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Abstract

Large Language Models (LLMs) demonstrate substantial accuracy gains when
augmented with reasoning modes such as chain-of-thought and inference-time
scaling. However, reasoning also incurs significant costs in inference latency and
token usage, with environmental and financial impacts, which are unnecessary
for many simple prompts. We present a semantic router that classifies queries
based on their reasoning requirements and selectively applies reasoning only when
beneficial. Our approach achieves a 10.2 percentage point improvement in accuracy
on the MMLU-Pro benchmark while reducing response latency by 47.1% and token
consumption by 48.5% compared to direct inference with vLLM. These results
demonstrate that semantic routing offers an effective mechanism for striking a
balance between accuracy and efficiency in open-source LLM serving systems.

1 Introduction

Large Language Models (LLMs) achieve notable accuracy gains when augmented with advanced
inference techniques such as chain-of-thought reasoning or inference-time scaling. Yet, these
benefits come at substantial computational and energy costs, particularly when reasoning is applied
indiscriminately. Prior studies [22] show that while reasoning improves performance on complex
tasks, it is unnecessary for many straightforward queries. This tension makes selective reasoning a
central challenge for practical LLM systems.

Recent frameworks such as LangChain/LangGraph [11] and DSPy [9] enable modular routing
policies, but they require manual configuration and are tied to higher-level stacks. In contrast,
open-source inference engines like vLLM [10]—the de facto standard for high-throughput LLM
serving—deliver efficient inference but lack native semantic routing. Related systems (e.g., llm-d
[12], Production Stack [16]) provide lightweight routing but do not support fine-grained control over
reasoning. Consequently, developers using vLLM’s APIs avoid vendor lock-in but remain without
integrated mechanisms for adaptive reasoning.

To address this gap, we propose a semantic router for open-source inference engines. Our system
integrates with vLLM and cloud-native routing frameworks (Envoy, ext_proc), classifies queries
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by intent, and selectively applies reasoning only when beneficial. Experiments on the MMLU-Pro
benchmark across 14 domains show that our router achieves higher accuracy while reducing latency
and token usage by nearly half.

Our contributions are as follows:

• We identify the need for semantic routing in open-source inference engines to enable
reasoning-aware inference.

• We design, implement, and open-source [2] a high-performance and scalable semantic
router that integrates with vLLM and Envoy/ext_proc for fine-grained reasoning control,
accelerating Cloud Native ecosystem integration.

• We evaluate the semantic router on the MMLU-Pro benchmark and show that it improves
accuracy by 10.2 percentage points while reducing response latency by 47.1% and token
consumption by 48.5% compared to direct vLLM inference.

2 Background

2.1 Routers in LLM Systems

Recent work has explored the use of routers to improve the efficiency and accuracy of LLM inference
by dynamically deciding how queries should be handled. FrugalGPT [5] achieves up to 98% cost
reduction by learning which combinations of LLMs to invoke for different queries, leveraging prompt
adaptation, approximation, and cascaded model selection across commercial APIs. RouteLLM [15]
similarly trains router models to choose between stronger and weaker LLMs during inference, guided
by human preference data and augmentation, yielding substantial cost savings while maintaining
accuracy across benchmarks such as MT Bench, MMLU, and GSM8K. These approaches highlight
the promise of router-based techniques for improving inference performance, but they remain focused
on model-level routing.

2.2 The Need for Selective Reasoning

While advanced reasoning strategies such as Chain-of-Thought (CoT) prompting can improve accu-
racy, recent studies highlight that reasoning is not universally beneficial and often incurs substantial
computational overhead. Wilhelm et al. [5] demonstrate that CoT can increase energy costs by up
to 150 times while offering little benefit for knowledge-based tasks. Similarly, Aggarwal et al. find
that LLMs frequently “overthink” simple queries and “underthink” complex ones [1], leading to
inefficiencies. Meta-analyses by Sprague et al. [17] and the original CoT work by Wei et al. [20]
further establish that CoT primarily improves performance on math and logic tasks, with limited gains
elsewhere and even degraded accuracy in smaller models. To mitigate these inefficiencies, recent
frameworks [6, 24, 21] introduce adaptive reasoning strategies that dynamically regulate reasoning
depth, reducing token usage while maintaining accuracy.

