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ABSTRACT

We propose that the grokking phenomenon, where the train loss of a neural net-
work decreases much earlier than its test loss, can arise due to a neural network
transitioning from lazy training dynamics to a rich, feature learning regime. To il-
lustrate this mechanism, we study the simple setting of vanilla gradient descent on
a polynomial regression problem with a two layer neural network which exhibits
grokking without regularization in a way that cannot be explained by existing the-
ories. We identify sufficient statistics for the test loss of such a network, and track-
ing these over training reveals that grokking arises in this setting when the network
first attempts to fit a kernel regression solution with its initial features, followed
by late-time feature learning where a generalizing solution is identified after train
loss is already low. We find that the key determinants of grokking are the rate of
feature learning—which can be controlled precisely by parameters that scale the
network output—and the alignment of the initial features with the target function
y(x). We argue this delayed generalization arises when (1) the top eigenvectors
of the initial neural tangent kernel and the task labels y(x) are misaligned, but (2)
the dataset size is large enough so that it is possible for the network to generalize
eventually, but not so large that train loss perfectly tracks test loss at all epochs,
and (3) the network begins training in the lazy regime so does not learn features
immediately. We conclude with evidence that this transition from lazy (linear
model) to rich training (feature learning) can control grokking in more general
settings, like on MNIST, one-layer Transformers, and student-teacher networks.

1 INTRODUCTION

The goal of a machine learning system is to learn models that generalize beyond their training set.
Typically, a practitioner hopes that a model’s performance on its training set will be an indicator of
its generalization capabilities on unseen data. However, this may not happen in practice. Grokking,
discovered by Power et al. (2022), is a phenomenon where the train loss of a network falls initially
with no corresponding decrease in test loss, then the network generalizes later during training. There
has been much recent work studying this phenomenon not only because it challenges the widely-
used approaches of early stopping or train loss termination criteria, but also because some Nanda
et al. (2023) see grokking as an example of sudden, emergent behavior in a neural network, and a
principle aim of the field of ML interpretability is to understand model internals well enough that
they do not exhibit such unexpected and unpredictable changes in behavior.

For these reasons, the phenomenology of grokking has been under close empirical study since its
discovery (Nanda et al., 2023; Davies et al., 2023; Thilak et al., 2022; Varma et al., 2023; Liu et al.,
2022a;b; Gromov, 2023). A limited number of theories have been proposed to explain the causes of
grokking, most notably those that attribute grokking to weight decay and weight norm decrease (Liu
et al., 2022a; Varma et al., 2023). However, we give counterexamples to such theories, implying a
need to explain grokking in a way that is consistent with empirical observations in current and past
work.

In this paper, we propose the idea that grokking is caused by delayed feature learning during training.
Our theoretical framework relies on the idea of lazy training where a network can fit its training

∗Equal Senior Authors. Correspondence to cpehlevan@seas.harvard.edu.

1

mailto:cpehlevan@seas.harvard.edu


Published as a conference paper at ICLR 2024

(a)

100 101 102 103 104 105

Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ss

Network Train Loss
Network Test Loss
Lazy Network Test Loss
NTK Regression Test Loss

(b)

100 101 102 103 104 105

Epochs
0.012

0.014

0.016

0.018

0.020

NT
K 

Al
ig

nm
en

t

NTK Alignment
Parameter weight norm

300

400

500

600

700

800

900

1000

Pa
ra

m
et

er
 w

ei
gh

t n
or

m

(c)

Figure 1: (a) Claimed parameter dynamics during grokking in a parameter space of R3 for
illustrative purposes. S(X,w0) is an affine subspace of parameter space reachable by models
linearized around w0. (b) Grokking on a polynomial regression task introduced in Section 5 with an
MLP, vanilla GD, and zero regularization. Green and blue loss curves in (b) correspond to sketched
green and blue parameter dynamics in (a). Horizontal line (black) in (b) is the mean-squared error
of best kernel regression estimate with the NTK at initialization. (c) The fact that parameter weight
norm increases (dashed orange) cannot be explained by any existing theories of grokking. Features
get aligned (grey) in a way we make precise in Section 5.

data without adapting its internal representations (Chizat et al., 2019). In this regime, the network
behaves as a linearized model with features evaluated at initialization (Jacot et al., 2018; Chizat
et al., 2019; Lee et al., 2019)1. We show that grokking can arise when a network begins fitting
and “memorizing” its training set (albeit imperfectly) in the linearized regime, then later adapts its
features to the data, leading to improved generalization at late time.

We illustrate this idea schematically in Figure 1(a). Suppose we randomly initialize a network with
the parameters w0. When linearized around w0, under gradient descent, a neural network’s weights
are restricted to an affine subspace spanned by initial gradients w0 + span{∇wf(w,xµ)|w0}Pµ=1,
and gradient descent finds a training minimizer on this subspace, wlazy. For MSE loss this minimizer
is the kernel regression solution with the network’s initial Neural Tangent Kernel (NTK) (Jacot et al.,
2018; Lee et al., 2019). Alternatively, if the network leaves the linearized regime, the weights can
leave the subspace of the linear model and converge to another solution wfeature. We hypothesize
that grokking can occur when a network transitions from initially tracking the linearized network
dynamics in the subspace to more complicated dynamics that approach wfeature off of the subspace
which achieves better generalization because it learns features.

Given a fixed dataset where grokking is possible, our proposal naturally suggests two key factors
that control grokking: (1) how much feature learning is necessary for good performance, and (2)
how fast these features are learned. We introduce two parameters corresponding to these notions
and demonstrate they can control grokking.

The key contributions in this paper are the following:

• We give simple examples of a two-layer MLP without any weight decay that exhibits grokking
in ways inconsistent with existing theories of grokking.

• We demonstrate with both theory and experiments that grokking in this setting is associated with
the transition from lazy training to a rich, feature learning regime, and can be tuned by parameters
that control this transition. These parameters are:

– A scale parameter, α, that controls the magnitude of the output of the network, and thus the
rate of feature learning throughout training (ie. laziness).

– The task-model kernel alignment between the neural tangent kernel (NTK) of the network at
initialization and the test labels, a measure of how much feature learning is necessary for good
performance on the task (Cortes et al., 2012).

1We use the terms “lazy,” “kernel regime” and “linearized model” interchangeably to refer to the same
phenomenon where the network learns without changing its internal features. Concretely, this is a regime
where the network output f can move a large amount while ∇wf stays approximately constant.
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– A “goldilocks” train set size so that generalization is possible but not immediate (for instance,
grokking is impossible in the infinite data limit where train loss perfectly tracks test loss).

• We provide multiple lines of evidence that the feature learning dynamics that give grokking in
this simple setup are also those at play during grokking in more complicated settings studied in
past work: on MNIST, with one-layer transformers, and with student-teacher networks. Given a
set of training inputs, we give a method to construct labels that can generate grokking.

2 RELATED WORK

Grokking. Nanda et al. (2023) mechanistically interpret the algorithm learned during grokking for
modular addition tasks. We show in Section 6 that merely tuning the network output scaling/laziness
parameter α is alone sufficient to make grokking continuously vanish on the one-layer Transformer
used in that work. Thilak et al. (2022) argue that grokking is caused by an optimization anomaly of
adaptive optimizers. We find grokking with vanilla gradient descent, so this cannot be the cause of
grokking in the general case. While we show in experiments in 6 that parameters from our theory
control grokking with adaptive optimizers, we note in Appendix Section 14 that learning dynamics
in such settings are less well understood. Davies et al. (2023) point out that grokking and double
descent share similarities in dynamics, and are fundamentally about the speed at which patterns of
varying complexity are learned. This agrees with our argument that the network first learns patterns
in the data that a linearized model can do well on, then changes its features to learn the patterns that
generalize. Liu et al. (2022a) empirically find that parameter weight norm at initialization can con-
trol grokking, while Varma et al. (2023) propose a heuristic for cross-entropy training with weight
decay, suggesting that grokking arises from a “generalizing circuit” being favored over a “memoriz-
ing circuit.” Both papers rely on weight decay and weight norm decrease to explain grokking. How-
ever, we show examples of grokking with zero weight decay and an increase in parameter weight
norm during training. We comment more on relations to existing theories in Appendix Section 9.

