
Executable Code Actions Elicit Better LLM Agents

Xingyao Wang 1 Yangyi Chen 1 Lifan Yuan 1 Yizhe Zhang 2 Yunzhu Li 1 Hao Peng 1 Heng Ji 1

Abstract

Large Language Model (LLM) agents, capable
of performing a broad range of actions, such
as invoking tools and controlling robots, show
great potential in tackling real-world challenges.
LLM agents are typically prompted to produce ac-
tions by generating JSON or text in a pre-defined
format, which is usually limited by constrained
action space (e.g., the scope of pre-defined
tools) and restricted flexibility (e.g., inability to
compose multiple tools). This work proposes
to use executable Python code to consolidate
LLM agents’ actions into a unified action space
(CodeAct). Integrated with a Python interpreter,
CodeAct can execute code actions and dynam-
ically revise prior actions or emit new actions
upon new observations through multi-turn interac-
tions. Our extensive analysis of 17 LLMs on API-
Bank and a newly curated benchmark shows that
CodeAct outperforms widely used alternatives
(up to 20% higher success rate). The encouraging
performance of CodeAct motivates us to build
an open-source LLM agent that interacts with en-
vironments by executing interpretable code and
collaborates with users using natural language. To
this end, we collect an instruction-tuning dataset
CodeActInstruct that consists of 7k multi-turn in-
teractions using CodeAct. We show that it can
be used with existing data to improve models in
agent-oriented tasks without compromising their
general capability. CodeActAgent, finetuned from
Llama2 and Mistral, is integrated with Python in-
terpreter and uniquely tailored to perform sophis-
ticated tasks (e.g., model training) using existing
libraries and autonomously self-debug1.

1Department of Computer Science, University of Illinois
Urbana-Champaign 2Apple. Correspondence to: Xingyao Wang
<xingyao6@illinois.edu>, Heng Ji <hengji@illinois.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1The code, data, model, and demo are available at https:
//github.com/xingyaoww/code-act.

1. Introduction
Large Language Models (LLMs) have emerged as a pivotal
breakthrough in natural language processing (NLP). When
augmented with action modules that allow access to APIs,
their action space expands beyond conventional text pro-
cessing, allowing LLMs to acquire capabilities such as tool
invocation and memory management (Mialon et al., 2023;
Schick et al., 2023) and venture into real-world tasks such as
controlling robots (Ahn et al., 2022; Huang et al., 2023; Ma
et al., 2023) and performing scientific experiments (Bran
et al., 2023).

We inquire: how to effectively expand LLM agents’ action
space for solving complex real-world problems? Much
existing research has examined using text (Yao et al., 2022b;
Park et al., 2023, inter alia) or JSON (Qin et al., 2023b;
Chase, 2022, inter alia) to produce actions (e.g., tool uses
in Fig. 1 top left). However, both methods typically suffer
from constrained scope of action spaces (actions are usually
tailored for specific tasks) and restricted flexibility (e.g.,
inability to compose multiple tools in a single action). As an
alternative approach, several work (Liang et al., 2022; Singh
et al., 2023; Wang et al., 2023a) demonstrate the potential
of using LLMs to generate code to control robots or game
characters. However, they typically rely on pre-specified
control primitives and hand-engineered prompts and, more
importantly, struggle to dynamically adjust or emit actions
based on new environmental observation and feedback.

This work proposes CodeAct, a general-purpose frame-
work that allows LLMs to generate executable Python code
as actions (Fig. 1 top right). CodeAct is designed to handle
a variety of applications and comes with unique advantages:

(1) Integrated with a Python interpreter, CodeAct can ex-
ecute code actions and dynamically adjust prior actions
or emit new action based on observations (e.g., code
execution results) it receives through multiple turns of
interactions.

