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ABSTRACT

In this work, we propose the Sparse Deep Scattering Croisé Network (SDCSN)
a novel architecture based on the Deep Scattering Network (DSN). The DSN is
achieved by cascading wavelet transform convolutions with a complex modulus
and a time-invariant operator. We extend this work by first, crossing multiple
wavelet family transforms to increase the feature diversity while avoiding any
learning. Thus providing a more informative latent representation and benefit from
the development of highly specialized wavelet filters over the last decades. Beside,
by combining all the different wavelet representations, we reduce the amount of
prior information needed regarding the signals at hand. Secondly, we develop
an optimal thresholding strategy for over-complete filter banks that regularizes
the network and controls instabilities such as inherent non-stationary noise in the
signal. Our systematic and principled solution sparsifies the latent representation
of the network by acting as a local mask distinguishing between activity and noise.
Thus, we propose to enhance the DSN by increasing the variance of the scattering
coefficients representation as well as improve its robustness with respect to non-
stationary noise. We show that our new approach is more robust and outperforms
the DSN on a bird detection task.

1 INTRODUCTION

Modern Machine Learning focuses on developing algorithms to tackle natural machine perception
tasks such as speech recognition, computer vision, recommendation among others. Historically,
some of the proposed models were based on well-justified mathematical tools from signal processing
such as Fourier analysis. Hand-crafted features were then computed based on those tools and a clas-
sifier was trained supervised for the task of interest. However, such theory-guided approaches have
become almost obsolete with the growth of computational power and the advent of high-capacity
models. As such, over the past decade the standard solution evolved around deep neural networks
(DNNs). While providing state-of-the-art performance on many benchmarks, at least two pernicious
problems still plague DNNs: First, the absence of stability in the DNN’s input-output mapping. This
has famously led to adversarial attacks where small perturbations of the input lead to dramatically
different outputs. In addition, this lack of control manifests in the detection thresholds (i.e: ReLU
bias) of DNNs, rendering them prone to instabilities when their inputs exhibit non-stationary noise
and discontinuities. Second, when inputs have low SNR, or classes are unbalanced, the stability
of DNNs is cantilevered. A common approach to tackle this difficulty is to increase both the size
of the training set and the number of parameters of the network resulting in a longer training time
and a costly labeling process. In order to alleviate these issues we propose the use of the DSN by
creating a new non-linearity based on continuous wavelet thresholding. Thus our model, inherits the
mathematical guarantees intrinsic to the DSN regarding the stability, and improves the control via
wavelet thresholding method. Then, in order to produce time-frequency representation that are not
biased toward a single wavelet family, we propose to combine diverse wavelet families throughout
the network. Increasing the variability of the scattering coefficient, we improve the linearization
capability of the DSN and reduce the need of an expert knowledge regarding the choice of specific
filter bank with respect to each input signal.

The paper is organized as follows: 1.1 and 1.2 are devoted to the related work and contribution of
the paper, the section 2 shows the theoretical results, where 2.1 is dedicated to the network archi-
tecture and its properties, and 2.2 provides the milestone of our thresholding method, then section
2.3 shows the characterization, via latent representation, of our network on different events by on
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the Freefield10101 audio scenes dataset. Finally, we evaluate our architecture and compare it to
the DSN on a bird detection task are shown in 2.4. The appendix in divided into three parts, Ap-
pendix A provides both, the pre-requisite and details about building the wavelets dictionary to create
our architecture; Appendix B shows additional results on the sparsity of the SDCSN latent repre-
sentations; Appendix C shows mathematical details and proofs for the over-complete thresholding
non-linearity.

1.1 RELATED WORK

We extend the Deep Scattering Network, first developed in Mallat (2012) and first successfully
applied in Bruna & Mallat (2011); Andén & Mallat. The Scattering Network (SN) is a cascade of
linear and non-linear operators on the input signal. The linear transformation is a wavelet transform,
and the nonlinear transformation is a complex modulus. For each layer, the scattering coefficients are
computed according to the application of the scaling function on the representation. This network is
stable (Lipschitz-continuous) and suitable for machine learning tasks as it removes spatiotemporal
nuisances by building space/time-invariant features. The translation invariant property is provided
by the scaling function that acts as an averaging operator on each layer of the transform leading to an
exponential decay of the scattering coefficients Waldspurger (2017). Since the continuous wavelet
transform increases the number of features, the complex modulus is used as its contractive property
reduces the variance of the projected space Mallat (2016). Two extensions of this architecture have
been already developed: the Joint Scattering Network Andén et al. (2015) and the time-chroma-
frequency scattering Lostanlen & Mallat (2016). They introduced extra parameterization of the
wavelets coefficient in the second layer of the network to capture frequency correlations allowing
the scattering coefficient to represent the transient structure of harmonic sounds.

Thresholding in the wavelet domain remains a powerful approach for signal denoising as it exploits
the edge-detector property of wavelets, providing a sparse representation of the input signal in the
time-frequency plane. This property is characterized for each wavelet by its vanishing moments
expressing the orthogonality of the wavelet with respect to a given order of smoothness in the input
signal. We base our approach on the theories relating the thresholding of signal in the wavelet basis
and the evaluation of the best basis. Both are realized via a risk evaluation that arose from different
perspectives: statistical signal processing Donoho et al.; 1995); Krim et al. (1999), information
theory Coifman & Wickerhauser (1992); Wijaya et al. (2017); Cosentino et al. (2016), and signal
processing Mallat & Zhang (1993); Mallat (1999). However, to the best of our knowledge, there is no
thresholding method developed for continuous wavelet transform. We will thus extend the work of
Berkner (1998) on thresholding over-complete dictionnary in the case of TIDWT and Biorthogonal-
DWT to build a risk evaluation in the case of over-complete continuous wavelet transform.