Kernel dynamics and feature learning in a polynomial setting. The limiting behavior of neural
networks in the large width limit (under commonly used parameterizations) is a linear model with
the NTK as the kernel (Jacot et al., 2018). This has motivated investigations into the inductive biases
of kernel methods (Bordelon et al., 2020; Canatar et al., 2021), which have revealed that kernels are
strongly biased to explain training data using the top components of their eigenspectrum. While this
spectral bias can enable good generalization on some learning problems, target functions that are not
in the top eigenspaces of the kernel require a potentially much larger amount of data. Many papers
have proposed examples where neural networks can outperform kernels statistically by amplifying
task-relevant dimensions compared to task-irrelevant dimensions in the input space (Mei et al., 2018;
Paccolat et al., 2021; Refinetti et al., 2021). One example of such a problem that has attracted recent
attention is single or multi-index models where the target function is a polynomial that depends on
a small subset of the high dimensional inputs (Ba et al., 2022; Arnaboldi et al., 2023; Nichani et al.,
2022; Atanasov et al., 2022; Berthier et al., 2023; Bietti et al., 2022). The fact that feature-learning
neural networks can outperform kernels on these tasks suggests that they could be useful toy models
of grokking, especially if early training is close to linearized dynamics.

3 WEIGHT NORM AND WEIGHT DECAY CANNOT EXPLAIN GROKKING

Previous explanations of grokking rely on weight norm decreases at late time (Liu et al., 2022a;
Varma et al., 2023). In Figure 2, we show a simple example of a modular arithmetic task, which is a
common task under study in grokking (Power et al., 2022; Nanda et al., 2023; Gromov, 2023), with
a two-layer MLP trained without any weight decay (details in Appendix Section 8.3). Weight norm
of parameters increases during training (Figure 2(a)), so grokking cannot in general be explained by
theories of weight decay.

We will focus on the dynamics of grokking in the loss (Figure 2(b)), because loss, not accuracy,
guides training dynamics. Further, we show in Section 19 of the Appendix that accuracy curves
for regression tasks are misleading because they can be gamed by choice of metric. We use mean-
squared error (MSE) loss on this classification task to adhere to the convention for how grokking
was seen in modular arithmetic in Liu et al. (2022a); Gromov (2023). We show in Section 6 that our
results remain consistent across architectures, optimizers, and datasets out of the box.
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Figure 2: (a) and (b) demonstrate accuracy and loss curves for grokking on a modular arithmetic task
that shows an increase in parameter weight norm during training. (c) is a sweep over the laziness
parameter α that we will introduce and provide a theory for, showcasing how it can continuously
control grokking.

While we gave the modular arithmetic task as a counterexample first because it is a common task
under study in grokking, we will focus on a polynomial regression task in the rest of the paper,
which we can analyze the dynamics of mathematically. We introduce that task in Section 5. Pa-
rameter weight norm in that example also increases as it groks, as visible in Figure 1 (c). These
inconsistencies motivate our study which results in two key parameters – network laziness and NTK
alignment – that we introduce. The effects of varying the first, α, are shown in Figure 2(c) and we
see it can make grokking more dramatic, or vanish entirely.

4 GROKKING AS TRANSITION FROM LAZY TO RICH LEARNING

Grokking is often conceptualized as a network that first finds a memorizing solution which fits the
training set but not the test set, later converging to a generalizing solution. We hypothesize that the
“memorizing” solutions that have been documented in prior works on grokking are equivalent to
early-time lazy training dynamics. At late time, the linearized approximation breaks down as the
network extracts useful features and begins to “grok.”

We next briefly review and define the idea of lazy training regime of neural networks, and introduce
some key theoretical concepts that will play an important role in our discussion.

4.1 PRIMER ON LAZY LEARNING: LINEAR VS NONLINEAR TRAINING REGIMES

In the lazy training regime, a network f(w,x) of inputs x and parameters w obey the approximation

f(w,x) ≈ f(w0,x) +∇wf(w,x)|w0
· (w −w0). (1)

While this approximation is still capable of learning nonlinear functions of the input x, it is a linear
model in the trainable parameters w. It can thus be recast as a kernel method with the neural tangent
kernel K

K(x,x′) = ∇wf(w,x)|w0
· ∇wf(w,x′)|w0

(2)

evaluated at initialization. This holds for any linearized model trained with GD on any loss, though
some loss functions (e.g. cross-entropy) cause non-linear models to eventually deviate from their
linearization (Lee et al., 2019). Deep neural networks can approach this linearization in many ways:

• Large width: in commonly used parameterization and initialization schemes of neural networks,
increasing the network width improves the quality of this approximation Jacot et al. (2018); Lee
et al. (2019).

• Large initial weights: increasing the size of the initial weights also causes the network to behave
closer to linearized dynamics (Chizat et al., 2019). We argue that this explains why Liu et al.
(2022a) and Varma et al. (2023) observed an association between grokking and large initial
weight norm.
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• Label rescaling: scaling y by factor α−1 can induce lazy training (Geiger et al., 2020).

• Output rescaling: multiplying the network output logits by a large scale factor α can also induce
lazy training (Chizat et al., 2019).

In this work, we primarily use the last option, where the α → ∞ limit is one where equation 1
becomes exact and the network behaves at inference-time like a linear model (in the case of MSE,
this linear model is kernel regression with the initial NTK). In Figure 7, we show that these methods
of inducing laziness are equivalent in inducing grokking.

Inductive bias of kernels and deficiency of kernels on misaligned tasks: Though linearized mod-
els around the initial weights can perform well on some learning tasks, they do not generalize well
when trained on target functions y(x) which are misaligned to the NTK, in a sense we make precise
when we define centered-kernel alignment (CKA) in the next section. By contrast, neural networks
in the feature learning regime can adapt their internal representations to improve the sample com-
plexity of learning for functions that would be difficult for the NTK (Ghorbani et al., 2019; Arnaboldi
et al., 2023; Ba et al., 2022; Damian et al., 2023).

5 POLYNOMIAL REGRESSION IN A TWO LAYER PERCEPTRON

To illustrate our main ideas, we study the simplest possible toy example of grokking: high dimen-
sional polynomial regression. This choice is motivated by known separation results between neural
networks and kernel methods. First, theoretical studies of kernel regression have demonstrated that
learning degree k polynomials in dimension D with the NTK requires P ∼ Dk samples (Borde-
lon et al., 2020; Canatar et al., 2021; Xiao et al., 2022). On the other hand, in the feature learning
regime, two-layer networks trained in the online setting can learn high-degree polynomials with
P ∼ D samples (Saad and Solla, 1995; Engel, 2001; Goldt et al., 2019; Arnaboldi et al., 2023;
Berthier et al., 2023; Sarao Mannelli et al., 2020). This indicates that neural networks can poten-
tially generalize for D ≪ P ≪ Dk, but only if they learn features (Atanasov et al., 2022). We
therefore predict the possibility of grokking in this intermediate range of sample sizes, especially if
feature learning occurs late in training, as in a lazy network. We indeed find we can induce grokking
this way on a two-layer network. In fact, grokking persists even with readout weights of the 2 layer
MLP fixed to 1, so in seeking a minimal setting reproducing grokking, this is what we study2. This
type of two-layer NN is referred to as a committee machine (Saad and Solla, 1995).