(2) Code actions allow LLM to leverage existing software
packages. CodeAct can use readily available Python
packages for an expanded action space instead of hand-
crafted task-specific tools (Yuan et al., 2023; Shen et al.,
2023). It also allows LLM to use automated feedback
(e.g., error messages) implemented in most software to
improve task-solving by self-debugging its generated

1

https://github.com/xingyaoww/code-act
https://github.com/xingyaoww/code-act

Executable Code Actions Elicit Better LLM Agents

0 10 20 30 40 50 60 70

gpt-4-1106-preview

gpt-4-0613

claude-2

gpt-3.5-turbo-0613

gpt-3.5-turbo-1106

gemini-pro

text-davinci-003

Llama-2-70b-chat-hf

Success Rate (%)

5 6 7 8 9 10

Average Number of Interaction Turns

Action Mode
Code as Action
JSON as Action
Text as Action

Figure 1: Comparison between CodeAct and Text / JSON as action. (top) Illustrative example comparing different actions.
(bottom) Quantitative results on M3ToolEval (§2.3).

code (Chen et al., 2023b; Wang et al., 2023d).
(3) Code data is widely used in pre-training today’s LLMs

(Yang et al., 2024b). These models are already familiar
with structured programming languages, allowing cost-
effective adoption of CodeAct.

(4) Compared to JSON and text with a pre-defined format,
code inherently supports control and data flow, allow-
ing for the storage of intermediate results as variables
for reuse and the composition of multiple tools to per-
form complex logical operations (e.g., if-statements,
for-loops) with one piece of code, thereby unlocking
LLMs’ potential to tackle complex tasks by leveraging
its pre-trained knowledge of programming. In Fig. 1,
an LLM using with CodeAct (top right) can apply the
same sequence of tools (e.g., passing one tool’s output
as input to another tool using the data flow feature) to
all inputs through for-loops (i.e., control flow feature)
with one action; while text or JSON have to take action
for every input (top left).

Our extensive experiments with 17 LLMs (including both
open-source and proprietary ones) confirm the above bene-

fits (3 & 4) of CodeAct. To demonstrate benefit (3), our
first experiment (§2.2) compares CodeAct to baselines on
basic tasks involving atomic tool use (i.e., only one tool is
used per action), ablating the control and data flow advan-
tage offered by CodeAct. The results show that, for most
LLMs, CodeAct achieves comparable or better perfor-
mance than the baselines. CodeAct’s performance gains
are more prominent on complex tasks, as demonstrated in
our second experiment (benefit 4). We curate a new bench-
mark consisting of 82 human-curated tasks that typically
require multiple calls to multiple tools in multi-turn interac-
tions (M3ToolEval; §2.3). Problems in this benchmark often
require intricate coordination and composition of multiple
tools. With its strengths in control and data flow, CodeAct
achieves up to a 20% absolute improvement over baselines
on the success rate of solving the problems while requiring
up to 30% fewer actions. These performance gains widen
as the capabilities of the LLMs increase (Fig. 1 bottom).

The promising performance of CodeAct motivates an
open-source LLM agent that can effectively act through
CodeAct, and collaborate with humans through natural lan-

2

Executable Code Actions Elicit Better LLM Agents

Table 1: The benefit of CodeAct compared to using Text/JSON for LLM action.
CodeAct for LLM action JSON or Text for LLM action

Availability of Data "Large quantity of code available1 for pre-training %Data curation required for particular format

Complex Operation (e.g., looping,
composition of multiple tools) "Natively supported via control and data flow

%Requires careful engineering if feasible (e.g.,
define new tools to mimic if-statement)

Availability of Tools "Can directly use existing software packages2
%Requires human effort to curate tools from
scratch or existing software

Automated Feedback
"Feedback mechanism3 (e.g., traceback) is already
implemented as an infrastructure for most program-
ming languages

%Requires human effort to provide feedback or re-
route feedback from the underlying programming
language used to implement the tools

1 Including code demonstrating useful behaviors for LLM agents (e.g., task decomposition, coordination of multiple function calls to different tools).
2 Human-written Python packages covering a wide range of applications are available on https://pypi.org/.
3 For example, in Python, errors and exceptions (https://docs.python.org/3/tutorial/errors.html) are available. Most software
provides error messages in natural language to help human programmers debug their code. CodeAct enables LLM to use them directly.

