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Abstract
Knowledge distillation (KD) is a common ap-001
proach to compress a teacher model to reduce002
its inference cost and memory footprint, by003
training a smaller student model. However, in004
the context of autoregressive language models005
(LMs), we empirically find that larger teachers006
might dramatically result in a poorer student.007
In response to this problem, we conduct a series008
of analyses and reveal that different tokens have009
different teaching modes, neglecting which will010
lead to performance degradation. Motivated by011
this, we propose a simple yet effective adaptive012
teaching approach (ATKD) to improve the KD.013
The core of ATKD is to reduce rote learning014
and make teaching more diverse and flexible.015
Extensive experiments on 8 LM tasks show016
that, with the help of ATKD, various baseline017
KD methods can achieve consistent and signifi-018
cant performance gains (up to +3.04% average019
score) across all model types and sizes. More020
encouragingly, ATKD can improve the student021
model generalization effectively.022

1 Introduction023

Autoregressive language models (LMs), such as024

GPT-4 (OpenAI, 2023), PaLM (Chowdhery et al.,025

2023) and LLaMA2 (Touvron et al., 2023), have026

achieved great success in a numerous tasks. How-027

ever, with the scaling of model size, the inference028

and deployment of these LMs become more com-029

putationally expensive and memory intensive, hin-030

dering the development of industrial applications.031

Hence, it is crucial and green to compress these032

LMs and accelerate the inference, while not losing033

much performance (Schwartz et al., 2020).034

To achieve this goal, a common approach is035

knowledge distillation (KD), which aims to com-036

press a large teacher model by distilling its knowl-037

edge into a small student model (Hinton et al.,038

2015; Kim and Rush, 2016). Recently, in the con-039

text of autoregressive LMs, various novel learning040

algorithms have been proposed to achieve better041

2.21

Figure 1: Comparisons of different KD methods for
distilling the student (OPT-125M). The x-axis denotes
the OPT-based teacher sizes, while the y-axis denotes
the average performance of students on SNLG and SNLU.
The evaluation details are in §4. Notably, ATKD can be
combined with various KD methods, and we only report
the results of “GKD + ATKD” for ease of illustration.

distillation performance (Wen et al., 2023; Agar- 042

wal et al., 2024). Despite their remarkable per- 043

formance, we empirically find a counter-intuitive 044

phenomenon, where larger teachers might dramat- 045

ically result in a poorer student, especially when 046

the model capability gap is large. As illustrated 047

in Figure 1, the performance of student degrades 048

when the teachers are too large, which is similar 049

to the findings of Mirzadeh et al. (2020); Cho and 050

Hariharan (2019); Zhang et al. (2023). 051

Although a few works aim to investigate this 052

problem and propose to fill the gap, they are mostly 053

studied for vision models (Mirzadeh et al., 2020; 054

Cho and Hariharan, 2019) or discriminative lan- 055

guage understanding models (Zhang et al., 2023), 056

while the autoregressive KD for generative LMs is 057

yet to be explored. In this work, we investigate this 058

problem from the perspective of the distillation ob- 059

jective, which is at the core of autoregressive KD. 060

Specifically, taking the classical token-level KD 061

objective, i.e., forward KL-Divergence, as an exam- 062

ple, we first reformulate it as two parts: 1) target- 063

oriented knowledge distillation (TKD), which en- 064
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forces the student model to learn the target-related065

information ; 2) diversity-oriented knowledge dis-066

tillation (DKD), which encourages the student to067

learn more diverse knowledge from the teacher in068

the non-target classes. These two parts are tied069

by a token-wise factor, which reflects the teacher’s070

uncertainty and we denote it as uncertainty coef-071

ficient (UNC). After reformulating the distillation072

objective, we conduct a series of preliminary analy-073

ses on the popular OPT-family (Zhang et al., 2022)074

models, and find that:075

❶ UNC measures the learning difficulties of076

tokens, where the hard-to-learn ones are more077

important for KD.078

❷ DKD contributes more but is greatly sup-079

pressed, especially for the larger teachers.080

❸ TKD plays different roles in tokens with081

different learning difficulties.082

Based on these observations, we can conclude083

that different tokens have different teaching084

modes, and (one of) the limitations of KD comes085

from the neglect of this principle. To address this086

limitation, we propose a simple yet effective adap-087

tive teaching method (referred to as ATKD) to im-088

prove the KD. The core of ATKD is to reduce rote089

learning and make teaching more diverse and flexi-090

ble. Specifically, ATKD skips the target-oriented091

teaching for the (less-informative) easy-to-learn to-092

kens and pays more attention to the diverse learning093

of hard-to-learn tokens.094

We evaluate ATKD on a variety of LM bench-095

marks, including 5 language generation tasks and096

3 language understanding tasks, upon 3 types of097

autoregressive LMs: OPT (Zhang et al., 2022),098

Pythia (Biderman et al., 2023) and LLaMA (Tou-099

vron et al., 2023). Results show that ATKD can not100

only alleviate the problem of performance degrada-101

tion in larger teachers, but also bring consistent and102

significant improvements (up to +3.04% average103

score) into various baseline KD methods among all104

model types and sizes. Moreover, compared to the105

standard KD, ATKD can effectively improve the106

generalization of distilled students.107

Contributions. To summarize, our contributions108

are three-fold: (1) Our study reveals that different109

tokens have different teaching modes, neglecting110

which will cause the sub-optimal distillation per-111

formance, especially in larger teachers. (2) We112

propose a simple yet effective, plug-and-play ap- 113

proach (ATKD) to alleviate this problem and im- 114

prove the quality of teaching. (3) Extensive experi- 115

ments show that ATKD outperforms the standard 116

KD with up to +3.04% average gains and improves 117

the student’s model generalization effectively. 118

2 Rethinking Knowledge Distillation for 119

Autoregressive LMs 120

In this section, we first delve into the mechanism 121

of classic knowledge distillation and then present 122

the empirical analyses of this strategy in detail. 123

2.1 Recap of Knowledge Distillation 124

Notations. For autoregressive LMs, the classic 125

KD aims to approximately minimize Kullback- 126

Leibler (KL) divergence between the teacher and 127

student output distribution at each token (Hinton 128

et al., 2015). Let y = {y1, ..., yT } denote the tar- 129

get sequence and V denote the vocabulary, we refer 130

to y<t as {y1, ..., yt−1}, where t ∈ {1, ..., T} and 131

yt ∈ V . Specifically, the loss function can be for- 132

mulated as: 133

LKL(p||q) = −
T∑
t=1

KL (p(yt|y<t)||q(yt|y<t)) 134

= −
T∑
t=1

p(yt|y<t) log

(
p(yt|y<t)

q(yt|y<t)