The model f(w,x) and target function y(x) are defined in terms of input x ∈ RD as

f(w,x) =
α

N

N∑
i=1

ϕ(wi · x) , ϕ(h) = h+
ϵ

2
h2 , y(x) =

1

2
(β⋆ · x)2 (3)

The value of α controls the scale of the output, and consequently the speed of feature learning.
The value of ϵ alters how difficult the task is for the initial NTK. We consider training on a fixed
dataset {(xµ, yµ)}Pµ=1 of P samples. The inputs x are drawn from an isotropic Gaussian distribution
x ∼ N (0, 1

DI). It will be convenient to introduce the following two summary statistics

w̄ =
1

N

N∑
i=1

wi ∈ RD , M =
1

N

N∑
i=1

wiw
⊤
i ∈ RD×D (4)

Using these two moments of the weights, the neural network function can be written as f(x) =
αw̄x+ αϵ

2 x⊤Mx. Further, the NTK can also be expressed as

K(x,x′) = x · x′ + ϵ(x · x′) w̄ · (x+ x′) + ϵ2(x · x′) x⊤Mx′ (5)

At initialization in a wide network, w̄ = 0 and M = I . Diagonalizing this initial NTK with respect
to the Gaussian data distribution reveals that linear functions all have eigenvalue λlin = D−1 while

2The mechanism behind grokking in this setting is the same for training a full 2 layer MLP with readouts,
but the kernel is not only a function of w̄,M . We discuss this in Appendix Section 11, but this is a technicality:
the same arguments and plots hold in ordinary two-layer MLPs in the way one would expect.
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quadratic functions have eigenvalue λquadr = 2ϵD−2 (Appendix Section 11). We see that ϵ controls
the power the kernel places in quadratic functions (including the target y(x)). This is what we
mean by saying ϵ controls initial alignment in this example. Further, based on prior work on kernel
regression, generalization with the initial kernel (or completely lazy neural network) will require
P ∼ λ−1

quadr =
1
2ϵD

2 samples (Bordelon et al., 2020; Canatar et al., 2021; Simon et al., 2023; Xiao
et al., 2022). However, neural networks outside of the kernel regime can generalize from far fewer
samples since they can adapt their features so that M aligns to β⋆β

⊤
⋆ and low test error is achieved,

which does not require as many samples (Ghorbani et al., 2019; Atanasov et al., 2022). 3. If this
feature learning is delayed, the neural network dynamics at early time would match a kernel method,
but at late time one would see generalization as weights begin to align to β⋆, giving a learning curve
that groks. This is the task that generates the learning curves in Figures 1, 3.

While ϵ is a natural measure of alignment in our toy model, we also want a general way to determine
how well aligned a network is for a task, y(X). It turns out that centered-kernel alignment (CKA),

yTK0y
||K||F ||y||2 , (Kornblith et al., 2019; Cortes et al., 2012; Atanasov et al., 2022; Arora et al., 2019), is
a natural generalization of what ϵ is in our toy model. In the formula, K0 is the gram matrix of the
initial NTK evaluated on the test set, and y are the task labels. We derive a relationship between ϵ
and the CKA in Section 11 of the Appendix, finding they are strongly correlated. Since the CKA can
be computed for any task, it is a general way to measure feature alignment to task. “NTK alignment”
in plots without further definition refers to the CKA.

5.1 ALTERING SCALE α CAN INDUCE OR ELIMINATE GROKKING

We next consider the effect of scale α and show that large α increases the timescale separation be-
tween the decrease in train loss and that of test loss, while small α can eliminate grokking altogether.
Consider Figure 3(a) to see that increasing α on the polynomial regression task continuously induces
a longer delay between train loss decrease and test loss decrease. Further, the α → ∞ limit gives
poor final performance since it corresponds to regression with the initial (misaligned) NTK.

Weight norm of parameters is not inherently fundamental. A key claim of ours is that previous
work Liu et al. (2022a); Varma et al. (2023) saw a relationship between parameter weight norm at
initialization and grokking because weight norm at initialization controls rate of feature learning
by moving the network into the lazy training regime. We can test this claim using the fact that
parameter weight norm at initialization is not the only change that can cause lazy training: in the
same papers (Chizat et al., 2019; Lee et al., 2019) it is also proved that increasing model output scale
or label scale has the same effect. Indeed, as we see in Appendix Figure 7, changing these has the
same effect on learning curves as changing weight norm at initialization.

5.2 INITIAL KERNEL-TASK ALIGNMENT ϵ CAN ALSO ALTER GROKKING DYNAMICS

The initial alignment between the NTK and the target function also controls grokking behavior.
Indeed in Figure 3(b), we see that small ϵ networks have a longer time delay between training loss
reduction and test loss reduction and that large ϵ networks have a nearly immediate reduction in
test loss. Interestingly, worse initial alignment caused by smaller ϵ leads to lower final test loss as
it forces the network to learn features (see App. 10). This means that networks with bad initial
features can do better at end-time than those with better initial features, because they are forced to
learn good features.

5.3 LOSS DECOMPOSITION IN TOY MODEL

To gain insight into the sources of generalization error in our model, we decompose the test risk into
three terms that depend only on the summary statistics (w̄,M ) introduced earlier. The predictor can
be expressed in terms of these objects: f = αw̄ · x+ αϵ

2 x⊤Mx. The test MSE of our model then

3Prior work suggests learning quadratic polynomials (with no linear component in β⋆ direction) with SGD
require ∼ O(D logD) steps in SGD with unit batchsize (Arous et al., 2021).
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Figure 3: Lazy training (α) and kernel-task misalignment (ϵ) alter the grokking learning curves
in distinct ways. (Top) Learning curves that show grokking, and (Bottom) corresponding parameter
dynamics during learning. (a) At fixed ϵ, the laziness parameter α controls the timescale of the delay
in grokking. At small α, the grokking effect disappears as the generalizing features are extracted
immediately. At large α, the model approaches a linearized model. The final test loss decreases
with α as we allow the network to learn more features. (b) The task alignment to the initial kernel,
measured by ϵ, determines how much the loss falls when the network initially uses its linearized
solution. Smaller ϵ increases the amount of feature learning during training because the initial
kernel does worse on the task, so feature learning is necessary. Thus lower alignment can result
in better generalization. (c)-(d) Illustrations of the dynamics at varying α, ϵ. In (d), each plane
represents a different affine space spanned by the initial gradients, which are a function of ϵ. (e)
Time to grok (time delay between train loss fall and test loss fall) as a function of α, ϵ, showing how
lazy, misaligned networks grok the most intensely.

takes the form:

L =
〈
(y − f)

2
〉
=

1

4

(
1

D
|β⋆|2 −

αϵ

D
TrM

)2

︸ ︷︷ ︸
variance error

+
1

2D2

∣∣αϵM − β⋆β
⊤
⋆

∣∣2
F︸ ︷︷ ︸

misalignment error

+
α2

D
|w̄|2︸ ︷︷ ︸

power in linear modes

. (6)

The first term measures whether the total variance in the weights 1
DN

∑
i |wi|2 = 1

D

∑D
j=1 Mjj

has the correct scale compared to the targets. The second term measures whether the weights have
achieved a solution with high alignment to the target function. It is closely related and strongly cor-
related to its general counterpart, the CKA, yTK0y

||K0||F ||y|| , in a way we explore in Appendix Section 11.
The last term penalizes any power our features put on linear components, because our target function
is a pure quadratic. Because our network activation function has a linear component, weight vectors
must average out during training to learn a solution with zero overall power in linear functions. The
test error can be minimized by any neural network satisfying M = 1

αϵβ⋆β
⊤
⋆ and w̄ = 0.

In Figure 4 we illustrate this decomposition of the loss during a grokking learning curve. We find,
as expected, that the initial peak in test error is associated with the model attempting to learn a linear
function of the input (orange curve) before later improving the alignment (dashed green loss falling
at late time) and reducing the scale of the linear component (dashed black).
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Figure 4: (Left) Learning curves for a 2 layer multi-layer perceptron that groks on our polynomial
regression task (no weight decay, vanilla GD). (Right) Theoretical decomposition showing how the
initial rise in test loss comes from the network putting power in the linear component from its inital
NTK before beginning to align with the task features around 1-2k epochs, resulting in a delayed fall
in the test loss. This delay is precisely grokking.

