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Abstract

Machine learning (ML) can accelerate experimentation in chemistry and materials,
but models trained on small, and highly class imbalanced datasets often look
deceptively strong when judged by accuracy alone and provide limited guidance
for follow-up simulations or experiments.

We present a robust ML and explainable artificial intelligence (XAI) framework
for catalyst yield classification that emphasizes: (i) robust evaluation under class
imbalance, (ii) signed, class-aware explanations via Layer-wise Relevance Prop-
agation (LRP) for neural networks and neuralized support vector machines, and
(iii) a simple relevance-guided sampler to propose promising compositions. This
framework has been implemented on oxidative coupling of methane (OCM) to
evaluate the performance of a range of ML models: tree-based models (such as de-
cision trees, random forest, and gradient boosted trees), logistic regression, support
vector machines, and neural networks. The proposed framework yields reliable
generalization estimates under scarcity and mitigates imbalance during training.
The attribution layer interrogates model decisions: tree importances are stable
but class-agnostic, whereas signed LRP isolates features that contribute positively
to the high-yield class. Using these signed signals to bias a validity-preserving
sampler enriches model-predicted high-yield candidates. The resulting workflow
forms a practical interface between scalable ML and experimental validation.

1 Introduction

Machine learning (ML) and data-driven methods are reshaping heterogeneous catalyst discovery by
exposing nonlinear interactions among elements and supports to shrink the search space and minimize
trial-and-error iterations [[1HS]. This is critical for systems where synergistic and antagonistic effects
complicate yield optimization [0, [7]. Recent applications show that data-driven models can capture
subtle composition—performance relationships and guide hypothesis generation [8H10].

However, ML in catalysis is constrained by data reality: experimental datasets are typically small,
imbalanced, and biased toward historically favored chemistries [11H13]]. Even with community
efforts to reduce selection bias via unbiased/high-throughput screens (HTS) [[14H18], positives remain
rare, making accuracy deceptively optimistic and hampering generalization [19]. These factors call
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for evaluation protocols and explainability that explicitly address the minority class of high-yield
catalysts.

At the same time, interpretability is essential for transferring ML signals into chemically meaningful
actions. Tree-based feature importances are class-agnostic; in contrast, propagation-based XAl such
as LRP produce signed, per-sample attributions that indicate whether a feature promotes or suppresses
a target class [20H25]]. Recent work extends LRP to non-neural models via neuralization, enabling
faithful propagation through, e.g., kernel SVMs. [26]]

Contributions. We build on these insights and introduce a framework that (i) stabilizes evaluation
under scarcity and imbalance with F1-score-centered evaluation and nested cross-validation (CV)
and resampling techniques, and (ii) provides class-aware explanations via LRP for neural networks
and a neuralized SVM, complemented by tree importances (Fig. [I) and (iii) finally turn aggregated
relevances into priors for a validity-preserving sampler that proposes feasible catalyst compositions.
The design mirrors the original unbiased generator so that proposals remain in-distribution. [27]
Applied to the unbiased OCM dataset of Nguyen et al. [[14], the framework delivers reliable estimates
and signed attributions that can be elevated to relevance-guided proposal generation.
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Figure 1: Ilustration of the ML framework, starting with data collection and cleaning (steps 1-2), and
visualizing the process for obtaining the performance and explanations of a model on a single random
train-test split of the dataset (steps 3-6). These training and evaluation steps are then repeated for 100
different train-test splits and the results are aggregated to produce robust performance estimates and
feature importance scores.

2 Dataset

Under suitable catalysts, oxidative coupling of methane (OCM) converts CH, to C, products (C,H,,
C,Hy), key building blocks in the chemical industry; performance is typically quantified by the C,
yield (%) (conversion X selectivity). Prior catalyst informatics has reported synergistic combinations
such as Na—-La, Na—Mn, and Ba—Sr [16], but progress is confounded by inconsistent experimental
protocols and literature selection bias in component choice [28] [12]].