guage. To this end, we collect an instruction-tuning dataset
CodeActInstruct consisting of 7k high-quality multi-turn
interaction trajectories with CodeAct (§3.1). CodeActIn-
struct is motivated by a general agent framework consisting
of agent, user, and environments (Fig. 2) and focuses on
agent-environment interactions with the computer (informa-
tion seeking, software package use, external memory) and
the physical world (robot planning). On CodeActInstruct,
we perform careful data selection to promote the capability
of improving from multi-turn interaction (e.g., self-debug).
We show that CodeActInstruct can be used with commonly
used instruction tuning data to improve the models’ perfor-
mance in agent tasks without compromising their general
capabilities (e.g., knowledge-based QA, coding, instruction
following, §3.2). Our model, dubbed CodeActAgent, is fine-
tuned from LLaMA-2 (Touvron et al., 2023) and Mistral-7B
(Jiang et al., 2023) and improves on out-of-domain agent
tasks with not only CodeAct, but also text action in a
pre-defined format (§3.2).

CodeAct can further benefit from multi-turn interactions
and existing software (benefit 1 & 2, §2.4). As shown in
Fig. 3, CodeActAgent, designed for seamless integration
with Python, can carry out sophisticated tasks (e.g., model
training, data visualization) using existing Python packages.
Error messages from the environment further enable it to
rectify errors autonomously through self-debugging in multi-
turn interaction. Thanks to LLM’s extensive programming
knowledge acquired during pre-training, these are achieved
without needing in-context demonstrations, reducing the
human efforts for adapting CodeActAgent to different tasks.

2. CodeAct Makes LLMs Better Agents
In this section, we first describe CodeAct framework (§2.1)
and provide empirical evidence that supports the choice of
CodeAct. We focus on Python as the programming lan-
guage for CodeAct due to its popularity (ranked top-1 at
(TIOBE Index, 2024)) and numerous open-source packages.
We aim to answer several research questions (RQs) using

17 off-the-shelf LLMs. In §2.2, we examine RQ1: Does
LLMs’ familiarity with code due to a large amount of code
pre-training data bring CodeAct advantages over text and
JSON? We discuss RQ2 in §2.3: Does CodeAct benefit
from Python’s innate control and data flow feature in com-
plex problems? Finally, as an additional benefit, we discuss
how using CodeAct further enhances LLM agents by en-
abling multi-turn interactions and allowing them to access
existing software in §2.4 and Fig. 3.

2.1. What is CodeAct?

In Fig. 2, we first introduce a general multi-turn interaction
framework for LLM agents’ real-world usage that considers
three roles (Yang et al., 2024c): agent, user, and environ-
ment. We define interaction as the information exchange
between the agent and an external entity (user or environ-
ment). For each turn of interaction, the agent receives an ob-
servation (input) either from the user (e.g., natural language
instruction) or the environment (e.g., code execution result),
optionally planning for its action through chain-of-thought
(Wei et al., 2022), and emits an action (output) to either user
in natural language or the environment. CodeAct employs
Python code to consolidate all actions for agent-environment
interaction. In CodeAct, each emitted action to the en-
vironment is a piece of Python code, and the agent will
receive outputs of code execution (e.g., results, errors) as
observation. We include an example prompt of CodeAct
in §E.

2.2. CodeAct Shows the Promise as a Strong Tool Use
Framework

In this section, we perform a controlled experiment to under-
stand which format (text, JSON, CodeAct) is more likely
to lead an LLM to generate correct atomic tool calls. The
performance in this experiment reflects LLM’s familiarity
with the corresponding format. We hypothesize that using
CodeAct to call tools is a more natural way to use tools
for the models, which typically have extensive exposure to

3

https://pypi.org/
https://docs.python.org/3/tutorial/errors.html

Executable Code Actions Elicit Better LLM Agents

Agent

 Action

 Observation

Planning
 Chain-of-though
 Self-Reflectio
 Improving Action from

Prior Observatio
 ...

Initiate Interaction

 Think

User

Conversation

E.g., Natural Language
Instruction or Feedback

Conversation

in Natural Language

Start

Environment

Software Interface (API)

Interface for Computer
Information Seeking

(e.g., Web search, Browsing)

Software Package (Tool)

(e.g., Calculate, Download, Visualize)

External Memory

(e.g., Database, Graph)

Interface for Physical World
Robots

(e.g., Household Robots, Automated Lab)

[...]

