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Fig. 1: ImMimic enables embodiment-agnostic co-training between human and robot demonstrations. It leverages large-scale
human videos and a small amount of teleoperated robot data via MixUp interpolation for smooth domain transfer. We validate
ImMimic on four diverse manipulation tasks across four robotic embodiments.

Abstract—Learning robot manipulation from abundant human
videos offers a scalable alternative to costly robot-specific data
collection. However, domain gaps across visual, morphological,
and physical aspects hinder direct imitation. To effectively bridge
the domain gap, we propose ImMimic, an embodiment-agnostic
co-training framework that leverages both human videos and a
small amount of teleoperated robot demonstrations. ImMimic
uses Dynamic Time Warping (DTW) with either action- or
visual-based mapping to map retargeted human hand poses to
robot joints, followed by MixUp interpolation between paired
human and robot trajectories. Our key insights are (1) retargeted
human hand trajectories provide informative action labels, and
(2) interpolation over the mapped data creates intermediate
domains that facilitate smooth domain adaptation during co-
training. Evaluations on four real-world manipulation tasks (Pick
and Place, Push, Hammer, Flip) across four robotic embodiments
(Robotiq, Fin Ray, Allegro, Ability) show that ImMimic improves
task success rates and execution smoothness, highlighting its
efficacy to bridge the domain gap for robust robot manipulation.
The project website can be found at https://sites.google.com/view/
immimic.

I. INTRODUCTION

Teaching robots to perform diverse manipulation tasks
in real-world environments remains a significant challenge

because collecting robot-specific demonstration data is ex-
pensive. As an alternative, human videos have emerged as
a promising resource, offering abundant examples of peo-
ple engaging in everyday manipulation activities [52, 31].
Leveraging these human videos for robot training provides
a scalable and cost-effective approach to enhance robotic
skills without extensive robot demonstration collection or
simulation [56, 30, 48]. However, learning robot skills from
human demonstration videos still faces an inherent limitation:
a substantial domain gap arising from stark differences in
visual appearance, embodiment structure, physical constraints,
and other factors.

In general, the challenge of enabling robots to learn human
demonstrations can be formulated as a domain adaptation
problem: the robot (representing the target domain) aims to
emulate the behaviour of the human demonstrator (repre-
senting the source domain). A relevant application of this
concept can be seen in several recent, well-established vision-
based teleoperation systems [44, 17, 51] where the human
demonstrator often first practices with the teleoperation setup
before being able to collect high-quality robot data. This
process indeed reflects an instance of inverse adaptation, where
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the human demonstrator adapts to the robot system rather than
the way around. However, such inverse adaptation is absent
in human demonstration videos, as human demonstrators do
not consider the robot’s subsequent operation. Therefore, to
enable effective adaptation when learning robot skills from
such human data, recent works often preprocess the input
data of both domains—for example, masking out embodiments
in images [6, 30] to mitigate visual differences, or restrict-
ing the action space to only 3D translations to address the
embodiment-specific action gap [56, 26]. Additionally, another
line of works encourages the adaptation of the latent spaces of
visual inputs from both domains using unsupervised learning
objectives [58, 59, 33, 37], but often overlooks human actions,
i.e., the hand trajectories, instead learning the action decoder
solely from robot demonstrations.

To develop a more generalizable adaptation method across
diverse robot embodiments and manipulation tasks, we in-
troduce ImMimic (Interpolation-via-Mapping Mimic), an
embodiment-agnostic co-training framework that learns jointly
from human demonstration videos and robot teleoperations.
Our key insights are: (1) beyond the visual contexts, the
retargeted human hand trajectories can serve as action labels
for human demonstrations, (2) creating intermediate domains
via interpolation leads to robust adaptation, and (3) establish-
ing an effective mapping between human and robot data for
interpolation is essential for co-training. Specifically, we begin
by retargeting human hand poses into the robot’s action space.
We then perform sequence-level mapping via Dynamic Time
Warping (DTW), using either visual features or action distance
to pair each human timestep with its best-matching robot
timestep. Finally, inspired by MixUp-based adaptation [62,
23], we interpolate both condition and predicted actions along
these DTW mapping, enabling adaptation through intermediate
(human–robot) domains.

To demonstrate the benefits of the ImMimic, we conduct
comprehensive experiments across four different types of em-
bodiments: Robotiq Gripper, FR Gripper [3, 12, 34], Allegro
Hand, and Ability Hand. These embodiments are evaluated
on four manipulation tasks: Pick and Place, Push, Hammer,
and Flip. We show that ImMimic achieves higher success
rates and smoother motions across all embodiments and tasks
compared to baseline methods. We observe that action-based
mapping provides greater improvements than visual-based
mapping, suggesting that the rich action information of the
human hand trajectories is equally, if not more, beneficial for
co-training. Furthermore, we find that performance improves
when the average action distance between human and robot is
smaller, and interestingly, due to the factors such as hand-
arm mounting conditions and arm kinematics, solely using
a human-mimetic end-effector does not necessarily result in
smaller action distances. Finally, we analyze failure cases in
terms of hardware structure and algorithmic factors.

II. RELATED WORK

Learning from Human Videos. Human videos offer an
efficient and scalable source of supervision for robot learning.

Retrieval-based approaches [41, 37, 46, 58, 59] search large
video corpora for sequences that resemble the desired behavior
for augmented learning, while typically relying on the robot’s
own data for action decoding. To better utilize human videos,
two-stage methods [48, 47, 39, 56, 5] first learn high-level poli-
cies on human data and then adapt to robot demonstrations, but
limit low-level action learning. To address this, co-training [30]
jointly optimizes on human and robot data, yet typically relies
on heavy visual preprocessing or simplified action spaces,
leaving the core domain shift largely unaddressed. Our work
adopts a co-training pipeline, and treating human videos as
domain-adaptive supervision to smoothly address the domain
shifts.

Dexterous Retargeting. Dexterous retargeting translates
human hand poses into robot joint poses, ensuring that human
trajectories are mapped into the same action space used for
robot execution. Most recent works adopt this technique to
generate robot action commands for teleoperation by ob-
serving a human demonstrator moving their own hand [44,
17, 29, 51, 49]. However, continuous guidance from the
human demonstrator is crucial for the robot’s success during
teleoperation [32]. Other works [10, 8, 48, 4, 24, 43, 50,
9, 57] leverage retargeted robot trajectories to learn robot
policies through bespoke refinements tailored to dexterous
grasping [10, 8], reinforcement learning [50, 24, 43, 9], fine-
tuning with additional robot data [48, 4], or human-in-the-
loop corrections [57]. This additional process underscores
the domain gap between retargeted trajectories and actual
robot execution, which arises from various factors such as
visual, kinematic, and physical differences. Our work handles
such gap through a novel embodiment-agnostic co-training
framework that smoothly adapts human demonstrations to the
robot domain.