)
, 135

where p = [p1, ..., pC ] and q = [q1, ..., qC ]
1 are 136

the predicted distributions of the teacher and stu- 137

dent, respectively; pi is the probability of the i-th 138

class and C is the number of vocabulary V , KL 139

refers to the KL divergence. For simplicity, we 140

denote p(yt|y<t) as pt, and pti as the probability 141

of the i-th class at t-th step. Here, pti is determined 142

using a softmax function: 143

pti =
exp(zti)∑C
j=1 exp(z

t
j)
, (1) 144

where zti represents the logit of the i-th class in V . 145

Let gt denote the target token/class at t-th step, we 146

can obtain the binary probabilities pt
b = [ptgt , p

t
\gt ], 147

where probability of the target class ptgt and non- 148

target classes pt\gt can be calculated as: 149

ptgt =
exp(ztgt)∑C
j=1 exp(z

t
j)
, pt\gt =

∑C
k=1,k ̸=gt

exp(ztk)∑C
j=1 exp(z

t
j)

. 150

1For simplicity, we only consider the formulation of p in
the following context. Note that the q is similar to p.
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Moreover, for independently analyzing the proba-151

bilities among non-target classes, we declare p̂t =152

[p̂t1, ..., p̂
t
gt−1, p̂

t
gt+1, ..., p̂

t
C ], where p̂ti is:153

p̂ti =
exp(zti)∑C

j=1,j ̸=gt
exp(ztj)

. (2)154

Reformulation of LKL. Here, we are inspired155

by Zhao et al. (2022)2, and attempt to reformulate156

LKL with the binary probabilities pt
b and the prob-157

abilities among non-target classes p̂t, which can be158

reformulated as:159

LKL = −
T∑
t=1

(ptgt log(
ptgt
qtgt

) +

C∑
j=1,j ̸=gt

ptj log(
ptj
qtj
)).

(3)

160

According to Eq. 1 and 2, we have pti = p̂ti ∗ pt\gt ,161

and can further rewrite Eq. 3 as:162

LKL = −
T∑
t=1

(
ptgt log(

ptgt
qtgt

)

+pt\gt

C∑
j=1,j ̸=gt

p̂ti

(
log(

p̂tj
q̂tj
) + log(

pt\gt
qt\gt

)

)
= −

T∑
t=1

(
ptgt log(

ptgt
qtgt

) + pt\gt log(
pt\gt
qt\gt

)

+pt\gt

C∑
j=1,j ̸=gt

p̂ti log(
p̂tj
q̂tj
)


= −

T∑
t=1

(
KL(pt

b||qt
b) + pt\gtKL(p̂t||q̂t)

)
.

(4)

163

As seen, we can reformulate the classic KD ob-164

jective as a combination of binary classification165

loss on the target class, and KL loss on the non-166

target classes. The former forces the student to167

learn the target-related information, and we thus168

denote it as target-oriented knowledge distilla-169

tion (TKD). Conversely, the latter encourages the170

student to distill the diverse knowledge among171

non-target classes, and we denote it as diversity-172

oriented knowledge distillation (DKD). More-173

over, we find that TKD and DKD are tied by174

a token-wise factor pt\gt , which could reflect the175

2Although the reformulation of LKL is inspired by the
previous work (Zhao et al., 2022), we take a further step by
exploring the potential mechanism of autoregressive KD from
the perspective of teaching modes among different tokens,
which are our main contributions.

teacher’s uncertainty on the tokens, i.e., the larger 176

pt\gt denotes the more uncertainty3 in the teacher 177

output distribution. Hence, we refer to pt\gt as un- 178

certainty coefficient (UNC). 179

2.2 Empirical Analyses 180

Setting. We conduct experiments by first fine- 181

tuning larger LMs on the instruction-response 182

dataset D as teachers. Then, we use different 183

KD methods to distill a smaller student on D with 184

the teacher’s guidance. Here, we use the original 185

OPT-125M as the student and use the other OPT- 186

family models (i.e., OPT-350M/-1.3B/-2.7B/-6.7B) 187

as teachers. Alpaca-GPT4 (Peng et al., 2023) is 188

used as training data, and the models are evaluated 189

on three instruction-following datasets, i.e., Dol- 190

lyEval (Gu et al., 2023), VicunaEval (Chiang et al., 191

2023) and SelfInst (Wang et al., 2022). We fol- 192

low (Gu et al., 2023) and use the LLM-based met- 193

ric, i.e., LLM-as-a-Judge, to quantify the model 194

responses. Specifically, we ask GPT-3.5-Turbo- 195

11064 to compare model responses with the ground- 196

truth answers and raise 1-10 scores for both re- 197

sponses and report the ratio of the total score of 198

model responses and ground-truth answers. 199

Findings. To reveal the drawbacks of LKL and 200

explore the reasons for performance degradation 201

in large teachers, we conduct systematic analyses 202

to investigate the different effects of UNC, TKD 203

and DKD, respectively. Through the extensive 204

analyses, we empirically observe that: 205

❶ UNC measures the learning difficulties of to- 206

kens, where the hard-to-learn ones are more 207

important for KD. Motivated by the token im- 208

balance nature (Piantadosi, 2014) and the truth that 209

different tokens in a sequence contribute differently 210

to the sentence meaning (Church and Hanks, 1990; 211

Chen et al., 2020), we conjecture that different 212

tokens play different roles in autoregressive KD. 213

Intuitively, the tokens with less uncertainty have 214

simple learning patterns and easy-to-learn, while 215

the more uncertain tokens are more informative 216

and are hard-to-learn. To verify our conjecture, we 217

rank the training tokens according to the UNC for 218

each mini-batch and evenly split them into two sub- 219

sets. For clarity, one subset (denoted as “hard-to- 220

learn”) includes samples with top-50% uncertainty, 221

while the remaining samples are in the other subset 222

3For example, the token with p\gt = 0.7 is more uncertain
than the one with p\gt = 0.1.

