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Abstract

Most music generation models directly generate a single music mixture. To allow
for more flexible and controllable generation, the Multi-Source Diffusion Model
(MSDM) has been proposed to model music as a mixture of multiple instrumental
sources (e.g. piano, drums, bass, and guitar). Its goal is to use one single diffusion
model to generate mutually-coherent music sources, that are then mixed to form
the music. Despite its capabilities, MSDM is unable to generate music with rich
melodies and often generates empty sounds. Its waveform diffusion approach also
introduces significant Gaussian noise artifacts that compromise audio quality. In
response, we introduce a Multi-Source Latent Diffusion Model (MSLDM) that
employs Variational Autoencoders (VAEs) to encode each instrumental source
into a distinct latent representation. By training a VAE on all music sources, we
efficiently capture each source’s unique characteristics in a “source latent”. The
source latents are concatenated and our diffusion model learns this joint latent space.
This approach significantly enhances the total and partial generation of music by
leveraging the VAE’s latent compression and noise-robustness. The compressed
source latent also facilitates more efficient generation. Subjective listening tests and
Fréchet Audio Distance (FAD) scores confirm that our model outperforms MSDM,
showcasing its practical and enhanced applicability in music generation systems.
We also emphasize that modeling sources is more effective than direct music mixture
modeling. Codes and models are available at https://github.com/XZWY/MSLDM.
Demos are available at https://xzwy.github.io/MSLDMDemo/.

1 Introduction

Generative models have shown impressive results not only in language and image generation OpenAI
[2023], Ramesh et al. [2021], Brown et al. [2020], but also in music generation. Music generation
models primarily fall into two categories: 1) Auto-regressive and 2) Diffusion-based. Auto-regressive
models like WaveNet van den Oord et al. [2016] directly model scalar-quantized waveform samples
but suffer from low sampling efficiency. Further research Dhariwal et al. [2020], Agostinelli et al.
[2023], Copet et al. [2024] starts to auto-regressively model audio/speech/music tokens, which are
often extracted from audio tokenizers van den Oord et al. [2018], Dhariwal et al. [2020], ?], Kumar
et al. [2023], Zeghidour et al. [2021].

Diffusion-based models also hold great potential. Noise2Music Huang et al. [2023a] generates
either downsampled waveforms or Mel-Spectrograms as an intermediate step before decoding to
full waveforms. Inspired by latent diffusion’s success in images Rombach et al. [2022], models like
DiffSound Yang et al. [2023] use spectrogram VQ-VAE tokenizers with discrete diffusion, while
others Huang et al. [2023b], Liu et al. [2023, 2024], Chen et al. [2023], Schneider et al. [2023] leverage
continuous latent spaces from spectrogram-based VAEs. In contrast, models like StableAudio Evans
et al. [2024a] use waveform VAE latents as diffusion targets.

Moûsai Schneider et al. [2023] introduces a diffusion magnitude autoencoding (DMAE) approach to
learn a spectrogram encoder, followed by diffusion modeling on the latent space. StableAudio2 Evans
et al. [2024b] further enhances this by generating full songs using waveform VAE latents with diffusion.
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Figure 1: An Overview of the proposed MSLDM framework.

Although rapid progress has been made in music generation, most models directly model the whole
music piece, which is a mixture of individual sources. However, the individual sources cannot be
disentangled from the mixture. Ideally, a music generation method should be able to generate the
individual music sources that together form a piece of music, similar to a human’s music composition
process. This will allow the music to be more interpretable and controllable (e.g., the piano can be
made louder than the drums). To solve this problem, one class of methods directly models the musical
notes or midi representations in a multi-track manner Mittal et al. [2021], Dong et al. [2017]. However,
the generated notes or midi sequence need to be later decoded to a single waveform using synthesizers.
The other type of research directly learns to model several music tracks directly. StemGen Parker
et al. [2024] uses a masked language model on Encodec tokens to generate any single instrument
source given a music context. Pasini et al. [2024] uses the latent diffusion model to generate bass
companions conditioned on mixtures, while SingSong Donahue et al. [2023] generates background
companions given the vocal source. Most recently, MSDM Mariani et al. [2024] has been proposed
to simultaneously model four instrument sources (piano, drums, bass, guitar) with a single waveform-
domain diffusion model, and GMSDI Postolache et al. [2024] has generalized MSDM by training
on text-conditioned diffusion models allowing adaption to any music dataset using text descriptions.