6 GROKKING IS NOT RESTRICTED TO MODULAR ARITHMETIC

6.1 INDUCING GROKKING ON GAUSSIAN DATA BY LOWERING ALIGNMENT OF LABELS

In this subsection, we induce grokking by manipulating NTK alignment at initialization in a way
that can be done on arbitrary datasets X , without touching the laziness parameter. Consider the same
function as in our polynomial regression setup but replace the task labels with the j-th largest eigen-
vector (by descending eigenvalue, so j = 1 is the eigenvector of K0(X,X) with highest eigenvalue)
of the NTK matrix at initialization K0(X,X), and vary j. This is motivated because choosing an
eigenvector with a large eigenvalue makes the CKA, yTK0y

||K0||F ||y||2 , high by construction, and vice
versa. Thus alignment at initialization is high for small j (first plot), so the network generalizes
immediately because it starts with good features. Conversely, if we begin with large j the value of
CKA is low, and the task is hard by construction, so the network will never be able to generalize
with this amount of data (with much more data, we would learn features). Intermediate j eigenfunc-
tions are misaligned enough to the initial NTK that a linearized model will not perform well, but the
network has enough data so that learning features reduces the test loss. We see empirically that this
occurs when j ≈ 70 in (b) below.
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Figure 5: Demonstrating grokking on standard Gaussian X ∈ RD×P data with the one-hidden layer
architecture we had for polynomial regression. Label vectors, y are replaced with j-th largest eigen-
vectors of the initial NTK (ordered by descending eigenvalue) for j ∈ {1, 70, 100}, respectively for
(a)-(c). If the network begins highly aligned as in (a), learning curves move together. If the network
features are poorly aligned at initialization, as in (c), the network cannot generalize. In the middle,
as in (b), the network groks.
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MNIST. Liu et al. (2022a) induce grokking on MNIST by increasing parameter weight norm at
initialization. In Figure 6(a) below, we make this grokking vanish continuously by tuning α with-
out changing parameter weight norm, supporting the idea that weight norm at initialization is one
of several parameters that control laziness. This tuning of α is done with the quadratic scaling
demonstrated in Figure 7.

One-layer Transformers. In 6(b), we replicate the classic setting in which grokking was observed
by Nanda et al. (2023), where a one-layer Transformer was trained on a modular addition task with
cross-entropy loss and AdamW. We find that even in a vastly different network architecture – one
with attention this time – an adaptive optimizer and different loss function, our hypothesis that
laziness controls grokking holds out of the box. Note how changing alpha can continuously make
grokking vanish, or more drastic.

100 101 102 103 104 105

Epochs

20

40

60

80

100

Ac
cu

ra
cy

Train Accuracy, =0.001
Test Accuracy, =0.001
Train Accuracy, =0.01
Test Accuracy, =0.01
Train Accuracy, =0.05
Test Accuracy, =0.05
Train Accuracy, =0.5
Test Accuracy, =0.5
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(b) Transformer on Modular Arithmetic

Figure 6: (a) MNIST. Continuously controlling grokking on MNIST by only varying laziness, α,
including making it vanish by encouraging fast feature learning at α = 0.0001. (b) One-layer
Transformer. Continuously controlling grokking on a one-layer Transformer from Nanda et al.
(2023) using the scale parameter α. Note how grokking has vanished for α = 0.15, so it can barely
be seen amidst the train curves. Axes scales are kept faithful to the original papers. We find the
same trend with student-teacher networks, with plots in Appendix Section 8.

7 CONCLUSION

In this work, we hypothesized that grokking may arise from a transition from lazy to rich learning.
To explore this idea, we sought the simplest possible model in which we can see grokking, namely
polynomial regression. This motivated the examination of a laziness parameter, α, and the initial
NTK alignment, which we showed can induce and eliminate grokking out-of-the-box. While many
prior works empirically found that parameter weight norm seemed an important factor for network
grokking, we showed that this occurs because large initial weight norm approximately linearizes the
model. In this way, our results subsume past work on grokking and show why weight decay is not
always necessary.

Limitations While we provided a new conceptual framework for reasoning about grokking, some
questions are left out of scope. We do not provide a sharp theoretical characterization of the required
sample size or training time to transition from memorization to grokking behavior. While it is true
that adaptive optimizers and weight decay are neither necessary nor sufficient for grokking to be
seen, their ubiquity in past examples of grokking does suggest they can amplify grokking. One
possibility is that weight decay encourages the model to leave the lazy regime by forcing changes to
the NTK (Lewkowycz and Gur-Ari, 2020), which we explore in Section 13 of the Appendix. While
we speculate on the role of the optimizers (momentum and Adam) in inducing grokking in Appendix
14, the dynamics at play when adaptive optimizers induce grokking remain poorly understood.
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8 APPENDIX

ADDITIONAL EXPERIMENTS

8.1 A NOTE ON IMPLEMENTING LARGE α

As was discussed in the original paper on inducing lazy training by Chizat et al. (2019), it is im-
portant to subtract off the initial predictor from the neural network function. Concretely, one should
take as their predictor, the modified function

f̃(x, θ) = α[f(x, θ)− f(x, θ0)] (7)

In our experiments, we place f̃ in the optimizer when we compute gradients. This allows us to train
with very large values of α without experiencing instability at initialization. Further, to maintain
consistent timescales of training, it is important to rescale learning rate as η = η0/α

2. This rescal-
ing keeps the initial derivative d

dtf |t=0 independent of α and thus the early training dynamics are
consistent across α. Otherwise, large α networks will have too large a learning rate and small α
networks take too long to train.

8.2 WEIGHT NORM AND INITIALIZATION SCALE HAVE THE SAME EFFECT
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Figure 7: Weight scale alters grokking dynamics and final test loss primarily by manipulating the
richness of the dynamics, specifically how far the dynamics deviates from the linear/kernel regime.
(a) The loss curves for a two layer network trained on the quadratic polynomial with varying laziness
parameter α. Note that small α networks do not grok as dramatically as large α and also achieve
good test loss. (b) A similar sweep over weight initialization scale σ yields the same trend. (c) For
a two layer network, approximate preservation of the feature learning can be achieved by choosing
α ∼ σ−2. (d)-(f) The relative parameter change |w − w0|/|w0| and final test loss is controlled
through the quantity σ2α.

8.3 MODULAR ARITHMETIC IN A 2 LAYER PERCEPTRON

Here are the architecture details for grokking with weight norm increase on a modular arithmetic
task on a two-layer perceptron with vanilla GD. First, we consider the classic modular arithmetic
task a + b ≡ c mod p used previously to explore grokking in Power et al. (2022); Nanda et al.
(2023). We find grokking in a one-hidden layer network with input dimension D = 2p, where the
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input is a concatenation of a, b in one-hot encoding, and the output is a dimension p one-hot encoded
vector c ∈ {0, 1, · · · , p − 1}. We use N = 100 as the hidden width, but a wide range of hidden
widths exhibit grokking. We use 90% of all p2 possible pairs for training, and the rest of the test;
the learning rate is η = 100. The figures below use p = 23, but we see the same curves for most
integers p, for instance, any of p ∈ {13, 17, 19, 23, 29, 31 · · · } also give grokking in the same way.
Crucially, we do not use any weight decay, and merely use vanilla gradient descent. Our results
agree with those of Gromov (2023).