1.2 CONTRIBUTIONS

As opposed to the chroma-time-frequency scattering, using one wavelet family filter bank but deriv-
ing many symmetries of the latter, we propose to use multiple wavelet families having complemen-
tary properties (described in A.2) within a unified network yielding cross connections. It helps the
architecture to provide higher dimensional and uncorrelated features, reducing the need of an expert
to hand-choose the DSN wavelet filters, and also enables any downstream classifier to have greater
orbit learning capacity. Therefore our architecture, the Deep Croisé Scattering Network (DCSN),
leverages the simultaneous decomposition of complementary filter-banks as well as their crossed
decomposition, hence the term “croisé.” Then, endowing this architecture with our novel threshold-
ing operator, we build the SDSCN providing new features based on the reconstruction risk of each
wavelet dictionary. This method based on empirical risk minimization will bring several advantages.
First, it enables us to insure and control the stability of the input-output mapping via thresholding the
coefficients. Second, the model has sparse latent representations that ease the learning of decision
boundaries as well as increases generalization performance. Finally, the risk associated with each
wavelet family provides a characterization of the time-frequency components of the analyzed signal,
that, when combines with scattering features enhances the high linearization capacity of DSN. As
opposed to ReLU-based nonlinearities that impose sparsity by thresholding coefficients based on a

1http://machine-listening.eecs.qmul.ac.uk/bird-audio-detection-challenge/
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fixed learned scalar threshold, we propose an input-dependant locally adaptive thresholding method.
Therefore, our contribution leading to the Sparse Deep Croisé Network is twofold:

• Deep Croisé Scattering Network: a natural extension of the DSN allowing the use of mul-
tiple wavelet families and their crossed representations.

• Derivation of optimal non-orthogonal thresholding for overcomplete dictionaries: empiri-
cal risk minimization leads to an analytical solution for the denoising mask, allowing de-
terministic per-input solutions, and endowing the DSN with sparse latent representations.

2 SPARSE DEEP CROISÉ SCATTERING NETWORK

The Deep Croisé Scattering Network (DCSN) is a tree architecture (2 layers of such model are shown
in Fig. 1) based on the Deep Scattering Network (DSN). The first layer of a scattering transform
corresponding to standard scalogram is now replaced with a 3D tensor by adding the wavelet family
dimension. Hence, it can be seen as a stacked version of multiple scalograms, one per wavelet
family. The second layer of the DCSN brings inter and intra wavelet family decompositions. In fact,
each wavelet family of the second layer will be applied on all the first layer scalograms, the same
process is successively applied for building deeper model.

Figure 1: Deep Croisé Scattering Network Architecture for an input signal y - Special case of 3
wavelet families.

2.1 CROISE SCATTERING NETWORK: CROSS FAMILY REPRESENTATION FOR SIGNAL
CHARACTERIZATION

We first proceed by describing the formalism of the DCSN ∀x ∈ L2, details on wavelets and filter
bank design are provided in Appendix A. We denote by

Ψ(1) = {ψ(1,b), b = 1, . . . , B(1)}, (1)

the collection of B(1) mother wavelets for the first layer. We also denote by,

λ(1) =
{
λ
(1)
j , j = 1, ..., J (1) ×Q(1)

}
, λ

(1)
j = 2(j−1)/Q

(1)

, (2)

the resolution coefficients for this first layer with J (1) representing the number of octave to de-
compose and Q(1) the quality coefficients a.k.a the number of wavelets per octave. Based on those
configuration coefficients, the filter-banks can be derived by scaling of the mother wavelets through
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the resolution coefficients. We thus denote the filter-bank creation operatorW by

W[ψ(1,b), λ(1)] =


ψ
(1,b)

λ
(1)
1

. . .

ψ
(1,b)

λ
(1)

J(1)×Q(1)

 , ψ
(1,b)

λ
(1)
j

(t) =
1√
λ
(1)
j

ψ(1,b)

(
t

λ
(1)
j

)
. (3)

To avoid redundant notation, we thus denote this filter-bank as W(1,b) with implicit parameters
Ψ(1) and Λ(1). We now developed of the needed tools to explicit define the filter layer of the
DCSN. We denote by U (1) the output of this first layer and as previously mentioned it consist of
a 3D tensor of shape (B(1), J (1)Q(1), N) with N the length of the input signal denoted as x. We
omit here boundary conditions, sub-sampling, and consider a constant shape of N throughout the
representations. We thus obtain

U (1)[x](b, ., .) = |x ?W(1,b)|, b = 1, . . . , B(1), (4)
where |.| operator corresponds to an element-wise complex modulus application. We define the
convolution operation between those two objects as

x ?W(1,b) =

 x ?W(1,b)(1, .)
. . .

x ?W(1,b)(J (1)Q(1), .)

 . (5)

From this, the second layer we present below will introduce the cross family representations. First,
we denote by λ(2) and Ψ(2) the internal parameters of layer 2 analogous to the first layer defini-
tion. We now denote the second layer representation as U (2)[U (1)[x]]. This object is a 5D tensor
introduced 2 extra dimension on the previous tensor shape. In fact, is it defined as

U (2)[U (1)[x]](b2, j2, b1, ., .) = U (1)(b1, ., .) ?W(`,b2)(j2)|, b2 = 1, . . . , B(2). (6)

from this, we denote by croisé representation all the terms in U (2)[U (1)[x]](b2, j2, b1, ., .) with
b2 6= b1. For notations clarity we denote this representation as U (2)[U (1)[x]](b2, j2, b1, ., .) :=

U b1→b2j2
[x]. Based on those notations it is straightforward to extend those representation to layer ` as

U b1→···→b`j2,...,j`
[x]. We however limit ourselves in practice to 2 layers as usually done with the standard

scattering networks. Given those representations, the scattering coefficients, the features per say, are
defined as follows:

Sb1→···→b`j2,...,j`
[x] = U b1→···→b`j2,...,j`

[x] ? φ, (7)
with φ is a scaling function. This application of a low frequency band-pass filter allows for symme-
tries invariances, inversely proportional to the cut-off frequency of ψ. We present an illustration of
the network computation in Fig. 2.

