in their training, allowing for the controlled generation.
Alternatively, classifier guidance [22, 23] relies on external models for controllable generation. Prior
works in this context primarily focused on global properties [22, 24], lacking the capacity to condition
on the geometric conditions central to our work. For instance, Bao et al. [24] demonstrate control
over molecule generation based on desired quantum properties.
De novo molecule generation Research on de novo molecule generation focused extensively on
generating molecules using their chemical graph representations [7, 25–34]. However, these methods
are limited in modelling the molecules’ conformation information and are, therefore, not ideally suited
for several drug-discovery settings, such as target-aware drug design. Recently, attention has shifted
towards generating molecules in 3D space, utilising variational autoencoders [35], autoregressive
models [36–38], flow-based models [39, 40], and diffusion-based approaches [20, 41–47].
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Conditional generation of molecules Downstream applications of molecular generation can be
categorised by their condition modality. In the case of SBDD [38, 48, 49], Schneuing et al. [11] and
Guan et al. [50], for example, introduce models that simultaneously operate on protein pockets and
ligands. In the conditional case, the pocket context is fixed throughout the generation. Moreover,
FBDD imposes (multiple) scaffolds as a constraint [11, 12, 51–53]. Igashov et al. [13] expand given
scaffolds by generating the molecule around the fixed scaffolds. In a related task of FBDD, linker
design with pose estimation, as discussed in [54], further generate the rotation of the given scaffolds.
SBDD and FBDD rely on the availability of high-quality data of protein pockets, which is often scarce.
For this reason, LBDD aims to generate molecules that match the same 3D volume of reference
ligands that are known to bind to the target of interest [55, 56]. Chen et al. [14] specifically train a
shape encoder to capture the molecular shape of a reference ligand and use the resulting embedding
to train a conditional diffusion model.

3 Controlling the generation of diffusion models

Diffusion Models [9, 57] learn a Markov Chain that involves a forward process to perturb data from a
distribution q(z) and learn to reverse the process to generate new samples from a tractable prior, for
example, a normal distribution. Given a data point sampled from the true underlying distribution,
zdata ∼ q(z), the forward process q(zt|zt−1) gradually adds Gaussian noise:

q(zt|zt−1) = N
(
zt

∣∣√1− βtzt−1, βtI
)
, (1)

where {βt ∈ (0, 1)}Tt=1 defines a variance schedule. Defining the forward process this way, one can
readily sample from q(zt | zdata):

zt =
√
αtzdata +

√
1− αtϵ , ϵ ∼ N (0, I) , (2)

with αt = 1 − βt and αt =
∏t

i=1 αi. Since the time-reverse process q(zt−1|zt) depends on zdata,
which is not available at generation time, it is approximated by modelling pθ(zt−1 | zt):

pθ(zt−1 | zt) = N
(
zt−1

∣∣µθ(zt, t), σtI
)
, (3)

where the mean µθ is parameterised by a noise-predicting neural network ϵθ in the form of:

µθ(zt, t) =
1

√
αt

(
zt −

βt√
1− αt

ϵθ(zt, t)
)
. (4)

The model ϵθ is trained to optimise the variational lower bound through the simplified training
objective:

Ltrain =
1

2

∥∥ϵ− ϵθ(zt, t)
∥∥2
2

. (5)

Self-guiding diffusion models Using Bayes’ rule, the conditional probability pθ(zt | c) given a
condition c can be expressed as

pθ(zt | c) ∝ pθ(zt) pθ(c | zt) . (6)

This allows us to decompose the score function as follows:

∇zt
log pθ(zt | c) = ∇zt

log pθ(zt) + S∇zt
log pθ(c | zt) , (7)

where the second term is used for guiding the unconditional generation, with S > 0 controlling the
guidance strength. Using that ∇zt

log pθ(zt) = −(1− αt)
− 1

2 ϵθ(zt, t) [22], we can rewrite the score
function from Eq. (7) and identify the modified noise predictor ϵ̂θ:

∇zt
log pθ(zt | c) = − 1√

1− αt

[
ϵθ(zt, t)−

√
1− αtS∇zt

log pθ(c | zt)︸ ︷︷ ︸
=:ϵ̂θ(zt,t,c)

]
(8)

The modified mean function µ̂θ then follows from the modified version of Eq. (4), enabling us to
sample from pθ(zt−1 | zt, c) ∼ N

(
µ̂θ(zt, t, c), σtI

)
:

µ̂θ(zt, t, c) =
1

√
αt

(
zt −

βt√
1− αt

ϵ̂θ(zt, t, c)
)
= µθ(zt, t) + λ(t)∇zt log pθ(c | zt) , (9)
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where λ(t) = (αt)
− 1

2 βtS balances the conditional update. Eq. (9) requires sampling from
log pθ(c | zt) to which we do not have access. Assuming the condition c lies in the same space
as zt, we can follow Kollovieh et al. [58] and approximate log pθ(c | zt) as a multivariate Gaussian
distribution:

pθ(c | zt) = N
(
c |fθ(zt, t), I

)
, (10)

where fθ(zt, t) approximates the clean data point, enabling to estimate the condition in data space.
Using Eq. (2), we can readily predict the clean data point given the noisy sample zt via

fθ(zt, t) =
zt −

√
1− αt ϵθ(zt, t)√

αt
=: ẑ0 . (11)

With this, the guiding term becomes a direct differentiation of the squared error with respect to the
noisy sample zt:

∇zt
log pθ(c | zt) = −1

2
∇zt

∥∥fθ(zt, t)− c
∥∥2
2

. (12)

By directly leveraging the prediction of the unconditional model ϵθ, Eq. (12) establishes our self-
guiding conditioning, thereby defining the self-guided noise predictor ϵ̂θ:

ϵ̂θ(zt, t, c) = ϵθ(zt, t) +

√
1− αtS

2
∇zt

∥∥ẑ0 − c
∥∥2
2

. (13)

4 UniGuide

To enable the application of unconditional molecular diffusion models ϵθ to geometric downstream
tasks in drug discovery, we aim to develop a unified guidance framework, UniGuide, see Fig. 1.
Importantly, we seek to enable guidance from arbitrary geometric conditions s ∈ S , where S denotes
a general space of source conditions. However, the source conditions s cannot be directly used for
the loss computation in Eq. (12) when they do not match the configuration space Z .

To address this challenge, we introduce condition maps C, which bridge the gap between arbitrary
source conditions s and target conditions c suitable for guidance. In Sec. 4.1, we start with its general
formulation and continue to derive a condition map CZ for the special case where S = Z . This will
be useful when discussing the application of UniGuide to various drug discovery tasks in Sec. 4.2.
We also demonstrate how to derive a task-specific condition map C∂V for ligand-based drug design.

Notation In 3D space, the configuration of molecules, including proteins, can be represented by
a set of tuples z = {(xi,hi)}Ni=1 ∈ Z , where xi ∈ R3 and hi ∈ Rd refer to coordinates and
features of a node zi = (xi,hi), respectively. The space of configurations is denoted by Z and
includes configurations of varying size N . We distinguish between different configuration entities
via superscripts, i.e. refer to molecules M and proteins P through zM and zP , respectively. The
collection of coordinates x = {x1, . . . ,xN} ∈ RN×3 ∈ X defines the conformation of a molecule
M or protein P . We represent arbitrary geometric conditions with the variable s ∈ S , and conditions
that can be used for guidance with the variables c ∈ Z .

4.1 Unified self-guidance from geometric conditions s ∈ S

The concept of a condition map C is essential to our method, enabling guidance from conditions
s ∈ S in a unified fashion, where S represents a space of general geometric objects such as structures,
densities, or surfaces. These geometric objects do not necessarily match the configuration space Z ,
i.e. S ≠ Z , preventing the computation of the guiding score function from Eq. (12). We overcome
this challenge by defining C as a transformation that maps s to a suitable target condition c ∈ Z ,
which is then utilised for self-guidance.

In the most general case, C takes the form of

C : S × Z → Z
s× z 7→ c ,

(14)

where the source condition s together with a configuration z are mapped to a target condition c ∈ Z .
Including the condition map C in the guidance, we obtain our guidance signal:
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∇zt
log pθ(c | zt) = −1

2
∇zt

∥∥ẑ0 − C(s, ẑ0)
∥∥2
2
= −∇zt

L(ẑ0, s) , (15)

where ẑ0 = fθ(zt, t) is the estimate of z0 given the unconditional model ϵθ(zt, t) obtained according
to Eq. (11) and c = C(s, ẑ0) is the target condition produced by the condition map. In this
formulation, c can also be understood as guidance target of the unconditional model.

It is important to highlight that Eq. (15) should not destroy the underlying properties of the uncon-
ditional generative process. In particular, if the unconditional model ϵθ is equivariant to a set of
transformations G, e.g. rotations and translations, as is common in the molecular domain, we want to
retain equivariance also in the guidance signal. Hence, the self-guided model ϵ̂θ should satisfy

ϵ̂θ
(
G(zt), t, c

)
= G

(
ϵ̂θ(zt, t, c)

)
, (16)

for all transformations G to which ϵθ is equivariant.

Theorem 4.1. Consider a function C : S × Z → Z . If C(s, z) is invariant to rigid transformations
G in the first argument and equivariant in the second argument, then the gradient ∇z∥v∥22 of the
vector v = z− C(s, z) is equivariant to transformations of z.

Proof. We prove Theorem 4.1 in App. B.

Using Theorem 4.1, we can guarantee equivariant guidance signals if the condition maps C(s, z)
are invariant and equivariant under rigid transformations concerning the source condition s and
configuration z, respectively.

Guidance in the special case of S = Z In the case where the source condition s directly defines
subset A of m < N nodes of the configuration, i.e. S = Z , we can fully specify the condition map.
This is feasible because the condition map no longer needs to bridge different spaces; it only needs to
ensure equivariance, as the loss computation between s and the configuration is already possible. To
distinguish this special case from the general setting, we denote s = z̃ ∈ Rm×(3+d) and refer to the
defined subset within the configuration ẑ0 by ẑA0 .