2.3 Semantic Routing

A semantic router refers to an emerging class of request forwarding systems for LLM inference,
in which routing decisions are guided by the semantic meaning of the input rather than by explicit
keywords or manually defined rules [13, 3]. The router operates by encoding both user queries and
candidate routing utterances into high-dimensional embeddings [23] that capture contextual meaning,
and then selecting the target pathway with the highest semantic similarity, typically measured using
metrics such as cosine distance. Semantic routing provides a lightweight and efficient mechanism for
query-level control, making it a promising foundation for reasoning-aware routing.

3 System Design

3.1 System Design

Our system integrates a semantic router with a reasoning mode selector to dynamically balance
efficiency and accuracy in LLM inference. As shown in Figure 1a, the process begins by encoding the
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(a) Workflow (b) System architecture

Figure 1: Overview of the proposed intent-aware semantic router. (a) Workflow of classification and
routing; (b) system architecture.

user prompt into high-dimensional semantic embeddings, which capture the contextual meaning of the
input. These embeddings are then processed by an intent classifier that determines whether the prompt
corresponds to a simple factual query or a reasoning-intensive task. Based on this classification, the
router directs the input to the most suitable inference pathway: lightweight inference with a non-
reasoning model for simple tasks, or reasoning inference with a chain-of-thought–enabled model for
complex queries. Finally, the outputs are unified into a final response. Unlike prior router approaches
such as FrugalGPT and RouteLLM, which primarily operate at the model-selection level to trade
off accuracy and cost, our design focuses on semantic intent–based routing and selectively invoking
reasoning. This enables adaptive reasoning where costly step-by-step inference is applied only when
beneficial, while maintaining low latency and efficiency for straightforward queries.

3.2 Implementation

The implementation of our intent-aware semantic router integrates three key modules—ModernBERT
fine-tuning for intent classification, a Rust-based high-performance classification core, and
Golang–Rust bindings for Envoy integration—into a unified architecture, as illustrated in Figure 1b.

3.2.1 ModernBERT Fine-tuning for Intent Classification

We fine-tune ModernBERT [19] —fast, memory-efficient, supports long contexts, and achieves high
accuracy by incorporating modern LLM innovations like RoPE and FlashAttention—for multi-task
intent classification. The training pipeline ingests three datasets: MMLU-Pro [18] (~12K academic
samples across ~14 domains), Microsoft Presidio [14] (~50K token-level PII examples), and jailbreak
security datasets [4]. The classification pipeline can use either CPU or GPU for real-time inline
inference and simplifies the runtime environment resource requirements.

3.2.2 Rust Core for High-Performance Classification

The classification engine is implemented in Rust using Hugging Face’s Candle framework [8],
which enables efficient, zero-copy tensor workflows, SIMD acceleration, and optimized memory
usage. It runs multi-stage parallel inference—category classification, PII detection, and jailbreak
detection—leveraging Rust’s ownership model for thread safety. The pipeline batches requests and
utilizes Hugging Face Tokenizers for fast tokenization, supports large context window, and chains
multiple classification tasks, sustaining highly concurrent requests on commodity hardware without
using expensive GPUs.
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3.2.3 Golang + Rust (via CGO) for Cloud-Native Envoy Integration

We wrap the Rust-based classification core in a Golang layer using CGO bindings to support Envoy’s
External Processing (ext_proc) filter interface [7]. Envoy intercepts HTTP requests and forwards
them via gRPC to the external processor, which applies real-time classification and routing decisions
before responses reach backend services. The CGO layer is statically linked, minimizing runtime
overhead while enabling seamless integration with Kubernetes, service meshes, and API gateway
patterns. Such design pattern facilitates Cloud Native ecosystem adoption.