In this paper, we propose to simultaneously model four different instrumental sources (piano, drums,
bass, guitar) jointly, with a single multi-source latent diffusion model (MSLDM), as shown in Fig.1. We
first train a shared SourceVAE on all the sources to perceptually compress the source audio, and then
use this VAE’s encoder to extract the latent feature of each source. We then apply diffusion to model the
generation of the latents of the sources. We claim that 1) with the VAE compressing the source audio
into a compact latent, the diffusion can better model semantic and sequential information like melodies
and the harmony between sources, and 2) modeling individual sources is better than direct modeling
mixtures. Our result in both subjective human evaluation and objective FADs validates our claim.

2 Models

Fig. 1 shows the training and inference pipeline of our model. Just like any latent diffusion model,
our model involves two blocks: (1) SourceVAE, which is trained like a VAE but with an adversarial
loss for perceptual compression. (2) A diffusion model simultaneously models all the sources’ latents
concatenated together as one latent. Inference includes two sub-tasks as well: (1) Total generation
allows unconditional generation of all instrumental sources at the same time and (2) Partial generation
allows the generation of companion sources given any combinations of instrumental sources (e.g.,
generate bass and guitar to accompany a given piece of piano and drums).

2.1 SourceVAE

The SourceVAE aims to compress waveform-domain instrumental sources into a compact latent
space, while still ensuring perceptually indistinguishable reconstruction. This is usually achieved by
adversarial training with carefully designed discriminators. We borrow this training framework and
model architecture from the DAC Kumar et al. [2023] neural audio codec. DAC is a state-of-the-art
waveform-domain neural audio codec trained with both reconstruction and adversarial losses. It can
encode, quantize, and decode audio with superior quality. However, we want our latent to be noise-
robust and continuous, so we remove the vector quantization module, constrain the intermediate latent
size, and add a small KL-divergence loss term as used in vanilla VAEs Kingma and Welling [2022].
The KL-divergence loss is to ensure a noise-robust latent space. For the encoder and decoder, we use
DAC’s default 24kHz model but with a new latent size ofC=80. Given an instrumental source s∈RN

withN samples, the encoder encodes the waveform to a posteriorΨenc(s)=N (·|µz(s),Σz(s)), where
µz(s)∈RC×N

D is the posterior mean of the latent and Σs is the corresponding posterior covariance.
D is the time-domain downsampling factor of the encoder, which is 320 in DAC. Then any z ∼
N (·|µz(s),Σz(s)), processed by the decoder ψdec, should reconstruct swith good quality. To extract
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latent features, we take the posterior mean zs=µz(s). During training, the loss is as shown below:
LSourceVAE=λ1LMel+λ2Lfeature+λ3Ladversarial+λ4LKL (1)

where LMel, Lfeature, Ladversarial are Mel-reconstruction loss, feature matching loss, and adversarial
loss, respectively, as in the DAC training framework. Also λ1=15, λ2=2, λ3=1 according to DAC.
LKL is the KL-Divergence between the VAE encoded posterior and N (0,I) and we set λ4=10. The
implementation details are available in our source code.

2.2 Multi-Source Latent Diffusion

In our setup, assume any music piece x∈RN is a mixture ofK instrumental sources: x=
∑K

k=1sk,
where S = (s1, s2, ..., sK) ∈ RK×N coherently added together to form the musical mixture x.
Our goal is to sample from the distribution of S to get multi-source music. Instead of directly
modeling the generation of S as in Mariani et al. [2024], we propose to model the generation of
ZS = (zs1 ,zs2 ,...,zsK )∈RK×C×N

D , where zsi ∈RC×N
D is the SourceVAE’s latent of si ∈RN . For

the notation to be more abbreviated, we will ignore the subscript s for the latent, so we are modeling
the generation ofZ=(z1,z2,...,zK)∈RK×C×N

D .

We model the generation ofZ=(z1,z2,...,zK) with a score-based diffusion model Song et al. [2021].
Following EDM Karras et al. [2022], with the diffusion schedule σ(t) = t, the forward diffusion
process is defined by:

dZ(t)=−σ(t)∇Z(t)logp(Z(t))dt (2)
whereZ(t)=N (Z(0),σ2(t)I),Z(0)=Z. Then with an ODE solver, we sampleZ by solving:

dZ(t)=σ(t)∇Z(t)logp(Z(t))dt (3)

We approximate the score ∇Z(t)logp(Z(t)) with a neural network Sθ(Z(t),σ(t)) and then train the
score matching loss following EDM Karras et al. [2022], i.e. σdata=0.4,ptrain(σ)=Uniform(0,3).