Domain Adaptation. To bridge domain gap, classic meth-
ods include adversarial feature adaptation [20] and cycle-
consistent data translation [27]. Recent work inserts interme-
diate domains via domain flow [22] with MixUp [1, 62, 60]
to build the source-to-target path. In robotic imitation learn-
ing, methods learn domain-invariant representations—such as
viewpoint-agnostic and visual-invariant encoders—to handle
sim-to-real and human-to-robot perception gaps [53, 13].
Meta-learned and latent-policy adaptation approaches enable
rapid embodiment transfer and observation-to-action align-
ment [61, 18]. Structural adaptation via optimal transport
or point-cloud matching, combined with modality-invariant
representations and MixUp-augmented offline RL [54], helps
bridge domain gap [19, 63, 21, 14]. We extend this line by
applying MixUp to visual features and actions in latent space,
yielding a continuous bridge from the human domain to the
robot domain.

III. EMBODIMENT-AGNOSTIC CO-TRAINING FRAMEWORK

We aim to learn robotic manipulation policies from large-
scale, easily collected human videos, with only a small num-
ber of teleoperated robot demonstrations. For each task, the
model has access to a large corpus of human demonstrations



Fig. 2: Overview of how we collect, map, and interpolate human and robot data. (a) Robot demonstrations are collected via
visual teleoperation. (b) Human actions are retargeted from videos. (c, d) Visual or action based DTW maps retargeted human
and robot trajectories. (e) MixUp: Mapped human-robot pairs are interpolated in both the latent space and action space to
generate interpolated human data. Finally, we co-train the interpolated human data together with the robot data. See Fig. 3 for
the co-training pipeline.

{Ia,ht }Tt=1, where each frame Ia,ht ∈ RH×W×3 is an agent-
view RGB image. In parallel, it also receives a smaller set
of robot demonstrations, each containing agent-view video
{Ia,rt }Tt=1, wrist-view video {Iw,r

t }Tt=1, and proprioception
{rt}Tt=1, where rt ∈ RD includes end-effector pose and finger
joint positions.

This setting presents a domain adaptation challenge in
the context of human-to-robot imitation learning. Specifically,
human (source domain) and robot (target domain) data differ
in both visual and action: (1) a visual covariate shift between
human and robot observations due to embodiment appearance
differences, and (2) an action gap arising from differences in
embodiment structure and physical constraints, which can lead
to variations in how the same task is performed. Our goal is
to bridge these gaps to better adapt human demonstrations
to robot execution, enabling the policy to effectively leverage
both large-scale human videos and few-shot robot demonstra-
tions.

To achieve this, we first retarget estimated human hand
trajectories from videos to the robot trajectories (Sec. III-A).
We then jointly train the policy on both human and robot
demonstrations (Sec. III-B). During co-training, to achieve
a smooth domain adaptation from human to robot, we pair
human-robot samples using DTW, and further perform MixUp
with interpolation over mapped pairs (Sec. III-C). An overview
framework is shown in Fig. 3.

A. Hand Pose Retargeting System

To fully leverage human videos, we extract both visual
context and human hand trajectories, and then retarget hand
trajectories to robot embodiments following recent advanced
methods [48, 44].

Hand and Wrist Pose Estimation. We use MediaPipe [36]
to localize and crop the human hand in each frame. Each
patch is fed into FrankMocap [45], whose SMPL-X regressor

produces precise 3D positions for 21 hand joints in the local
wrist frame. By projecting these joints into the depth map and
solving a Perspective-n-Point problem, we recover the wrist
6D pose in camera frame.

Retargeting. Following AnyTeleop [44], we map human
keypoints pi

t to robot joint angles qt via

min
qt

N∑
i=1

∥∥αpi
t − fi(qt)

∥∥2+β
∥∥qt−qt−1

∥∥2, ql ≤ qt ≤ qu,

(1)
where fi is the robot’s forward-kinematics, and α, β balance
scale and temporal smoothness.

B. Co-Training

While prior work often treats human videos as auxiliary
pretraining data [48, 56], recent studies such as EgoMimic [30]
demonstrate the benefits of co-training on both human and
robot data. Motivated by this, we adopt a co-training strategy
that treats human and robot demonstrations equally, allowing
the policy to learn from both domains throughout a single
training. Regarding the policy backbone, our framework builds
on the Diffusion Policy [11].

Robot Prediction Loss. At each timestep t, where im-
ages and proprioception are denoted as {(Ia,rt , Iw,r

t , rt)},
we incorporate temporal context using a history of length
τ . Thus, the robot condition at each timestep is: zrt =[
za,rt−τ :t

∥∥ zw,r
t−τ :t

∥∥ rt−τ :t

]
∈ R(da+dw+da)×τ , where za,rt =

fθa(I
a,r
t ) and zw,r

t = fθw(I
w,r
t ) are feature embeddings ex-

tracted by separate ResNet18 [25] encoders fθa and fθw
respectively.

We denote the future action sequence as: a =(
ah→r
t+1 , . . . ,ah→r

t+k

)
, where k is the prediction horizon. A

diffusion policy Pϕ reconstructs a from a noisy action ã
using denoising steps conditioned on zt. The training objective



Fig. 3: Overview of our embodiment-agnostic co-training framework ImMimic. For robot demonstration, we train the policy
using agent- and wrist-view images encoded with ResNet fθa , fθw , along with proprioception rt. All are combined into the
observation condition zrt to predict future actions. For human demonstration, we train the same diffusion policy Pϕ using
human videos. A hand pose retargeting module generates retargeted robot actions ah→r

t , which serve as both the future action
and proprioception for training. Mapping with DTW, we apply MixUp (Fig. 2(e)) for human data with paired robot data. The
interpolation enables human data to smoothly adapt to the robot data. The model is optimized upon the sum of reconstruction
losses Lhuman and Lrobot.

minimizes an ℓ2 loss: Lrobot(ϕ) =
∑k

i=1

∥∥art+i − ârt+i

∥∥2
2
,

where ârt:t+k = Pϕ

(
ãrt:t+k

∣∣ zrt ) .
Human Prediction Loss. For a human video

{Ia,ht }
Tvid
t=1 , at each timestep t, the condition input

includes both image features and retargeted actions:
zht =

[
za,ht−τ :t

∥∥∥ 0t−τ :t

∥∥∥ ah→r
t−τ :t

]
∈ R(da+dw+da)×τ , where

each za,ht = fθh(I
a,h
t ) ∈ Rda is extracted using the

same ResNet encoder fθa , and ah→r
t is the retargeted

action (from Sec. III-A). Similarly, we compute the ℓ2
loss as Lhuman(ϕ) =

∑k
i=1

∥∥ah→r
t+i − âh→r

t+i

∥∥2
2
, where

âh→r
t:t+k = Pϕ

(
ãh→r
t:t+k

∣∣ zht ) .
Co-training Loss. During co-training, each batch includes

an equal proportion of robot and human data, and the total
loss is the sum of both: Ltotal(ϕ) = Lrobot(ϕ) + Lhuman(ϕ).

C. Mapping-guided MixUp

To create a continuum of intermediate domains in latent
space such that the source and target domain on a smooth
manifold [23], we propose a mapping-guided MixUp method.