In order to satisfy the requirements on C
(
z̃, ẑA0

)
as stated by Theorem 4.1, we align z̃ with ẑA0 by

using the Kabsch algorithm [59, 60]. Denoting the resulting transformation with TẑA
0

, we get an
ẑ0-equivariant condition map:

CZ : Rm×(3+d) × Rm×(3+d) → Rm×(3+d)

z̃ × ẑA0 7→ TẑA
0
z̃ .

(17)

Taken together, we can compute the guidance signal based on the following loss L:

L
(
ẑA0 , z̃

)
=

1

2

∥∥ẑA0 − TẑA
0
z̃
∥∥2
2

. (18)

We emphasise that although the loss L
(
ẑA0 , z̃

)
is computed on the subset A, the gradient, as presented

in Eq. (15), is still computed with respect the full configuration zt.

In summary, our method requires only an unconditionally trained model ϵθ and a suitable condition
map C, eliminating the need for additional networks or training. Together, this facilitates unified
self-guidance from arbitrary geometric sources. Importantly, the separation of model training and
conditioning enables us to tackle tasks even with minimal data, which is crucial in practical scenarios.
In the following section, we discuss the wide applicability of UniGuide by illustrating its application
to multiple drug discovery tasks.

4.2 UniGuide for drug discovery

Having introduced both the guidance framework and the condition map, we will continue to discuss
how to tackle a set of drug discovery tasks within the UniGuide framework. We start with its
application to ligand-based drug design (LBDD), which aims to generate a ligand that satisfies a
predefined molecular shape.

5



Figure 2: Surface condition
map C∂V : For each atom co-
ordinate xi, the closest sur-
face points yj are computed.
The target condition cx,i is
the projection along the mean
of neighbours ȳi to the inside
of the volume by a margin α,
where d = ∥ȳi − x̂i∥2.

Ligand-based drug design LBDD aims to generate novel ligands
with a similar 3D shape as a reference ligand Mref. In this setting,
one operates on the molecule level only since the protein information
is assumed to be unknown. However, to still generate active ligands
that bind to a protein pocket, one leverages the 3D shape information
of a reference molecule. Specifically, the goal is to modify the
generative process ϵ̂θ to generate a ligand z0 with a similar 3D
shape but different molecular structure than Mref. With Sec. 4.1
introducing all required concepts, we can readily formulate a surface
condition map C∂V suitable to tackle the task of LBDD, see Fig. 2:

To represent Mref’s 3D shape, we identify our source condition
s with a set of K points y sampled uniformly from the reference
ligand’s surface ∂V , y ∈ RK×3 = S . As no features are guided, we
formulate C∂V with respect to the conformation space X = RN×3:

C∂V : RK×3 × RN×3 → RN×3

y × x̂0 7→ cx ,
(19)

where x̂0 denotes the conformation of the clean data point estimation
ẑ0 as computed by Eq. (11). To satisfy Theorem 4.1, C∂V first
aligns y with x̂0 by a rotation Rx̂0

∈ R3×3 resulting from the ICP
algorithm [61]. For every atom coordinate x̂i, C∂V subsequently
computes the mean ȳi over x̂i’s k closest surface points:

ȳi =
1

k

∑
j∈Nx̂i

Rx̂0
yj , with Nx̂i

= arg min
I⊂{1,...,K},|I|=k

∑
j∈I

∥∥Rx̂0
yj − x̂i

∥∥
2

. (20)

Finally, the individual components cx,i of the target condition compute as follows:

cx,i =


ȳi +

α
d (ȳi − x̂i) , if x̂i outside V

ȳi − α
d (ȳi − x̂i) , if x̂i inside V ∧ d < α

x̂i , otherwise ,
(21)

where d denotes the distance to the surface, d = ∥ȳi − x̂i∥2, and α the required distance to the
surface. Note that the target condition cx represents a valid conformation inside the surface ∂V ,
and that C∂V effectively bridges spaces from S to X . Consequently, when using C∂V , the guidance
signal is derived from Eq. (15) with the loss function L(ẑ0,y). The full algorithm for guidance using
C∂V is presented in App. D.1.

Structure-based drug design The goal of SBDD is to design a ligand that binds to a target protein
pocket s. In this setting, one operates on both the molecule and protein level. Technically, we
are interested in generating a ligand zM0 conditioned on the protein configuration z̃P . With the
unconditional diffusion model ϵθ(zt, t), zt = (zMt , zPt ), approximating the joint distribution of
ligand-protein pairs p(zMdata, z

P
data), one can readily see that the source condition directly corresponds

to the configuration of the protein pocket. Hence, we can use CZ from Sec. 4.1 and identify z̃ with
z̃P . The guidance signal then follows from the loss L(ẑP0 , z̃P) with cP = CZ(z̃

P , ẑP0 ) as defined in
Eq. (18). We describe the sampling algorithm for the SBDD task in App. E.1.

Fragment-based drug design FBDD aims to design a ligand by optimising a molecule around
fragments F that bind weakly to a receptor. Similarly to SBDD, one operates on both the molecule
and protein level. Technically, we are interested in generating a ligand zM0 conditioned on both
the protein and the fragment configuration, z̃P and z̃F , respectively. Considering the same kind of
unconditional model ϵθ(zt, t) as in SBDD, we can use CZ from Sec. 4.1. Only now, we identify z̃
with both z̃P and z̃F and write z̃A with A = P ∪ F . Using Eq. (18), the guidance signal directly
follows from L(ẑA0 , z̃P∪F ) with cP = CZ(z̃

P∪F , ẑP∪F
0 ). The sampling algorithm is similar to the

one described in App. E.1.

Several tasks exist within the FBDD setting [62–65]. Examples are scaffold hopping [64], where the
core structure of zM0 has to be generated, but functional groups that interact with the receptor are
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Table 1: Ligand-Based Drug Design. Results taken from Chen et al. [14] are indicated with (∗). We
highlight the best conditioning approach for the ShapeMol backbone in bold and underline the best
approach across all methods.

Method
only
shape SimS (↑) maxSimS (↑) SimG (↓) maxSimG (↓) Ratio (↑) Diversity (↑)

Non-
diffusion
based

VS∗ [14] ✗ 0.729 ± 0.04 0.807 ± 0.04 0.226 ± 0.04 0.241 ± 0.09 3.226 0.759 ± 0.02
SQUID∗ [55] (λ = 0.3) ✗ 0.717 ± 0.08 0.904 ± 0.07 0.349 ± 0.09 0.549 ± 0.24 2.054 0.687 ± 0.07
SQUID∗ [55] (λ = 1.0) ✗ 0.670 ± 0.07 0.842 ± 0.06 0.235 ± 0.05 0.271 ± 0.09 2.851 0.744 ± 0.05

Diffusion-
based

ShapeMol [14] ✓ 0.677 ± 0.04 0.797 ± 0.04 0.239 ± 0.05 0.240 ± 0.07 2.834 0.714 ± 0.05
ShapeMol+g [14] ✗ 0.744 ± 0.03 0.849 ± 0.03 0.242 ± 0.04 0.245 ± 0.05 3.074 0.708 ± 0.05
UniGuide (ShapeMol [U]) ✓ 0.726 ± 0.04 0.827 ± 0.05 0.248 ± 0.05 0.239 ± 0.05 2.927 0.651 ± 0.05
UniGuide (ShapeMol) ✓ 0.760 ± 0.05 0.857 ± 0.06 0.240 ± 0.04 0.237± 0.06 3.167 0.705 ± 0.04

UniGuide (EDM) ✓ 0.749 ± 0.04 0.860 ± 0.04 0.212 ± 0.04 0.206 ± 0.06 3.536 0.736 ± 0.04

fixed, or linker design [65], where the connection between separated fragments has to be optimised
through the generative process, see Fig. 5. Note that these tasks differ primarily in their application
and can be treated identically from a technical perspective within UniGuide. In addition, one can also
consider variations where the protein information z̃P is discarded. This usually aligns with switching
to an unconditional model ϵθ that solely models the distribution over molecules. We present results
for this configuration in Sec. 5.3.

Furthermore, we would like to highlight that it is possible to combine guidance strategies within
UniGuide. For example, one could incorporate a version of the surface condition map C∂V for FBDD
to provide an additional geometric guidance signal for the atoms not included in F .

Limitations Drug discovery also involves tasks beyond purely geometric conditions, encompassing
global graph properties [24]. These are excluded from the UniGuide framework. Additionally,
UniGuide requires the unconditional model to be trained on a matching configuration space. We
discuss the broader impact of our work in App. A.

5 Results

In this section, we compare UniGuide to state-of-the-art models across various drug discovery tasks.
To highlight the wide range of tasks to which unconditional models can be adapted through UniGuide,
we conduct experiments on ligand-based (Sec. 5.1), structure-based (Sec. 5.2) and fragment-based
(Sec. 5.3) drug design. We demonstrate that UniGuide performs competitively or even surpasses
specialised baseline models, underscoring its practical relevance and transferability to diverse drug
discovery scenarios.

5.1 Ligand-based drug design

Dataset Following Chen et al. [14], we employ the MOSES dataset for the ligand-based drug
design task [66]. We evaluate on a test set consisting of 1000 reference ligands, from which the 3D
shape conditions are extracted. For every shape condition Mref, 50 samples are generated. We refer
to App. D.1 for further details on the evaluation setup.

Baselines For the LBDD task, we compare UniGuide to ShapeMol, a conditional diffusion model
that is trained by conditioning on learned latent embeddings of the molecular surfaces [14]. Chen
et al. [14] also propose a correction technique that adjusts the atom positions based on their distance
to the reference ligand’s nodes, which is refered to as ShapeMol+g. Additionally, we include as
baselines Virtual Screening (VS) [14], a shape-based virtual screening tool, and SQUID [55], a
variational autoencoder that decodes molecules by sequentially attaching fragments with fixed bond
lengths and angles. For this task, we evaluate UniGuide equipped with the surface condition map
C∂V from Eq. (21) in conjunction with two unconditionally trained diffusion models, ShapeMol [U]
and EDM [14, 20] as well as the conditional model ShapeMol [14]. The “only shape” column in
Tab. 1 indicates whether a method uses solely the reference ligand’s shape or also incorporates its
atom positions.