2.3 Inference

The inference pipeline is marked by the dashed objects in Fig. 1. During sampling, we use the same
sampler for MSDM Mariani et al. [2024]. The sampler is an Euler method-based ODE solver to
integrate Eq. 3 with some stochasticity controlled by the parameter schurn, as proposed in EDM Karras
et al. [2022]. We use σmin=0.01,σmax=3,ρ=7,schurn=20,nsteps=150, also following EDM.
2.3.1 Total Generation
The total generation inference is straightforward. Starting from randomly sampled white noise
Z(T )∼N (·|0,σ2

maxI), the diffusion sampling process gradually transformsZ(T ) toZ(0). Then in-
strumental source latent z1,z2,...,zK are extracted fromZ(0), and are further decoded independently by
the SourceVAE decoder to get the generated source waveforms {si∈RN |si=ψdec(zi),i∈ [1,2,...,K]}.
These generated sources could then be added to form a mixture of music pieces x=

∑K
k=1si.

2.3.2 Partial Generation
Partial generation is the task of generating complementary sources given some existing ones to
condition on. Assume a subset of instruments are given by the indices I ⊂ {1,2, ...K}, and the
corresponding given sources are denoted by SI = {si}i∈I . Then the complementary sources to
generate are indexed by Ī={1,...,K}\I , which means the source to generate are SĪ ={si}i∈Ī . Since
our diffusion model works in the latent domain, we first use SourceVAE to encode each source in SI

to latent ZI = {zi|zi =µz(si),i∈ I}. The task is to generate ZĪ conditioned on ZI , so we need the
conditional score ∇ZĪ(t)

logp(ZĪ(t)|ZI(t)) for sampling. Following diffusion-based imputation Song
et al. [2021] and MSDM Mariani et al. [2024], we could estimate the condition score by:

∇ZĪ (t)
logp(ZĪ(t)|ZI(t))≈∇ZĪ (t)

logp([ZĪ(t),ẐI(t)]) (4)

≈Sθ([ZĪ(t),ẐI(t)],σ(t)) (5)

where ẐI(t) is sampled from N (·|ZI(0),σ
2(t)). Then using Eq. 5, we can use the sampling method

in Sec. 2.3 to solve the following ODE (similar to Eq.3) initialized fromZĪ(T )∼N (·|0,σ2
maxI):

dZĪ(t)=σ(t)S
θ([ZĪ(t),ẐI(t)],σ(t))dt (6)

WithZĪ(0) sampled, the partially generated sources SĪ can be decoded by the SourceVAE decoder:
SĪ = {si ∈ RN |si = ψdec(zi),zi ∈ ZĪ}. Then all the conditional sources and partially generated
sources are added to form the final music piece x.
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3 Experiments and Dataset

The model architectures and training details are explained in Appendix A. We use the same dataset as
MSDM, namely the slakh2100music dataset Manilow et al. [2019]. slakh2100 is a MIDI synthesized
music dataset with 145 hours of music, containing both the mixed music and the individual tracks labeled
with instrument class. Same as MSDM, we useK=4 main tracks which are piano, drums, bass, and
guitar for multi-source modeling. For fair comparison, we use the identical sampling rate of 22,050Hz.

4 Evaluation Metrics and Results

We evaluate two tasks: (1) Total generation and (2) Partial generation as mentioned in Sec. 2.3. For
both tasks, we evaluate the FAD score Kilgour et al. [2019] and human subjective score with a listening
test. We compare our performance against 3 baselines.

4.1 Baseline Models

The first baseline is the MSDM Mariani et al. [2024] model. To show the effectiveness of modeling
sources instead of mixtures, we design another baseline called MixLDM, where the latent diffusion
model directly models the latent of music mixture, instead of instrumental sources. This is a more
common practice in diffusion-based audio/music generation, where the model directly models the
music mixture. For training this model, we first train a MixtureVAE which is the same as SourceVAE
except that it is trained on Mixture music. The latent sizeC=320, so that the diffusion model’s input
is of the same dimension as MSLDM. To claim that our model generates sources that are mutually
coherent (i.e. in harmony with each other), we design one baseline called ISLDM (Independent Source
Latent Diffusion Model), where we train four independent diffusion models on four instruments’
latents, respectively, so each model can generate one single instrument. For each single source model,
the input channel size becomesC=80, and all the other training parameters are the same as MSLDM.
Since all the single source models are independent of each other, they cannot generate mutually
coherent sources. This is set as a baseline to validate our model’s abilities to generate mutually
coherent sources. All models’ parameters and inference time to generate one 12-second mixture on
a single RTX A6000 GPU are listed in Table 1.