4The analysis of this evaluator is shown in Appendix A.4.
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Figure 2: Comparisons of different training tokens.
The y-axis denotes the average performance of students
(OPT-125M) on the evaluated tasks, while the x-axis
denotes the sizes of OPT-based teachers.

(denoted as “easy-to-learn”). We train the student223

model with vanilla LKL on different training sets,224

and illustrate the results in Figure 2.225

Obviously, training on the “hard-to-learn” to-226

kens achieves much better performance than on227

the “easy-to-learn” tokens, and even outperforms228

the full-data training. This indicates that tokens229

with more uncertainty contain more “dark knowl-230

edge” and are more important for KD. Conversely,231

due to the shallow patterns of easy-to-learn tokens,232

forcing the student to learn from them might suffer233

from over-fitting, leading to poorer performance.234

More interestingly, this phenomenon seems to be235

more significant in larger teachers.236

❷ DKD contributes more (than TKD) but is237

greatly suppressed, especially for the larger238

teachers. Here, we delve into the individual ef-239

fect of TKD and DKD by comparing the per-240

formance of (1) “TKD-only”, (2) “DKD-only”241

and (3) “TKD+DKD” (where both are decou-242

pled and simply added, i.e., ignoring the effect243

of UNC). The contrastive results among differ-244

ent training sets (as mentioned in ❶) are listed245

in Table 1. As seen,“DKD-only” outperforms the246

“TKD-only” among all model sizes and training247

sets by a large margin, indicating that the diversity-248

oriented knowledge is of vital importance to au-249

toregressive KD. However, in Eq. 4, we can find250

that the effect of DKD is suppressed by the UNC251

(ranging from 0 to 1), which might lead to the252

sub-optimal performance. To verify it, we further253

analyze the distributions of UNC across different254

model sizes. In practice, we randomly sample 100255

instances from the training dataset and illustrate the256

distributions of UNC in Figure 3. It can be seen that257

UNC is generally smaller (tends to be 0) in large258

Method 350M 1.3B 2.7B 6.7B

1) Full data are used.

TKD-only 49.19 48.01 47.21 48.29
DKD-only 54.00 57.78 59.43 60.42
TKD+DKD 52.97 57.01 58.66 58.70

2) Easy-to-learn tokens are used.

TKD-only 39.21 43.82 42.37 41.43
DKD-only 48.68 54.43 58.26 60.02
TKD+DKD 45.59 44.97 45.09 44.66

3) Hard-to-learn tokens are used.

TKD-only 47.40 45.15 44.63 48.32
DKD-only 51.42 58.51 55.47 59.88
TKD+DKD 53.26 60.49 60.60 61.47

Table 1: Comparisons of different teaching objectives.
The best results within the same training set are in bold.
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Figure 3: Illustration of distributions of UNC (pt\gt)
among different OPT-based teachers on 100 training
samples (about 10K tokens). In particular, we use the
kernel density estimate for visualizing, where the larger
density refers to more tokens.

models than in small models, i.e., the larger mod- 259

els, the more suppressed the effect of DKD. This 260

is also indicated by the results of “TKD+DKD”, 261

as removing the UNC seems to alleviate the per- 262

formance degradation problem in the large models 263

(except training on easy-to-learn tokens, where the 264

further analyses are shown in ❸). In general, these 265

analyses prove that DKD is more important but is 266

greatly suppressed by the UNC in the larger mod- 267

els, which could be the main reason why a larger 268

teacher leads to a poorer student. 269

❸ TKD plays different roles in tokens with dif- 270

ferent learning difficulties. We can observe an 271

interesting phenomenon in Table 1, where adding 272

TKD upon DKD (“TKD+DKD”) seems to dramat- 273

ically result in performance degrades when training 274

on the easy-to-learn set, compared to the singly 275

DKD (e.g., decreasing from 60.02% to 44.66%). 276
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Figure 4: Effect of TKD in different training tokens.
Here, we report the performance of students distilled
with “α×TKD+DKD”, where α is varied from 0 to 1.
For ease of illustration, we only illustrate the results of
using OPT-1.3B and OPT-6.7B as teachers.