4 Evaluation

We evaluate our semantic router on an NVIDIA L4 GPU using the Qwen/Qwen3-30B-A3B model
served by vLLM v0.10.1 with tensor parallelism degree 4. The evaluation is conducted on the
MMLU-Pro benchmark across 14 domains, measuring accuracy, token usage, and latency. For direct
vLLM comparison, we run the same model under six execution modes—neutral reasoning (NR) and
explicit chain-of-thought (XC), each with reasoning enabled or disabled configurations.

Figure 2 breaks down accuracy by the 14 MMLU-Pro domains for all execution modes (NR/XC
with reason_on, reason_off, and base), along with our semantic router. Across the majority of
categories, the router leads in reasoning-heavy domains and remains competitive in knowledge-centric
areas, indicating that selective reasoning does not sacrifice accuracy on fact-focused tasks while
delivering benefits where structured reasoning is essential.
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Figure 2: Per-category accuracy across 14 MMLU-Pro domains for direct vLLM modes and our
semantic router.

Table 1 summarizes the aggregate performance metrics comparing our semantic router against direct
vLLM inference. Overall, the semantic router improves accuracy by 10.24 points while cutting
latency by 47.1% and token usage by 48.5%.

Table 1: Overall performance of semantic router versus direct vLLM inference on MMLU-Pro.
Method Avg. Accuracy Avg. Latency (s) Avg. Tokens
Semantic Router 58.57% 13.09 887.5
Direct vLLM 48.33% 24.76 1,722.1

Improvement +10.24pp -47.1% -48.5%

Our evaluation shows that the semantic router delivers substantial efficiency gains while improving
overall accuracy, achieving a statistically significant 10.24 percentage point increase (p < 0.01) with
48.5% fewer tokens and 47.1% lower latency. The router is particularly effective in knowledge-
intensive domains such as business and economics, where accuracy improvements exceed 20 percent-
age points, while performance in technical areas like engineering and computer science remains more
challenging. Mixed results in reasoning-heavy domains (e.g., mathematics and biology) highlight
opportunities for refining routing strategies. Overall, the router demonstrates robust improvements
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across 11 of 14 domains, underscoring its ability to match queries to appropriate reasoning strate-
gies. These results suggest that semantic routing offers a practical path toward more accurate and
cost-efficient LLM inference in production settings.

5 Conclusion

This paper presented a semantic router that dynamically selects between reasoning and non-reasoning
strategies to optimize large language model inference. Evaluation on MMLU-Pro shows that the
router improves accuracy by more than 10 percentage points while reducing token usage and latency
by nearly 50%. The approach is particularly effective in knowledge-intensive domains such as
business, economics, and physics, though challenges remain in technical and reasoning-heavy areas.
Integrated with vLLM, the router demonstrates that semantic routing is a practical and efficient
solution for real-world inference serving.
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Appendix A. Additional Per-Category Results

In addition to the per-category accuracy results reported in Figure 3, we include two supplementary
breakdowns that highlight the efficiency benefits of semantic routing.

The per-category breakdowns in Figures 4 and 5 confirm that the semantic router consistently
improves efficiency across domains. In terms of token usage, the router reduces average consumption
by nearly half relative to direct vLLM execution modes, with especially pronounced savings in
knowledge-intensive subjects such as history, law, and health, where reasoning is rarely required.
Similarly, the latency results show that the router sustains substantially faster response times across
most categories, cutting delays by over 40% even in reasoning-sensitive areas like mathematics and
physics. These results demonstrate that semantic routing not only improves aggregate efficiency but
also achieves robust per-domain benefits, delivering faster and cheaper inference without sacrificing
accuracy.
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Figure 3: Per-category accuracy across all inference modes on MMLU-Pro.
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Figure 4: Per-category average total tokens across all inference modes on MMLU-Pro. The semantic
router consistently achieves the lowest token usage, reducing overhead in knowledge-centric domains
(e.g., history, law, health) while remaining competitive in reasoning-heavy areas such as math and
physics.
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Figure 5: Per-category average response latency across all inference modes on MMLU-Pro. The
semantic router reduces latency substantially compared to direct vLLM modes, particularly in domains
with shorter factual queries (e.g., history, philosophy). Even in complex reasoning categories, the
router sustains lower response times by avoiding unnecessary reasoning overhead.
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