MSDM MixLDM ISLDM MSLDM MSLDM-Large
# parameters (M) 405 364 364×4 364 1654
Inference Time (S) 7.92 5.44 5.44×4 5.44 7.44

Table 1: Model parameters and inference time for generating a 12-second music mixture.
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4.2 Fréchet Audio Distance
We use the Fréchet Audio Distance (FAD) Kilgour et al. [2019] with VGGish feature Hershey et al.
[2017] as the objective metric to evaluate total partial generation. We use 200 chunks of music segment
for the FAD calculation, where each is about 12 seconds, as in MSDM Mariani et al. [2024]. We
randomly sample 200 12-second long music segments from the slakh2100 test set as the reference set.

For the task of total generation, we evaluate the generation of all the instrumental sources (piano,
drums, bass, guitar) and the summed mixture (note: MixLDM can only be reported for the mixture).
The FAD results are reported in Fig. 2. First, for single-source generation, ISLDM in general
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has the lowest FAD, showing the best generation performance. This is reasonable because each
independent diffusion model only needs to model one single source. Then our proposed MSLDM
and MSLDM-Large also show promising results, beating the MSDM baseline by a large margin. The
drums generated by MSLDM-Large even achieve lower FAD than ISLDM. For mixture generation,
MixLDM exhibits the worst performance. This confirms our belief that modeling the mixture directly
is much harder than modeling sources. Observe that ISLDM, MSLDM, MSLDM-Large all outperform
MSDM, demonstrating the efficacy of latent diffusion in modeling the harmony in realistic music
mixtures. In fact, MSLDM and MSLDM-Large demonstrate lower FAD than ISLDM, showing that
our model successfully generates sources in harmony. Note that when generating each single source,
MSLDM performs worse than ISLDM for all instruments, but when sources are added together to
form mixtures, MSLDM has lower FAD, showing that it is able to model the inter-source harmony.

4.3 Subjective Listening Test

To complement the objective metrics, we also design subjective listening tests with human evaluation.
We follow the exact test design in MSDM Mariani et al. [2024] for total and partial generation.

Total Generation: Each model generates 10 segments of 12-second music mixture samples. Then for
each sample in the test, the participant is asked to rate the ‘quality’ and ‘coherence’, with a score from 1
to 10 (higher the better). ‘Quality’ corresponds to how realistic the music is (considering white noise is
the least realistic) and ‘coherence’ corresponds to how mutually coherent the sources inside the mixture
are. The evaluation scores are shown in the upper half of Figure 3. MSLDM and MSLDM-Large lead
other baselines by a large margin in both quality and coherence. Also, MSLDM-Large exhibits a higher
score than MSLDM, showing that large model size results in better performance. ISLDM’s quality is
better than MSDM, but its coherence is the worst because all the sources are generated independently.
MixLDM has the worst quality and coherence, showing the difficulty in directly modeling the music
mixture. In general, users find that our MSLDM model is consistently better than MSLDM, ISDM,
MixLDM in both quality and coherence.

Partial Generation: We randomly sample 10 samples in the test set. Then, for each sample, the target
source types (e.g. want to generate piano and drums based on all other instruments) are randomly
sampled. Finally, the models are used to sample the specified source type for each data sample. We
give the participants three music segments (the music to condition on, the partially generated music,
and the synthesized mixture), and then ask them to rate 1-10 for ‘quality’ and ‘density’. The ‘quality’
here means how coherent the generated sources are when mixed with the given sources. The ‘density’
corresponds to how much the generated instruments are present in the 12-second chunk. The results
are shown in the lower half of Fig. 3. We can see that MSLDM and MSLDM-Large produce the
highest quality, showing the best performance in generating consistent sources that match the given
ones. Again, ISLDM shows the worst quality because sources are independent. For density, MSLDM,
MSLDM-Large, and ISLDM all have high scores, showing the ability to generate rich companions.
However, MSDM shows the worst performance in density because it often generates small and naive
music segments, or even empty sources at times.

Overall, both the objective metrics and subjective listening test show the MSLDM outperforms MSDM,
ISLDM, MixLDM in terms of generating multi-source consistent music pieces. Compared with
MSDM, MSLDM is better in terms of generating denser, more melodic, and more harmonious music.
Compared with MixLDM, we showed that modeling sources is much easier than directly modeling
music mixtures. Compared with ISLDM, we showed that our model is able to model inter-source
dependency or harmony between different musical instruments.