Conversely, in the case of hard-to-learn tokens,277

adding TKD brings remarkable performance gains.278

These results motivate us to investigate the special279

effect of TKD on different tokens, by comparing280

the performance of different combinations of TKD281

and DKD in the setting of “α×TKD+DKD”. The282

contrastive performance of varied α is illustrated in283

Figure 4. It can be seen that TKD indeed behaves284

differently in different training sets. TKD hurts the285

knowledge transfer of easy-to-learn tokens, but is286

beneficial to the learning of hard-to-learn tokens.287

We attribute it to the different learning difficulties288

of tokens, as the target-oriented learning on easy-289

to-learn tokens might damage the diversity of stu-290

dents (Tan et al., 2008). On the other hand, adding291

target-related supervision signals could reduce the292

learning difficulties on the hard-to-learn tokens,293

thus leading to better performance.294

3 Improving Knowledge Distillation with295

Adaptive Teaching Modes296

Based on the observations in §2, we recognize that297

different tokens have different teaching modes,298

and the side effect (i.e., problem degrades in larger299

teachers) of KD mainly comes from the neglect300

of this principle. To this end, we propose to im-301

prove the autoregressive KD with adaptive teaching302

modes (ATKD). In this section, we introduce the303

ATKD approach in detail.304

Motivation and Overview of ATKD. In addi-305

tion to the empirical findings in §2, our ATKD is306

also inspired by a famous education initiative (Tan307

et al., 2008), “Teach Less, Learn More”, which308

highlights that reducing rote learning and making309

education more diverse and flexible can improve310

the quality of teaching and enhance student learn-311

ing. Motivated by this, our ATKD aims to encour- 312

age the students to learn from different perspec- 313

tives for different tokens. In short, ATKD skips 314

the target-oriented teaching for the easy-to-learn 315

tokens, and pays more attention to the learning of 316

diverse knowledge in the hard-to-learn tokens. 317

To achieve this goal, we should first obtain the 318

easy-/hard-to-learn tokens. As mentioned in ❶ of 319

§2.2, UNC can effectively measure the learning dif- 320

ficulties of tokens, and we thus use it as a metric to 321

select the easy-/hard-to-learn tokens. Specifically, 322

for each mini-batch, we rank the training tokens 323

according to UNC and select the top-k5 tokens as 324

hard-to-learn tokens, while the others are easy-to- 325

learn. Then, ATKD performs the KD processes 326

with adaptive teaching modes as follows: 327

Adaptive Teaching Modes of ATKD. As afore- 328

mentioned, TKD and DKD contribute differently 329

in easy-/hard-to-learn tokens. Thus, instead of us- 330

ing a unified teaching mode for all tokens, we use 331

adaptive teaching modes for easy-to-learn and hard- 332

to-learn tokens, respectively. Specifically, we de- 333

couple the TKD and DKD (i.e., DKD will not be 334

suppressed by the UNC) to enhance the diverse 335

learning of students. Moreover, for the easy-to- 336

learn tokens, considering that the student can eas- 337

ily learn the target-class information, we skip the 338

target-oriented teaching, i.e., removing TKD. On 339

the other hand, both TKD and DKD are used for 340

hard-to-learn tokens, as we empirically found that 341

target-oriented teaching is essential to the learning 342

of hard-to-learn tokens. The learning objectives of 343

different tokens can be formulated as: 344

Le
KL = −

∑
t∈De

KL(p̂t||q̂t),

Lh
KL = −

∑
t∈Dh

KL(pt
b||qt

b) + KL(p̂t||q̂t),
345

where De and Dh denote the sets of easy-to-learn 346

and hard-to-learn tokens, respectively. 347

Additionally, since the hard-to-learn tokens con- 348

tain more informative knowledge and are more im- 349

portant, we adaptively combine the easy-to-learn 350

Le
KL and hard-to-learn Lh

KL objectives and formu- 351

late the overall learning objective of ATKD as: 352

Lall
KL = λ ∗ Le

KL + (1− λ) ∗ Lh
KL, (5) 353

where λ is a weight factor to balance the different 354

objectives, which is empirically set as 0.2. 355

5k ranges from 0% to 100%, and is set as 50% by default.
The analysis of k can be found in §4.3.
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Method OPT-350M OPT-1.3B OPT-2.7B OPT-6.7B

SNLG SNLU Avg. SNLG SNLU Avg. SNLG SNLU Avg. SNLG SNLU Avg.

Teacher 58.33 20.36 39.35 68.90 22.60 45.75 74.21 22.28 48.25 78.71 23.43 51.07

Supervised KD 50.62 18.88 34.75 55.57 17.99 36.78 55.30 18.69 37.00 55.45 18.33 36.89
+ATKD 52.16 19.58 35.87 56.76 19.73 38.25 57.26 19.48 38.37 57.56 19.31 38.43
∆ (↑) +1.54 +0.69 +1.12 +1.20 +1.74 +1.47 +1.96 +0.78 +1.37 +2.11 +0.98 +1.54

Reverse KD 50.54 18.05 34.30 51.60 18.15 34.87 51.26 18.56 34.91 50.08 18.33 34.20
+ATKD 50.86 19.13 34.99 54.40 19.40 36.90 54.34 19.27 36.80 54.37 19.16 36.76
∆ (↑) +0.32 +1.08 +0.70 +2.80 +1.25 +2.03 +3.08 +0.70 +1.89 +4.29 +0.83 +2.56

ImitKD 52.27 18.35 35.31 59.87 18.41 39.14 59.88 17.46 38.67 58.86 17.28 38.07
+ATKD 52.36 18.66 35.51 60.76 19.29 40.02 60.77 19.18 39.97 62.66 19.56 41.11
∆ (↑) +0.09 +0.31 +0.20 +0.89 +0.88 +0.88 +0.89 +1.71 +1.30 +3.80 +2.28 +3.04

f-distill 52.18 18.57 35.37 59.74 19.46 39.60 60.01 17.08 38.55 59.02 17.80 38.41
+ATKD 52.69 18.80 35.75 61.30 19.54 40.42 60.70 19.02 39.86 61.25 19.18 40.22
∆ (↑) +0.51 +0.23 +0.37 +1.55 +0.08 +0.82 +0.68 +1.94 +1.31 +2.23 +1.38 +1.80

GKD 51.87 17.32 34.59 61.23 18.77 40.00 61.24 17.48 39.36 60.59 16.87 38.73
+ATKD 51.90 18.52 35.21 61.36 19.07 40.21 62.46 19.21 40.84 62.62 19.26 40.94
∆ (↑) +0.04 +1.20 +0.62 +0.13 +0.30 +0.21 +1.22 +1.73 +1.48 +2.03 +2.39 +2.21

Table 2: Results (%) of students (OPT-125M) distilling with different teachers and KD methods. “Avg.” means
the average performance of SNLG and SNLU. “∆ (↑)” denotes the performance gains of ATKD against the baselines.