Mapping. To construct the affinity between human and
robot demonstrations, we compute a mappingMh→r between
human demonstration Dh and robot demonstration Dr using
Dynamic Time Warping (DTW) [38], based on either visual
or action distance. Mapping Mh→r(t) denotes the set of
given human timestep t mapped with robot timesteps across
multiple demonstrations. This mapping assumes that mapped
human and robot segments with similar visual or action
patterns correspond to shared states [15]. Similar to retrieval-
based methods [37], DTW ensures temporal consistency and

avoids implausible supervision. We explore two mapping
strategies: (1) Action-based Mapping. We define the action
distance between a retargeted human demonstration and a
robot demonstration as a weighted sum of several components:
dact = ∥th→r − tr∥1 + λ1∥ph→r −pr∥1 + λ2 drot

(
oh→r,or

)
,

where t denotes the translation, p the hand pose, o the
orientation, drot the angular distance and λ1, λ2 are weighting
coefficients, and (2) Visual-based Mapping. Here, we compute
the frame-wise distance using extracted visual features and
temporal alignment: dvis = ∥fh→r − fr∥2, where f represents
visual features extracted from a pretrained encoder.

MixUp-based Interpolation. After establishing the map-
ping, we apply MixUp [62] to interpolate between original
human and robot data, creating interpolated human data. Dur-
ing co-training, we train jointly on both the interpolated human
data and the original robot data, serving as both regularization
and augmentation.

During training, we apply MixUp on both the condition
inputs and the predicted actions. At each training iteration, for
each human timestep t, we randomly sample a robot timestep
t′ ∈ Mh→r(t) and construct the mixed condition input and
predicted action as:

zmix
t = α·zht +(1−α)·zrt′ , amix

t:t+k = α·ah→r
t:t+k+(1−α)·art′:t′+k

(2)
where zht and ah→r

t:t+k are the condition input and retargeted
action of the raw human data, and zrt′ , art′:t′+k come from
the mapped robot demonstration. Inspired by DLOW [23],
we adopt a progressive interpolation strategy that gradually
decreases the coefficient α during training, enabling smoother



domain adaptation.

D. Inference
At test time, actions are predicted at a fixed inference

frequency in the timestep of k. At each inference step t,
an upsample rate γ, which is calculated from the duration
of teleoperation and consistent with the rate used in training,
is applied to both observations and predicted actions (details
in the Supp. A). The condition zrt is constructed using an
observation history of length τ . A future action sequence
a = (ât+1, . . . , ât+k) is predicted from random noise. For sta-
bility, temporal ensembling is applied with a decaying weight
factor to average overlapping predictions across timesteps.

IV. EXPERIMENT SETUPS

Hardware setup. We conduct experiments using a Franka
Emika Panda robot arm equipped with four types of end-
effectors (see Fig. 1): (1) Robotiq 2F-85 Fripper (2-finger),
(2) Fin Ray Fripper (2-finger), (3) Allegro Hand (4-finger),
and (4) Ability Hand (5-finger). These devices provide a range
of dexterity and serve to evaluate embodiment transfer under
different hardware configurations.

Tasks. We introduce two categories of manipulation tasks,
desinged to target increasing levels of control difficulty and
embodiment demands: (1) Basic Object Manipulation. These
tasks assess coarse end-effector control and general spatial
positioning: Pick and Place: The robot must pick up a cube
from a random initial position and place it precisely at a
designated goal location. Push: The robot must push a cube
across a tabletop surface into a specified goal region. (2) Tool-
based Manipulation. These tasks evaluate the robot’s ability
to manipulate external tools as a proxy for object interaction:
Hammer: The robot picks up a hammer and strikes a target
point. Flip: The robot uses a spatula to flip a bagel off the
surface.

Baselines. We compare against the following baselines
in our experiments: Robot-only (Training diffusion policy
using only robot data), Two-stage Fine-Tuning (Pretraining
on human videos, followed by fine-tuning with robot data),
Vanilla Co-Training (Simultanous training on both human and
robot data), Random Mapping (Randomly pairing human and
robot data for MixUp), Visual Mapping (ImMimic-V, using
DTW with visual feature for mapping), and Action Mapping
(ImMimic-A, using DTW with action for mapping).

Metrics. We evaluate performance using three key metrics:
(1). Success Rate (SR). The proportion of 10 rollouts that
successfully complete the task, scored in a binary manner
(success or failure). (2). Trajectory Smoothness (SPARC).
Trajectory smoothness is quantified using the Spectral Arc
Length (SPARC) [28], which measures the smoothness in the
frequency domain. (3). Action Distance (AD). The average
distance of translation and orientation after DTW for trajectory
similarity.

V. CORE RESULTS

Human videos enhance the robustness and smoothness
of learned policies. Leveraging human videos substantially

improves policy success rates as shown in Tab. I. As shown
in Tab. II, policies trained with ImMimic-A consistently
achieve higher success rates across all tasks and embodiments
compared to robot-only, two-stage fine-tuning, and co-training
baselines. These results indicate that learning from human
videos using our method improves the robustness of robot
rollouts, as the interpolated human data effectively serves as
data augmentation for the limited robot data. For example,
ImMimic-A is more robust to variations in object positions
(Fig. 7(c)). Furthermore, ImMimic improves action smooth-
ness. In Tab. III, we show that it achieves higher SPARC
scores compared to robot-only policies, indicating smoother
trajectories. It also outperforms vanilla co-training on three
out of four embodiments. These results together suggest that
our method effectively enhances the robot policy by leveraging
prior knowledge from human demonstrations.

We compare action-based and visual-based mapping to
evaluate their effectiveness in bridging human-robot domain
gap. As shown in Tab. II, action-based mapping (ImMimic-A)
consistently outperforms visual-based mapping (ImMimic-V)
and random mapping. This performance gain is attributed to
the fact that retargeted human actions, aligned via kinematic
constraints, are structurally more similar to robot actions than
visual features are to robot observations. In a separate long-
horizon video retrieval task (details in Supp. C), we extend
DTW to retrieve robot-relevant subsequences from unseg-
mented human videos. The results in Fig. 6 show that action-
based mapping can be more accurate and robust with visual
and action disturbance. Fig. 7(e) shows ImMimic-V failing due
to poor mapping, causing the robot to loop in place. Especially
in task with subtle action transitions, weak visual mapping
degrades performance, highlighting that mapping quality is
critical, and training with action-based mapping leads to a
more reliable robot policy.

ImMimic leads to consistent improvement across embod-
iments. ImMimic consistently enhances policy performance
across different end-effectors, regardless of their morpho-
logical similarity to the human hand. As shown in Tab. I,
ImMimic-A improves task success across all embodiments
compared to the Robot-Only baseline, and outperforms or
matches the performance of Co-Training. This demonstrates
that ImMimic-A effectively adapts to various tasks and em-
bodiments.