8.3.1 STUDENT-TEACHER NETWORKS

Consider a task where we initialize a “teacher” 5-100-100-5 MLP with tanh activations, and a stu-
dent with the same architecture. The student is tasked with being trained to learn outputs generated
by the teacher network on an input dataset X of standard Gaussians. This task is introduced in
Liu et al. (2022a) to show how grokking can be introduced by doubling the student’s weight norm
at initialization. Here, we make that grokking both vanish and more pronounced without touching
their weight norm at initialization, showing our α parameter does the same thing because the deeper
phenomenology of lazy training and model linearization is what is at play.
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Figure 8: Controlling grokking on a student-teacher task defined in Liu et al. (2022a). The purple
curve corresponds to exactly the experiment in their paper, grokking induced by increasing weight
norm. See that by tuning our scaling parameter to be smaller α → 0, we can make that induced
grokking vanish as on the left of the purple curve, and in fact, we can even make grokking more
pronounced by increasing it. Since this is a regression task, accuracy is defined as the student being
with 0.001 of the teacher label.

8.3.2 GOLDILOCKS DATASET SIZE

Here we see the three regimes of train set size: too little (a, d), just right (b, e), and too much (c, f).
The top row is the learning curve, and the bottom row is the loss decomposition. Note that we can
directly see the network putting power in linear components in (a). This linear power comes from the
NTK at initialization, since the activation function has a linear term. This attempted (approximate)
kernel method helps us interpolate the train set, but leads to worse than random behavior since the
initial features are not matched to the task. Any deviations between train and test loss at initialization
are because we use a data set size of P = 50. As we take data larger, the two match.

8.3.3 INTERPOLATING FROM RANDOM WEIGHTS TO ALIGNED SOLUTION TO MAKE
GROKKING VANISH

We claim NTK alignment at initialization is one of two important factors that control grokking.
Figure 1 suggests if we increase alignment at initialization, grokking should vanish. This happened
as predicted in Figure 6 where we changed the labels, and now we’ll tune alignment a different way:
by changing the weights at initialization. Here, we start with random weights for our polynomial
regression task, where we see grokking as usual, and gradually add a small component of the final
solution (computed analytically) weights to the initial weights. This increases initial alignment, and
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(d) P = 50 Decomposition
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(e) P = 120 Decomposition
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Figure 9: (First row) Goldilocks zone in dataset size. 2 layer perceptron trained on usual polynomial
regression task with P ∈ {50, 120, 500} in (a)-(c) respectively. (Second row) Loss decomposition
for each of (a)-(c) respectively, showing how failure to generalize (a) comes from power in linear
modes (black dashed), grokking comes from a rise then fall in power in linear modes (b) and full
generalization comes from low power in linear modes throughout, and zero at end time (optimal
features have no power in linear modes), as we see in (f).

of course, decreases initial loss a bit. The crucial observation in the plot below is that increasing
alignment by even a little bit makes dramatic grokking (increase in test loss alongside an initial
decrease in test loss) vanish. We see this as we go from the dark blue curve to the gold one.
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Figure 10: Varying alignment by adding some end-time solution to the initial weights. Grokking-
like increase in test loss vanishes with even a small increase in alignment (solid blue to solid red) as
we add a small component of the solution weights to the initialization weights. This is evidence that
initial NTK alignment controls how much test loss suffers during the initial fall in train loss as more
power is put into kernel regression solution.
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9 RELATION TO OTHER THEORIES OF GROKKING

Existing grokking literature focuses on two things. One is studying modular arithmetic (and more
generally group compositional) tasks and good representations to learn them, and the other is the
empirical relationship between initial parameter weight norm, weight decay, and grokking.

Examples of papers exploring the first theme include the study of how a Transformer learns to do
modular arithmetic in Nanda et al. (2023), Gromov (2023) writing out the closed-form solution of
final trained weights for another modular arithmetic task, and Liu et al. (2022b) who find a circular
embedding within the network for a modular arithmetic task. A similar result was found in the orig-
inal Power et al. (2022) paper that discovered grokking. Examining the geometry of embeddings
and learned representations like this is only possible when you fix a specific task of interest, and
often these are tasks with a natural geometric structure. These papers often give compelling insights
into what and how networks learn representations for certain specific classes of tasks, but Liu et al.
(2022a) showed we can see grokking on other tasks by tuning initial weight norm, so while algorith-
mic tasks like modular arithmetic might have some interesting structure that makes grokking easier
to induce, they are neither sufficient nor necessary for grokking to appear.

The two important papers exploring the second theme (parameter weight norm and weight decay)
are by Liu et al. (2022a) as mentioned above, and Varma et al. (2023).

Liu et al. (2022a) induces grokking by increasing the initial weight norm and concludes generalizing
solutions lie on smaller norm spheres in parameter space. We agree that initial weight norm can
induce grokking, but we claim it is not because generalizing solutions always lie on smaller norm
spheres in parameter space. Our modular arithmetic task in Section 2 and our polynomial regression
task that is the focus of our paper are both counterexamples, since the final generalizing solution
has a larger parameter weight norm than the initial solution, and we do not need weight decay to
learn it or to grok. Instead, we claim initial weight norm controls grokking by linearizing the model
(moving it into the “lazy training” regime). The different learning dynamics at large weight scale in
Liu et al. (2022a) is quite reminiscent of the transition to lazy training in Chizat et al. (2019).

Varma et al. (2023) explain grokking as arising from three specific causes. Their claimed first and
third causes correspond naturally to objects in our paper, and it is with their second cause that
our theory (and experiments) disagree. Their first claim is that grokking requires “two families of
circuits,” one that memorizes and one that generalizes. This corresponds to our two regimes of lazy
and rich training dynamics. Their third claim is that during grokking, the “memorizing circuit is
stronger at early phases of training” which in our language corresponds to the network starting off
lazy before learning features at late time.

Their second and core claim is where the two theories disagree. They claim that this transition from
the memorizing to generalizing circuit happens because the generalizing circuit is more “efficient”
than the memorizing circuit, in the sense that it can produce equivalent loss with lower parameter
norm. In our paper, we showed two different tasks (modular arithmetic and polynomial regression)
in which the generalizing solution that reaches zero loss is higher parameter norm than the memoriz-
ing solution the network started in. We do agree with their intuition that there are two regimes (lazy
and rich) in which the network can operate, and parameter norm has something to do with which
regime we are in. In fact, we explore the role of weight decay in Section 13, finding it consistent
with our theory that weight decay can be helpful for inducing grokking.

A note on data set size. It has been long known that grokking happens in a particular data regime.
In the paper introducing grokking, Power et al. (2022) mention in Section 3.1 of their paper that
for large data set sizes, training and validation track each other, and Nanda et al. (2023) notes in
Section 5.3 of their paper that with enough data, there is no longer a gap between train and test
loss. Varma et al. (2023) study the behavior of learning curves around the critical dataset size Dcrit,
finding variants of grokking behavior. Note that being in the “goldilocks zone for data set size” is
necessary but not sufficient to see grokking.

Parities as a binary polynomial problem: Barak et al. (2022) study learning of parities with a neural
network which exhibits grokking-like dynamics when learned with two layer networks with SGD.
The target function they consider has the form y =

∏
i∈S xi where S ⊆ [n] is a subset of the first n

bits. The variables xi ∼ {±1} are random binary variables. For dot-product kernels, such as wide
networks at initialization, this problem has the same sample complexity as learning polynomials
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of degree |S| with Gaussian data for kernel regression (Misiakiewicz, 2022). Our choice to study
the learning dynamics of polynomial regression with Gaussian data is therefore closest to this prior
work.

10 “HARD/MISALIGNED TASKS” FOR THE KERNEL CAUSE A BREAKDOWN
IN LINEARIZATION

We denote a “hard task” for the initial kernel as a task where the trainset label vector y ∈ RP and
the kernel gram matrix K ∈ RP×P satisfy

Difficulty ≡ y⊤K−1y ≫ 1. (8)

One way to motivate this quantity is to note that near the kernel limit, the amount that the parameters
move during training under MSE is precisely given by this quantity

|w −w0|2 ∼ y⊤K−1y (9)

We see that the linearization approximation can break for difficult tasks since |w − w0|2 could be
large (think about Taylor expansions around w0). Thus lazy learning on tasks of infinite difficulty
is not self-consistent. All other things being equal, we expect to see more feature learning on tasks
that are difficult for the initial kernel. This is especially true if the training set is sufficiently large.