As can be seen in the proposed example, while the first layer provides time-frequency information,
the second layer characterizes transients as demonstrated in Balestriero & Aazhang (2016). With
this extended framework, we now dive into the problem of thresholding over complete basis, cases
where the quality factor, Q, is greater than 1 which are in practice needed to bring enough frequency
precision.

2.2 SPARSITY AND WINNER-TAKE-ALL VIA RISK MINIMIZATION: OPTIMAL
OVERCOMPLETE BASIS THRESHOLDING

Sparsity in the latent representation of connectivists models have been praised many times Narang
et al. (2017); Liu et al. (2015); Thom & Palm (2013). It represents the fitness of the internal parame-
ters of a model needed with only few nonzeros coefficients to perform the task at hand. Furthermore,
sparsity is synonym of simpler models as directly related with the Minimum Description Length
Dhillon et al. (2011) guaranteeing increased generalization performances. In addition of those con-
cepts, thresholding brings in practice robustness to noise. In particular, as we will demonstrate, even
in large scale configuration, non-stationnary noise can not be completely handled by common ML
approaches on their own. To do so, we propose to extend standard wavelet thresholding techniques
for non-orthogonal filter-banks. Our approach aims at minimizing the reconstruction error of the
thresholded signal in the wavelet domain via an oracle decision. Through this formulation, we are
able to derive an analytical thresholding based on the input representation and the filter-bank redun-
dancy. We now propose to derive this scheme and then provide interpretation on its underlying tests
and computations.
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2.2.1 IDEAL RISK AND EMPIRICAL RISK BOUND

As the decomposition is not orthogonal, the first point to be tackle is the difference of the L2 approx-
imation errors in between the original basis and the over-complete wavelet basis as Parseval equality
does not hold. Beside, the transpose of the change of basis matrix is not anymore the inverse trans-
form. Berknet et. al. in Berkner (1998) proposed the use of the Moore pseudo inverse to build the
reconstruction dictionary. In the following we develop an upper bound to the ideal risk such that we
benefit an explicit equation for the thresholding operator that is adapted to any over-complete trans-
formation. Let’s assume the observed signal, denoted by y, is corrupted with white noise such that
y = x+εwhere x is the signal of interest and ε ∼ N (0, σ2). We now denote byW ∈ CN(J∗Q+1)×n

the matrix composed by the the wavelets at each time and scale (i.e: explicit convolution version
of W) such that ∀x ∈ RN , Wx is the wavelet transform. We denote by W † ∈ Cn×n(J∗Q+1) the
generalized inverse such that W †W = I . The estimate of x is given by x̂W,D(y) = W †DSWy.

R?(x,W ) = min
δ

E ‖x− x̂W,D(y)‖2 = min
δ

E
∥∥W †(Wx−DSWy

∥∥2 (8)

Because of the correlation implied by the redundant information contained in the filter banks, the
ideal risk is now dependent on all the possible pairs in the frequency axis. However,the independence
in time remains. Since this optimization problem does not have an analytic expression, we propose
the following upper bound explicitly derived in Appendix C.1. The upper-bound on the optimal risk
is denoted byRup and defined as,

Rup(x,W ) =

n(J∗Q+1)∑
k=1

min(RUup(x),RSup). (9)

where we denote byRUup the upper bound error term corresponding to unselected coefficients:

RUup(x) =

n∗(J∗Q+1)∑
j=1

∣∣∣∣∣µk(x)µj(x)

n∑
t=1

ψ†t [k]ψ†t [j]

∣∣∣∣∣ , (10)

and byRSup the upper bound error term corresponding to the selected coefficients:

RSup = σ2

n(J∗Q+1)∑
j=1

∣∣∣∣∣
n∑
t=1

(ψ†t [k]ψ†t [j])ψ
T
k ψj

∣∣∣∣∣ . (11)

Now, one way to evaluate this upper-bound is to assume an orthogonal basis, and to compare it with
the optimal risk in the orthogonal case which leads to the following proposition.
Proposition 1. Assuming orthogonal filter matrix WO, the upper bound ideal risk coincides with
the orthogonal ideal risk:

Rup(x,WO) = RO(x,WO)

the proof is derived in C.2 In order to apply the ideal risk derive, ones needs an oracle decision
regarding the signal of interest. In real application, the signal of interest x is unknown. We thus
propose the following empirical risk:

R̃(y,W ) =

n(J∗Q+1)∑
k=1

min(RUup(y),RSup). (12)

This risk corresponds to the empirical version of the ideal risk where the observed signal y is evaluate
in the left part of the minimization function. In order to compare this empirical risk with the ideal
version, we propose their comparison the following extreme cases:
Proposition 2. In the case where DS = I , the empirical risk coincides with the upper bound ideal
risk:

R̃(y,W ) = Rup(x,W ).

Proposition 3. In the case where DU = I , the following bound shows the distance between the
empirical risk and the upper bound ideal risk:

R̃(y,W ) ≤ Rup(x,W ) + C ×

∣∣∣∣∣
n∑
t=1

ψ†t [k]ψ†t [j]

∣∣∣∣∣ , a.s. (13)
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where,

C =

n(J∗Q+1)∑
k=1

n(J∗Q+1)∑
j=1

|µk(x)| ‖ψj‖1 σ
√

2

π
+ |µj(x)| ‖ψk‖1 σ

√
2

π
+ σ2(1− 2

π
).

Refer to C.3 for proofs. As the empirical risk introduces the noise in the left part of the risk expres-
sion, this term represents the propagation of this noise throughout the decomposition. We provided
a generic development of the risk minimization process. When applied to a particular path of the
scattering network, it is denoted as,

Rb1→···→b`j1,...,j`−1
[y] = R[U (`)[y](b`, ., b`−1, j`−1, . . . , b1, j1, .),W(`,b`)], b` = 1, . . . , B(`), (14)

with U (`)[y](b`, ., b`−1, j`−1, . . . , b1, j1, .) ∈ RJ(`)Q(`)×N andR representing the risk minimization
operator based on a given representation and the associated filter-bank.