However, for certain embodiment-task, success rates remain
low despite using our method. For Hammer with Ability Hand
(0.0 SR), Fig. 7(d) shows that the short thumb causes the index
finger to make unintended contact with the hammer, leading
to misoriented grasp. For Flip with Allegro Hand (≤ 0.2 SR),
Fig. 7(g) shows a failure case where the hand cannot firmly
grasp the spatula due to its large size. These cases show the
essential effects of embodiment structure on task performance.

More human-mimetic embodiments don’t necessarily
lead to better transfer. Intuitively speaking, human-mimetic
embodiments should exhibit smaller action distance to human
demonstrations, but our results show otherwise. Average AD
(Action Distance) shows that two dexterous hands demon-



Setting Pick and Place Push
Robotiq FR Allegro Ability Robotiq FR Allegro Ability

Robot Only 0.40 1.00 0.00 0.80 0.00 0.60 1.00 1.00
Co-Training 0.40 1.00 1.00 0.80 0.20 0.60 1.00 1.00
ImMimic-A 1.00 1.00 1.00 1.00 0.40 0.70 1.00 1.00

Setting Hammer Flip
Robotiq FR Allegro Ability Robotiq FR Allegro Ability

Robot Only 0.20 0.90 0.00 0.00 0.60 0.60 0.00 0.60
Co-Training 0.40 0.80 0.00 0.00 0.60 0.80 0.00 0.90
ImMimic-A 0.50 1.00 0.20 0.00 1.00 0.80 0.20 1.00

TABLE I: Success rates of Robot-Only, Co-Training, and ImMimic-A across four embodiments and four tasks. Policies are
trained using 5 robot demonstrations and 100 human demonstrations.
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Fig. 4: Sample efficiency of ImMimic-A with varying numbers
of human demonstrations.

Fig. 5: Sample efficiency of ImMimic-A and Robot-Only with
varying numbers of robot demonstrations.

Setting Robotiq Ability
Pick and Place Flip Pick and Place Flip

Robot Only 0.40 0.60 0.80 0.60

Fine-Tuning 0.80 0.70 0.50 0.40
Co-Training 0.40 0.80 0.80 0.90

Random Mapping 0.40 0.50 0.80 0.50
ImMimic-V 1.00 0.50 0.90 0.70
ImMimic-A 1.00 1.00 1.00 1.00

TABLE II: Comparison of success rate across two embodi-
ments (Robotiq, Ability) and two tasks (Pick and Place, Flip),
with 5 robot demos and 100 human demos.

Embodi-
ment

Rollout
(Robot Only)

Rollout
(Co-Training)

Rollout
(ImMimic-A)

Robotiq -12.7694 -9.6533 -9.4424
FR -24.4935 -14.3644 -15.6430

Ability -13.9228 -10.9241 -10.8409
Allegro N/A -17.1312 -13.8940

TABLE III: Spectral Arc Length (SPARC) smoothness scores
(↑) on Pick and Place. A higher score indicates a smoother
trajectory. We evaluate average scores on 5 successful rollouts
over 3 methods.

strate larger action distances (Allegro: 0.078, Ability: 0.075)
compared to the two grippers (Robotiq: 0.066, FR: 0.065).
Moreover, Tab. I show that policies benefit more from human
videos when the action distance is smaller, regardless of its
mechanical structure. This is potentially due to the fact that
in addition to hand design, mounting configuration and arm
kinematics also influence the action retargeting and the way
robot performs the task.
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Fig. 6: Comparison of Mean IoU across different disturbance
settings.

These observations are likely to offer useful insights for end-
effector design as well. In Fig. 7(a,b), Robotiq’s thin fingertips
and palm gap cause unstable contact and slipping. In Fig. 7(d),
Ability’s shorter thumb may contribute to misaligned grasps
when position offsets are present. In Fig. 7(f,g), Allegro’s
larger size appears to limit its ability to lift the heavy hammer
or grasp the spatula firmly. Overall, features such as longer
fingertips, extended thumb reach, and higher grasping force
may support more robust performance across a range of
manipulation tasks.
The scale and diversity of human demonstrations enhance
learning performance. Human videos exhibit greater diversity
than robot data, as reflected by a higher intra-dataset Action
Distance (AD) (0.012 vs. 0.005). In Fig. 4, for Pick and Place,
adding 50 human videos raises success rate (SR) from 0.4
to 1.0 for the Robotiq and from 0.8 to 0.9 for the Ability;
both reach 1.0 by 100 videos. Conversely, in Fig. 5, with 100
human videos fixed, ImMimic-A achieves 1.0 SR with only 5
robot demonstrations, while the robot-only baseline requires



(a) (b) (c) (d) (e) (f) (g)

Desired
Behavior

Failure
Cases

Fig. 7: Desired behavior and corresponding failure cases. (a) Unstable push due to thin tip. (b) Unstable grasp from structural
gap. (c) Grasp failure due to variations in object positions. (d) Poor hammer grasp from bad initial contact. (e) Motion trap
due to weak visual mapping. (f) Insufficient gripping force under heavy hammer weight. (g) Infirm grasp of spatula due to
large hand.

20 demos but still underperforms. These results suggest that
incorporating human data can significantly improve sample
efficiency when combined with a small amount of robot data.

VI. CONCLUSION

We present ImMimic, a novel embodiment-agnostic co-
training framework that unites large-scale human videos with
few-shot robot demonstrations. To bridge the domain gap
between human and robot data, ImMimic leverages DTW-
based mapping and MixUp to interpolate between mapped
human-robot pairs, creating intermediate domains that enable
smooth domain adaptation during co-training. Evaluation on
four tasks and four embodiments demonstrates consistent
improvements in task success rate and rollout smoothness.
Additionally, we find that mapping based on action similarity
between retargeted human and robot actions, rather than visual
context, leads to improved policy performance, suggesting
that human hand trajectories offer rich supervision for robot
learning. We also identify several failure cases, attributed to
either hardware design or limitations in the learning method,
and observe that a more human-like hand does not necessarily
yield better performance.

VII. LIMITATIONS

Exisiting limitation of ImMimic includes: (1) Large do-
main gap leads to performance drop. Although ImMimic
outperforms baselines across embodiments in most of the
tasks, its performance is still degraded under even larger
domain gaps, such as significant differences in average ac-
tion distances between embodiments and humans, or major
visual appearance differences. Future directions may include
improved representation learning to better align the features
even across larger domain gaps. (2) Inconsistent gains across
embodiments potentially indicate that policy performance
is influenced by the robot’s structural design. While Im-
Mimic consistently improves success rates and smoothness
across all four embodiments shown in Tab. I and Tab. II, the
magnitude of these gains varies. In future work, we aim to

empirically investigate how embodiment design impacts policy
performance when learning from human demonstrations, with
the ultimate goal of developing a unified system that enables
robots to more effectively acquire and adapt human skills.



APPENDIX

H. DEMONSTRATION COLLECTION SYSTEM

The overall data collection system is illustrated in Fig. H.1.
We collect both human demonstration videos and robot tele-
operation data to establish a comprehensive dataset for our
study. To minimize visual gap between human and robot
demonstrations, we use the same RealSense D435 camera for
both. Demonstrations are recorded from a fixed viewpoint that
captures the entire workspace and clearly shows hand-object
interactions.