[...]

Outcome

E.g., Execution results,

Automated error feedback

CodeAct

unified action space

import sympy
x = sympy.Symbol('x')
roots = sympy.solve(x**2 - 13*x + 4)
print(1/roots[0] + 1/roots[1])

Example

User:

Find the sum of the reciprocals of the roots of
$x^2-13x+4=0$.

Assistant:

To find the sum of the reciprocals of the roots
of the quadratic equation $x^2-13x+4=0$ [...]

<execute>

</execute>

Env:

1/(3*sqrt(17)/2 + 13/2) + 1/(13/2 - 3*sqrt(17)/2)

Assistant:

The roots obtained are in symbolic form, which
makes it difficult to evaluate the sum directly.
Let's use the quadratic formula to explicitly
find the numerical values of the roots first.

[...]

Figure 2: General agent multi-turn interaction framework that describes the role of CodeAct and motivates the construction
of our data mixture. CodeActInstruct focuses on the agent-environment interactions and specifically filters for the self-
improved planning behavior, while general conversation data we include focuses on agent-user interaction (§3.1).

code data during their training.

Setup. We re-purpose API-Bank (Li et al., 2023) and test
LLMs’ API-calling performance, comparing CodeAct,
JSON, and text actions. For each evaluation instance, we
instruct LLM to generate one atomic tool call in the format
of a Python function call, JSON object, or text expression
in a pre-defined format. A concrete example is shown in
Tab. A.6. We use API-Bank’s level-1 instructions and the
provided toolset. To evaluate API-calling, we follow their
correctness metric, matching the ground-truth API outputs
with the actual model-generated API’s execution outputs.

Results. We present results in Tab. 2. For most LLMs,
CodeAct achieves comparable or better performance even
in atomic actions (the simplistic tool use scenario) where
its control and data flow strengths are ablated. Compared to
closed-source LLMs, CodeAct’s improvements are more
prominent in open-source models. Furthermore, code data is
usually more accessible for fine-tuning open-source LLMs
than the specialized JSON or text tool-calling format. Al-
though JSON is consistently weaker than other approaches
for open-source models, it achieves decent performance with
closed-source LLMs, indicating that these closed-source
models may have gone through targeted fine-tuning toward
their JSON capabilities. These results suggest optimizing
for CodeAct is a better route for open-source LLMs than
alternatives to improve their tool-use capabilities, as they
already show good initial CodeAct capability due to ex-
tensive exposure to code data during pre-training.

2.3. CodeAct Gets More Done with Fewer Interactions

In this section, we investigate whether LLM agents can
benefit from the control and data flow of code on problems

that require complex patterns of tool use.

M3ToolEval. As shown in Tab. A.7, to the best of our
knowledge, no existing tool-use benchmarks contain com-
plex tasks requiring the composition of multiple tools while
supporting evaluating different action formats. Hence, we
curate a benchmark M3ToolEval to fill this gap, which eval-
uates LLMs’ capabilities in solving complex tasks that typi-
cally require multiple calls to multiple tools in multi-turn
interactions. It contains 82 human-curated instances, span-
ning tasks including web browsing, finance, travel itinerary
planning, science, and information processing. Each do-
main is accompanied by a unique set of manually crafted
tools. We intentionally keep the prompt simple (examples
in §F) and avoid providing any demonstration to test the
LLM’s zero-shot ability to use tools, similar to how a novice
user without knowledge of few-shot prompting would use
the model.

Setup. We allow the model to generate fully functional
Python code that enables control and data flow (e.g., if-
statement, for-loop). We follow the action format for JSON
and text described in Tab. A.6. Within each turn, the model
can either emit an action or propose an answer to be verified
by an exact match with the ground-truth solution. The
interaction will terminate when a maximum of 10 interaction
turns are reached or a correct solution has been submitted,
similar to (Wang et al., 2023e).

Metric. We measure the success rate by calculating the
percentage of the model proposed answers that match the
ground-truth solutions. We also include the avg. turns met-
ric: the average number of turns on all evaluated instances.