4 Evaluation356

4.1 Setup357

Tasks and Datasets. We conduct extensive ex-358

periments on various LM benchmarks, covering359

a diversity of language generation tasks (denoted360

as SNLG) and language understanding tasks (de-361

noted as SNLU). Specifically, SNLG consists of 5362

widely-used generation tasks, i.e., DollyEval (Gu363

et al., 2023), VicunaEval (Chiang et al., 2023),364

SelfInst (Wang et al., 2022), Koala (Geng et al.,365

2023), and WizardLM (Xu et al., 2023) bench-366

marks. SNLU includes 3 popular classification tasks,367

i.e., MMLU (Hendrycks et al., 2020), Drop (Dua368

et al., 2019) and BBH (Suzgun et al., 2022). For369

evaluation, we use the LLM-based metric6 to quan-370

tify the model response for SNLG and report the371

performance with Exact-Match metric for SNLU.372

We report the averaged results over 5 random seeds373

to avoid stochasticity. The details of all tasks are374

shown in Appendix A.1.375

Models. We evaluate ATKD on three types of376

LMs with various sizes: OPT (Zhang et al., 2022)377

(student: 125M, teachers: 350M, 1.3B, 2.7B,378

6.7B), Pythia (Biderman et al., 2023) (student:379

410M, teachers: 1.4B, 2.8B), and LLaMA (student:380

68M (Miao et al., 2023), teachers: 1.1B (Zhang381

et al., 2024), 7B (Touvron et al., 2023)). Alpaca-382

GPT4 (Peng et al., 2023) consisting of 52K GPT4-383

6The details of this metric can be found in §2.2.

generated instruction-response pairs is used as 384

training data. The details of training and evalu- 385

ation can be found in Appendix A.2 and A.3. 386

Baselines. We consider 5 cutting-edge KD base- 387

lines in our main experiment: Supervised KD (Hin- 388

ton et al., 2015), Reverse KD (Gu et al., 2023), Im- 389

itKD (Lin et al., 2020), f-distill (Wen et al., 2023) 390

and GKD (Agarwal et al., 2024). For reference, we 391

also report the performance of teachers as the upper 392

bound. We use the codebase of Liu et al. (2023) to 393

implement these baselines and distill students. 394

4.2 Compared Results 395

Results of distilled models are shown in Table 2 396

and 3. For ease of illustration, we only report the 397

overall performance of SNLG and SNLU, respec- 398

tively, where the detailed results are listed in Ta- 399

ble 6 and 9. From these results, we can find that: 400

ATKD effectively alleviates the problem of per- 401

formance degrades in larger teachers. As seen, 402

various baseline KD methods suffer from this prob- 403

lem, e.g., distilling OPT using GKD (1.3B: 40.00% 404

v.s. 6.7B: 38.73%). However, with the help of 405

our ATKD, the students can generally achieve bet- 406

ter performance in larger teachers among various 407

baseline KD methods, i.e., alleviating the problem. 408

These results can prove the effectiveness of ATKD 409

in improving the quality of teaching. 410
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Figure 5: (a) Effect of different ratios (top-k) for selecting hard-to-learn tokens, (b) Parameter analysis of α in
Eq. 5, and (c) Comparison of different KD methods that aim to alleviate the problem of performance degrades in
larger teachers. We use the Supervised KD as the baseline and report the performance of OPT-125M on SNLG.

ATKD brings consistent and significant perfor-411

mance gains among all model sizes and types.412

From Table 2, we can see that, compared with the413

baseline methods, our ATKD consistently achieves414

better performance (up to +3.04% average gains)415

across various model sizes. Moreover, as seen in416

Table 3, in addition to OPT, ATKD also works417

well in Pythia-family and LLaMA-family models.418

These results demonstrate the universality of our419

ATKD and indicate that ATKD has great potential420

to expand to more LMs.421

ATKD is beneficial to various baseline KD meth-422

ods. In the preliminary analyses, we only con-423

ducted experiments on the typical Supervised KD.424

Here, we additionally investigate the combinabil-425

ity of ATKD and other baseline KD methods. As426

observed in Table 2, ATKD can bring consistent427

performance gains among all baseline KD methods.428

For example, with the help of ATKD, Revere KD429

and ImitKD achieve +1.80% and +1.36% average430

performance gains, respectively.431

4.3 Ablation Study432

Impact of ratio k. The ratio k that is used to se-433

lect the hard-to-learn tokens, is an important hyper-434

parameter in ATKD. In this study, we analyze its435

influence by evaluating the performance with differ-436

ent k spanning from 0% to 100% at 10% intervals437

on SNLG tasks. Figure 5 (a) illustrates the average438

results, in which we can find that: 1) Too large439

k values (e.g., 70%) lead to performance degra-440

dation, as many of the selected tokens are “false”441

hard-to-learn and might distort the adaptive teach-442

ing. 2) The model’s performance stably increases443

between 10% and 50%, and ATKD performs best444

with k = 50%, thus leaving as our default settings.445

Impact of coefficient λ. The factor λ in Eq. 5,446

which is used to balance different objectives, is also447

Method Pythia-410M LLaMA-68M

1.4B 2.8B 1.1B 7B

Teacher 67.86 73.50 75.23 84.17

Supervised KD 60.66 59.91 30.06 27.94
+ATKD 61.81 61.22 31.19 30.19
∆ (↑) +1.15 +1.31 +1.13 +2.25

Reverse KD 55.92 54.67 26.15 25.94
+ATKD 57.05 57.94 26.73 26.99
∆ (↑) +1.14 +3.27 +0.58 +1.05

Table 3: Results (%) of students (Pythia-410M and
LLaMA-68M). Due to the space limitation, we only
report the results upon two typical KD baselines.

needed to be investigated. Figure 5 (b) illustrates 448

the results of varied λ ranging from 0 to 1. As seen, 449

compared to the single learning of hard-to-learn to- 450

kens, incorporating some supervision signals from 451

easy-to-learn tokens results in better performance. 452

However, too large λ values (e.g., 0.9) would be 453

harmful to the effectiveness of ATKD, as paying 454

much attention to the learning of easy-to-learn to- 455

kens might lead to overfitting. More specifically, 456

the case of λ = 0.2 performs best, and we thereby 457

use this setting in our experiments. 458

4.4 Discussion 459

Here, we conduct further analyses to discuss: 1) 460

whether ATKD outperforms the other counterparts, 461

and 2) whether it gains better model generalization. 462

Comparison with other counterparts. To the 463

best of our knowledge, there are no existing KD 464

methods that involve solving the problem of perfor- 465

mance degradation for autoregressive LLMs. Thus, 466

we compare ATKD with the related methods in the 467

vision community: “Early-stop Teacher” (Cho and 468

Hariharan, 2019), “Teacher Assistant”7 (Mirzadeh 469

7We use the OPT-350M as the assistant model and only
report the results distilling from teachers larger than 350M.
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et al., 2020) and “Decoupled KD” (Zhao et al.,470