We compare UniGuide with an alternative guidance approach adapted from Guan et al. [67] in
App. D.4 and refer to App. C and App. D.3 for further information on the unconditional models and
the guidance parameters, respectively. In addition, inspired by the performance of UniGuide on the
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Table 2: Structure-Based Drug Design. Quantitative comparison of generated ligands for target
pockets from the CrossDocked and Binding MOAD test sets. Results taken from the respective works
are indicated with (∗). We highlight the best conditioning approach for the DiffSBDD backbone in
bold and underline the best approach over all methods.

Method Vina Score (↓) Vina Min (↓) Vina Dock (↓) QED (↑) SA (↑)
C

ro
ss

D
oc

ke
d

Test Set −6.362 ± 3.14 −6.707 ± 2.50 −7.450 ± 2.33 0.48 0.73
N

on
-

D
iff

. 3D-SBDD∗ [38] −5.754 ± 3.25 −6.180 ± 2.42 −6.746 ± 4.02 0.51 0.63
Pocket2Mol∗ [48] −5.139 ± 3.17 −6.415 ± 2.93 −7.152 ± 4.90 0.56 0.74

D
iff

us
io

n-
ba

se
d

DecompDiff∗ (No Drift) [67] −4.750 ± − −6.170 ± − − − −
TargetDiff∗ [50] −5.466 ± 8.32 −6.643 ± 4.94 −7.802 ± 3.62 0.48 0.58

DiffSBDD-cond [11] −3.684 ± 11.3 −4.670 ± 6.06 −6.941 ± 4.33 0.47 0.58
DiffSBDD [11] −4.097 ± 11.3 −6.306 ± 5.00 −7.889 ± 2.61 0.57 0.64
UniGuide −5.103 ± 8.39 −6.610 ± 4.20 −7.921 ± 2.43 0.57 0.64

B
in

di
ng

M
O

A
D

D
iff

us
io

n-
ba

se
d

Test Set −6.748 ± 2.77 −7.563 ± 2.53 −8.297 ± 2.03 0.60 0.64

DiffSBDD-cond [11] −4.466 ± 2.63 −6.309 ± 2.52 −7.482 ± 1.84 0.43 0.56
DiffSBDD [11] −4.744 ± 7.70 −6.586 ± 2.59 −7.767 ± 2.06 0.55 0.62
UniGuide −5.074 ± 6.75 −6.622 ± 2.57 −7.911 ± 1.97 0.56 0.61

LBDD task, we further motivate its applicability for the generation of molecules given atom densities,
see App. G.

Figure 3: Examples of the two shape-conditioned lig-
ands generated by UniGuide. The goal is to have low
molecular graph similarity and high shape similarity.

Evaluation The goal of LBDD is to dis-
cover novel molecules that fit within a given
3D shape. This can be quantified by a high
3D shape similarity and low graph similarity
compared to the reference ligand, as illus-
trated in Fig. 3 as well as App. D.2. We
highlight this trade-off by reporting the ratio
of these similarities in Tab. 1 as SimS/SimG,
which constitutes the most important met-
ric for this task. We follow Chen et al. [14]
and further evaluate the mean and maximum
shape similarities SimS and maxSimS , re-
spectively, per reference ligand, measured via
the volume overlap between the two aligned
molecules. Additionally, we report the graph
similarity SimG defined as the Tanimoto sim-
ilarity between the generated and reference
ligand, and the graph similarity maxSimG

of the generated molecule with the maximum shape similarity. Further metrics concerning the quality
of the generated ligands are provided in App. D.2.

Both in terms of shape similarity and graph similarity, guiding the generation of EDM with UniGuide
outperforms other task-specific conditioning mechanisms and even the Virtual Screening baseline.
Emphasised by the Ratio metric across all evaluated methods, UniGuide demonstrates that it is able
to generate diverse molecules with very similar shapes compared to the reference ligand. Remarkably,
UniGuide achieves higher shape similarity than ShapeMol+g, even though the conditional model
is explicitly guided towards the position of the reference ligand through the position correction
technique. UniGuide, on the other hand, does not require information about the reference’s atom
positions at all to generate novel, high-quality ligands. This highlights how UniGuide and the design
of condition maps enables unconditional models like EDM, that have not been tailored or trained for
the LBDD task, to achieve state-of-the-art performance on new tasks.

5.2 Structure-based drug design

Datasets Following Schneuing et al. [11], we evaluate UniGuide on two protein-ligand datasets:
the CrossDocked dataset [68] and the Binding MOAD dataset [69]. For the CrossDocked dataset, we
follow the preprocessing as described by [38] and conduct the evaluation on 100 test protein pockets.
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Table 3: Linker Design. Results taken from Igashov et al. [13] are indicated with (∗). We underline
the best method overall.

Method QED (↑) SA (↓) No. Rings (↑) Valid (↑) Unique (↑) 2D Filters (↑) Recovery (↑)

Non-
diffusion
based

DeLinker + ConfVAE + MMFF [53]∗ 0.64 ± 0.16 3.11 ± 0.68 0.21 ± 0.42 98.3 44.2 84.8 80.2
3DLinker [52]∗ 0.65 ± 0.16 3.14 ± 0.68 0.24 ± 0.43 71.5 29.2 83.7 93.5
3DLinker (given anchors) [52]∗ 0.65 ± 0.16 3.11 ± 0.67 0.23 ± 0.42 99.3 29.0 84.2 94.0

Diffusion-
based

DiffLinker [13]∗ 0.65 ± 0.15 3.19 ± 0.77 0.32 ± 0.54 90.6 51.4 87.9 70.7
DiffLinker (given anchors) [13]∗ 0.65 ± 0.15 3.24 ± 0.81 0.36 ± 0.59 94.8 50.9 84.7 77.5

UniGuide (EDM) 0.64 ± 0.16 3.63 ± 1.08 0.49 ± 0.62 89.1 72.1 87.9 58.8

The Binding MOAD dataset is preprocessed as discussed in Schneuing et al. [11], resulting in 130
test proteins. Per target pocket, 100 ligands are generated. We evaluate the generation of ligands on
models that are trained on the full-atom context of the pockets in Tab. 2 and results of models trained
on the Cα representation of the pockets are provided in App. E.5.

Baselines We compare UniGuide to two autoregressive models designed for the SBDD task:
3D-SBDD [38] and Pocket2Mol [48]. We further include TargetDiff [50] and DecompDiff [67],
conditional diffusion models for SBDD that fix the protein pocket context during every step of the
diffusion process. We exclude approaches with explicit drift terms like Guan et al. [67] and Huang
et al. [70] from the comparison, as UniGuide’s SBDD condition map does not include drift terms
currently, but can be readily extended to do so. Schneuing et al. [11] present two techniques for
controlled structure-based generation: (i) DiffSBDD-cond, a conditional diffusion model similar
to [50] and (ii) DiffSBDD, an inpainting-inspired technique that modifies the generative process of
an unconditional diffusion model that jointly generates protein-ligand pairs. Across datasets, both
UniGuide and DiffSBDD control the same unconditional ligand-protein diffusion model. We provide
more information and further evaluation regarding this base model in App. E.2 and App. E.3 and
investigate the influence of the guidance scale S as well as the resampling trick [71], a technique that
modifies the generative process to better harmonise the generated ligand with the controlled pockets,
in App. E.4 and App. E.5.

Evaluation As the task of SBDD is to generate ligands that bind well to a given protein pocket, we
assess generated ligands based on affinity-related metrics (Vina Score, Vina Min and Vina Dock),
which estimate the binding affinity between the generated ligands and a given test receptor [72].
Additionally, we measure the quality of the generated ligands using two chemical properties: the
drug-likeness (QED) and the synthetic accessibility (SA) [66, 73].

Figure 4: Qualitative example of a test protein pocket
(6c0b) from the Binding MOAD dataset. We show
the reference ligand (grey) and samples generated by
UniGuide (blue).

Tab. 2 demonstrates that, without addi-
tional training or external networks, UniGu-
ide performs competitively with even the
highly specialised conditional models like
TargetDiff and DecompDiff. Our results
indicate that not fully converging to the
target protein pocket due to soft guidance,
compared to, for example, DiffSBDD’s
inpainting-inspired technique, is not a lim-
itation in practice. Rather, it suggests that
utilising self-guidance in combination with
a suitable condition map generates well-
harmonised ligand-protein pairs. This is
also reflected in the properties of the gen-
erated ligands, where UniGuide achieves
good drug-likeness (QED) and synthetic accessibility (SA) scores. We provide additional qualitative
examples for the SBDD task in Fig. 4, which showcase that UniGuide not only generates drug-like
ligands but is even able to improve over the VINA Dock metric of the reference ligand.

5.3 Fragment-based drug design

Datasets & Baselines In the following, we investigate linker design, a subfield of fragment-based
drug design. We follow Igashov et al. [13] and decompose ligands from the ZINC dataset [74] with
the MMPA algorithm [75]. Note that the ZINC dataset does not contain pocket information, and the
evaluated approaches operate solely at the molecular level. We compare UniGuide to DiffLinker
[13], a diffusion-based conditional model that fixes fragments in space. Additionally, we evaluate
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the variational autoencoder-based methods DeLinker [53] and 3DLinker [52], adapted as described
in Igashov et al. [13]. We provide more information on the experimental setup as well as the
unconditionally trained EDM model in App. F.1 and App. C.

Figure 5: For various pocket-conditioned FBDD tasks,
we show reference ligands (grey), desired fragments
(magenta), and ligands generated by UniGuide (blue).