Unbiased HTE dataset. We adopt the process-consistent, randomized OCM screen of Nguyen
et al. [14]: 300 quaternary M1-M2-M3/support catalysts drawn uniformly from a declared pool
(27 elements + “none”; 9 supports), each evaluated under 135 conditions by high-throughput



experimentation (HTE). For each composition, the best C, yield across conditions is retained. To
the best of our knowledge, this is the only publicly available OCM dataset with the largest number
of unique compositions and an approximately uniform selection frequency of elements/supports—a
property that reduces anthropogenic oversampling of “usual suspects” and stabilizes both learning
and explanation by limiting spurious frequency-driven importance. The randomized design covers a
discrete space of 36,540 combinations with repeated sampling of components [[14], enabling fairer
evaluation and cleaner class-conditional explanations.

Labels and thresholding. In Nguyen et al. [14], yields were grouped into high/neutral/low bands
around the measured catalyst-free baseline (best blank ~ 10.2% at the reported conditions), using
a margin chosen to exceed experimental error. Following the same rationale, we collapse the three
bands to a binary target: high (positive) if the best C, yield is > 13%, and low (negative) otherwise.
This yields 51 high and 240 low entries (291 total; 9 missing). Element and support presence are
encoded as binary indicators. Because process conditions are not provided in the dataset, we focus on
composition-only prediction at each composition’s best operating condition.

3 Methods

3.1 Models

For classifying the yield of a catalyst, we compare a range of ML models in our framework; including
decision trees (pre/post-pruned), Random Forest, XGBoost, Logistic Regression, RBF-SVM, and a
small Neural Network (NN); hyperparameters are tuned in the inner loop; results are averaged over
100 train/test splits.

Evaluation protocol. When dealing with small datasets, the performance of the model can depend
strongly on the choice of the training and test subsets, making it difficult to obtain a reliable estimate
of the model’s generalization error. In such cases, providing an accurate and unbiased estimate of the
error through cross-validation and hyper-parameter tuning becomes essential, which in turn allows
for the selection of the most robust and best-performing model [29,[11]. In our study, we use a variant
of nested k-fold cross-validation to reliably evaluate model performance on unseen data 30} 31]].

Imbalance handling. ML models often struggle within scenarios with highly imbalanced class
distributions [32} [33]]. To address imbalance, we oversample with SMOTE [34] and randomly
undersample the majority class during training [35H41]]. Test folds remain untouched. This shifts
the decision boundary toward the minority class, typically increasing Recall and F1-score (while
Precision or Accuracy may decrease slightly).

3.2 Explainable AI (XAI)

XAI techniques are playing an increasingly important role in various domains, including catalyst
research. [42]]

Tree-based models For decision trees, node impurity is
Gini(t) = 1—3 pe(t)%, (1)
(&

and feature importance for Random Forest aggregates the total decrease in impurity attributable to
feature d across the ensemble:

T
1
FIRF(d) = TZ > AGini(s). 2)
t=1 s€85;(d)

XGBoost reports the summed split gains for feature d:

FIXCP(d) = )" Gain(s). 3)

seS(d)



Layer-wise Relevance Propagation (LRP) Layer-wise Relevance Propagation (LRP) redistributes
a classifier’s output back to intermediate units and ultimately to the inputs via local, conservative
propagation rules, yielding per-sample, signed attributions [20, 21} 43| 23]. Let a; and a; denote
lower- and upper-layer activations with weights w;;. For a relevance signal I2; at the upper layer, a
broad class of rules assigns relevance to lower units as

(wij) a;

p
R =
Zj: > plwirj) air + €

R;, “

where p(-) specifies a weighting (e.g., identity, - or y-stabilized), and ¢ > 0 prevents division by
zero. These rules are chosen to conserve total relevance layerwise (up to numerical stabilization), so
that the sum of input relevances equals the chosen output quantity.

To make directionality explicit, we explain a contrastive output. In binary classification with evidence
units a4 and a_ (pre-softmax logits), we set the starting relevance to the logit difference

n=ay—a_ = Z(w.g_,k*w—,k) Ak ®)
k

so that positive input relevance indicates evidence promoting the high-yield class and negative
relevance indicates evidence promoting the low-yield class. For multilayer perceptrons we use the
~-rule on linear layers,

p(wij) = wij + v max(0, w;;), v=0.2, (6)

which emphasizes positive contributions and improves stability; activations are handled with the
identity rule (treating the nonlinearity locally as constant), and we fall back to e-stabilization when
needed [43]].