2022). The contrastive results are illustrated in471

Figure 5 (c), from which we can find that: 1) Sup-472

pressing the teacher’s performance via early stop-473

ping or leveraging a smaller assistant might not474

be effective and even lead to worse performance,475

2) Although “Decoupled KD” could alleviate this476

problem, it achieves sub-optimal performance, as477

it equally adopts the same teaching modes for all478

tokens. Takeaway: among all methods, our ATKD479

can not only alleviate this problem but also bring480

further performance gains in a simple manner,481

proving its superiority.482

Model Generalization. Enforcing the student to483

learn more diverse knowledge could improve its484

generalization. To verify this conjecture, we vi-485

sualize the loss landscapes of different distilled486

OPT-125M models on the VicunaEval task. In487

practice, we follow He et al. (2021); Zhong et al.488

(2022) to plot the 1D loss curve by linear inter-489

polation between the model weights before (de-490

noted as θ0) and after (denoted as θ1) distilling, i.e.,491

“θ1 + β · (θ1 − θ0)”, where β is a scalar parameter492

that is ranged from -1 to 1. The 1D visualization493

results are illustrated in Figure 6, and we find that494

“-w/ ATKD (Ours)” shows a flatter and optimal495

property against the baseline Supervised KD. Take-496

away: These results prove that ATKD can smooth497

the loss landscape and improve the model gener-498

alization effectively.499

5 Related Works500

Recently, autoregressive LMs (OpenAI, 2023;501

Chowdhery et al., 2023; Touvron et al., 2023) have502

shown their superior performance by solving var-503

ious NLP tasks in a generative manner. Despite504

their success, they usually suffer from unbearable505

inference latency (Leviathan et al., 2023). To this506

end, several model compression approaches are507

proposed to reduce the model size and accelerate508

the inference (Hinton et al., 2015; Jaszczur et al.,509

2021; Zhu et al., 2023). Among these efforts, KD510

strategy (Hinton et al., 2015), which aims at train-511

ing a smaller student model with the guidance of512

a teacher model, has attracted great attention re-513

cently (Wen et al., 2023; Gu et al., 2023; Agarwal514

et al., 2024). Although these KD methods real-515

ize promising performance when distilling (rela-516

tively) smaller LMs, they might fall short in distill-517

ing larger LMs (e.g., OPT-6.7B) especially when518

the student is of a small scale. In fact, this phe-519
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Figure 6: 1D visualization of loss landscapes of OPT-
125M distilled by different methods and teachers. The
y-axis denotes the model perplexity on VicunaEval.

nomenon has been observed in the vision commu- 520

nity (Mirzadeh et al., 2020; Cho and Hariharan, 521

2019) and language understanding models (Zhang 522

et al., 2023). To alleviate this problem, a few stud- 523

ies including teacher assistant-based (Mirzadeh 524

et al., 2020) and student-friendly (Cho and Har- 525

iharan, 2019; Zhao et al., 2022; Zhang et al., 2023) 526

distillation have been recently explored. 527

The above efforts are generally used for vision 528

models or discriminative LMs, while the autore- 529

gressive KD for generative LMs is yet to be ex- 530

plored. To the best of our knowledge, we are the 531

(nearly) first to alleviate the problem of perfor- 532

mance degradation in larger autoregressive teacher 533

LMs. Different from the previous methods that aim 534

to directly bridge the performance gap between 535

teacher and student, we attempt to improve the 536

quality of teaching by exploring and addressing the 537

limitations of existing KD objectives. 538

6 Conclusion 539

In this paper, we reveal and address the limitations 540

of KD in compressing the larger autoregressive 541

teachers. Based on a series of preliminary analy- 542

ses, we find that equally adopting the same teach- 543

ing modes for all tokens is sub-optimal, as learn- 544

ing more target-oriented knowledge of the easy- 545

to-learn tokens might lead to overfitting and result 546

in poor performance. To address these limitations, 547

we improve KD with a novel adaptive teaching al- 548

gorithm. It skips the target-oriented teaching for 549

easy-to-learn tokens and pays more attention to the 550

diverse learning of hard-to-learn tokens. Experi- 551

ments show that our approach consistently and sig- 552

nificantly improves distillation performance across 553

all model architectures. In-depth analyses prove 554

that our approach indeed alleviates the problem, 555

and further improves the model generalization. 556
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Limitations557

Our work has several potential limitations. First,558

given the limited computational budget, we only559

validate our ATKD on up to 7B autoregressive LMs.560

It will be more convincing if scaling up to the larger561

model size (e.g., 70B) and applying ATKD to more562

cutting-edge model architectures. On the other563

hand, besides the distillation performance, we be-564

lieve that there are still other properties, e.g., train-565

ing efficiency and model robustness, of LMs that566

can be improved by our ATKD approach, which567

are not fully explored in this work.568

Ethics and Reproducibility Statements569

Ethics We take ethical considerations very seri-570

ously and strictly adhere to the ACL Ethics Policy.571

This paper proposes an adaptive teaching algorithm572

to improve existing KD strategies. It aims to com-573

press the existing larger LMs into smaller students,574

instead of encouraging them to learn privacy knowl-575

edge that may cause the ethical problem. Moreover,576

all training and evaluation datasets used in this pa-577

per are publicly available and have been widely578

adopted by researchers. Thus, we believe that this579

research will not pose ethical issues.580

Reproducibility In this paper, we discuss the de-581

tailed experimental setup, such as hyper-parameters582

and statistic descriptions. More importantly, we583

have provided our code in the supplementary ma-584

terials to help reproduce our experimental results.585
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Test set Task # Types # Samples

SNLG

DollyEval Generation 500
VicunaEval Generation 80
SelfInst Generation 242
Koala Generation 180
WizardLM Generation 218

SNLU

MMLU Classification 14,079
Drop Classification 9,540
BBH Classification 6,511

Table 4: Statistics of all test sets used in this paper.