2.2.2 DEEP CROISÉ SCATTERING NETWORK THRESHOLDING OPERATOR

We define by T the tresholding operator minimizing the the empirical risk,

T = arg min
δ
R̃(y,W ). (15)

In particular when applied to a specific path of the tree, this thresholding operator is denoted as
T [U (`)[y](b`, ., b`−1, j`−1, . . . , b1, j1, .),W(`,b`)], b` = 1, . . . , B(`). We provide in Fig. 2 illustra-
tion showing the effect of this thresholding operator at each layer of the network.

2.3 RISK BASED FILTER-BANKS FITNESS EVALUATION FOR STRUCTURAL EVENT
CHARACTERIZATION

We demonstrated in the last section the important of the risk in the optimal thresholding optimiza-
tion. This empirical version of this risk represents the ability of the induced representation to perform
efficient denoising and signal reconstruction. This concept is identical to the one of function fitness
when considering the denoised ideal signal x and the thresholded reconstruction. As a result, it is
clear that the optimal basis given a signal is the one with minimal empirical risk. We thus propose
here simple visualization and discussion on this concept and motivate the need to use the optimal
empirical risk as part of the features characterizing the input signal y along all the representations.

In Fig. 3, we provide two samples from the dataset corresponding to very different acoustic scene.
One represents transients on the right while the left one provides mixture of natural sounds. Risk
based analysis of the filter-banks fitness provide consistent information with the specificities of the
selected wavelets. In fact, Paul family is known to be very adapted for transient characterization via
its high time localization. On the other hand, the Morlet wavelet is optimal in term of Heisenberg
principle and thus suitable for natural sounds such as bird songs, speech, music.

2.4 VALIDATION: BIRD ACTIVITY DETECTION BENCHMARK

We propose to validate the two contributions over a large-scale audio dataset. As we will demon-
strate below, our method as well as each contribution taken independently and jointly lead to signifi-
cant increase in the final performance. We compare our results against the standard SN. In all cases,
the scattering coefficients are then fed into a random forest Breiman (2001) with parameters2 based
on the sklearn library Pedregosa et al. (2011)

2.4.1 CHALLENGE OVERVIEW AND STANDARD SOLUTIONS

The data set consists of 4000 field recording signals from freefield10103 collected via the
Freesound4 project. This collection represent a wide range of audio scenes such as bird-
song,city,nature,people,train,voice,water... The focus in this paper is the bird audio detection task

2n estimator: 100, criteria: ’gini’, min samples split: from 50 (small data size) to 150 (all
data),class weights:’balanced subsample’

3http://machine-listening.eecs.qmul.ac.uk/bird-audio-detection-challenge/
4https://arxiv.org/abs/1309.5275
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Figure 2: Sparse Deep Croisé Scattering Network representation - Paths: 1→ 1 :, 1→ 2, 1→ 3
with 1 : Morlet, 2 : Paul, 3: Gammatone - J1= 5, Q1=8, J2=4, Q2=1

(a) (b)

Figure 3: Sparse Croisé Latent Wavelet Family Representation: (a) Cocktail: Crying Baby &
Bird song & Motorcycle - 15657.wav (c) Finger Snap Latent Representation - 349.wav

that can be formally defined as a binary classification task, where each label corresponds to the
presence or absence of birds. Each signal is 10sec. long, and has been sampled at 44.1Khz. The
evaluation of the results is performed via the Area Under Curve metric on 33% of the data. The ex-
periments are repeated 50 times. The total audio length of this dataset is thus of slightly more than
11 hours of audio recordings. To put in comparison, it is about 10× larger than CIFAR10 in term of
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numbers of scalar values in the dataset. The results comparing our algorithm to the DSN with each
of the wavelet family used in both SDCSN and DCSN are in Table 1. Both the SDCSN and DCSN
outperform from at least 20% accuracy of any DSN proving the enhancement of the scattering fea-
ture by including the crossed latent representations. For all the architectures, the octave and quality
parameters of the layers are J1 = 5, Q1 = 8, J2 = 4, Q2 = 1. As the feature of interests are birds
songs, only high frequency content requires high resolution, the thresholding is applied per window
of 216 representing ≈ 1.5sec.

Table 1: Classification Results - Bird Detection - Area Under Curve metric

min mean max
Sparse Deep Croisé Scattering Network
S1 S2 R1 R2 70.08 73.33 78.51
S1 R1 69.52 72.52 74.98
Deep Croisé Scattering Network
S1 S2 68.77 71.66 74.17
S1 68.98 71.52 74.03
Deep Scattering Network
Morlet - S1 S2 51.88 53.57 55.62
Paul - S1 S2 52.11 54.58 56.88
Gammatone - S1 S2 51.34 54.11 56.09
Morlet - S1 48.11 50.66 53.60
Paul - S1 48.63 52.45 54.84
Gammatone - S1 50.78 53.01 55.10

2.4.2 PROPOSED SOLUTION AND CONTROLLED DENOISING EXPERIMENT

We based our implementation on Balestriero & Glotin (2017) leveraging the Fourier based computa-
tions and localized filter in the frequency domain. For all input signals we perform a renormalization
such that all inputs have unitary energy. We provide series of experiments, each demonstrating the
benefits of our networks.

When considering different dataset sizes, the impact of denoising can be analyzed in details in
Fig. 4a. As the dataset becomes smaller, the thresholding operator removing the noise perturbations
becomes mandatory.. With infinite data and very high capacity classifier, a priori denoising becomes
redundant as it is possible for the classifier to leverage the variance of the data to adjust correctly the
hyperplanes delimiting the class regions. However, doing such learning is not possible with small
scale dataset hence requiring a priori and deterministic denoising.

Another experiment highlighting the need for denoising in practical application comes from the
possibility to have different noise levels from the training set to the test set. Thus we propose in Fig.
4b the following experiment. For both the SDCSN and DCSN models, training is achieved done on
the denoised dataset. Then, the testing phase is performed on the raw dataset. Clearly, performances
degrade strongly for the DCSN showing the inhability of the classifier, even though after standard
scattering network transform, to be robust to noise level changes during and after training. This
shows empirically the need of a thresholding non-linearity to provide more robustness to Scattering
networks.