Because part of the relevance can be absorbed by bias terms, raw input relevance may not exactly sum
to . We therefore apply a sign-preserving rebalancing so that positive and negative input relevance
match the positive and negative parts of the explained output:

Zp+ max(Rg,0) = Zmax((whk —w_ ) ag, 0), ™
d k

Zp‘ min(Rg,0) = Zmin((er,k —w_ ) ag, 0), 8)
d k

yielding input maps whose signed sums recover the contrastive logit while preserving the sign of
each R,.

Since LRP is local (per sample), we form global profiles by averaging rescaled input relevances
across test samples and splits:

B 1 S N 0
Ry = S—NZZRd(xj’ ) )

i=1 j=1

We report both signed R, (class-aware) and absolute |Rd| (for comparability with nonnegative tree
importances).

LRP for neuralized SVMs To enable propagation-based explanations for kernel SVMs, we adopt
neuralization [44]): the RBF-SVM decision is rewritten as a contrast of class-wise evidence,

g(x) = logZai exp( —v|jx — xi||2) — log Z lajexp(—7|x — xjHQ), (10)
i€+ je€—
and realized by a shallow network with a detection layer and soft pooling:

Q5

1
g(x) = v-min’ (maXW(WszX + bz‘j)) JWij = 2(xi = %), bij = [lxlI* = [li* +  log ol
J i i
This network is decision-equivalent to the SVM and admits LRP with conservative rules for soft-min
/ soft-max layers and LRP-0 on the linear detection layer. We finally apply a sign-preserving rescaling

so that the summed positive/negative input relevance equals the corresponding evidence terms in (T0).
Full rule statements and derivations are provided in Appx.



4 Results

We organize results into three parts: (i) yield prediction in a sparse, imbalanced regime (metric lens
and the effect of resampling), (ii) interpretability via tree importances and class-aware LRP for neural
networks and neuralized SVMs, and (iii) turning explanations into proposals using a relevance-guided
sampler.

All experiments were run on a MacBook Pro with an Apple M1 chip and 36 GB RAM. The
code for our framework and the experiments is available at https://github.com/PSemnani/
XAI4CatalyticYield.

4.1 Predicting yield in a sparse and imbalanced regime

Before presenting the final model comparison, we first discuss the choice of performance metrics and
the impact of resampling.
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Figure 2: The impact of introducing resampling techniques on key performance metrics (a) Accuracy,
(b) Fl1-score, (c) Precision, (d) Recall.

4.1.1 Metric lens: Accuracy vs. Fl-score

On this dataset, a trivial “all-negative” classifier would achieve ~ (.82 accuracy, so accuracy can be
deceptively optimistic under class imbalance. In contrast, the F1-score directly reflects minority-class
utility: for reference, a random classifier yields F1~/0.26, an all-negative classifier 0.0, and an
all-positive classifier 0.3. All models substantially exceed these baselines, with F'1 in the 0.46-0.52
range, revealing separations that accuracy obscures (Table T)).

4.1.2 Effect of resampling (SMOTE)

Figure 2] summarizes the effect of oversampling the high-yield class (SMOTE) and undersampling the
low-yield class on the four metrics. Accuracy (Fig.[2h) shows only a small decrease (—0.01 to —0.05
across models). By rebalancing the training distribution, SMOTE shifts the decision boundary toward
the minority class. As the model observes more minority examples, it becomes more likely to predict
the positive class; correspondingly, both F1-score (Fig.[2b) and Recall (Fig. [2d) increase markedly
for most models, while we observe some negative shifts in the Precision as Fig. [2c depicts. In
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design-of-experiments (DOE) for rare high-yield catalysts, recall and F1-score are preferred operating
metrics to avoid missing promising candidates.

Final comparison across models. Across 100 stratified outer folds, mean+std are reported in
Table [T} Fl-scores are close (0.46-0.52) with no single method statistically separating from the
rest, likely reflecting data limitations rather than model capacity; with larger, higher-quality data,
higher-capacity learners (XGBoost, SVM, NN) are expected to separate from simpler tree/linear
baselines.

Table 1: Mean=std over 100 splits with the proposed framework.