Evaluation Following Igashov et al. [13],
we evaluate the generated linkers and lig-
ands with respect to their properties (SA,
QED, Number of Rings and 2D Filters). We
additionally measure (i) the uniqueness of
the generated samples, (ii) the recovery of
the reference ligands, and (iii) the validity,
which combines the chemical validity and
the successful linking of the fragments.

Using UniGuide to control the EDM gener-
ation enables the successful combination of
the condition fragments and the generation
of diverse linkers. Even compared to task-
specific models, UniGuide is able to per-
form competitively across different metrics.
Importantly, UniGuide enables the same un-
conditional model (EDM) to tackle both the
linker design task as presented in Tab. 3 as
well as the LBDD task as presented in Tab. 1
without additional training. Note that, while
DiffLinker is specifically designed to gener-
ate linkers, UniGuide readily generalises to
other tasks within the FBDD setting, such as
fragment growing and scaffolding, see Fig. 5. Additionally, UniGuide is agnostic to the fragmentation
procedure used to obtain the condition scaffolds, meaning that UniGuide will generalise to unseen
fragments as long as the underlying molecule fits within the training distribution. In App. F.2, we
demonstrate how the same unconditional model can be adapted for these tasks. Our quantitative
evaluation highlights the benefits achieved through the unification of controlled generation provided
by UniGuide.

6 Conclusion

In this work, we present UniGuide, a unified way of controlling the generation of molecular diffusion
models towards geometric constraints. UniGuide generalises to a multitude of drug discovery tasks
without the need for conditioning networks or specialised training protocols, enabling UniGuide to
find applicability also in scenarios where little data is available. By demonstrating that specialisation
is not a necessity and that a more flexible, unified method outperforms specialised approaches across
tasks and datasets, we open up new avenues for streamlined and flexible generative models with
wide-ranging applications.
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A Impact Statement

Our research holds the promise of significant contributions to the advancement of drug discovery,
possibly assisting in the discovery of novel pharmaceutical compounds. Nevertheless, because of its
applications in drug discovery, this strategy is not without its hazards. The ability to produce various
molecules with desired properties may not only serve the purpose of beneficial drug development
but may also unintentionally result in the creation of dangerous substances or compounds with
unexpected effects. These concerns underline the critical need for careful handling when working
with the structures this method can generate.

B Proof of Theorem 4.1

First, recall Theorem 4.1 that we provide in Sec. 4:
Theorem 1. Consider a function C : S ×Z → Z . If C(s, z) is invariant to rigid transformations G
in the first argument and equivariant in the second argument, then the gradient ∇z

∥∥v∥∥2
2

of the vector
v = z− C(s, z) is equivariant to transformations of z.

Proof. We start the proof by showing that ∥v∥2 is invariant to transformations of both z and s.

1. ∥z− C(s, z)∥2 is invariant to transformations in z:∥∥Gz− C(s, Gz)
∥∥
2
=

∥∥Gz−GC(s, z)
∥∥
2

[C is equivariant in z]

=
∥∥G(z− C(s, z))

∥∥
2

=
∥∥z− C(s, z)

∥∥
2

[G is a rigid transformation]

(22)

2. ∥z− C(s, z)∥2 is invariant to transformations s follows immediately:∥∥z− C(Gs, z)
∥∥
2
=

∥∥z− C(s, z)
∥∥
2

[C is invariant in s] (23)

In a second step, we make use of the fact that for a group of transformations G, it holds that if L(·, ·)
is a G-invariant function, ∇xL(·, x) is G-equivariant [76]. From the invariance of ∥v∥2, it follows
immediately that ∇z

∥∥z− C(s, z)
∥∥2
2

is equivariant to transformations of z.

C Unconditional Equivariant Diffusion Model

UniGuide guides an unconditional diffusion model given an arbitrary condition and a natural choice
for a model operating only on the molecule level is the EDM model as proposed in Hoogeboom et al.
[20].

We adapt this model for two tasks presented in this work, namely the LBDD task discussed in Sec. 5.1
and the Linker Design task as presented in Sec. 5.3. For these tasks, we train an unconditional EDM
model both on the MOSES dataset [66] in the configuration as described in Chen et al. [14] and
on the ZINC dataset [74] as described in Igashov et al. [13]. For both trainings, we employ the
hyperparameter configuration for the GEOM dataset as described in Hoogeboom et al. [20]. We run
multi-GPU trainings on 4 NVIDIA A100 GPUs until convergence, however, a single NVIDIA A100
GPU is sufficient for this training and will only increase the training time. For inference, we employ
the Resampling trick as discussed in Lugmayr et al. [71] with R = 10 resampling steps and T = 100
timesteps. EDM is available under the MIT License.

D Ligand-based drug design

D.1 Implementation details

We train two unconditional diffusion models, ShapeMol [U] and EDM, to generate 3D molecules
on the MOSES dataset [66], licensed under the MIT License, for which we generate 3D conformers
with RDKit [73], available under the BSD 3-Clause License. We use 1, 593, 653 training samples
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and randomly select 1000 samples for validation. The model architecture of ShapeMol[U] is an
unconditional version of the ShapeMol model proposed in Chen et al. [14], and it is trained with
1000 diffusion steps. ShapeMol [U] is trained with a batch size of 32 on two NVIDIA A100 GPUs
for 500 epochs. Unlike ShapeMol, we do not concatenate the molecular surface embedding of the
ligands to the features. For the shape-conditioned generation with position correction (ShapeMol+g),
we follow the scheme proposed in Chen et al. [14]. It provides further guidance to the conditional
generation by sampling 20 query points from a Gaussian distribution centred around every atom in
the reference ligand. The position correction adjusts the coordinates of the predicted atom positions
during every generation step by pushing the coordinates close to the query points as follows:

x̂ = (1− σ)x̂+ σ
∑

z∈n(x̂,Q)

z/n, if
∑

z∈n(x̂,Q)

d(x̂, z)/n > γ, (24)

where d(x̂, z) is the Euclidean distance, n(x̂,Q) is the set of n nearest neighbors of x̂ in Q and
γ > 0 is a distance threshold. We follow the implementation of Chen et al. [2] for the position
correction method by setting γ = 0.2 and only guiding during the first 700 denoising steps.

For the shape-conditioned generation with UniGuide, we extract the mesh of the condition ligand
using the Open Drug Discovery Toolkit [77], which is available under the BSD 3-Clause revised
License. The query points we use for guidance are 512 points sampled uniformly on the mesh surface.
For the evaluation, we measure the shape similarity SimS as the volume overlap between the aligned
generated ligand and the condition ligand. For the alignment, we utilise the ShaEP tool [78].

We provide a detailed description of the LBDD sampling algorithm in Algorithm 1.

Algorithm 1: Sampling algorithm to generate a ligand that is conditioned on a reference ligand Mref’s
surface, using an unconditional model ϵθ(zt, t) modelling the distribution over molecules. The points
y ∈ RK×3 are sampled uniformly from the surface of Mref, enclosing the volume V .

Require: y, α: desired margin to surface, k: number of nearest neighbours
zT ∼ N (0, I) {Sample from normal prior}
for t = T to 1 do
xt,ht = zt

x̂0 =
xt−

√
1−αtϵ

x
θ (zt,t)√

αt
{Compute the conformation x̂0 of the clean approximation ẑ0}

For every atom x̂i in x̂0 do:
ȳi =

1
k

∑
y∈Nx̂i

y {Compute the mean of k nearest neighbors of x̂i in y}
Compute (cx)i based on Eq. (21) {Compute component-wise condition map}

L = L(x̂0, cx)
g = ∇xtL {Compute gradient of guidance loss}
µt = µθ(zt, t)− λ(t) · g {Update the mean function}
zt−1 ∼ N (µt, σtI)

end for
return z0

D.2 Additional results

For completeness, we report additional quantitative evaluation of the generated ligands’ properties
in Tab. 4. We also provide further qualitative results of the generated ligands for the LBDD task in
Fig. 6. UniGuide generates ligands with better shape similarity to the reference ligands compared to
the conditional model ShapeMol with the position correction technique.

Table 4: Additional ligand property results for the methods discussed in Sec. 5.1. We report mean
and standard deviation and highlight the best result in bold.

method Connect. (↑) Unique (↑) QED SA (↑) LogP (↑) Lipinski (↑)

ShapeMol 98.8% 99.9% 0.753 0.640 ± 0.104 2.001 ± 1.360 4.979 ± 0.156
ShapeMol+g 97.0% 99.8% 0.751 0.630 ± 0.110 1.908 ± 1.508 4.874 ± 0.170
UniGuide+ ShapeMol[U] 98.0% 100% 0.736 0.625 ± 0.103 1.828 ± 1.463 4.974 ± 0.186
UniGuide (ShapeMol) 99.0% 100% 0.750 0.641 ± 0.107 2.002 ± 1.374 4.982 ± 0.152
UniGuide+ EDM 99.8% 99.99% 0.742 0.636 ± 0.088 1.833 ± 1.221 4.994 ± 0.082
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Figure 6: Examples of the ligands generated by ShapeMol, Pos-Correct and UniGuide. Pos-Correct
is the position correction technique proposed by Chen et al. [14]. Both Pos-Correct and UniGuide are
combined with the unconditionally trained model ShapeMol [U]. We plot the reference ligand as well
as the generated ligands with their shapes.

Table 5: Comparison of UniGuide with validity guidance for shape-based generation. We highlight
the ratio metric as the most critical indicator, reflecting the balance between shape similarity and
graph dissimilarity.

SimS (↑) maxSimS (↑) SimG (↓) maxSimG (↓) Ratio (↑) Connect. (↑) Unique. (↑) Diversity (↑) QED (↑)
Validity Guidance 0.59 0.76 0.20 0.20 2.96 97% 100% 0.76 0.69
UniGuide (EDM) 0.74 0.86 0.21 0.20 3.53 99% 99% 0.73 0.74

D.3 Guidance parameters

For the LBDD task, the guidance strength S is weighted by an exponentially decreasing function
βt√
αt

. For the guided generation using the unconditional ShapeMol [U] model under the UniGuide
framework, we define a scale scheduler that increases with an exponent of 1.01 and weight it with
βt√
αt

and guide from the diffusion step 1000 to the diffusion step 200. For the guided generation
using the EDM model, we use a linear scale function that increases from 5 to 15. The guidance is
applied from the diffusion step 920 to the last timestep 1.