A. Data Collection Throughput

As shown in Tab. H.1, we report the teleoperation through-
put for each embodiment on each task in terms of: (1)
Frequency – the average number of successful demonstrations
recorded per minute, (2) Success Rate – the ratio of successful
demonstrations to total attempts, and (3) Duration – the aver-
age length of all successful demonstrations. Due to structural
differences and varying task difficulty, these metrics differ
across embodiments and tasks. These trends also strongly
correlate with the final policy performance. For Hammer, using
Allegro Hand and Ability Hand for teleoperation shows low
success rates (≤ 0.3) and require longer durations due to the
need for precise wrist angle adjustments during teleoperation.
This aligns with the policy rollout results, where the policies
learned with these embodiments also exhibit low rollout suc-
cess rates (≤ 0.2). In contrast, for the same tasks, using the
Robotiq Gripper and FR Gripper for teleoperation shows better
performance, and the policies trained for these embodiments
achieve higher performance.

Method Metric Pick and Place Push Hammer Flip

Human Demo
Frequency 5.4 6.7 2.8 3.4
Success Rate 1.00 1.00 1.00 0.98
Duration 2.66 1.59 4.66 2.52

Vision-based Teleop
(Robotiq)

Frequency 1.47 1.33 1.05 0.45
Success Rate 0.82 0.88 0.48 0.28
Duration 8.33 9.17 12.73 7.54

Vision-based Teleop
(FR)

Frequency 1.4 1.52 0.83 0.76
Success Rate 0.83 0.88 0.52 0.46
Duration 12.87 17.04 16.23 11.04

Vision-based Teleop
(Allegro)

Frequency 1.42 1.67 0.12 0.43
Success Rate 0.70 0.86 0.04 0.32
Duration 15.43 10.99 21.31 14.78

Vision-based Teleop
(Ability)

Frequency 1.21 2.05 0.38 0.59
Success Rate 0.68 0.91 0.22 0.45
Duration 16.09 10.12 18.28 13.86

TABLE H.1: Frequency (number of successful demonstra-
tions collected per minute), Success Rate (ratio of successful
demonstrations) and Duration (average duration of all demon-
strations) for human demonstrations and vision-based teleop-
eration across four tasks using four different end-effectors:
Robotiq, Fin Ray, Allegro, Ability.

B. Sample Rate Normalization

To enable consistent training and inference across human
and robot demonstrations, we define a sample rate γ that
compensates for the difference in demonstration durations. As
shown in Tab. H.1, human demonstrations tend to be faster,

Method Pick and Place Push Hammer Flip

Human Demo 32 32 32 32

Robotiq 100 185 87 96

FR 155 343 112 140

Allegro 185 221 146 188

Ability 193 204 126 176

TABLE H.2: Sample rate γ used during training and inference.
It is computed as the ratio between the durations of human
and robot demonstrations and is used to subsample robot
data during training and upsample predicted actions during
inference.

while teleoperated robot demonstrations take longer time. To
align their temporal coverage, we fix the action sequence
length k = 32 for human demonstrations, then compute γ
as the ratio of robot to human demonstration durations. Using
this value, we uniformly subsample γ-spaced frames from each
robot demonstration to produce a k-step sequence that spans
a comparable duration.

During training, we use an observation history length ϵ = 2,
where the policy predicts k future actions based on ϵ past
observations. For robot data, these observations are offset by
γ, allowing the model to learn over a similar time horizon
as in human data. This normalization helps mitigate issues
caused by overly short prediction horizons in slower-paced
robot trajectories.

At inference, we upsample the predicted k-step sequence
using γ to recover the original robot execution speed. The
model performs inference every k steps, and intermediate steps
are filled via temporal ensembling of previously predicted ac-
tions with a decaying weight. This ensures smooth, continuous
motion during rollout while maintaining consistency with the
teleoperated control pace.

C. Camera Calibration

Accurate camera calibration is essential for both human and
robot demonstrations. Before data collection, we calibrate the
agent-view RealSense D435 camera used across our settings.
For vision-based teleoperation, we use a separate RealSense
D435 camera positioned over a dedicated workspace to the
left of the robot for RGBD-based hand pose estimation and
retargeting. This camera shares the same intrinsic parameters
and calibration with the agent-view camera.

We now describe the camera calibration method used to
transform retargeted human trajectories (extracted from human
demonstration videos) from the camera coordinate frame to the
robot base frame. Specifically, we aim to estimate the rigid
transformation that maps 3D points and orientations from the
camera frame to the robot base frame, denoted as:

baseTcam =

[
R t
0⊤ 1

]
, (H.1)

where R ∈ SO(3) is a rotation matrix and t ∈ R3 is a
translation vector. In homogeneous coordinates, any point pcam



Fig. H.1: Overall data collection system. (1) For human demonstrations, only the agent-view camera is used. (2) For robot
demonstrations, both the agent-view and wrist-view cameras are used to enable precise control. (3) For teleoperation, a separate
workspace is placed to the left of the robot, and a camera with identical intrinsics and calibration is used for vision-based
control.

in the camera frame is transformed to the robot base frame via:[
pbase

1

]
= baseTcam

[
pcam

1

]
. (H.2)

To perform calibration, we attach an AprilTag to a known
location (Fig H.2a) such that its pose relative to the robot
base is known, yielding baseTtag. The camera observes the tag,
yielding tagTcam. Combining these yields:

baseTcam = baseTtag
(tagTcam

)−1
, (H.3)

Multiple such measurements enable us to refine (R, t) using
a best-fit procedure. Given N pairs of corresponding points
pcam
i (in the camera frame) and prob

i (in the robot base frame),
we estimate (R, t) by minimizing:

L(R, t) =

N∑
i=1

∥prob
i − (Rpcam

i + t)∥2, (H.4)

s.t.RTR = I. (H.5)

We use a quaternion-based parameterization of R to enforce
SO(3) constraint and solve the problem via nonlinear least
squares. The overall calibration procedure is illustrated in
Fig H.2b.

I. RETARGETING

In both human videos processing and vision-based tele-
operation for robot data collection, we perform retargeting
from human hand motion to robot actions. While the overall
retargeting pipeline is shared across both settings, there are
key differences. For human demonstration videos, we use
offline retargeting based on RGB inputs and apply position
retargeting, where absolute 3D joint positions are mapped
to robot actions. For real-time vision-based teleoperation, we
apply online retargeting that replaces wrist pose estimation
with a more stable depth-based method and adopts vector
retargeting [44], which aligns finger segment orientations

(a) AprilTag used for camera
calibration, enabling precise es-
timation of its 6-DoF pose in
the camera frame.

(b) Calibration from the camera
coordinate frame to the robot
base frame.

Fig. H.2: Camera calibration process.

rather than absolute positions for teleoperation. This section
provides additional details on the retargeting process.