Model Accuracy F1-score

Decision Tree 0.75+0.05 0.46+0.10
Pre-pruned Tree 0.73+£0.06 0.47+0.08
Post-pruned Tree 0.81+0.04 0.50+0.13

Random Forest 0.78+0.05 0.52+0.09
XGBoost 0.77+0.05  0.5140.09
Logistic Regression  0.78£0.05 0.51+£0.10
SVM (RBF) 0.77£0.05 0.49+0.09

Neural Network 0.76£0.05 0.5140.10

4.2 Interpretability (XAI): Tree importances and LRP relevance scores
4.2.1 Tree-based importances

To aggregate across tree models, we normalize importances to [0, 1] per model and average across
splits.

s
_ 1 .
I @
Rq = 5 ;—o Ra(m™), 12)
where S is the number of training/test splits, Rd(m(i)) is the feature importance for feature d extracted
from the model m trained on the training subset from split :.

The resulting global profile (Fig. [3) is stable and highlights globally “important” features (e.g., Mn,
Al>03, SiO4, Ni, CeOs), but remains class-agnostic and therefore does not indicate whether a feature
promotes high-yield or explains low-yield.

4.3 LRP for Neural networks and SVM

LRP provides per-sample attributions; to obtain a global profile we aggregate across both samples
and splits. For each split, we compute rescaled input relevances for the high-yield logit and then
average over all test samples and all S splits:

N
— 1 . (i)
Rd;=; N > i= 15;21 Ra!(x;"), (13)

where N is the number of test samples per split and R;(+) is the relevance of feature d. Unlike
tree importances, LRP yields signed scores: with the high-yield logit as the starting point, positive
input relevance indicates evidence promoting the high-yield class, while negative relevance indicates
evidence for low yield. For comparability with strictly positive tree importances, we also report
global maps from absolute LRP values.

For SVMs, explanations are obtained via the neuralization procedure [26] followed by LRP; for NN,
we apply LRP directly. In both cases, input relevances are rescaled to compensate relevance absorbed
by bias terms so that evidence is conserved.

Figure ] contrasts absolute vs. signed relevance scores. The signed view reveals that several features
with the largest absolute scores actually provide negative evidence for the high-yield class (e.g., Mn,
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Figure 3: Averaged importance scores for all features across the different tree-based models (Decision
tree, DT prepruned, DT postpruned, Random forest, XGBoost)

Al;03, Si0,), whereas features with smaller absolute scores provide positive evidence and thus act
as high-yield promoters (notably LasO3/BaO). This dataset—specific pattern highlights why class
direction matters: class-agnostic absolute importances can be dominated by features that chiefly
explain the low-yield class. The dataset’s unified element selection further mitigates frequency bias
(features do not accrue importance merely by appearing more often), making it well suited for XAl
within our framework. Larger datasets will help assess how broadly these observations generalize.

4.4 Predicting promising catalyst compositions via relevance scores

To illustrate the application of feature importances in generating promising catalyst compositions,
a generative algorithm was devised that leverages these relevances to bias the generation process
toward catalysts predicted by the model to exhibit high yield. All proposals are drawn within the
experimental design space of Nguyen et al. [[14]: one oxide support, up to three distinct elements
(sampling without replacement), “none” allowed. This guaranties in-distribution candidates w.r.t. the
HTS protocol.

Let Ry be the average relevance of feature d (tree: impurity/gain; NN/SVM: LRP). Split features
into elements £ and supports S, then map relevances to discrete probabilities with a temperatured
softmax:

i

softmax(x, 8); = (14)

Here, 5 is used for elements and 35 for supports.

Higher 3 concentrates mass on features with larger relevance; lower 3 explores more uniformly. The
procedure mirrors the dataset generator in Nguyen et al. [[14] so all sampled catalysts are valid under
that scheme. A detailed step-by-step description can be found in Appx. Algorithm|T}

Sampling procedure

1. Compute p° = softmax({Rd :deS}, ﬂ‘s) and sample one support S

2. For i = 1,2,3: (a) with probability 1/|€| select “no element” (allowing 1-2 component
catalysts); else ~
(b) compute p¢ = softmax({Rq : d€E}, 3%), sample E;°', and remove it from £ (sam-
pling without replacement).
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Figure 4: LRP-based feature analysis (mean) for neural networks and SVMs. (a,b) NN: absolute vs.
signed relevance; (c,d) SVM: absolute vs. signed relevance. Signed relevance separates features that
promote high yield (positive) from those that promote low yield (negative).