D.4 Comparison of UniGuide with an alternative loss formulation

We adapt the validity guidance loss from Guan et al. [50] to the LBDD setting. The proposed loss is
grounded in the smooth distance function S(x) from Sverrisson et al. [79], which computes as:

S(x) = −σ log
( N∑

i

exp(−∥xt − yi∥22/σ)
)

.

This function provides an alternative approach to shape-based generation by deriving an appropriate
loss function

∑
x S(x), rather than modifying the condition map as proposed by UniGuide. Here,

S(x) implicitly defines a surface through S(x)− γ = 0 and points xt inside satisfy S(xt) < γ.
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On a technical level, the gradient for validity guidance computes as follows:

∇xt
S(xt) = ∇xt

[
− σ log

( N∑
i

exp(−∥xt − yi∥22/σ)
)]

=
1∑

exp(. . . )

N∑
i

exp(. . . )︸ ︷︷ ︸
ωi

∇xt
∥xt − yi∥22

=
1∑
ωi

∇xt

N∑
i

ωi∥xt − yi∥22 .

This gradient formulation is quite similar (up to the weighting) to UniGuide’s special case S = Z ,
as it computes an L2 loss on a given conformation ({yi}), see Eq. (18), meaning that it does not
generalise to arbitrary geometric conditions.

We emphasise that UniGuide is more broadly applicable because it separates surface computation
from gradient computation, offering two key benefits. First, since the condition map does not require
differentiability, there is greater flexibility in computing surface points. Second, the precise geometric
intuition behind the condition map makes it easier to adapt to new scenarios, as demonstrated by our
application to generating density-guided molecules.

For the empirical comparison, we selected the hyperparameters σ and γ in the surface loss computation
to achieve a high DICE score between the implicitly defined surface and the meshes UniGuide utilises
for LBDD (σ = 1, γ = 2, DICE > 0.8). Our surface calculations use the Open Drug Discovery
Toolkit (ODDT), which assigns specific radii to individual atom types and employs the marching
cubes algorithm to generate meshes [80].

We performed several runs around the above-specified hyperparameter configuration. The runs per-
formed similarly, and we report the best result in Tab. 5. Although validity guidance for LBDD yields
low graph similarity, the shape similarity remains suboptimal compared to UniGuide. Additionally,
we frequently encounter numerical instability when computing the guidance term, an issue not present
with UniGuide’s formulation of LBDD. One possible explanation for this numerical instability is that
the surface is defined implicitly, unlike UniGuide where it is explicitly defined. The explicit definition
in UniGuide allows for relating the gradient updates directly to the surface, as shown in Eq. (21).

E Structure-based drug design

Algorithm 2: Sampling algorithm to generate a ligand conditioned on a protein pocket z̃P using the
unconditional joint model ϵθ(zt, t), where zt = [zMt , zPt ], that models the distribution P (zM, zP).
The guidance signal is controlled via the guidance strength S. Note that samples from the generative
process pθ(zt−1|zt) are assumed to be CoM-free.

Require: z̃P , S
zT ∼ N (0, I) {Sample from normal prior}
for t = T to 1 do
ẑP0 = zPt −

√
1− ᾱtϵ

P
θ (zt, t)/

√
ᾱt {Compute the clean data of the pocket}

L = L(ẑP0 , z̃P)
g = (∇xt

L −∇xt
L,∇ht

L) {Compute gradient and substract the CoM}
µt = µθ(zt, t)− λ(t) · g {Update the mean of the pocket}
zt−1 ∼ N (µt, σtI)

end for
return z = (zM0 , zP0 )

E.1 SBDD sampling algorithm

We provide the algorithm for inference in the SBDD task scenario in Algorithm 2.

20



E.2 Ligand-protein generative joint model

SBDD aims to generate a ligand given a protein pocket: pθ(z
M | zPtest, t). We adopt DiffSBDD

[11], an unconditional joint diffusion model that approximates the joint distribution p(zMdata, z
P
data) of

generating ligand-protein pairs, where the noise predictor ϵθ(zMt , zPt , t) is parametrised by EGNN.
DiffSBDD is available under the MIT License. To process ligand and pocket nodes with a single
GNN, atom types and residue types are embedded jointly. Atom and residue features are then decoded
separately using atom decoder and residue decoder to ϵMθ (zMt , zPt , t) and ϵPθ (z

M
t , zPt , t) [11].

For the unconditional sampling with the joint model, the number of ligand and pocket nodes is
sampled from the joint node distribution p(NM, NP), measured across a training set of (M,P)
pairs. During the modified generative process with the inpainting-inspired technique or with UniGuide
the number of pocket nodes is set to be equal to the number of nodes in Ptest, while the size of the
ligand is generated from a conditional distribution p(NM | NP). Since this sampling procedure
leads to ligands that are much smaller compared to the reference ligands found in the test set, the
mean size of sampled ligands is increased by 10 for Binding MOAD and 5 for CrossDocked during
ligand generation [11]. We utilize the unconditional base models from Schneuing et al. [11], which
are trained on either the Cα or full-atom context from the Binding MOAD or CrossDocked datasets.
However, we retrain the DiffSBDD model specifically on the full-atom context of the CrossDocked
data, as we were unable to reproduce the reported results in this configuration from Schneuing et al.
[11]. We find that contrary to what is reported in Schneuing et al. [11], the model converges early
and does not need a full 1000 epochs to fully train. We employ this checkpoint to evaluate both the
DiffSBDD inpainting-inspired approach as well as UniGuide. We train the model on four NVIDIA
A100 GPU with a batch size of 2. 8 training epochs take approximately 24 hours.

Table 6: Hyperparameters of ligand and proteins graphs in joint models
CROSSDOCKED BINDING MOAD

JOINT Cα JOINT FULL- JOINT Cα JOINT FULL-
MODEL ATOM MODEL MODEL ATOM MODEL

EDGES (LIGAND-LIGAND) FULLY CONNECTED FULLY CONNECTED FULLY CONNECTED FULLY CONNECTED

EDGES (LIGAND-POCKET) < 5 Å < 5 Å < 8 Å < 7 Å

EDGES (POCKET-POCKET) < 5 Å < 5 Å < 8 Å < 4 Å

Representing ligands and proteins as graphs Proteins consist of amino acids, where every amino
acid is a set of amino (NH), carboxyl (CO), α-carbon atom and a side chain (R) that is specific to
every amino acid type [81]. The Cα-representation of a protein pocket is a residue-level graph, in
which the node features of the protein are represented as one-hot encodings of the amino acid type.
The full-atom representation of the receptor is an atom-level graph and represents the full context of
the protein pocket. Details on processed graphs of the join model p(zM, zP) are provided in Tab. 6.
We refer the reader to Schneuing et al. [11] for more information on the hyperparameters of the joint
model.

Table 7: Quantitative evaluation of samples generated by the unconditional joint models [11] trained
on Crossdocked (C.D.) and Binding MOAD (B.M). We report the mean over all generated ligands.

DATASET R T QED (↑) SA (↑) LIPINSKI (↑) DIVERSITY (↑) CONNECTIVITY (↑) VALIDITY (↑)

C.D. (Cα) 1 500 0.535 0.660 4.741 0.772 0.893 0.986
C.D. (Cα) 10 50 0.578 0.752 4.836 0.774 0.994 0.986

B.M. (Cα) 1 500 0.471 0.608 4.783 0.824 0.839 0.985
B.M. (Cα) 10 50 0.544 0.665 4.883 0.823 0.961 0.992

E.3 Further Comparison to DiffSBDD

In addition to Tab. 2, we follow the experimental setup as utilised in Schneuing et al. [11] to
compare UniGuideto DiffSBDD, which uses the same base model, in particular. In Tab. 8, we
further investigate the advantages of using self-guidance in combinations with UniGuide over both
the conditional DiffSBDD model (DiffSBDD-cond) as well as the inpainting-inspired technique
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Table 8: Quantitative comparison of generated ligands for target pockets from the CrossDocked and
Binding MOAD test sets. Results taken from Schneuing et al. [11] are indicated with (∗). We report
mean and standard deviation and highlight the best diffusion-based approach in bold.

Vina (↓) Vina Top 10% (↓) QED (↑) SA (↑) Lipinski (↑) Diversity (↑) RMSD (↓)
C

ro
ss

D
oc

ke
d

Test Set −6.865 ± 2.35 - 0.476 ± 0.20 0.728 ± 0.14 4.340 ± 1.14 - -

3D-SBDD∗ [38] −5.888 ± 1.91 −7.289 ± 2.34 0.502 ± 0.17 0.675 ± 0.14 4.787 ± 0.51 0.742 ± 0.09 -
Pocket2Mol∗ [48] −7.058 ± 2.80 −8.712 ± 3.18 0.572 ± 0.16 0.752 ± 0.12 4.936 ± 0.27 0.735 ± 0.15 -
Graph-BP∗ [49] −4.719 ± 4.03 −7.165 ± 1.40 0.502 ± 0.12 0.307 ± 0.09 4.883 ± 0.37 0.844 ± 0.01 -

TargetDiff∗ [50] −7.318 ± 2.47 −9.669 ± 2.55 0.483 ± 0.20 0.584 ± 0.13 4.594 ± 0.83 0.718 ± 0.09 0.000 ± 0.00
DiffSBDD-cond∗ −6.950 ± 2.06 −9.120 ± 2.16 0.469 ± 0.21 0.578 ± 0.13 4.562 ± 0.89 0.728 ± 0.07 0.000 ± 0.00
DiffSBDD −7.216 ± 2.54 −9.490 ± 2.00 0.571 ± 0.19 0.639 ± 0.14 4.808 ± 0.50 0.707 ± 0.09 0.045 ± 0.01
UniGuide −7.320 ± 2.27 −9.514 ± 2.04 0.571 ± 0.19 0.638 ± 0.14 4.822 ± 0.47 0.705 ± 0.08 0.047 ± 0.01

B
in

d.
M

O
A

D

Test Set −8.331 ± 2.05 - 0.602 ± 0.15 0.636 ± 0.08 4.838 ± 0.37 - -

Graph-BP∗ [49] −4.843 ± 2.24 −6.629± 0.95 0.512 ± 0.11 0.310 ± 0.09 4.945 ± 0.27 0.826 ± 0.01 0.000 ± 0.00

DiffSBDD-cond −7.172 ± 1.88 −9.174 ± 2.13 0.430 ± 0.20 0.564 ± 0.12 4.526 ± 0.80 0.711 ± 0.08 0.000 ± 0.00
DiffSBDD −7.263 ± 4.19 −9.776 ± 2.25 0.546 ± 0.21 0.618 ± 0.12 4.777 ± 0.54 0.740 ± 0.05 53 ± 31
UniGuide −7.661 ± 2.99 −9.864 ± 2.13 0.556 ± 0.20 0.605 ± 0.12 4.799 ± 0.50 0.723 ± 0.05 55 ± 31

(DiffSBDD). UniGuide reliably achieves superior VINA Dock scores compared to both DiffSBDD
models and performs competitively with the conditional TargetDiff model. In App. E.4 and App. E.5,
we expand on this experimental comparison with further analysis of the effects of Resampling as well
as the guidance strength.