Human Pose Estimation and Wrist Localization. To
estimate human hand pose, we use MediaPipe [36], a real-time
pipeline that provides robust hand bounding boxes. Each
cropped hand region is then passed to FrankMocap [45], which
outputs shape and pose parameters for an SMPL-X model [42],
resulting in accurate 3D coordinates for 21 knuckle joints in
the local wrist frame.

To improve spatial accuracy, particularly important for
teleoperation, we replace FrankMocap’s estimated wrist trans-
lation with a wrist point derived from depth data captured
by an RGBD camera. For wrist orientation, we apply the
Perspective-n-Point (PnP) algorithm [16], solving:

R∗, t∗ = argmin
R,t

∑
i

∥pi −Π(RPi + t)∥2 (I.1)

where Pi are the 3D keypoints in the local frame, pi are their
2D projections, R ∈ SO(3) is the orientation matrix, t is the
translation vector, and Π is the camera projection function.



Setting Method mIoU Acc@0.5

Baseline Visual 0.52 66.7
Action 0.70 71.4

+ Visual Disturb. Visual 0.41↓0.11 33.3↓33.4
Action 0.67↓0.03 66.7↓4.7

+ Action Disturb. Visual 0.46↓0.06 40.0↓26.7
Action 0.65↓0.05 75.0↑3.6

TABLE J.1: Comparison of mean IoU and Acc@0.5 for
visual- and action-based mappings under different disturbance
conditions on long raw videos.

This yields a refined 6-DoF wrist pose that is consistent with
the observed depth.

Online Retargeting for Real-time Teleoperation. For
real-time teleoperation, we adopt vector retargeting to ensure
responsiveness and avoid kinematic singularities. Instead of
matching absolute joint positions, we optimize finger orien-
tations to follow the directions of human keypoint vectors.
Given keypoint vectors vi

t from MediaPipe [36], we solve for
the robot joint configuration by minimizing:

min
qt

N∑
i=1

∥∥αvi
t −R fi(qt)

∥∥2+β
∥∥qt−qt−1

∥∥2, s.t. ql ≤ qt ≤ qu,

(I.2)
where fi(·) maps to the corresponding robot finger vector,
R aligns coordinate frames, and α, β control the scaling and
temporal smoothness. We solve this constrained optimization
problem in under 10 ms per frame. To further reduce latency
and improve motion continuity, we apply a low-pass filter with
a smoothing parameter of 0.2 to suppress sudden keypoint
fluctuations. This enables stable control and recording at 30
Hz.

J. LONG RAW HUMAN VIDEO RETRIEVAL

A. Greedy Multi-Segment Subsequence DTW (GMS-SDTW).

In our current setup, we use segmented human and robot
demonstrations recorded in the same workspace while per-
forming the same task. This controlled design minimizes the
visual and action gap and simplifies the mapping process.
In contrast, more practical scenario involves long, untrimmed
human videos that include disturbances and task-irrelevant ac-
tions. In such cases, identifying an accurate mapping strategy
becomes even more critical. To extract useful segments from
these raw videos, recent retrieval-based methods attempts to
match human segments with corresponding robot behaviors,
most often relying on visual features [37]. We formulate a
retrieval task using long human videos, enabling a comparison
between visual- and action-based mapping strategies to clarify
which modality yields higher accuracy. To address this, we
propose Greedy Multi-Segment Subsequence DTW (GMS-
SDTW), an extension of our current mapping algorithm.

Overview of GMS-SDTW. Given a long human trajectory
H = {ht}Th

t=1 that contains an unknown number of action
subsequences, and a single robot trajectory R={rs}Tr

s=1, our
goal is to identify all the human subsequences that best match

the robot trajectory. We extend classical Subsequence DTW
(S-DTW) by scanning through H using a sliding window
method, greedily selecting mapped subsequences whose dis-
tance to the robot trajectory is below a predefined threshold ϵ.
The sliding window length L is varied within a predefined
range L∈ [Lmin, Lmax]. The algorithm is presented in Alg. 1.

S-DTW. The cumulative distance matrix D(i, j) is initial-
ized to support open-ended matching in the candidate sequence
R:

D(0, 0) =d(0, 0), D(i, 1) =

i∑
k=1

d(k, 1), D(1, j) = d(1, j)

for i = 1, . . . , Th and j = 1, . . . , Tr.
(J.1)

where d(i, j) is the pairwise distance between the i-th human
frame and j-th robot frame.

The recursive update is follows the standard DTW formu-
lation:

D(i, j) =d(i, j) + min
{
D(i−1, j−1),

D(i−1, j), D(i, j−1)
}
. (J.2)

The best-matching endpoint is chosen as j⋆ =
argminj D(Th, j), and the start index is recovered via
backtracking from (i, j⋆).

Greedy search. Starting at frame t = 1, we evaluate sub-
sequence Ht:t+L for lengths L ∈ [Lmin, Lmax] via S-DTW,
get the subsequence with the minimum distance, and store
it if d⋆ < ϵ. Stored subsequences are recorded as segments
(t, t+L⋆, k⋆, j⋆) and the search resumes from t= t+L⋆ +1.
Otherwise we increment t ← t + 1. The algorithm runs in
O
(
(Lmax − Lmin)Tr, Th

)
time, and each robot frame is only

assessed within the S-DTW dynamic-programming table.
Complexity. Each S-DTW distance has a time complexity

of O(ThTr). With a linear scan over T frames and at most
Lmax − Lmin + 1 window lengths, the overall complexity is
O
(
(Lmax − Lmin + 1)TrTh

)
, which is tractable in practice

since Lmax ≪ T .

B. Visual- and Action-based Long Raw Video Retrieval

As discussed in Core Results, action-based mapping tends
to offer more robust performance than visual mapping. To
further compare their performance, we propose a long raw
video retrieval task [35] as an intuitive way to assess the
robustness of each mapping method under varying conditions.
In addition to segmented human demos with well-defined
start and end boundaries, we also explore extended videos
containing multiple irrelevant visual and action segments.

We evaluate the following three scenarios: (1) Baseline:
Videos captured under standard clear conditions. (2) With
Visual Disturbance: Videos that include background clutter or
additional distracting objects, simulating more realistic visual
environments. (3) With Action Disturbance: Videos where
the demonstrated action is slightly altered (e.g., grasping a
different object), introducing minor motion variations.

Our proposed GMS-SDTW method processes each long
video to detect and maps subsequences corresponding to



(a) Baseline retrieval for a Pick and Place task, the same setting we used for training.

(b) Retrieval with visual disturbance: additional objects and background change.

(c) Retrieval with action disturbance: Pick and Place different objects.

Fig. J.1: Comparison of visual- and action-based mapping methods under baseline, visual disturbance, and action disturbance
conditions. The results indicate that visual-based mapping suffers a more noticeable performance drop under visual disturbances,
while action-based mapping remains comparatively robust.