statistics of all evaluated datasets in Table 4. Then,762

each task is described as:763

DollyEval. DollyEval (Gu et al., 2023) is a 500-764

sample test set that is splitted from the databricks-765

dolly-15k8 dataset.766

VicunaEval. VicunaEval (Chiang et al., 2023)767

contains 80 challenging questions used in the Vi-768

cuna evaluation.769

SelfInst. SelfInst (Wang et al., 2022) is a user-770

oriented instruction-following test set with 252771

samples.772

Koala. This test set consists of 180 queries773

that Geng et al. (2023) source from publicly avail-774

able user-written language model prompts.775

WizardLM. WizardLM (Xu et al., 2023) con-776

sists of 218 instances, each of which is an instruc-777

tion for a specific skill, such as Math, Reasoning,778

Complex Formats, and so on.779

MMLU. Massive Multitask Language Under-780

standing (MMLU) (Hendrycks et al., 2020) is a781

popular benchmark designed to measure the multi-782

task accuracy of LLMs, covering 57 tasks.783

Drop. Discrete Reasoning Over Paragraphs784

(DROP) (Dua et al., 2019) is a math-based read-785

ing comprehension task that requires a system to786

perform discrete reasoning over passages extracted787

from Wikipedia articles.788

BBH. BIG-Bench Hard (BBH) (Suzgun et al.,789

2022) is a subset of 23 challenging tasks from the790

BIG-Bench benchmark (Srivastava et al., 2023),791

which focuses on tasks believed to be beyond the792

capabilities of current language models.793

A.2 Training Hyper-parameters.794

For teachers, we train each model with a batch795

size of 128 and a peak learning rate of 2e-5. For796

distilling students, the learning rate is selected in797

8https://github.com/databrickslabs/
dolly/tree/master

Evaluator Method 350M 1.3B 2.7B 6.7B

ChatGPT
Supervised KD 46.93 51.92 53.02 53.78

+ATKD 52.75 52.99 53.69 54.74

GPT-4
Supervised KD 30.09 32.28 32.45 33.28

+ATKD 32.48 33.21 33.53 34.49

Table 5: Comparison between ChatGPT-based and
GPT-4-based automatic evaluators. Here, we report
the evaluation results of students (OPT-125M) on the
Koala benchmark, and we can see that ChatGPT makes
similar judgments to GPT-4.

{2e-4, 2e-5} depending on model sizes, while the 798

batch size is 256 and the maximum tokenizer length 799

is 512. All models are trained for 3 epochs, and 800

all experiments are conducted on 8 NVIDIA A800 801

(80GB) GPUs. 802

A.3 Evaluation Details. 803

For SNLG, we report the zero-shot performance 804

by directly evaluating the instruction-following re- 805

sponses using the LLM-as-judge metric9. We use 806

the same evaluation prompt in Gu et al. (2023) to 807

instruct the ChatGPT to judge the usefulness of 808

model responses. Notably, for each query in SNLG, 809

we set the maximum number of output tokens as 810

256. As for SNLU, we follow Chen et al. (2023) and 811

use the code provided by Chia et al. (2023) to con- 812

duct benchmark evaluation. Specifically, we use 5- 813

shot direct prompting and measure the exact-match 814

score for MMLU (Hendrycks et al., 2020). Regard- 815

ing the Drop (Dua et al., 2019) and BBH (Suzgun 816

et al., 2022), 3-shot direct prompting is used and 817

exact-match scores are reported. 818

A.4 ChatGPT v.s. GPT-4 819

Although the GPT-4 is more commonly used as 820

the automatic evaluator for the “LLM-as-Judge” 821

metric (Chen et al., 2023; Chiang et al., 2023), 822

it requires a much higher cost, especially for our 823

extensive experiments. As an alternative, we use 824

the cheaper ChatGPT as the automatic evaluator 825

to evaluate the model responses. Here, to verify 826

whether ChatGPT is enough to reflect the behav- 827

ior of LMs, we conduct a comparative study on 828

ChatGPT and GPT-4. Specifically, taking the re- 829

sponses of OPT-125M on Koala as an example, we 830

9Although some studies show that LLM-as-Judge may
exhibit a certain degree of bias (Zhao et al., 2023; Sottana
et al., 2023), strong proprietary LLMs, e.g., ChatGPT and
GPT-4, are capable of making preference determinations that
are highly consistent with those of human annotators (Dubois
et al., 2023).

11
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use the ChatGPT and GPT-4 to measure the score,831

respectively. As listed in Table 5, GPT-4 seems to832

be more strict in evaluating the model responses, as833

the evaluated scores of GPT-4 are generally lower834

than those of ChatGPT. Nevertheless, both auto-835

matic evaluators make similar judgments, i.e., our836

ATKD performs better than baselines among all837

model sizes. Thus, we believe that ChatGPT is838

enough to reflect whether the model generates a839

useful response, and it is credible to use ChatGPT840

as the automatic evaluator in this study.841
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Method
SNLG SNLU Average

DollyEval VicunaEval SelfInst Koala WizardLM MMLU Drop BBH SNLG SNLU

SFT -w/o KD 55.05 38.45 52.52 45.27 42.35 21.66 3.8 27.5 49.75 17.65

Teacher-OPT-350M 64.96 51.09 61.98 52.13 46.84 26.03 6.98 28.08 58.33 20.36

Supervised KD 54.90 45.93 53.86 46.93 41.98 24.44 4.85 27.36 50.62 18.88
+ATKD 56.14 43.35 52.98 52.75 44.88 24.52 6.94 27.27 52.16 19.58

Reverse KD 55.53 44.30 50.25 50.14 42.04 22.54 4.88 26.73 50.54 18.05
+ATKD 54.81 43.68 52.66 51.05 42.26 23.74 6.95 26.70 50.86 19.13

ImitKD 55.68 41.30 54.73 52.51 45.55 24.06 4.25 26.73 52.27 18.35
+ATKD 55.10 43.64 55.37 52.49 45.84 25.07 4.39 26.51 52.36 18.66

f-distill 56.31 43.52 52.67 52.69 44.93 24.71 4.50 26.49 52.18 18.57
+ATKD 54.86 42.61 57.22 53.00 46.15 24.60 5.04 26.76 52.69 18.80

GKD 53.76 44.41 53.82 54.62 45.83 23.93 1.42 26.61 51.87 17.32
+ATKD 54.43 44.35 53.88 54.79 44.31 25.40 2.29 27.88 51.90 18.52