This yields a candidate (S*°!, F521), which we then score with the originating model.

Using mean relevances over 100 splits, we generated 1000 candidates per setting for: (i) XGBoost
with absolute importances; (ii) NN with absolute importances; (iii) NN with signed, class-aware
LRP relevances. Table 2] reports the fraction of generated candidates predicted as high-yield by the
corresponding model.

Table 2: Fraction of generated candidates classified as high-yield (higher is better). As bias increases (larger 3),
signed LRP enriches positives; absolute importances do the opposite.

Temperature (6, 35) NN:signed NN:abs. XGBoost: abs.

(10, 1) 0.38 0.17 031
(20, 2) 0.49 0.13 0.23
(40, 4) 0.68 0.04 0.13
(40, 4) 0.85 0.01 0.05

Absolute importances tend to rank features that are strong for predicting the majority (low-yield) class;
biasing a generator toward them reduces the positive rate. In contrast, signed LRP isolates features
that promote the desired (high-yield) class, so increasing [ increases the fraction of high-yield
proposals.



For design loops that use explanations to guide simulation or experiment, prefer class-aware (signed)
relevances over absolute importances when turning explanations into generative priors.

5 Conclusion

We introduced a compact ML and XAI framework tailored to data scarcity and class imbalance
in experimental catalyst datasets. While we have chosen to apply the framework to OCM as a
representative example in this case, the general design of the framework allows it to be applied for
various other catalytic reactions. Using stratified nested cross-validation, training-fold resampling,
and F1-score as the primary criterion, we showed that accuracy compresses differences and can be
matched by trivial baselines, whereas F1-score reveals meaningful minority-class skill. Resampling
improves recall and F1-score for most models, most notably for Random Forest, while SVM changes
are minimal, aligning with margin-based behavior.

On the interpretability side, LRP delivers signed, class-aware attributions that isolate high-yield
promoters from features that explain low yield. In neural networks and neuralized SVMs, two groups
of components, namely rare earth oxides (La and Eu) and alkaline earth metals with a high degree of
alkalinity (Ba and Ca) consistently appear as positive contributors. These findings align with chemical
intuition and existing OCM literature. Notably, this agreement with established OCM chemistry
emerges despite the small dataset used. Future work should scale to larger, more diverse datasets
spanning broader compositions and varied process conditions, which would improve model fidelity
and explanations and help uncover previously unobserved component—condition interactions.

Turning these signed signals into priors, our relevance-guided sampler biases proposals toward promis-
ing compositions, illustrating how explanations can drive candidate generation. This reproducible
end-to-end workflow provides a practical template for extending the integration of ML-simulation
to larger and more diverse catalytic datasets and process conditions. The resulting blueprint (robust
evaluation, class-based explanation and targeted generation) offers an actionable path for scaling to
larger datasets and for coupling ML with experimental validation.

Limitations and future work. Limitations include evaluation on a single task and binary composi-
tion descriptors. The intent is to support DOE by providing composition priors, not full synthesis
recipes: catalyst performance also depends on variables not modeled here. Moreover, LRP attribu-
tions—though signed and class-aware—depend on model architecture and propagation choices; our
stabilization and rebalancing improve faithfulness but do not eliminate method variance. Future work
will broaden descriptors and conditions, compare LRP with alternatives (e.g., SHAP; I1G), and pursue
prospective, closed-loop validation with laboratory partners to quantify enrichment and tighten the
ML-to-experiment loop.
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B Evaluation metrics definition

Definition of different commonly used performance evaluation metrics for ML models. Let TP, TN,
FP, FN denote true positives, true negatives, false positives, and false negatives, respectively.

A TP + TN
ccuracy =
Y~ TP+ FP + TN + FN
Precisi TP
recision = ————
TP + FP
TP
Recall = ———
A= TP FN
Fl — 2 Precision - Recall

~ Precision + Recall
C LRP for Neuralized SVMs: Detailed Rules and Rescaling
Soft-pooling operators. max”(z) = = log 3 exp(72) and min"(2) = — 2 log 3" exp(—7z) [44].