11 DERIVATIONS FOR TOY MODEL

11.1 INITIAL NTK DIAGONALIZATION

At infinite width, the network has the following value under random initialization (since w̄ = 0 and
M = I)

K(x,x′) = x · x′ + ϵ2(x · x′)2 (10)

The Mercer eigenvalue problem for data distribution p(x) has the form∫
dx p(x)K(x,x′)ϕ(x) = λϕ(x′) (11)

We seek eigenfunctions ϕ(x) and eigenvalues λ that satisfy the above equation for the Gaussian data
density x ∼ N (0, D−1I). We first note the following

⟨K(x,x′)xi⟩ = ⟨(x · x′)xi⟩ =
1

D
x′
i (12)

which implies that xi is an eigenfunction with eigenvalue λlin = 1
D . Next, we see that

〈
K(x,x′)x2

i

〉
=

2ϵ2

D2
x2
i +

ϵ2

D2
|x′|2 ,

〈
K(x,x′)|x|2

〉
=

ϵ2

D

(
1 +

2

D

)
|x′|2 (13)

This implies the existence of D eigenfunctions〈
K(x,x′)[x2

i − c|x|2]
〉
=

2ϵ2

D2
(x′

i)
2 +

ϵ2

D2
|x′|2 − cϵ2

D

(
1 +

2

D

)
|x′|2

=
2ϵ2

D2

[
(x′

i)
2 +

(
1

2
− c

2
(D + 2)

)
|x′|2

]
(14)

The above is an eigenfunction if 2c = c(D+2)−1, or c = 1
D . We have thus identified an additional

D eigenfunctions with eigenvalue λ = 2ϵ2

D2 . Lastly, we consider xixj − c|x|2 for i ̸= j.

⟨K(x,x′)xixj⟩ =
2ϵ2

D2
x′
ix

′
j (15)

17



Published as a conference paper at ICLR 2024

which transparently gives us another 1
2 (D

2 − D) eigenfunctions with the same eigenvalue 2ϵ2

D2 .
Lastly, we note that |x|2 is also an eigenfunction〈

K(x,x′)|x|2
〉
=

1

D

(
1 +

2

D

)
|x′|2 (16)

with eigenvalue 1
D (1 + 2

D ). The target function has the decomposition

y(x) =
1

2

[
(x · β⋆)

2 − 1

D
|x|2

]
+

1

2D
|x|2 (17)

The first term in brackets has kernel eigenvalue 2ϵ
D2 while the second term has eigenvalue 1

D (1+ 2
D ).

This suggests a kernel method would learn the function 1
2D |x|2 at sample sizes P ≈ D but will only

learn the full target function at P ≈ D2. This separation of timescales motivated the original
investigation of this task in which to find grokking.

11.2 KERNEL ALIGNMENT

For any configuration of weights, the NTK of our toy model has the following form

K(x,x′) = x · x′ + ϵ(x · x′)w̄ · (x+ x′) + ϵ2(x · x′)x⊤Mx′. (18)

In this section, we compute the kernel-task alignment metric on the test distribution which is dis-
cussed in the paper. In particular, we will show that this is related to the correlation of M with
β⋆β

⊤
⋆ which is also present in our misalignment error. This alignment requires computing

⟨y(x)K(x,x′)y(x′)⟩√
⟨K(x,x′)2⟩ ⟨y(x)2⟩

(19)

The most important term is the numerator which has the form

⟨y(x)K(x,x′)y(x′)⟩ = ϵ2

D2

[
|β⋆|2

〈
(β⋆ · x)2x⊤Mx

〉
+ 2

〈
β⋆Mx(β⋆ · x)3

〉]
=

ϵ2

D4
|β⋆|4TrM +

8ϵ2

D4
β⊤
⋆ Mβ⋆|β⋆|2 (20)

We see that the numerator in the kernel alignment formula increases with the alignment of M to the
β⋆β⋆ direction. This term also appears in the alignment error of the MSE decomposition for our
problem.

12 LOSS DECOMPOSITION WITH READOUTS

If we instead train both the input weights {wi} and readout weights vi in a two layer network

f(x) =
α

N

N∑
i=1

viϕ(wi · x) = αw̄ · x+
αϵ

2
x⊤Mx (21)

where the new w̄ and M have the formulas

M =
1

N

N∑
i=1

viwiw
T
i , w̄ =

1

N

N∑
i=1

viwi. (22)

These w̄ and M can be plugged into the loss decomposition in the main text. At initialization, the
kernel has the form

K(x,x′) = 2x · x′ +
3ϵ2

2
(x · x′)2 +

ϵ2

4
|x|2|x′|2 (23)

This kernel is still strongly biased towards linear functions. As before, the eigenvalues associated
with quadratic functions is O(ϵD−2).
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Figure 11: Grokking decomposition for an ordinary 2-layer MLP, ie. the committee machine in the
main text with readout weights trained. The same mechanism holds as posited.

13 THE ROLE OF WEIGHT DECAY

While we showed that weight decay in a model is neither necessary nor sufficient to induce grokking,
it is true it can be helpful in generating grokking. Here, we explore why that is, speculatively arguing
that it is because weight decay moves us out of the lazy regime. In Lewkowycz and Gur-Ari (2020)
it is proven that under weight decay, the NTK of a network continuously evolves over time. This
means networks trained using large amounts of weight decay cannot stay lazy for long.

For some intuition, consider the following. Lazy training during gradient requires the network
parameters to move only through a particular tangent space in a much larger parameter space. Infor-
mally, this is a somewhat fragile condition that requires some weights to move in a certain direction
while others move in another direction to make sure the network NTK doesn’t change. Weight de-
cay is a penalty on weight norm irrespective of which weight is contributing to this norm, and so
can be thought of as a perturbation that quickly moves us out of the lazy training regime. When a
generalizing solution has a lower weight norm than our initialization, weight decay can encourage
learning of useful features and thus generalization.

In Nanda et al. (2023), it is shown that the amount of weight decay can control the amount of
grokking (time delay). This is reminiscent of how our laziness parameter α has the same effect.
Indeed, we show here they have competing effects in this sense. In that paper, it is shown how the
grokking time delay between train and test loss vanishes if weight decay is high enough. Our hy-
pothesis would predict making the network lazier compensates, recovering the amount of grokking
we started with. We see this happen below.
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Figure 12: (a) Start with large grokking time delay with α = 0.5,wd = 1. (b) Increasing weight
decay to wd = 5 (keep α = 0.5) makes grokking vanish by encouraging immediate movement in
the NTK (feature learning). (c) Then commensurately increasing laziness to α = 1.4 (keep wd = 5)
recovers grokking by discouraging feature learning. We believe past works see grokking with a high
initial weight norm and weight decay because these two components imply initial laziness (high
initial weight norm) and eventual feature learning (weight decay, as illustrated here).

One thing worth highlighting is that this explains why Liu et al. (2022a) found that time to generalize
in the grokking setting there was linear in the amount of weight decay, κ. Moreover, Nanda et al.
(2023) finds that the time taken to generalize drops by a factor of ten in Figure 27 of that paper,
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when weight decay is increased by a factor of again, again linear. It turns out that Lewkowycz and
Gur-Ari (2020) proves that the NTK evolves at order O(κ) for κ the weight decay parameter, so our
theory that grokking can be seen as the transition from the NTK to feature learning regime exactly
predicts the quantitative effect weight decay has on grokking timescales!