Pick and Place robot demonstration trajectory. As shown in
Fig. J.1, action-based retrieval yields more precise results
showing resilience to visual disturbances. Quantitative results,
including mean Intersection over Union (mIoU) and accuracy
at a threshold of 0.5, are presented in Tab. J.1. By focusing on
action similarity, our system more accurately localizes the rel-
evant segments while reducing sensitivity to irrelevant visual
content. Overall, while visual-based mapping may suffer from
real-world visual variations, action-based mapping remains
robust and reliable.

K. ADDITIONAL BASELINE COMPARISON VIA VISUAL
RETRIEVAL

We compare ImMimic-A with the current state-of-the-
art retrieval-based method STRAP [37]. STRAP leverages
a strong vision foundation model, DINOv2 [40] to embed
each video frame and employs S-DTW to retrieve relevant
subtrajectories. Following STRAP, each robot demonstration
is first segmented into variable-length sub-trajectories using
the low-level end-effector motion heuristic. We then extract
DINOv2 features from agent-view videos for both human and
robot data. Treating robot subtrajectories as a query, we apply
S-DTW to locate matching subsequences in human videos.
We cap the number of matches per query at K = 500 where
K denotes the maximum number of matched segments per

query. As shown in Tab. L.1, STRAP outperforms the Robot
Only baseline, while ImMimic-A still achieves even higher
performance. STRAP is designed for robot-to-robot transfer
via retrieval-based matching and therefore does not explicitly
address the domain distribution gap present in human-to-robot
transfer. Moreover, while STRAP employs a strong visual
encoder for feature similarity, action information can offer
more robust correspondence in the presence of a human-to-
robot visual gap.

L. ADDITIONAL EXPERIMENTAL RESULTS AND DETAILS

A. Domain Gap

Learning from human videos poses two critical gaps that
often hinder policy transfer to robots: the visual gap and the
action gap [56, 30]. The visual gap arises due to significant
differences in appearance between humans and robots. The
action gap stems from differences in kinematic constraints,
motion dynamics, embodiment size, and task execution strate-
gies.

Visual Gap. In Tab. L.4, we present sample demonstration
clips highlighting how human and robot embodiments differ
significantly in their visual observations. While a shared
workspace setup can help reduce background-related visual
discrepancies, notable appearance differences between human
and robot demonstrations remain.



(a) Pick and Place: Robotiq (b) Push: Robotiq (c) Hammer: Robotiq (d) Flip: Robotiq

(e) Pick and Place: Ability (f) Push: Ability (g) Hammer: Ability (h) Flip: Ability

Fig. L.1: Visualization of sample trajectories pairs: the human retargeted trajectory and the corresponding robot demonstration
trajectory. Arrows indicate orientation.

Algorithm 1 Greedy Multi-Segment Subsequence DTW
(GMS-SDTW)

Require: Human trajectory H of length Th; robot trajectory
R of length Tr;

1: window bounds Lmin, Lmax; distance threshold ϵ
Ensure: Set P of matched segments (hstart, hend, rstart, rend, d)

2: P ← ∅; t← 1
3: while t+ Lmin − 1 ≤ Th do
4: dbest ← +∞
5: for L = Lmin to min(Lmax, Th − t+ 1) do
6: q← Ht:t+L−1

7: (d, jstart, jend, )← S-DTW(q,R)
8: if d < dbest then
9: dbest ← d

10: L⋆ ← L
11: j⋆start ← jstart
12: j⋆end ← jend
13: end if
14: end for
15: if dbest < ϵ then
16: Add (t, t+ L⋆ − 1, j⋆start, j

⋆
end, dbest) to P

17: t← t+ L⋆ ▷ Skip matched subsequence
18: else
19: t← t+ 1
20: end if
21: end while
22: return P

Action Gap. Fig. L.1 shows human demonstration trajecto-
ries overlaid with their corresponding teleoperated robot tra-
jectories. Despite structural differences in design, retargeting
aligns human and robot motions by emphasizing underlying
physical similarities. Tab L.3 further quantifies human–robot

Setting Robotiq Ability
Pick and Place Flip Pick and Place Flip

Robot Only 0.40 0.60 0.80 0.60
Co-Training 0.40 0.80 0.80 0.90

STRAP 0.50 0.60 0.90 0.90
ImMimic-A 1.00 1.00 1.00 1.00

TABLE L.1: Comparison of success rates between Robot
Only, Co-Training, STRAP, and our ImMimic-A across two
embodiments and two tasks, using 5 robot demonstrations and
100 human demonstrations.

Setting Robotiq Ability
Pick and Place Flip Pick and Place Flip

ImMimic-A (β-dist) 0.90 0.90 0.90 1.00
ImMimic-A (linear) 1.00 1.00 1.00 1.00

TABLE L.2: Comparison between ImMimic-A (β-dist), which
samples the MixUp ratio α from a β-distribution, and
ImMimic-A (linear), which uses a linearly decreasing schedule
for α. Success rates are reported across two embodiments
and two tasks, using 5 robot demonstrations and 100 human
demonstrations.

action similarity.

B. Visualization of the Mapping

During MixUp, our mapping strategy ensures that interpo-
lated demonstration pairs remain plausible to avoid generating
infeasible demonstrations. Experimental results show that Ran-
dom Mapping fails to improve performance, and ImMimic-V
with its lower mapping quality, underperforms compared to
ImMimic-A. We visualize an example of our action mapping
at certain timesteps for the Robotiq Gripper and Ability Hand
performing Pick and Place (Fig L.2). By sampling at different
rates, we minimize the speed discrepancy between human and



Embodiment Pick and Place Push Hammer Flip AVG

Robotiq 0.031 0.067 0.085 0.083 0.066
FR 0.028 0.077 0.068 0.089 0.065

Allegro 0.063 0.065 0.089 0.094 0.078
Ability 0.047 0.056 0.091 0.106 0.075

TABLE L.3: Average action similarity across different embod-
iments and tasks. Grippers generally exhibit a smaller action
gap compared to dexterous hands.

robot demonstrations to match their average durations. As
shown in the figure, our mapping strategy effectively mpas
observations and future states across embodiments, ensuring
task-relevant consistency.

C. Visualization of Domain Flow

To illustrate how our methods adapts the across domains,
we visualize the t-SNE [55] embeddings of human and robot
conditions in Fig. L.3. Each point in the scatter plot represents
a condition at a specific timestep from either human or the
robot dataset. Under Vanilla Co-Training, human and robot
data distributions remain clearly separated, highlighting the
domain gap. This separation between the source (human)
and target (robot) data indicates that, without explicit domain
adaptation, the model cannot fully leverage human data for
robot training. Similar to DLOW [23], which employs a
continuous “domainness” variable to transition from source
to target domains, ImMimic-A uses the mixing coefficient α
to control how far each sample is adapted toward the robot
domain.

D. MixUp with β-distribution

In several MixUp-based approaches [62, 60], α is sampled
from a β-distribution to augment the data distribution. In
Tab. L.2 we compare ImMimic-A (β-dist) to ImMimic-A
(linear), where α is sampled directly from a β-distribution. Our
results show that ImMimic-A (linear), which uses a linearly
decreasing α schedule, still outperforms ImMimic-A (β-dist).