LRP through soft pooling. Deep Taylor—derived conservative propagation:
exp(—a;)

R; = S exp(—ay) Ry, (15)
Ry = % R;. (16)

LRP to inputs. LRP-0 on affine units (w,;x + b;;):
Ry = —ud®d __ p (17)

> 0.ar Wig,d T

Sign-preserving bias compensation. Rescale the signed input map so that its positive/negative
sums recover the class-wise evidence of (T0):

Zp+ max(Rg4,0) :logZaiexp(—'ny—xin), (18)
d ie+

Zp‘ min(Rg,0) = — log Z lajlexp( — 7 |Ix — x;]?). (19)
d je—

Global aggregation. Per-sample input relevances are averaged over test samples and splits to form
global SVM profiles (Eq.[I3]in the main text).
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D Relevance sampling algorithm

Algorithm 1: A simple sampling algorithm for generating promising catalyst combinations based

on feature importances provided by an explainability method.

Data:

R, - set of feature importances

& - feature indices of elements

S - feature indices of supports

B¢ - temperature parameter for the softmax applied on element relevances
(S - temperature parameter for the softmax applied on support relevances
Result:

5s¢l - feature index of sampled support
E5°l Bsel) E5°! - feature indices of sampled elements

RS+ {R;:d€S}; // Select importances of support features
p°  softmax(R®,3%); // Create probability distribution over supports

Sl ~ p®; // Sample from the probability distribution over supports
foriinl...3do

RE < {Rq:d€&}; // Select importances of element features
r ~ uniform(0, 1);
ifr < I?ll then // No element is selected with a chance of 1/|€|
‘ Efel <~ None;
else
// Sample element and remove it from the list of indices
p¢ <« softmax(R¢, 3%);
Esel pé'.
1 b
& remove(E5);
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

The paper claims a robust evaluation protocol under class imbalance, class-aware LRP
explanations (NN/SVM), and a relevance-guided sampler; all are implemented and validated
on the OCM dataset with scope and limitations clearly stated.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

We explicitly discuss limits (single benchmark; binary composition descriptors; no process-
condition features; method-dependence of LRP) and outline future directions (richer de-
scriptors, SHAP/IG comparison, prospective validation).

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

The contribution is empirical/methodological; no new theorems or proofs are introduced
beyond standard definitions and cited LRP rules.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

We specify data source and encoding, stratified nested CV, SMOTE+undersampling applied
to training folds only, model families, Optuna tuning, metrics, and 100 randomized splits;
code and scripts are released to reproduce tables/figures.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Code: https://github.com/PSemnani/XAI4CatalyticYield. Data: Nguyen et al.,
ACS Catal. 2021, 11, 1797-1809, DOI: http://dx.doi.org/10.1021/acscatal,
0c04629; “Not for redistribution”—reuse requires citation and contacting the dataset owners
as stated.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

We report stratified nested CV (outer/inner), 100 splits, SMOTE+undersampling on training
folds, model families and tuning strategy, metrics (Accuracy/Precision/Recall/F1), and
provide additional settings in the supplement.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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10.

11.

12.

13.

14.

We report mean=std across 100 randomized splits and use error bars reflecting split-to-split
variability; the text clarifies that bars represent standard deviation.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Experiments ran on an Apple M1 laptop with 36 GB RAM and no GPU. The released scripts
reproduce all figures/tables.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

We use a public experimental dataset and standard ML methods; no human subjects or
sensitive data are involved; we adhere to the NeurIPS Code of Ethics.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Potential positives include more efficient DOE and reduced experimental waste; risks include
misprioritization if models are over-trusted. We mitigate via class-aware explanations,
reporting variability, and advocating prospective validation and training on a bigger data
sets.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

No high-risk models or scraped web-scale datasets are released; we rely on a curated
experimental dataset from prior work.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

We cite Nguyen et al. (ACS Catal. 2021, 11, 1797-1809; DOI: http://dx.doi.org/
10.1021/acscatal.0c04629); the dataset is “Not for redistribution” and reuse requires
citation and contacting the owners as specified.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

We release a public repository (https://github.com/PSemnani/
XAI4CatalyticYield) with instructions, environment details, and scripts to repro-
duce the main tables/figures.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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15.

16.

No human subjects or crowdsourcing are involved.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
No human-subjects research was conducted.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research?

Answer: [NA]

No LLMs were used as core, non-standard components of the methodology; any language
editing did not affect the scientific method.
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