Teacher-OPT-1.3B 72.29 68.86 74.35 65.02 58.30 24.78 14.00 29.01 68.90 22.60

Supervised KD 60.89 52.35 57.95 51.92 44.92 22.27 4.57 27.13 55.57 17.99
+ATKD 62.35 51.52 59.59 52.99 45.86 25.08 6.43 27.67 56.76 19.73

Reverse KD 57.16 46.36 50.75 50.10 42.94 23.02 4.22 27.21 51.60 18.15
+ATKD 59.08 48.41 57.17 52.04 44.71 26.06 5.44 26.71 54.40 19.40

ImitKD 64.55 50.74 61.99 59.15 50.73 23.45 4.31 27.47 59.87 18.41
+ATKD 65.27 53.70 63.41 60.00 50.70 25.76 4.90 27.20 60.76 19.29

f-distill 64.80 51.45 61.57 59.00 49.78 26.59 4.71 27.08 59.74 19.46
+ATKD 65.72 51.56 62.96 60.72 53.35 26.58 4.84 27.21 61.30 19.54

GKD 63.48 56.08 64.73 61.54 53.83 25.99 4.42 25.89 61.23 18.77
+ATKD 64.84 56.75 64.43 60.66 52.25 25.69 4.69 26.82 61.36 19.07

Teacher-OPT-2.7B 75.64 74.43 80.99 74.12 63.39 24.74 12.86 29.25 74.21 22.28

Supervised KD 59.16 52.89 58.31 53.02 45.88 22.89 5.63 27.56 55.30 18.69
+ATKD 62.47 54.47 60.22 53.69 46.01 23.83 6.48 28.12 57.26 19.48

Reverse KD 56.09 48.58 49.46 51.07 43.34 24.08 4.23 27.38 51.26 18.56
+ATKD 59.79 50.96 55.73 50.70 44.54 24.65 5.76 27.39 54.34 19.27

ImitKD 63.30 57.55 62.98 59.23 50.01 22.82 4.50 25.07 59.88 17.46
+ATKD 65.04 57.27 63.11 59.93 50.37 25.11 6.17 26.25 60.77 19.18

f-distill 63.78 58.58 62.79 58.57 50.00 22.21 4.40 24.63 60.01 17.08
+ATKD 64.45 57.00 63.03 59.92 51.49 24.57 5.33 27.17 60.70 19.02

GKD 64.13 57.42 64.41 63.59 50.56 22.78 3.42 26.24 61.24 17.48
+ATKD 66.84 60.73 63.23 63.02 51.72 25.42 4.57 27.65 62.46 19.21

Teacher-OPT-6.7B 81.03 77.38 84.92 78.65 67.01 24.67 15.16 30.45 78.71 23.43

Supervised KD 60.01 49.41 58.22 53.78 45.51 23.46 5.43 26.10 55.45 18.33
+ATKD 63.08 53.75 60.05 54.74 45.84 24.23 5.95 27.74 57.56 19.31

Reverse KD 53.73 47.33 49.70 49.50 43.61 23.95 4.30 26.73 50.08 18.33
+ATKD 59.13 52.24 57.63 52.21 42.38 25.62 4.80 27.05 54.37 19.16

ImitKD 62.32 57.64 63.02 57.08 48.24 22.59 4.02 25.23 58.86 17.28
+ATKD 65.07 58.07 65.93 63.76 54.29 25.89 6.68 26.11 62.66 19.56

f-distill 63.25 55.97 62.06 57.23 48.56 24.25 4.03 25.12 59.02 17.80
+ATKD 64.51 59.48 64.04 62.28 50.48 25.15 5.57 26.82 61.25 19.18

GKD 64.37 58.47 61.63 62.19 50.23 22.03 3.53 25.04 60.59 16.87
+ATKD 66.68 60.87 65.29 63.19 50.51 25.84 4.36 27.58 62.62 19.26

Table 6: Full results of Table 2, i.e., performance of student (OPT-125M) on SNLG and SNLU across different
teachers and KD methods. “Average” denotes the average results of SNLG and SNLU, and “SFT -w/o KD” refers to
the results of the vanilla student that is tuned on the ground-truth data. Better results among baseline KD methods
and ours are in bold.
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Method
SNLG, Pythia-410M

Dolly Vicuna SelfInst Koala WizardLM

SFT-w/o KD 61.81 57.38 60.62 50.67 50.06

Teacher-1.4B/-1.1B 69.51 73.13 69.59 65.17 62.44

Supervised KD 62.62 64.61 63.47 56.36 55.15
+ATKD (Ours) 63.87 62.70 65.64 59.13 54.72

Reverse KD 58.82 56.17 58.87 53.17 48.15
+ATKD (Ours) 61.14 57.80 57.30 53.85 49.77

Teacher-2.8B/-7B 75.84 76.63 72.99 70.95 69.63

Supervised KD 61.10 60.38 63.51 56.99 55.43
+ATKD (Ours) 63.37 64.31 63.06 59.22 54.79

Reverse KD 58.80 54.99 53.74 52.61 47.79
+ATKD (Ours) 61.21 63.23 56.38 57.23 50.81

Table 7: Results of Pythia-410M.

SNLG, LLaMA-68M

Dolly Vicuna SelfInst Koala WizardLM

26.37 26.67 28.37 27.27 23.72

78.82 77.50 75.02 72.01 69.08

29.63 28.74 31.51 31.84 28.45
30.29 29.50 34.65 33.25 28.34
25.69 25.74 27.98 29.23 22.78
26.02 25.31 28.95 29.23 24.35

86.50 83.25 83.70 84.18 79.68

27.27 28.31 29.26 30.02 26.15
30.08 28.95 30.97 32.09 28.47
25.65 25.11 27.85 28.03 23.05
26.70 27.38 28.35 29.53 23.91

Table 8: Results of LLaMA-68M.

Table 9: Full results of Table 3, i.e., performance of students (Pythia-410M, Table 7 and LLaMA-68M, Table 8)
on SNLG. Notably, for Pythia-410M, we use the Pythia-1.4B/2.8B as teachers, while LLaMA-1.1B/7B are used as
teachers for LLaMA-68M.
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