E.4 Resampling

Inpainting is introduced for diffusion models to condition outputs with fixed parts [71] and can
be applied for structure-based molecular tasks. Given a model that generates (zMt , zPt ) pairs at
denoising step t, the protein pocket Pt is replaced with the noised representation of protein context
z̃Pt . This noised representation can be obtained through the forward process of diffusion models
as specified in Eq. (2). However, the direct application of this method leads to locally harmonised
samples that struggle to incorporate the global context [71]. In order to effectively harmonise the
generated information during the entire generative process, Lugmayr et al. [71] propose a technique
they call “Resampling”. This modifies the reverse Markov chain by moving back and forth in the
diffusion process to enable the model to better incorporate the replaced components.

Schneuing et al. [11] propose to use the same resampling technique to harmonise the replaced protein
context with the ligand, since the replaced receptor is sampled independently of the ligand. During
resampling, each latent representation is repeatedly diffused back and forth before advancing to
the next time step. We found that resampling further improves the general performance of the
unconditional generation, and thus improves the guided generation as well. We report results for this
in App. E.5, where we evaluate how the unconditional generation of the joint model is improved
across different metrics with added resampling steps. We follow Schneuing et al. [11] in using the
setting of R = 10 resampling steps and T = 50 timesteps. While DiffSBDD resamples the ligand
and the noised target protein pocket, we resample the guided protein pocket and ligand with UniGuide.
In general, the concept of resampling can be applied to harmonise the configuration zt with the
condition c.

E.5 Guidance parameters

The guidance scale S controls the strength of the guiding signal, see Eq. (7) and it is weighted
by w(t) = β(t)√

αt
during the generation. We use a constant scale S for structure-based drug design

experiments and evaluate for several guidance scale values in Tab. 9 and Tab. 10 for models trained
on the Binding MOAD dataset with Cα and full-atom representation respectively. The quantitative
evaluation on the CrossDocked data is shown under Tab. 11 and Tab. 12 with additional metrics
reported in Tab. 7. For the generation with the Cα-models, we generate 100 samples for every test
pocket with a batch size of 50. The full generation takes approximately 5 hours for Binding MOAD
and 6 hours for CrossDocked. For the DiffSBDD model trained on the Binding MOAD fullatom
pocket data, we use a batch size of 15 for the generation. We use a batch size of 2 to sample with the
DiffSBDD model trained on CrossDocked (fullatom).
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Table 9: Results for the Binding MOAD test set with the unconditional DiffSBDD base model
trained on the Cα-representation of the pockets combined with UniGuide and the inpainting-inspired
technique DiffSBDD [11]. We provide results for varying the guidance scales S during our controlled
generation. We also report results for the DiffSBDD-cond (Cα) model trained on the Cα pockets.

METHOD S R/T VINA (↓) VINA TOP 10% (↓) QED (↑) SA (↑) LIPINSKI (↑) DIVERSITY (↑) RMSD (↓)

DIFFSBDD-COND (Cα) - - -6.628 ± 1.59 -8.291 ± 1.26 0.481 ± 0.20 0.554 ± 0.11 4.651 ± 0.70 0.714 ± 0.04 0.000 ± 0.00
DIFFSBDD - 1/500 -6.362 ± 3.04 -8.179 ± 1.24 0.452 ± 0.20 0.541 ± 0.11 4.604 ± 0.76 0.734 ± 0.03 0.008 ± 0.01

UNIGUIDE 1.0 1/500 -6.519 ± 2.05 -8.227 ± 1.23 0.464 ± 0.20 0.540 ± 0.11 4.627 ± 0.73 0.733 ± 0.03 0.125 ± 0.01
UNIGUIDE 2.0 1/500 -6.568 ± 2.13 -8.268 ± 1.25 0.471 ± 0.20 0.543 ± 0.11 4.636 ± 0.73 0.735 ± 0.04 0.105 ± 0.25
UNIGUIDE 3.0 1/500 -6.667 ± 1.92 -8.305 ± 1.28 0.468 ± 0.20 0.542 ± 0.11 4.622 ± 0.73 0.737 ± 0.03 0.072 ± 0.03
UNIGUIDE 4.0 1/500 -6.587 ± 1.86 -8.293 ± 1.29 0.470 ± 0.20 0.544 ± 0.11 4.636 ± 0.72 0.735 ± 0.03 0.058 ± 0.01
UNIGUIDE 6.0 1/500 -6.568 ± 1.93 -8.284 ± 1.26 0.468 ± 0.20 0.542 ± 0.11 4.630 ± 0.73 0.734 ± 0.03 0.045 ± 0.01
UNIGUIDE 7.0 1/500 -6.575 ± 1.86 -8.296 ± 1.28 0.469 ± 0.20 0.544 ± 0.11 4.636 ± 0.72 0.735 ± 0.03 0.043 ± 0.05

DIFFSBDD - 10/50 -6.896 ± 3.10 -8.962 ± 1.37 0.547 ± 0.20 0.578 ± 0.20 4.754 ± 0.50 0.709 ± 0.05 0.007 ± 0.01

UNIGUIDE 1.0 10/50 -6.845 ± 3.68 -8.972 ± 1.36 0.547 ± 0.19 0.578 ± 0.13 4.756 ± 0.53 0.709 ± 0.05 0.216 ± 0.21
UNIGUIDE 2.0 10/50 -6.889 ± 3.83 -9.018 ± 1.40 0.547 ± 0.19 0.577 ± 0.13 4.756 ± 0.52 0.707 ± 0.04 0.279 ± 0.03
UNIGUIDE 3.0 10/50 -7.050 ± 2.38 -9.051 ± 1.39 0.551 ± 0.18 0.575 ± 0.14 4.763 ± 0.50 0.706 ± 0.04 0.220 ± 0.01
UNIGUIDE 4.0 10/50 -7.016 ± 2.93 -9.023 ± 1.38 0.552 ± 0.18 0.578 ± 0.14 4.765 ± 0.50 0.708 ± 0.03 0.168 ± 0.05
UNIGUIDE 6.0 10/50 -7.053 ± 2.91 -9.067 ± 1.39 0.550 ± 0.18 0.579 ± 0.14 4.761 ± 0.51 0.703 ± 0.04 0.146 ± 0.01
UNIGUIDE 7.0 10/50 -7.076 ± 2.27 -9.038 ± 1.38 0.550 ± 0.18 0.579 ± 0.14 4.767 ± 0.50 0.704 ± 0.04 0.131 ± 0.01

For all tables, we conduct the experiments both with and without resampling. The VINA Dock
score is measured with QuickVina2 [72], available under the Apache License, and the chemical
properties (QED, SA, Lipinski) are measured with RDKit. We note that in all ablation tables we
measure the VINA Dock score on the processed molecules, following Schneuing et al. [11], while the
VINA Dock score in Tab. 2 is measured following Guan et al. [67]. Both the VINA Dock score and
chemical properties improve with additional resampling steps (R = 10, T = 50) for both datasets.
Additionally, increasing the guidance scale improves the RMSD with respect to the target protein,
and results in generating ligands with an improved binding affinity (lower VINA).

E.6 Additional Results for SBDD

Supplementary to Tab. 2 we provide additional metrics for the evaluation of the generated ligands in
Tab. 14: the validity as measured by RDKit [73] and the connectivity, representing the percentage
of valid molecules without any disconnected fragments. Additionally, we report the uniqueness and
novelty of the valid connected ligands.

E.7 Runtime Comparison

In Tab. 13, we provide a comparison of the different controlled generation mechanisms regarding
their runtime. While UniGuide has a higher runtime compared to other conditioning mechanisms,
as it has to compute gradients through the diffusion model at inference time, it stays comparable to
other mechanisms such as inpainting.

Table 10: Results for the Binding MOAD test set with the unconditional DiffSBDD base model
trained on the full-atom context of the pockets combined with UniGuide and the inpainting-inspired
technique DiffSBDD [11]. We provide results for varying the guidance scales S during our controlled
generation. We also report results for the conditional diffusion model DiffSBDD-cond.