The results confirm that progressive MixUp scheduling
enhances policy robustness across domains. Models trained
with the linear α scheduler achieve better adaptation between
human and robot distributions, leading to smoother trajectories
and improved task success compared to the β-distributed vari-
ant. This demonstrates that controlled, gradual interpolation
not only bridges the domain gap but also yields more stable
and effective robot behaviors.

E. Success Rate Metrics

Success Rate. The four tasks are designed to evaluate
various aspects of robotic manipulation. Each task includes
specific disturbances to test robustness.

1. Basic Object Manipulation. (1) Pick and Place: The
robot must pick up a cube from a start position and place
it at a designated target location. The initial position of the
cube is roughly fixed but includes a random offset within the
start area. This task evaluates the robot’s ability to accurately
grasp and relocate objects. The task is considered successful

if the cube fully covers the target point. We consider the
attempt successful if the cube fully covers the target point.
(2) Push: The robot must push the object from the start
position to the target region. This task primarily evaluates
finger-free manipulation capabilities. Similar to the Pick and
Place, a random offset is applied to the cube’s initial position.
The task is considered successful if the object reaches the
target region after the push. 2. Tool-based Manipulation. (1)
Hammer: The robot must pick up a hammer and strike a target
cube with its head. This task requires proper tool grasping and
precise targeting. The hammer is initially placed on a cube,
with its handle orientation randomly disturbed within a 45-
degree range. The task is successful if the hammer’s head
touches the top surface of the target cube. (2) Flip: The robot
must flip a bagel using a spatula after lifting it. This task
emphasizes precise wrist control and rotational dexterity. The
spatula is placed at an angle within 45 degrees, and the bagel
is positioned randomly on different parts of its head. Success
is defined as the bagel being flipped over.

Failure Cases. We summarize common failure modes ob-
served across the four robotic embodiments.

Robotiq Gripper. In Push, Robotiq Gripper struggles to
maintain a straight trajectory due to its thin fingertips, leading
to unstable contact and frequent path corrections. In Flip,
limited wrist articulation and low contact area make it difficult
to control the spatula through the full rotation, resulting in
intermittent slippage. Additionally, a structural gap above the
fingertips can cause the gripper to grasp the spatula within this
space, leading to an unstable grip. These issues are visually
highlighted in Fig. 7(a,b), where Robotiq’s fingertip geometry
and palm gap contribute to contact instability and slippage.

Fin Ray Gripper. In Push, FR Gripper improves on Robotiq
Gripper’s stability but still lacks the fine precision of multi-
fingered hands. In Flip, its limited wrist articulation leads to
occasional loss of control during dynamic movements.

Allegro Hand. In Hammer, Allegro’s relatively large hand
size reduces its ability to generate sufficient lift force, making
it difficult to wield heavier tools effectively. In Flip, the same
size limitation, combined with weak grip force, often results
in the spatula slipping before the motion completes. These
failures are illustrated in Fig. 7(f,g), where the hand struggles
to maintain stable tool contact during high-torque actions.

Ability Hand. In Pick and Place, the short thumb and limited
wrist flexibility of the Panda arm often result in unstable grasps
and frequent object drops. In Hammer, the same constraints
hinder stable tool grasping and force transmission. As shown
in Fig. 7(c,d), the shorter thumb may also contribute to mis-
aligned grasps, especially when positional offsets are present.

Mechanical Design Insights. Analysis of failure cases
reveals that no single hand design is universally optimal across
all tasks. However, several general insights can inform more
effective mechanical design of end-effector:

(1) Increase thumb length relative to other fingers to ex-
pand the acceptable grasping margin and reduce off-center
spinning (supported by biological evidence [2]). A longer
thumb increases the moment arm and provides greater contact



Task Embodiment Agent view

Pick and Place

Human

FR

Robotiq

Allegro

Ability

Push

Human

FR

Robotiq

Allegro

Ability

Hammer

Human

FR

Robotiq

Allegro

Ability

Flip

Human

FR

Robotiq

Allegro

Ability

TABLE L.4: Agent-view visualization for human and four different embodiments (FR, Robotiq, Allegro, Ability) performing
four tasks (Pick and Place, Push, Hammer, Flip).



Fig. L.2: An example of mapped pairs at the same timestep used for MixUp. As shown in Tab. H.2, we set sample rates γ
(Human: 32/32, Robotiq: 100/32, Ability: 193/32) based on average durations to ensure consistent execution speed.

Fig. L.3: t-SNE visualization of input conditions at each timestep from human and robot datasets during training. We compare
ImMimic-A with Co-Training, showing that ImMimic-A generates a smooth domain flow for the human data, enabling effective
domain adaptation.

redundancy, improving robustness when objects shift under
load.

(2) Account for mounting and arm constraints. Most cur-
rent end-effector mounts lack an additional wrist degree of
freedom, limiting the ability to perform human-like reorienta-
tion. Introducing a swivel or universal joint at the mounting
interface can restore this degree of freedom, enabling more
favorable tool approaches without compromising the robot’s
kinematic reach.

(3) Enable firm, adaptive grasps by incorporating an ad-
justable thumb–finger aperture mechanism and compliant in-
terface materials. A variable-spacing mechanism allows the
hand to conform to different tool cross-sections, while soft,
high-friction coatings compensate for local misalignments and
absorb minor impacts, preventing slippage throughout the

workspace.

F. Smoothness Metrics

Spectral Arc Length (SPARC) quantifies smoothness by
measuring the arc length of the normalized magnitude spec-
trum of a trajectory’s speed profile in the frequency domain
[28], building on the original Spectral Arc Length (SAL) [7].
Given a speed profile st, the normalized spectrum is defined
as:

Ŝ(ω) =
S(ω)

S(0)
(L.1)

The SAL metric is then computed as:

SAL ≜ −
∫ ωc

0

√√√√( 1

ωc

)2

+

(
d Ŝ(ω)

dω

)2

dω (L.2)



SPARC improves upon SAL by adaptively selecting the cutoff
frequency ωc based on an amplitude threshold S and an upper
frequency limit ωmax

c :

ωc ≜ min

{
ωmax
c , min

{
ω
∣∣∣ Ŝ(γ) < S, ∀ γ > ω

}}
(L.3)

In our implementation, we apply zero-padding to the speed
trajectory with a factor of K = 4, and set the parameters
ωmax
c = 15, S = 0.05. A higher SPARC score corresponds to

a smoother trajectory. With the metric, we are able to show that
our ImMimic improves the smoothness for the rollout policy
to both Robot-Only and Co-Training.

G. Training Setup and Deployment Details

All models are trained for 300 epochs using an NVIDIA
A40 GPU, with a batch size of 128. For deployment, we
perform policy rollout with both inference and control running
at 30 Hz on a desktop equipped with an NVIDIA RTX 4090
GPU. All robot sensors operate at 30 Hz, while the Zed and
RealSense cameras stream at 30 FPS.
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