Quantitative Results on M3ToolEval. We include full re-
sults in Tab. 3 and a subset of results for visualization in

4

Executable Code Actions Elicit Better LLM Agents

Table 2: Atomic API call correctness on API-
Bank. The best performance is bolded, and the
second-best is underlined.

Correctness (%, ↑)
Format of Action CodeAct JSON Text

Open-source LLMs
CodeLlama-7b-Instruct-hf 12.5 12.0 17.0
CodeLlama-13b-Instruct-hf 11.8 7.8 14.0
CodeLlama-34b-Instruct-hf 17.3 12.0 16.8
Llama-2-7b-chat-hf 28.8 11.3 25.8
Llama-2-13b-chat-hf 38.1 8.5 37.3
Llama-2-70b-chat-hf 35.6 14.3 37.6
Mistral-7B-Instruct-v0.1 2.5 2.3 3.0
lemur-70b-chat-v1 58.6 46.6 56.1

Closed-source LLMs
claude-2 76.7 59.4 73.7
claude-instant-1 75.2 64.9 73.2
gemini-pro 70.4 73.2 71.2
gpt-3.5-turbo-0613 74.4 73.9 73.4
gpt-3.5-turbo-1106 75.4 78.4 73.4
gpt-4-0613 75.4 82.0 74.4
gpt-4-1106-preview 76.7 82.7 73.4
text-davinci-002 69.2 59.6 57.4
text-davinci-003 75.4 76.9 69.7

Frequency of Best-Performing Format ↑
Open-source 4 0 4
Closed-source 4 5 0
Overall 8 5 4

Table 3: Success rates (higher the better) and average turns required per
instance (lower the better) on M3ToolEval. The best results for each
model are bolded, and the second-best ones are underlined.

Success Rate (%, ↑) Avg. Turns (↓)

Format of Action CodeAct JSON Text CodeAct JSON Text

Open-source LLMs
CodeLlama-7b-Instruct-hf 4.9 2.4 2.4 9.7 9.9 9.9
CodeLlama-13b-Instruct-hf 4.9 4.9 4.9 9.8 9.8 9.7
CodeLlama-34b-Instruct-hf 2.4 0.0 0.0 9.9 10.0 10.0
Llama-2-7b-chat-hf 0.0 1.2 2.4 8.9 9.5 9.6
Llama-2-13b-chat-hf 0.0 0.0 0.0 9.7 10.0 10.0
Llama-2-70b-chat-hf 11.0 3.7 3.7 9.1 9.8 9.8
Mistral-7B-Instruct-v0.1 0.0 3.7 1.2 10.0 9.8 9.9
lemur-70b-chat-v1 13.4 15.9 12.2 9.1 9.3 9.4

Closed-source LLMs
claude-2 54.9 39.0 29.3 7.2 8.3 8.5
claude-instant-1 20.7 31.7 24.4 8.8 8.6 8.9
gemini-pro 22.0 19.5 11.0 8.8 9.1 9.5
gpt-3.5-turbo-0613 51.2 26.8 20.7 7.0 8.8 9.2
gpt-3.5-turbo-1106 29.3 15.9 14.6 8.4 9.0 9.0
gpt-4-0613 67.1 56.1 45.1 6.6 7.6 8.0
gpt-4-1106-preview 74.4 52.4 53.7 5.5 7.6 7.7
text-davinci-002 4.9 4.9 8.5 9.7 9.8 9.6
text-davinci-003 20.7 18.3 7.3 9.2 9.0 9.6

Frequency of Best-performing Format ↑
Open-source 5 4 3 6 1 1
Closed-source 7 1 1 6 2 1
Overall 12 5 4 12 3 2

Fig. 1. CodeAct generally has a higher task success rate
(12 out of 17 evaluated LLMs), similar to the trend in §2.2.
Moreover, using CodeAct requires a lower average num-
ber of turns (12 out of 17 evaluated LLMs). For example, the
best model gpt-4-1106-preview achieves a 20.7% ab-
solute improvement compared to the next best action format
(text) while requiring 2.1 fewer interaction turns on average.
However, there is still a significant gap in terms of absolute
CodeAct performance between open- and closed-source
LLMs as the best open-source model achieving 13.4% while
the best closed-source model gpt-4-1106-preview
74.4%. This is potentially due to open-source models’ weak
task-solving capability and inability to follow complex in-
structions without demonstration, suggesting an urgent need
to improve open-source LLMs for practical, real-world tasks
under the zero-shot setting.