2.4.3 SPARSITY INDUCED VIA THRESHOLDING

We now propose to visualize the sparsity induced via our thresholding technique (Fig. 5,10). To do
so we present histograms of the representation with and without thresholding. Greater sparsity cou-
pled with better performances and closely related to better linearization capacities, which benefits
greatly the classifier as the size of the data is small 4a.

3 CONCLUSION AND FUTURE WORK

We presented an extension of the scattering network so that one can leverage multiple wavelet fam-
ilies simultaneously. Via a specific topology, cross family representations are performed carrying
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(a) SDCSN and DCSN - AUC Evaluation with re-
spect to data-set size - Average over 50 runs - 33 %
test set

(b) SDCSN and DCSN: Training on denoised and
Testing on noisy data vs denoised data: From left to
right: - SDCSN S1+R1 & SDCSN S1+S2+R1+R2
train/test on denoised - DCSN S1 & CSN S1+S2 train
on denoised/test on noisy

Figure 4: Robustness Evaluation

(a) SDCSN - Path: 1 → 1, 1:Gammatone (b) DCSN - Path: 1 → 1, 1:Gammatone

Figure 5: Histogram of activation of the first layer - signal and decomposition are provided in 2

crucial information, as we demonstrated experimentally, allowing to significantly outperform stan-
dard scattering networks. We then motivated and proposed analytical derivation of an optimal over-
complete basis threhsolding being input adaptive. By providing greater sparsity in the representation
but also a measure of filter-bank fitness. Again, we provided experimental validation of the use of
our thresholding technique proving the robustness implied by such non-linearity. Finally, the ability
to perform active denoising has been demonstrated crucial as we demonstrated that even in large
scale setting, standard machine learning approach coupled with the SN fail to discard non-stationary
noise. This coupled with the denoising ability of our approach should provide real world application
the stability needed for consistent results and prediction control.

Among the possible extensions is the one adapting the technique to convolutional neural networks
such that it provides robustness with respect to adversarial attacks. Furthermore, using a joint scat-
tering and DNN will inherit the benefits presented with our technique as our layers are the ones
closer to the input. Hence, denoising will benefit the inner layers, the unconstrained standard DNN
layers. Finally, it is possible to perform more consistent best basis selection a la maxout network.
In fact, our thresholding technique can be linked to an optimised ReLU based thresholding. In this
scheme, applying best basis selection based on the empirical risk would thus become equivalent to
the pooling operator of a maxout network.
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Stéphane Mallat. Understanding deep convolutional networks. Phil. Trans. R. Soc. A, 374(2065):
20150203, 2016.
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A BUILDING A DEEP CROISÉ SCATTERING NETWORK

A.1 CONTINOUS WAVELET TRANSFORM

”By oscillating it resembles a wave, but by being localized it is a wavelet”.
Yves Meyer
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Wavelets were first introduced for high resolution seismology Goupillaud et al. (1984) Grossmann &
Morlet (1984) and then developed theoretically by Meyer et al. Daubechies et al. (1986). Formally,
wavelet is a function ψ ∈ L2 such that: ∫

ψ(t)dt = 0, (16)

it is normalized such that ‖ψ‖L2 = 1. There exist two categories of wavelets, the discrete wavelets
and the continuous ones. The discrete wavelets transform are constructed based on a system of linear
equation. These equations represent the atom’s property. These wavelet when scaled in a dyadic
fashion form an orthonormal atom dictionary. Withal, the continuous wavelets have an explicit
formulation and build an over-complete dictionary when successively scaled. In this work, we will
focus on the continuous wavelets as they provide a more complete tool for analysis of signals. In
order to perform a time-frequency transform of a signal, we first build a filter bank based on the
mother wavelet. This wavelet is names the mother wavelet since it will be dilated and translated in
order to create the filters that will constitute the filter bank. Notice that wavelets have a constant-Q
property, thereby the ratio bandwidth to center frequency of the children wavelets are identical to the
one of the mother. Then, the more the wavelet atom is high frequency the more it will be localized
in time. The usual dilation parameters follows a geometric progression and belongs to the following
set:

Λ =
{

2j/Q, j = 0, ..., J ×Q− 1
}

. Where the integers J andQ denote respectively the number of octaves, and the number of wavelets
per octave. In order to develop a systematic and general principle to develop a filter bank for
any wavelet family, we will consider the weighted version of the geometric progression mentioned
above, that is:

Λ =
{
α2j/Q, j = 0, ..., J ×Q− 1

}
. In fact, the implementation of wavelet filter bank can be delicate since the mother wavelet has to
be define at a proper center frequency such that no artifact or redundant information will appear in
the final representation. Thus, in the section A.3 we propose a principled approach that allows the
computation of the filter bank of any continuous wavelet. Beside, this re-normalized scaled is crucial
to the comparison between different continuous wavelet. Having selected a geometric progression
ensemble, the dilated version of the mother wavelet in the time are computed as follows:

ψλ(t) =
1

λ
ψ(

t

λ
), ∀λ ∈ Λ

, and can be calculated in the Fourier domain as follows:

ψ̂λ(ω) = ψ̂(λω), ∀λ ∈ Λ

.

Notice that in practice the wavelets are computed in the Fourier domain as the wavelet transform will
be based on a convolution operation which can be achieved with more efficiency. By construction
the children wavelets have the same properties than the mother one. As a result, in the Fourier
domain:

ψ̂λ = 0, ∀λ ∈ Λ

. Thus, to create a filter bank that cover all the frequency support, one needs a function that captures
the low frequencies contents. The function is called the scaling function and satisfies the following
criteria: ∫

φ(t)dt = 1

.