METHOD S R/T VINA (↓) VINA TOP 10% (↓) QED (↑) SA (↑) LIPINSKI (↑) DIVERSITY (↑) RMSD (↓)

DIFFSBDD-COND - - -7.172 ± 1.88 -9.174 ± 2.13 0.430 ± 0.20 0.564 ± 0.12 4.526 ± 0.80 0.711 ± 0.08 0.0 ± 0.0
DIFFSBDD - 1/500 -6.540 ± 2.00 -8.427 ± 1.39 0.413 ± 0.20 0.531 ± 0.11 4.611 ± 0.77 0.748 ± 0.03 55 ± 31

UNIGUIDE 6.0 1/500 -6.696 ± 1.78 -8.561 ± 1.58 0.407 ± 0.19 0.527 ± 0.11 4.587 ± 0.78 0.740 ± 0.04 55 ± 31
UNIGUIDE 7.0 1/500 -6.683 ± 1.91 -8.575 ± 1.52 0.406 ± 0.19 0.524 ± 0.11 4.579 ± 0.80 0.738 ± 0.04 55 ± 31
UNIGUIDE 8.0 1/500 -6.682 ± 1.77 -8.555 ± 1.52 0.407 ± 0.19 0.526 ± 0.11 4.591 ± 0.78 0.740 ± 0.04 55 ± 31
UNIGUIDE 9.0 1/500 -6.689 ± 1.74 -8.541 ± 1.50 0.403 ± 0.19 0.524 ± 0.11 4.589 ± 0.78 0.738 ± 0.04 55 ± 31

DIFFSBDD - 10/50 -7.263 ± 4.19 -9.776 ± 2.25 0.546 ± 0.21 0.618 ± 0.12 4.777 ± 0.54 0.740 ± 0.05 53 ± 31

UNIGUIDE 5.0 10/50 -7.470 ± 2.97 -9.621 ± 1.84 0.563 ± 0.20 0.605 ± 0.12 4.807 ± 0.50 0.723 ± 0.05 55 ± 31
UNIGUIDE 6.0 10/50 -7.570 ± 3.20 -9.731 ± 1.90 0.566 ± 0.20 0.606 ± 0.12 4.815 ± 0.48 0.722 ± 0.05 55 ± 31
UNIGUIDE 7.0 10/50 -7.639 ± 2.39 -9.793 ± 2.06 0.559 ± 0.20 0.605 ± 0.12 4.804 ± 0.49 0.723 ± 0.05 54 ± 31
UNIGUIDE 8.0 10/50 -7.635 ± 2.71 -9.821 ± 2.07 0.558 ± 0.20 0.605 ± 0.12 4.804 ± 0.50 0.720 ± 0.05 54 ± 31
UNIGUIDE 9.0 10/50 -7.661 ± 2.99 -9.864 ± 2.13 0.556 ± 0.20 0.605 ± 0.12 4.799 ± 0.50 0.723 ± 0.05 55 ± 31
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Table 11: Evaluation of the samples generated for the CrossDocked test set using the joint ligand-
protein diffusion model trained on the Cα pocket representation for varying guidance scales S. The
base model is combined either with the inpaitning-inspired technique (DiffSBDD) or UniGuide. We
further report the evaluation of the molecules generated by the conditional model DiffSBDD-cond
that is trained on the Cα pocket representation.

METHOD S R/T VINA (↓) VINA TOP 10% (↓) QED (↑) SA (↑) LIPINSKI (↑) DIVERSITY (↑) RMSD (↓)

DIFFSBDD-COND (Cα) - - -6.770 ± 2.73 -8.796 ± 1.75 0.475 ± 0.22 0.612 ± 0.12 4.536 ± 0.91 0.725 ± 0.06 0.000 ± 0.00
DIFFSBDD - 1/500 -6.485 ± 2.50 -8.472 ± 1.62 0.510 ± 0.21 0.619 ± 0.12 4.640 ± 0.73 0.735 ± 0.06 0.053 ± 0.03

UNIGUIDE 2.0 1/500 -6.528 ± 2.64 -8.527 ± 1.67 0.518 ± 0.21 0.623 ± 0.12 4.649 ± 0.73 0.739 ± 0.05 0.085 ± 0.01
UNIGUIDE 3.0 1/500 -6.604 ± 2.57 -8.556 ± 1.64 0.519 ± 0.21 0.622 ± 0.12 4.657 ± 0.72 0.738 ± 0.05 0.070 ± 0.01
UNIGUIDE 4.0 1/500 -6.578 ± 2.72 -8.563 ± 1.68 0.518 ± 0.21 0.623 ± 0.12 4.659 ± 0.71 0.741 ± 0.05 0.059 ± 0.02
UNIGUIDE 5.0 1/500 -6.563 ± 2.58 -8.549 ± 1.66 0.516 ± 0.21 0.624 ± 0.12 4.646 ± 0.72 0.741 ± 0.05 0.052 ± 0.01
UNIGUIDE 6.0 1/500 -6.658 ± 2.50 -8.578 ± 1.69 0.527 ± 0.21 0.629 ± 0.12 4.683 ± 0.69 0.741 ± 0.05 0.045 ± 0.01

DIFFSBDD - 10/50 -7.030 ± 3.39 -9.057 ± 1.79 0.559 ± 0.21 0.730 ± 0.12 4.729 ± 0.60 0.720 ± 0.07 0.052 ± 0.01

UNIGUIDE 1.0 10/50 -6.909 ± 3.35 -9.069 ± 1.79 0.563 ± 0.21 0.734 ± 0.12 4.743 ± 0.57 0.721 ± 0.06 0.711 ± 0.12
UNIGUIDE 2.0 10/50 -7.015 ± 3.20 -9.115 ± 1.79 0.562 ± 0.21 0.733 ± 0.12 4.735 ± 0.60 0.721 ± 0.07 0.188 ± 0.02
UNIGUIDE 3.0 10/50 -7.081 ± 2.95 -9.140 ± 1.83 0.560 ± 0.20 0.732 ± 0.11 4.742 ± 0.57 0.723 ± 0.07 0.127 ± 0.01
UNIGUIDE 4.0 10/50 -7.086 ± 3.27 -9.125 ± 1.81 0.561 ± 0.19 0.731 ± 0.10 4.729 ± 0.60 0.719 ± 0.06 0.102 ± 0.01
UNIGUIDE 5.0 10/50 -7.117 ± 2.78 -9.127 ± 1.78 0.561 ± 0.20 0.731 ± 0.12 4.738 ± 0.59 0.722 ± 0.07 0.090 ± 0.01
UNIGUIDE 6.0 10/50 -7.113 ± 3.00 -9.133 ± 1.80 0.556 ± 0.20 0.731 ± 0.12 4.734 ± 0.60 0.720 ± 0.32 0.077 ± 0.01

F Fragment-based drug design

F.1 Linker Design

For the experimental evaluation of the linker design task, we follow Igashov et al. [13], employ
the ZINC dataset [74] and preprocess it following Igashov et al. [13]. That is, 3D conformers
are generated from the SMILES strings present in the dataset with RDKit [73]. We fragment the
dataset ligands using an MMPA-based algorithm [75, 73], generating multiple fragment conditions
per molecule. We train an unconditional EDM model for this task as specified in App. C. For
the evaluation metrics, we follow Igashov et al. [13]. Note that the synthetic accessibility score
computation (SA) in Tab. 3 differs from the remaining experimental evaluations. While Igashov et al.
[13] report the SA score sSA directly, Schneuing et al. [11] report the SA score as (10− sSA)/9.

For the task of linker design, we adjust the condition map as discussed in Sec. 4.2 slightly to include
anchor information, similar in spirit to the DiffLinker model incorporating anchor information [13].
That is, additionally to guiding parts of the molecule to the desired fragment configuration, we
additionally define a cuboid’s surface that is defined from the specified anchor atoms. We can then
utilise this surface condition C∂V to guide the linker atoms in accordance with Eq. (21). Additionally,
we can expand this surface based on the linker size to ensure chemical validity of the generated linker.
This condition map highlights the flexibility of UniGuide condition maps in various tasks, especially
through the combination of two definitions of the condition map. For the experimental evaluation, we
sample the size of the linker nodes uniformly in accordance with Igashov et al. [13] and compare to
the DiffLinker model without an external network to predict the linker size. Note, however, that also
the unconditional EDM model combined with UniGuide can be adapted to include such predictors.

Table 12: Results for the CrossDocked test set with the joint model trained on the full-atom pocket
representation of the pocket for varying guidance scales S. The unconditional model is either
controlled by the inpainting-inspired technique (DiffSBDD) or UniGuide.

METHOD S R/T VINA (↓) VINA TOP 10% (↓) QED (↑) SA (↑) LIPINSKI (↑) DIVERSITY (↑) RMSD (↓)

DIFFSBDD-COND - - -6.950 ± 2.06 -9.120 ± 2.16 0.469 ± 0.21 0.578 ± 0.13 4.562 ± 0.89 0.728 ± 0.07 0.000 ± 0.00
DIFFSBDD - 1/500 -6.225 ± 1.77 -8.115 ± 1.64 0.469 ± 0.20 0.573 ± 0.11 4.691 ± 0.70 0.778 ± 0.04 0.049 ± 0.01

UNIGUIDE 5.0 1/500 -6.346 ± 1.74 -8.208 ± 1.62 0.482± 0.20 0.570± 0.12 4.718 ± 0.67 0.773 ± 0.04 0.040 ± 0.01
UNIGUIDE 6.0 1/500 -6.335 ± 1.72 -8.225 ± 1.61 0.484 ± 0.20 0.571 ± 0.12 4.715 ± 0.66 0.775 ± 0.04 0.039 ± 0.01
UNIGUIDE 7.0 1/500 -6.338 ± 1.73 -8.218 ± 1.60 0.481 ± 0.19 0.571 ± 0.12 4.710 ± 0.67 0.774 ± 0.04 0.039 ± 0.01
UNIGUIDE 8.0 1/500 -6.366 ± 1.72 -8.261 ± 1.57 0.485 ± 0.20 0.570 ± 0.12 4.717 ± 0.66 0.773 ± 0.03 0.039 ± 0.01

DIFFSBDD - 10/50 -7.216 ± 2.54 -9.490 ± 2.00 0.571 ± 0.19 0.639 ± 0.14 4.808 ± 0.50 0.707 ± 0.09 0.045 ± 0.01

UNIGUIDE 6.0 10/50 -7.295 ± 2.22 -9.441 ± 1.95 0.574 ± 0.19 0.641 ± 0.14 4.825 ± 0.47 0.706 ± 0.08 0.047 ± 0.01
UNIGUIDE 7.0 10/50 -7.320 ± 2.27 -9.514 ± 2.04 0.571 ± 0.19 0.638 ± 0.14 4.822 ± 0.47 0.705 ± 0.08 0.047 ± 0.01
UNIGUIDE 8.0 10/50 -7.298 ± 2.21 -9.460 ± 2.01 0.568 ± 0.19 0.641 ± 0.14 4.818 ± 0.47 0.703 ± 0.09 0.048 ± 0.01
UNIGUIDE 9.0 10/50 -7.265 ± 2.45 -9.495 ± 2.05 0.577 ± 0.19 0.640 ± 0.14 4.821 ± 0.47 0.706 ± 0.08 0.049 ± 0.01
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Table 13: We evaluate the runtime of UniGuide and compare it to DiffSBDD-cond and DiffSBDD
from Schneuing et al. [11]. We report the average time (in seconds) to generate 100 ligands per
pocket for the CrossDocked (Cα), Binding Moad (Cα) and Binding Moad (fullatom).