14 THE ROLE OF MOMENTUM AND ADAPTIVE OPTIMIZERS

This section is more speculative. In the main text, our focus is on networks that use vanilla gradient
descent because they are sufficient to get networks to grok and a simple setting that can be ana-
lyzed. This was motivated in part by the fact that the dynamics of networks optimized with adaptive
optimizers are not well understood theoretically. But given that almost every paper on grokking in
the past has used AdamW (Power et al., 2022; Nanda et al., 2023; Liu et al., 2022a;b; Varma et al.,
2023), it is worth some comment.

In (a) we repeat our polynomial regression setup and induce grokking as in 1, but now using
momentum = 0.95 in the vanilla GD optimizer. It has broadly the same shape, and certainly the
same pattern (linear then feature learning) but with more bumps in the learning curves, presumably
reflecting the momentum in gradient descent. In (b) we want to point out another set of learning
curves that generate grokking-like accuracy curves. These are the loss curves for the student-teacher
task in Section 8 for which the accuracy curves we plotted showed stark grokking. That task uses
AdamW as well, again showing the linearization tracking the model until the loss halves, before
diverging then. The nonmonotonicity in late-time is presumably a product of the AdamW optimizer,
much like such nonmonotonicity emerged in (a) from momentum.

Note that both (a) and (b) are characterized as grokking even though the loss curves look differ-
ent: the key is delayed generalization. This shows how power in the initial kernel method is often
unhelpful for generalization (a), but can sometimes be somewhat helpful in feature learning down-
stream, for instance in (b). Finally, (c) shows early-time linearization dynamics in the early stages of
grokking with a one-layer Transformer from Nanda et al. (2023), which was trained using AdamW
as well. Note how due to weight decay, the network loss actually quickly deviates from its lineariza-
tion, despite the presence of grokking. This, along with the fact that scaling α still tunes grokking, is
evidence that the transition from lazy to rich dynamics is a sufficient but not necessary mechanism
underlying delayed feature learning on general tasks and settings. If we look at Figure 7 of that
paper, we see this early time deviation coincides with a large early time increase in initial param-
eter weight norm, which could be due early-time behavior of adaptive optimizers Lewkowycz and
Gur-Ari (2020); Cohen et al. (2021); Thilak et al. (2022), hence then claim that dynamics induced
by adaptive optimizers in settings that grok are still not fully understood.
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Figure 13: Learning curves for grokking with momentum and adaptive optimizers.

15 VARIANTS ON THE POLYNOMIAL TASK

The single-index quadratic learning task is known to have well-understood structure from a theory
perspective Arous et al. (2021); Nichani et al. (2022); Bietti et al. (2022). A natural question is
whether the grokking behavior and interpretation persists under ablation of either of these condi-
tions. In particular, we consider the harder tasks of learning multi-index models, and higher degree
(Hermite) polynomials. We find that grokking persists out-of-the-box as expected.
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15.1 LEARNING MULTI-INDEX MODELS

It is known Nichani et al. (2022) that single index models can exhibit a transition from lazy to
rich training dynamics, but in general less work has been done on multi-index models Arous et al.
(2021). Thus, one might wonder whether grokking persists as we add multiple directions to the
target function. That is, can we recover grokking with a target resembling (β1 · x+ β2 · x) (double-
index model), or even (β1 · x+ β2 · x+ β3cdotx) (triple-index). It turns out grokking does indeed
persist in our model even if the target function spans multiple directions, as we see below.
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Figure 14: Grokking in our set-up persists when the target function is a higher-degree polynomial
(with activation modified accordingly), so does not rely on special properties of the information
exponent k = 2.

15.2 LEARNING HIGHER DEGREE POLYNOMIALS

For the task of learning a single-index model, it is known Arous et al. (2021); Nichani et al. (2022)
that sample complexity and learning dynamics depend heavily on a quantity of target function called
the information exponent. For simple polynomial target functions, as in our setting, this is simply
the degree of the polynomial. One salient result is the qualitative difficulty of learning a quadratic
target (where the information exponent is k = 2), and higher-degree targets (where the information
exponent is k ≥ 3). For instance, Theorem 1.3 in Arous et al. (2021) illustrates the difference in
learnability and sample complexity for these cases. Thus, a natural question is whether grokking
arises from special properties of a quadratic target here. The answer to this turns out to be no: the
grokking examined in this paper (that is: polynomial regression in a 2 layer MLP with zero weight
decay and vanilla GD) persists out-of-the-box for higher degree polynomial targets in the way one
would expect. Below, we show experiments where the target is Hk, the k-th Hermite polynomial,
and the activation is ϕ(z) = z + ϵ

2Hk(z). In particular, H3, H4 below are polynomials with degree
k > 2 and thus information exponent also greater than two. We use larger amounts of data to learn
higher order polynomials Hk.
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Figure 15: Grokking when learning the Hermite polynomials of varying degree illustrates that our
setup doesn’t rely on any special properties of a single-index quadratic learning problem, which is
known to be theoretically simpler than higher degree or multi-index learning problems. Note the
log-scale on x-axis, so a small gap on the right of the plot corresponds to generalization delayed
(grokking) by several thousand epochs.

16 STUDYING LOSS VS ACCURACY IN GROKKING LEARNING CURVES

16.1 DEFINING “GROKKING IN LOSS” AND “GROKKING IN ACCURACY”

“Grokking in loss” refers to the loss curves we study in this paper, where the train loss initially
decreases while the test loss is nondecreasing, with the test loss eventually falling as the network
generalizes. This involves the train and test loss both moving a nonzero amount initially (usually it
means an initial period where the test loss rises as the network memorizes the train set) and usually
involves nonzero (but low) test loss at end-time of training. An example of grokking in loss is to the
right of the Figure below.

“Grokking in accuracy” refers to a sharp increase in test accuracy long after a commensurate increase
in train accuracy. In particular, test loss stays flat at the beginning, and rises to perfect at late-time.
An example of grokking in accuracy is given on the left of the Figure below.

Given that these two definitions seem somewhat different on first glance, and that the second is the
“original” definition of grokking Power et al. (2022) on the task (modular arithmetic) on which it
was discovered, one might wonder whether the definition studied in this paper (grokking in loss) is
the same as that studied historically in past literature.

The answer to this question is yes. The two curves on the bottom correspond to the same network
run. While Power et al. (2022) present the phenomenon in terms of accuracy (like the plot below,
left), really the network is trained on loss (below, right). In particular, we notice two things:

• When we plot accuracy, we see the network does perfectly in terms of classification accuracy on
the modular arithmetic task.

• However, the loss at end-time is nonzero. In this case, this does not contradict the above because
the network is trained on one-hot inputs, and so if the maximum element in the network output is
the correct index of the modular addition problem, the input will be correctly answered (accuracy)
but will incur loss until the network put probability one on the index of the correct answer.

We also notice that

• Test accuracy is flat early in training, but test loss moves.
• Train accuracy reaches perfect classification in 2k epochs, when train loss is about ≈ 0.06, but

train loss keeps falling much after that all the way to zero.

The intuition for the first bullet is that during memorization, test loss decreases because the network
is attempting to fit a linearized (NTK) solution at early time. Of course, since the network has
not learned the structure of the task by this point (before 2k epochs), this is not helpful on test
points. But we notice that this linearized solution is enough to do perfectly on the train set! If a

22



Published as a conference paper at ICLR 2024

loss of ≈ 0.06 corresponds to perfect classification, then we see that the test loss only dips below
this amount around 3-4k epochs, precisely when the network generalizes in accuracy. Finally, the
accuracy curve is flat at early time because we cannot do worse than zero accuracy, so the unhelpful
change in weights that allow the network to interpolate the train set are counterproductive for the
test set (as we see in terms of loss), but the accuracy is already zero, so the test accuracy curve stays
flat. This is why the same network on the same run of the same task having an accuracy curve on the
left derived from the loss curve on the right, is perfectly consistent. The two definitions of grokking
are equivalent.