Finally, we denote by Wx, where W ∈ CN∗(J∗Q)×N is a block matrix such that each block cor-
responds to the filters at all scales for a given time. Also, we denote by S(Wx)(λ, t) the reshape
operator such that,

S(Wx)(λ, t) = (
1√
λ
ψ?λ ? x)(t),∀λ ∈ Λ, (17)

where ψ? is the complex conjugate of ψλ.
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A.2 WAVELET FAMILIES

Among the continuous wavelets, different selection of mother wavelet is possible. Each one posses
different properties, such as bandwidth, center frequency. This section is dedicated to the develop-
ment of the families that are important for the analysis of diverse signals.

A.2.1 THE MORLET WAVELET

The Morlet wavelet (Fig. 6) is built by modulating a complex exponential and a Gaussian window
defined in the time domain by,

ψM(t) = π−
1
4 eiω0te−

t2

2 , (18)

where ω0 defines the frequency plane. In the frequency domain, we denote it by ψ̂M(t),

ψ̂M(ω) = π−
1
4 e−

(ω−ω0)2

2 ,∀ω ∈ R?+, (19)

thus, it is clear that ω0 defines the center frequency of the mother wavelet.

With associated frequency center and standard deviation denoted respectively by ωλi
c and ∆λiω,

∀j ∈ {0, ..., J ∗Q− 1} are:

ωλi
c =

ω0

λi
,

∆λiω =
1

2λ2i
.

Notice that for the admissibility criteria ω0 = 6, however one can impose that zeros-mean condition
facilely in the Fourier domain. Usually, this parameter is assign to the control of the center frequency
of the mother wavelet, however in our case, we will see in the section A.3 a simple way to select
a mother wavelet close enough to the Nyquist frequency such that all its contracted versions are
properly defined. Then, we are able to vary the parameter ω0 in order to have different support of
Morlet wavelet.

Figure 6: On the left a Morlet wavelet in the time domain where the dashed line is the imaginary
part, the solid line is the real part, and the black envelope is the complex modulus, on the right a
Morlet wavelet in the frequency domain.

The Morlet wavelet, is optimal from the uncertainty principle point of view Mallat (1999). The
uncertainty principle, when given a time-frequency atoms, is the area of the rectangle of its joint
time-frequency resolution. In the case of wavelet, given the fact that their ratio bandwidth to center
frequency is equal implies that this area is equal for the mother wavelets and its scaled versions. As
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a result, because of its time-frequency versatility this wavelet is wildly used for biological signals
such as bio-acoustic Balestriero & Glotin (2015), seismic traces Chopra* & Marfurt (2015), EEG
DAvanzoa et al. data.

A.2.2 THE GAMMATONE WAVELET

The Gammatone wavelet is a complex-valued wavelet that has been developed by Venkitaraman
et al. (2014) via a transformation of the real-valued Gammatone auditory filter which provides a good
approximation of the basilar membrane filter Flanagan (1960). Because of its origin and properties,
this wavelet has been successfully applied for classification of acoustic scene Lostanlen & Andén.
The Gammatone wavelet (Fig. 7) is defined in the time domain by,

ψG(t) =
(
2π(i− σ)tm−1 + (m− 1)tm−2

)
e−2piσte2piit, (20)

and in the frequency domain by,

ψ̂G(ω) =
iω(m− 1)!

(σ + i(ω − σ))
m . (21)

A precise work on this wavelet achieved by V. Lostalnen in Lostanlen (2017) allows us to have an
explicit formulation of the parameter σ such that the wavelet can be scaled while respecting the
admissibility criteria:

σ2 =
r

2
m (1− r 2

m )m2ξ2

2

(√
1 +

B2

(1− r 2
m )2m2ξ2

− 1

)
,

where ξ is the center frequency and B is the bandwidth parameter. Notice that B = (1 − 2−
1
Q )ξ

with ξ = 2π

1+2
1
Q

induce a quasi orthogonal filter bank. The associated frequency center and standard

deviation denoted respectively by ωλi
c and ∆λiω, ∀j ∈ {0, ..., J ∗Q− 1} are thus:

ωλi
c = ξ,

∆λiω = B.

For this wavelet, thanks to the derivation in Lostanlen (2017), we can manually select for each order
m the center frequency and bandwidth of the mother wavelet, which ease the filter bank design.
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Figure 7: On the upper (bottom) left a m = 4 (m = 10) Gammatone wavelet in the time domain
where the dashed line is the imaginary part and the solid line is the real part, on the upper (bottom)
right a m = 4 (m = 10) wavelet in the frequency domain.

An important property that is directly related to the auditory response system is the asymmetric
envelop, thereby the Gammatone wavelet is not invariant to time reversal to the contrary of the Mor-
let wavelet that behaves as a Gaussian function. Thus, for task such as sound classifications, this
wavelet provides an efficient filter that will be prone to perceive the sound attack’s. Beside this
suitable property for specific analysis, this wavelet is near optimal with respect to the uncertainty
principle. Notice that, when m → ∞ it yields the Gabor wavelet Cohen (1995). Another interest-
ing property of this wavelet is the causality, by taking into account only the previous and present
information, there is no bias implied by some future information and thus it is suitable for real time
signal analysis.

A.2.3 THE PAUL WAVELET

The Paul wavelet is a complex-valued wavelet which is highly localized in time, thereby has a poor
frequency resolution. Because of its precision in the time domain, this wavelet is an ideal candidate
to perform transient detection. The Paul wavelet of order m ( Fig. 8) is defined in the time domain
by,

ψP(t) =
2mimm!√

2m!π
(1− it)−(m+1) (22)

and in the frequency domain by,

ψ̂P(t) =
2m√

m(2m− 1)!
(ω)me−ω,∀ω ∈ R?+, (23)

15



Under review as a conference paper at ICLR 2018

With associated frequency center and standard deviation denoted respectively by ωλi
c and ∆λiω

,∀j ∈ {0, ..., J ∗Q− 1} are:

ωλj
c =

2m+ 1

2λj
,

∆λjω =

√
2m+ 1

2λj
.

In Torrence & Compo (1998) they provide a clear and explicit formulation of some wavelet families
applied the Paul wavelet in order to capture irregularly periodical variation in winds and sea surface
temperatures over the tropical eastern Pacific Ocean . In addition, it directly represents the phase
gradient from a single fringe pattern, yet providing a powerful tool in order to perform optical phase
evaluation Afifi et al. (2002).