5 Conclusion and Future Work

In this paper, we propose a multi-source diffusion model to jointly model the generation of multiple
instruments together. Both objective and subjective metrics show better results in the tasks of total and
partial generation, implying MSLDM is able to efficiently model melody and inter-source relations.
Future research needs to advance MSLDM for weakly-supervised music separation and generalize
our model to more instruments.
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A Model Architectures and Training Details

A.1 SourceVAE

The SourceVAE mentioned in Sec. 2.1 is a 1D-CNN-based encoder-decoder architecture coupled
with a DAC loss and a KL-divergence loss. The encoder and decoder all follow the final setup of the
DAC architecture for 24kHz. The intermediate latent dimension for SourceVAE is set to be C=80
and the encoder has a downsampling rate of D=320 for the temporal dimension. For training, we
use a batch size of 28 and train on one-second-long single-instrumental segments for 100k steps.
All other SourceVAE training configurations are the same as the DAC paper with code available at
https://github.com/descriptinc/descript-audio-codec.

A.2 Latent Diffusion and Unet Architecture

As mentioned in Sec. 2.2, the score estimation network Sθ(Z(t),σ(t)) learns a function mapping as
shown below:

Sθ(Z(t),σ(t)) :RK×C×N
D ×R→RK×C×N

D (7)

To accommodate the 1D-Unet architecture used in MSDM, we concatenate the K source latent channel-
wise, so the new channel dimension becomesKC, and the input to the 1D-Unet isZ ′(t)∈RKC×N

D ,
which is a reshaped version ofZ(t). KC is treated as the channel dimension and N

D is treated as the tem-
poral dimension for the Unet. In our setup,K=4,C=80,D=320. We train our diffusion model on seg-
ments withN=327672 samples (about 15 seconds). For the 1D-Unet architecture, similar to MSDM,
we adapt the architecture used in Moûsai Schneider et al. [2023] but with some modifications. We set the
input channel dimension to beKC=320 and then we experiment on two different configurations. We
call one model MSLDM and one larger model MSLDM-Large. The MSLDM contains 6 nested U-Net
blocks with increasing channels [1024, 2048, 4096, 4096, 4096, 4096]. The downsampling factor for
the blocks is [1,1,2,1,1,2]. The self-attention blocks are used for all the blocks except the first one. 12
Attention heads are used, and each head is 64 dimensional. For MSDLM-Large, the Unet contains 8
layers where the corresponding output channel dimensions are [1024, 2048, 4096, 4096, 4096, 4096,
4096, 4096]. The corresponding downsampling factors are [1,1,2,1,1,2,2,2]. All blocks contain self-
attention blocks (except the first one) and each attention block contains 12 attention heads that are each
128 dimensional. The Unet and diffusion code setup are adapted from audio-diffusion-pytorch. Similar
to MSDM, we train the diffusion model with a batch size 16 and a learning rate of 2e-5 for 400k steps.

All the model training is performed on a single RTX A6000 GPU with 48GB of VRAM. Further details
can be found in our code.

B Partial Generation sub-FAD

Table 2: sub-FAD for Partial Generation. The sub-FAD (lower is better) is reported for any source
combinations (B: Bass, D: Drums, G: Guitar, P: Piano), where BD means conditioned on piano and
guitar, the task is to generate Bass and Drums.

Model B D G P BD BG BP DG DP GP BDG BDP BGP DGP Overall

MSDM 0.23 0.75 0.18 0.49 1.75 0.75 1.40 1.30 1.40 1.77 3.13 2.92 5.54 3.51 1.79

ISLDM 0.30 1.41 0.75 0.42 1.52 1.14 0.76 1.56 1.76 1.33 1.85 2.03 1.78 2.17 1.34

MSLDM 0.24 1.27 0.38 0.32 1.22 0.81 0.64 1.00 0.92 0.98 1.44 1.57 1.48 1.43 0.98

MSLDM-Large 0.14 0.51 0.23 0.41 0.56 0.49 0.61 0.59 0.66 1.05 0.81 1.01 1.40 1.25 0.70

For partial generation, we use the sub-FAD as the metric, similar to MSDM. Sub-FAD calculates the
FAD on a reference set and an evaluation set, where the reference set is the real music mixture, and the
evaluated set is the mixture formed by mixing partially generated samples and originally given samples.
For the dataset used for sub-FAD calculation, we again sample 200 12-second music segments from
the slakh2100 test set, but we make sure that all the segments contain four instruments. The sub-FAD
result is shown in Table 2, where the results are shown for all models and all partial generation setups.
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The ISLDM model in this case is only generating the target sources using source-independent models.
Overall, MSLDM-Large and MSLDM show much better performance than ISLDM and MSDM, with
FADs smaller than 1. Interestingly, the ISLDM’s overall FAD is lower than MSDM, implying that
even though ISLDM cannot generate mutually coherent sources based on given sources, it is able
to model single-source melody much better than MSDM. Across all the detailed setups, we see that
MSLDM is consistently better than MSDM and ISLDM, except for the guitar.
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