0 1000 2000 3000 4000 5000 6000 7000 8000
Epochs

0

20

40

60

80

100

Ac
cu

ra
cy

Train accuracy
Test accuracy
Weight Norm 100

120

140

160

180

200

220

W
ei

gh
t N

or
m

0 1000 2000 3000 4000 5000 6000 7000 8000
Epochs

0.00

0.02

0.04

0.06

0.08

M
SE

Train loss
Test loss

Figure 16: Accuracy and loss plots for the same network run of a modular arithmetic task. This type
of task has historically been of interest in grokking, and is also studied in Power et al. (2022); Nanda
et al. (2023); Gromov (2023). These plots are for a two layer network with no weight decay doing
addition modulo a small prime.

Further evidence for the equivalence between the two measures can be seen by revisiting the Ap-
pendix of the original paper that introduced grokking Power et al. (2022), and noting Figure 4 which
exhibits grokking in loss of the sort we study in this paper.

16.2 CONSTRUCTING ACCURACY CURVES FROM LOSS CURVES CAN BE MISLEADING

Some classes are classification tasks, such as modular arithmetic (as above) and classifying images
on MNIST. There is a natural notion of accuracy in such tasks. However, regression tasks can also
have a notion of classification accuracy defined, as is done Liu et al. (2022a), by defining a threshold
θ such that a data point (x, y) is said to be “classified correctly” if |f(x) − y| ≤ θ it is within a
threshold of the true label. Then one can define accuracy on a test set Xtest as the average number
of data points in the set that are classified correctly 1

|Xtest|
∑

xi∈Xtest
1[|fnet(xi) − yi| ≤ θ]. The plot

below does exactly this for the student-teacher task described earlier, taken from Liu et al. (2022a),
showcasing how the resulting accuracy curves can be misleading and unhelpful, showing apparent
“grokking” for some choices of θ but not others.

16.3 NOT ALL INSTANCES OF GROKKING IN ACCURACY ARE WORTH STUDYING

Reconsider the student-teacher task from above for which we saw that grokking in terms of accuracy
could be an artefact of choosing a threshold θ. We now examine its loss curves (below, left) and see
they are entirely unremarkable. Thus, seeing a network “groks” in terms of an accuracy plot does
not imply interesting learning dynamics in terms of loss (which is what guides learning dynamics).
Therefore, grokking in accuracy does not imply grokking in loss. The curves below say more about
the contrived nature of this task than about interesting learning dynamics in the network.

16.4 LOSS IS THE RIGHT METRIC TO STUDY

We have established that grokking in terms of loss curves, as we defined it in this paper, does imply
grokking in accuracy curves, as defined in Power et al. (2022). We have also shown the converse
is not true, demonstrating that grokking in loss, the way we have defined it, is a stronger condition
than grokking in accuracy. This justifies our study of learning curves in terms of loss, not accuracy.
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Figure 17: Grokking on this particular task depends on the choice of threshold. Each of these curves
corresponds to the exact same network run (in terms of loss over epochs) with a different choice of
threshold to plot accuracy. Figure 9 had the same threshold throughout. This justifies our study of
loss, not accuracy, on regression-based tasks like polynomial regression in our main text.

100 101 102 103 104 105

Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
SE

Loss curves for MLP Student-Teacher task

Train Loss
Test Loss

100 101 102 103 104 105

Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 v
ia

 

Accuracy curves for MLP Student-Teacher task, =1e-4

Train Accuracy
Test Accuracy

Figure 18: Loss curves for the student-teacher task on which accuracy curves exhibited “grokking.”
The loss curves show that there is nothing particularly surprising happening in the network over the
course of training; the train loss tracks the test loss throughout. “Grokking” on the corresponding
accuracy curves is thus a mirage arising from sweeping over thresholds θ used to define “accuracy”
on this regression task, and choosing a θ that generates a striking plot.

Of course, as we saw in the case of the MLP on MNIST, modular arithmetic tasks, and more, this
means that our claims for how laziness and NTK alignment control grokking (in terms of loss) hold
out of the box for grokking (in terms of classification accuracy).

We end by noting that we are not the first to make this observation. Indeed, the fact that loss, not
accuracy, is the interesting thing to study was quickly realized after the initial paper discovering
grokking was published! It is noted when Davies et al. (2023) study loss in their Figure 5b, when
Liu et al. (2022a) characterize the loss landscapes of various tasks that exhibit grokking, when
Nanda et al. (2023) plots excluded and restricted loss and remarks that accuracy can be gamed, and
emphatically in Schaeffer et al. (2023), who argues “hard threshold” measures of performance (like
accuracy in grokking) are extremely misleading, and continuously optimized measures (like loss)
should be studied instead. Thus our choice to do so in this paper is perfectly consistent with past
literature on grokking.
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17 MORE DATA ALLOW US TO GENERALIZE ON HARDER TASKS

If grokking is roughly seen as “delayed generalization,” then one would expect we cannot grok on
tasks where we cannot generalize. This is indeed the case, and one might wonder whether increasing
the dataset size allows us to generalize on harder tasks – in particular on our eigenvector label task
as in Figure 5 – or whether this task is inherently hard for a feature learning network. We will see
below that more data allows us to generalize on this task when we otherwise couldn’t. Reconsider
the task in Figure 5(c) of learning the j-th eigenvector of Gaussian dataset X , for varying values
of j. We chose this task because it allows us to vary task difficulty as measured by the alignment
at initialization of the NTK and task labels. We observe that for any fixed j, increasing the dataset
size suffices to eliminate grokking by having the learning curves move together. Consider the grid
of plots below. It shows how for a fixed dataset size, making the task harder (increasing j) can
cause a network to fail (going down the left column). But then we notice (moving left to right
on each row) that increasing the dataset size leads to eventual generalization, with grokking in
a goldilocks somewhere in the middle, when the task is hard (in an NTK alignment sense), but
ultimately learnable (in the sense that the network can achieve low test loss at end-time of training).

25



Published as a conference paper at ICLR 2024

100 101 102 103 104

Epochs

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

M
SE

100-th eigenvector task, data size P = 100
Train Loss
Test Loss

100 101 102 103 104

Epochs

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

M
SE

100-th eigenvector task, data size P = 300
Train Loss
Test Loss

100 101 102 103 104

Epochs

0.0000

0.0002

0.0004

0.0006

0.0008

M
SE

100-th eigenvector task, data size P = 600
Train Loss
Test Loss

100 101 102 103 104

Epochs

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

M
SE

125-th eigenvector task, data size P = 100
Train Loss
Test Loss

100 101 102 103 104

Epochs

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

M
SE

125-th eigenvector task, data size P = 300
Train Loss
Test Loss

100 101 102 103 104

Epochs

0.0000

0.0002

0.0004

0.0006

0.0008

M
SE

125-th eigenvector task, data size P = 600
Train Loss
Test Loss

100 101 102 103 104

Epochs

0.00

0.01

0.02

0.03

0.04

0.05

M
SE

200-th eigenvector task, data size P = 100
Train Loss
Test Loss

100 101 102 103 104

Epochs

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

M
SE

200-th eigenvector task, data size P = 300
Train Loss
Test Loss

100 101 102 103 104

Epochs

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

M
SE

200-th eigenvector task, data size P = 600
Train Loss
Test Loss

Figure 19: Varying dataset size and task difficulty to see where rich learning is enough to generalize.
Plots going from left to right in each row have increasing amounts of data, and plots going from top
to bottom have the task getting harder (increasing j used for labels). We see that moving left to
right illustrates (1), how increasing data for a fixed task difficult j, suffices to allow the network to
generalize, but moving top to bottom on the grid illustrates (2), how if you let the task difficulty
increase with dataset size, some tasks cannot be learned by this network architecture: if we used
even smaller eigenvectors (for instance, setting P = j), no amount of P would be able to learn it.
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