Figure 8: On the upper (bottom) left a m = 2 (m = 6) Paul wavelet in the time domain where the
dashed line is the imaginary part and the solid line is the real part, on the upper (bottom) right a
m = 2 (m = 6) wavelet in the frequency domain.

A.3 FILTER BANK DESIGN

In the previous section, we defined and develop the properties of several families of wavelets.
Thereby, we can now consider the creation of the filter bank by means of these wavelets. Notice
that we propose a simple manner to obtain the filter bank in the Fourier domain. Two reasons are
at the origin of this choice: first, the wavelet transform is often computed in the Fourier domain be-
cause of its efficiency, secondly the wavelets are derived according to geometric progression scales,
these scales can directly be represented in the frequency domain, thereby it provided us a way of
knowing the position of the wavelet. However, in the time domain they are not directly quantifiable.
Our systematic framework is based on the intuitive consideration of the problem: we have to select a
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wavelet, named mother wavelet, that when contracted will create the filter bank derived from the se-
lected scales. Assuming that the signals we will use are real valued, then the information represented
in [−π, 0] and [0, π] are the same if extracted with a symmetric atom. Now, two kind of wavelets
are considered, if the wavelet is complex-valued then its support is in [0, π], thus the choice of the
mother wavelet should be around π and the contracted all along the frequency axis until the total
number of octave are covered. In the case of real-valued wavelet, if the wavelet is not symmetric
then it will capture other phase information in the frequency band:[−π, 0]. Still, the mother wavelet
can be selected to be close to π for its positive part, and −π for its negative one. After defining
the routine in order to select the mother wavelet, we propose a simple way to set the position of the
mother wavelet. For each family, the center frequency and standard deviation are derived by finding
α such that:

ωλ0
c + ∆λ0ω = π, (24)

where λ0 = α ∗ 20/Q denotes the first wavelet position. Given this equation, one create the mother
wavelet such that it avoids capturing elements after the Nyquist frequency and avert the spectral
mirror effect and artifacts. Given the value of α for a wavelet family, one can derive the wavelet
filter bank according to the Algorithm 1. The wavelet filter banks generated by this algorithm for the
different families aforementioned can be seen in Fig. 9. Notice that for sake of clarity, the scaling
functions are not shown in Fig. 9.

Figure 9: From top to bottom: Morlet wavelet filter bank, Gammatone wavelet filter bank with
m = 4, Paul wavelet filter bank m = 2

Input: wavelet family: f ∈ F , signal length: N , number of octaves: J , number of wavelets per
octave: Q, scale weight: α, wavelet parameter: m

Output: D : Filter bank of the wavelet family f
Initialize the wavelet frequency domain: ω ∈ [−π, π]
while j < J ∗Q do

λj = αf2
j
Q - Set up the scale for the jth children wavelet -

Dj = ψf (λj ∗ ω) - Compute the children wavelet at the given scale λj -
end

Algorithm 1: Compute Filter bank for any continuous wavelet family f ∈ F

Finally, in order to guarantee the admissibility criterion one has to verify that all the wavelets are
zeros-mean and square norm one. The first one is easily imposed by setting the wavelet to be null
around ω = 0 as it has been done to efficiently use the Morlet wavelet by Antoine et. al Farge (1992);
Antoine et al. (1993). Then, because of Parseval equality and the energy conservation principle, the
second one can be achieved by a re-normalization in the frequency domain of each atom.
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B ACTIVATION HISTOGRAM: SPARSITY EVALUATION LAYER 2

(a) SCSN 2nd Layer
Gammatone → Gammatone

(b) CSN 2nd Layer
Gammatone → Gammatone

(c) SCSN 2nd layer
Gammatone → Morlet

(d) CSN 2nd Layer
Gammatone → Morlet

(e) SCSN 2nd Layer
Gammatone → Paul

(f) CSN 2nd Layer
Gammatone → Paul

Figure 10: Histogram of activation of the second layer given in schema

C DENOISING IN AN ORTHOGONAL BASIS FRAMEWORK

Assuming that the observed signal y, is corrupted with white noise,
y = x+ ε, (25)

where ε is a vector of i.i.d centered normal distributionsN (0, σ2). Now we define the estimate of x
by x̂W,D such that:

x̂W,D(y) = WTDSWy (26)
where W denotes the orthogonal basis and DS is a diagonal binary operator such that,

DS
i,i = δi =

{
1 if i ∈ S
0 if i ∈ U (27)

, where U and S denote respectively the set of selected and unselected wavelet coefficients. We also
define DU such that I = DU + DS . This estimate corresponds to a thresholding operation in the
new basis and the inverse transform of this truncated representation.
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We define the denoising problem as the solution of the following mean-square error:

R?o(x,W ) = min
δ

E ‖x− x̂W,D(y)‖2 (28)

= min
δ

E
∥∥WT (Wx−DSWy

∥∥2 (29)

= min
δ

E
∥∥DUWx−DSW (x+ ε)

∥∥2 (30)

= min
δ

∥∥DUWx
∥∥2 + σ2tr(DSWWTDS) (31)

= min
δ

n∑
i

[Wx]2i 1{δi=0} + σ21{δi=1} (32)

=

n∑
i

min([Wx]2i , σ
2). (33)

Therefore, the optimal DS?

and DU?

given by the following δ values:

δi = 1|[Wx]2i |>σ2 . (34)

C.1 UPPER-BOUND NON-ORTHOGONAL RISK & EMPIRICAL RISK

x̂W,D(y) = W †DSWy (35)

R?(x,W ) = min
δ

E ‖x− x̂W,D(y)‖2 (36)

= min
δ

E
∥∥W †(Wx−DSWy

∥∥2 (37)

= min
δ

E
∥∥W †(DUWx−DSWε)

∥∥2 (38)

= min
δ

∥∥W ?DUWx
∥∥2 + σ2tr(WTDSW †W †

T

DSW ), (39)