DATASET MODEL RUNTIME (S)

CROSSDOCKED (Cα)
DIFFSBDD-COND 60 ± 68
DIFFSBDD 141 ± 55
UNIGUIDE 193 ± 61

BINDING MOAD (Cα)
DIFFSBDD-COND 54 ± 42
DIFFSBDD 61 ± 17
UNIGUIDE 104 ± 36

BINDING MOAD (FULL)
DIFFSBDD-COND 345 ± 55
DIFFSBDD 398 ± 95
UNIGUIDE 453 ± 120

Table 14: Additional metrics for the methods discussed in Sec. 5.2.
VALIDITY (↑) CONNECTIVITY (↑) UNIQUENESS (↑) NOVELTY (↑)

C
R

O
S

S
-

D
O

C
K

E
D

TEST SET 100% 100% 96.00% 96.88%

DIFFSBDD-COND (Cα) 95.32% 80.63% 99.97% 99.81%
DIFFSBDD-COND 97.32% 78.91% 99.99% 99.91%
DIFFSBDD (Cα) 99.20% 98.14% 99.26% 99.16%
DIFFSBDD 97.76% 89.84% 99.94% 99.87%
UNIGUIDE (Cα) 99.12% 98.35% 99.50% 99.24%
UNIGUIDE 97.40% 93.18% 99.93% 99.76%

B
IN

D
IN

G
M

O
A

D

TEST SET 97.69% 100% 38.58% 77.55%

DIFFSBDD-COND (Cα) 94.43% 77.17% 100% 100%
DIFFSBDD-COND 96.20% 63.20% 100% 100%
DIFFSBDD (Cα) 98.54% 91.45% 100% 100%
DIFFSBDD 94.22% 75.60% 100% 100%
UNIGUIDE (Cα) 98.44% 93.12% 100% 99.99%
UNIGUIDE 93.85% 79.95% 100% 100%

F.2 General Fragment Conditions

To assess the performance of UniGuide for the task of FBDD, we create an experimental setup with
the goal of generating ligands conditioned on desired fragments roughly following [13]. We select
10 random protein targets from the Binding MOAD dataset and decompose their corresponding
reference ligands using an MMPA-based algorithm [75, 73]. This decomposition results in a set
of 40 different scenarios, including separated fragments we want to link, a fragment to grow or
small functional groups to perform scaffolding. For every set of fixed fragments, we aim to guide
the unconditional generation of ligands towards the generation of a ligand containing the desired
fragments. As the protein is not the target of the guidance, we employ the DiffSBDD-cond model,
which is conditionally trained on the (Cα)-representation of the protein pocket. For every set of fixed
fragments, we generate 100 ligands and use a constant guidance scale of 8.

We provide quantitative results for the task of fragment-based drug design in Tab. 15. On the one
hand, the task requires the desired fragments to be present in the generated molecule. Thus, we
measure the success rate of recovery (Hit Ratio) and the RMSD between the generated fragments and
desired fragments. On the other hand, given that the target fragments are met in the generated ligand,
the generation has to achieve favourable chemical properties, high binding affinity, as well as high
diversity within the set of generated ligands and low similarity to the reference ligand. As the Inpaint
mechanism enforces the fragment during generation more strictly, it is able to achieve a better Hit
Ratio and RMSD. Nevertheless, UniGuide achieves competitive results but also better VINA docking
scores, better properties, and lower similarity compared to the reference ligand.

The FBDD task puts a hard constraint on the generated ligands, namely that a set of desired fragments
has to be present in the generated ligand. However, neither DiffSBDD nor UniGuide can guarantee
that the condition fragments are present in the generated samples.

We provide further qualitative results of the generated ligands for the FBDD task in Fig. 7.
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Figure 7: Examples of the generated fragment conditioned ligands.

Table 15: Quantitative comparison between DiffSBDD and UniGuide for the FBDD task on the
Binding MOAD (Cα) dataset. As the condition in this FBDD scenario is a hard constraint that entails
the condition to be exactly present in the generation, we add a post-hoc step for both methods where
we replace the inpainted or guided parts with the exact condition atoms. We report mean and standard
deviation and highlight the best method in bold.

DIFFSBDD UNIGUIDE

VINA (↓) -7.406 ± 0.79 -7.924 ± 0.89

QED (↑) 0.612 ± 0.11 0.639 ± 0.09

SA (↑) 0.703 ± 0.11 0.691 ± 0.10

LIPINSKI (↑) 4.819 ± 0.28 4.875 ± 0.19

DIVERSITY (↑) 0.653 ± 0.28 0.669 ± 0.23

SIMILARITY (↓) 0.172 ± 0.02 0.177 ± 0.02

VALIDITY (↑) 93.35 % 94.41 %
CONNECTIVITY (↑) 66.87 % 68.30 %

G Atom densities in 3D space

Similar to the guidance by the volume enclosed by the molecular surface, UniGuide allows to guide
towards multiple point clouds simultaneously. A natural extension of LBDD would be to harness
atom densities as described in Zaucha et al. [82]. Such a setting combines aspects of LBDD and
SBDD as it provides conditions also on the feature space, yet the source can only be represented by
point clouds.

In particular, we anticipate UniGuide to be useful in scenarios where explicit information about
advantageous features of the ligand is provided in the form of 3D densities. Examples of this include
a) volumetric densities that indicate beneficial placement of certain atom types, such as oxygen atoms
[82] or b) pharmacophore-like retrieval of advantageous positions for aromatic rings, as utilised in
e.g. Zhu et al. [83]. On a technical level, this setting assumes that instead of a reference ligand’s
structure, we only have access to (multiple) atom type densities that indicate preferred locations for
optimal interaction with the protein. Additionally, instead of conditioning on a reference ligand’s
shape, we could condition on a protein pocket’s surface, which primarily defines exclusion zones
rather than precise atom placement.
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Adapting UniGuide for such scenarios requires only minor adjustments, as the protein surface can
treated like shapes in standard LBDD, defining an exclusion zone based on proximity to the surface.
The atom densities are thresholded to reflect regions of high interest and converted to surfaces using
the marching cubes algorithm [84]. To also include feature information, we effectively employ a
modified condition map similar to Eq. (21) that extends the transformation from the conformation to
the configuration space. Moreover, the number of atoms guided by each density is adjusted based on
its volume, reflecting the varying influence of each density, and guidance is only applied if atoms are
sufficiently close.

We show explorative results for the guided generation of molecules towards desired atom densities
using UniGuide in Fig. 8. While our current approach represents a promising first step in tackling
this task, we acknowledge the potential for further refinement and are eager to explore future
improvements within the UniGuide framework.

Figure 8: Given a source density of oxygens, we can extend UniGuide to generate ligands satisfying
the condition.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and introduction reflect the paper’s contribution
and scope: Sec. 4 details how UniGuide is readily adaptable to various tasks in drug
design, attesting to the unification provided by the UniGuide framework. Sec. 5 emphasises
this aspect through competitive or superior performance across various tasks, even when
compared to task-specific baselines.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of UniGuide in Sec. 4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We discuss in Sec. 4 that the generative process retains equivariance with an
appropriately chosen condition map and provide a full proof for this discussion in App. B.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The setup of all experimental evaluations is described in App. E, App. F and
App. D for the SBDD, FBDD and LBDD tasks respectively, including hyperparameters for
UniGuide, dataset preprocessing and inference algorithms. For experimental evaluations
performed according to previous work, we reference them accordingly.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We made the code available as part of the supplementary material with the
submission. We have included the link to UniGuide’s project page, which will reference the
public codebase.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Both the discussion of the experiments provided in Sec. 5 as well as the
supplementary information provided throughout the appendix ensures that the results are
sufficiently contextualised for the reader.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: Throughout the experimental evaluation we provide the mean and standard
deviation for all metrics that can be computed e.g. per-sample or per-pocket to ensure
statistical significance of the presented results. In cases where the metric aggregates the
entire set of samples, we report the mean.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide details on the hardware requirements for the training of the
evaluated unconditional models in App. E.2, App. D.1 and App. C for the DiffSBDD,
ShapeMol and EDM model respectively. Additionally, we provide runtime comparisons for
the inference with UniGuide compared to the evaluated baselines in App. E.7.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research presented in this work conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the broader impact of our work in App. A. We discuss the positive
societal impacts of the proposed unification and the resulting flexibility of unconditional
models to be adapted to various new drug discovery tasks in Sec. 1 and Sec. 6.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The research discussed in this paper does not require safeguards to be put in
place.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]

Justification: Where applicable, we credit and cite owners and authors of previous works
and the accompanying codebases or datasets and provide the license under which the assets
were made public.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Accompanying the supplementary material, we provide documentation and
instructions to navigate and utilise the UniGuide codebase.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work did not conduct research on human subjects or crowdsourcing
experiments.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work did not conduct experiments where human subject were involved
and therefore does not require IRB approvals.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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