Developing the previous expression and denoting by µ = Wx the wavelet coefficient vector, we
have:

R?(x,W ) = min
δ

n∑
t=1

n(J∗Q+1)∑
i,j=1

µiµjψ
†
t [i]ψ

†
t [j]1{δi=0,δj=0}

+ σ2

n(J∗Q+1)∑
i,j=1

(
n∑
t=1

ψ†t [i]ψ
†
t [j])ψ

T
i ψj1{δi=1,δj=1}. (40)

we first use the triangular inequality,

R?(x,W ) ≤ min
δ

n(J∗Q+1)∑
i,j=1

∣∣∣∣∣
n∑
t=1

µiµjψ
†
t [i]ψ

†
t [j]

∣∣∣∣∣ 1{δi=0,δj=0}

+ σ2

n(J∗Q+1)∑
i,j=1

∣∣∣∣∣
n∑
t=1

ψ†t [i]ψ
†
t [j])ψ

T
i ψj

∣∣∣∣∣ 1{δi=1,δj=1} (41)

Now let’s,

RU =

n(J∗Q+1)∑
i,j=1

∣∣∣∣∣
n∑
t=1

µiµjψ
†
t [i]ψ

†
t [j]

∣∣∣∣∣ , (42)

and,

RS = σ2

n(J∗Q+1)∑
i,j=1

∣∣∣∣∣
n∑
t=1

ψ†t [i]ψ
†
t [j])ψ

T
i ψj

∣∣∣∣∣ . (43)
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Then, based on the following min-max formulation, we obtain an upper bound of the ideal risk, that,
when minimized will approximate the ideal risk in the overcomplete case:

R?(x,W ) ≤
n(J∗Q+1)∑

k=1

min
δk

max
δl,l 6=k

RU1{δi=0,δj=0} +RS1{δi=1,δj=1} (44)

≤
n(J∗Q+1)∑

k=1

min
δk

( max
δl,l 6=k

R1 + max
δl,l 6=k

R2) (45)

=

n(J∗Q+1)∑
k=1

min
δk

1{δk=0}

n∗(J∗Q+1)∑
j=1

∣∣∣∣∣
n∑
t=1

µkµjψ
†
t [k]ψ†t [j]

∣∣∣∣∣


+ 1{δk=1}

σ2

n(J∗Q+1)∑
j=1

∣∣∣∣∣
n∑
t=1

ψ†t [k]ψ†t [j])ψ
T
k ψj

∣∣∣∣∣
 . (46)

Now, let’s denote byRUup the error term corresponding to unselected coefficients:

RUup =

n∗(J∗Q+1)∑
j=1

∣∣∣∣∣µkµj
n∑
t=1

ψ†t [k]ψ†t [j]

∣∣∣∣∣ , (47)

and byRSup for the selected ones:

RSup = σ2

n(J∗Q+1)∑
j=1

∣∣∣∣∣
n∑
t=1

(ψ†t [k]ψ†t [j])ψ
T
k ψj

∣∣∣∣∣ . (48)

we have that,

Rup(x,W ) =

n(J∗Q+1)∑
k=1

min
δk

1{δk=0}RUup + 1{δk=1}RSup (49)

=

n(J∗Q+1)∑
k=1

min(RUup,RSup). (50)

C.2 COMPARISON UPPER BOUND IDEAL RISK WITH ORTHOGONAL IDEAL RISK

Proposition 1.

Proof. The comparison of this upper bound risk given an orthogonal dictionary and the one derived
in the orthogonal case is as follows:

If the basis is orthogonal, we have,

n∑
t=1

(ψ†t [k]ψ†t [j]) =

{
1, k = j
0, else

(51)

and,

ψTk ψj =

{
1, k = j
0, else

(52)

Therefore, the upper-bound derived recovers the ideal risk in the orthogonal case.

C.3 COMPARISON UPPER BOUND IDEAL RISK WITH EMPIRICAL RISK

Proposition 2.
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Proof. If DS = I , the empirical risk is equal to:

R̃(y,W ) = σ2

n(J∗Q+1)∑
j=1

∣∣∣∣∣
n∑
t=1

(ψ†t [k]ψ†t [j])ψ
T
k ψj

∣∣∣∣∣ .
and the upper bound risk is:

Rup(x,W ) = σ2

n(J∗Q+1)∑
j=1

∣∣∣∣∣
n∑
t=1

(ψ†t [k]ψ†t [j])ψ
T
k ψj

∣∣∣∣∣ .
Thus both coincide as this restriction on the support of the risk makes it independent of both x and
y.

Proposition 3.

Proof. In the case where DU = I ,

R̃(y,W ) =

n(J∗Q+1)∑
j=1

∣∣∣∣∣µk(y)µj(y)
∑
t

ψ†t [k]ψ†t [j]

∣∣∣∣∣ (53)

=
∑
j

|(µk(x)µj(x) + µk(x)µj(ε) + µk(ε)µk(x) + µk(ε)µj(ε))| × (54)∣∣∣∣∣∑
t

ψ†t [k]ψ†t [j]

∣∣∣∣∣ , (55)

by the triangular inequality, we have that:

R̃(y,W ) ≤
∑
j

(|µk(x)µj(x)|+ |µk(x)µj(ε)|+ |µk(ε)µk(x)|+ |µk(ε)µj(ε))| × (56)∣∣∣∣∣∑
t

ψ†t [k]ψ†t [j]

∣∣∣∣∣ , (57)

by the monotony of expectation and the Fubini theorem, we have almost surely:

R̃(y,W ) ≤ Rup(x,W ) + C ×

∣∣∣∣∣
n∑
t=1

ψ†t [k]ψ†t [j]

∣∣∣∣∣ a.s.,

where C is equals to,

C =

n(J∗Q+1)∑
k=1

n(J∗Q+1)∑
j=1

|µk(x)| ‖ψj‖1 σ
√

2

π
+ |µj(x)| ‖ψk‖1 σ

√
2

π
+ σ2(1− 2

π
).
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