2.4. CodeAct Benefits from Multi-turn Interactions
and Existing Software Packages

In Fig. 3, we show how an LLM agent can integrate with
Python (i.e., CodeActAgent we trained in §3.2) and use
existing software to perform complex tasks in multi-turn
interactions. Thanks to its extensive knowledge of Python
learned during pre-training, the LLM agent can automat-
ically import the correct Python libraries to solve tasks
without requiring user-provided tools or demonstrations. As
illustrated in Fig. 3, CodeActAgent can use Pandas to down-
load and process tabular data, use Scikit-Learn for machine
learning train-test data split and regression model training,

and use Matplotlib for data visualization. Furthermore, us-
ing the interactive Python interpreter for code execution
allows automated error messages that help the LLM agent
‘self-debug’ their actions in a multi-turn interaction and
eventually complete the human user’s request correctly.

3. Empowering Open-source LLM Agent to be
Better at CodeAct

The promising results achieved by CodeAct motivate us
to build an open-source LLM agent that can both inter-
act with environments through CodeAct and communi-
cate with humans using language. To improve open-source
LLMs’ CodeAct capability, in §3.1, we introduce Code-
ActInstruct, an instruction finetuning dataset that contains
agent-environment interaction trajectories. We discuss data
selection procedures in §3.1 to promote improvement from
interaction behavior. Additionally, we show that CodeAct
can be used together with existing agent-user conversation
data (§3.1) to balance the dialog capability of the resulting
LLM. Our model CodeActAgent, finetuned from LLaMA-2
(Touvron et al., 2023) and Mistral-7B (Jiang et al., 2023)
on a mixture of CodeActInstruct and general conversations,
improves CodeAct performances without hurting LLM’s
general performance on a diverse suite of tasks (§3.2).

3.1. CodeActInstruct: Agent-Environment Interactions

We consider four main use cases in agent-environment inter-
action and repurpose five existing datasets across different

5

Executable Code Actions Elicit Better LLM Agents

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

Download and load the dataset
df = pd.read_csv(

"https://huggingface.co/datasets/scikit-learn/auto-mpg/raw/main/auto-mpg.csv")
Check for missing values
print(df.isnull().sum())
Remove rows with missing values
df = df.dropna()
Perform train-test split
X = df.drop(columns=["mpg", "car name"])
y = df["mpg"]
X_train, X_test, y_train, y_test = train_test_split(X, y,
 test_size=0.2, random_state=42)
Train a regression model
model = LinearRegression()
model.fit(X_train, y_train)
Predict MPG for test data
y_pred = model.predict(X_test)
Evaluate the model
print("Mean squared error: ", np.mean((y_test - y_pred) ** 2))
print("R^2 score: ", r2_score(y_test, y_pred))

To accomplish this task, I will use the pandas library to download and load the
dataset, check for missing values, and perform a train-test split. Then, I will use
the scikit-learn library to train a regression model.

CodeActAgent

User
Here is a dataset about auto MPG: "https://huggingface.co/datasets/scikit-
learn/auto-mpg/raw/main/auto-mpg.csv". You should download and load the
dataset from the URL, take a look at it, check for missing value, do a train-test
split, and train a regression model predicting its MPG. You should use
everything except "mpg" and "car name" as the input features.

Environment
mpg 0
[...omitted for space...]
car name 0
dtype: int64

ValueError Traceback (most recent call last)
/tmp/ipykernel_12/1372561217.py in ?()

18 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2 [...]
19
20 # Train a regression model
21 model = LinearRegression()

---> 22 model.fit(X_train, y_train)
23
24 # Predict MPG for test data
25 y_pred = model.predict(X_test)

... [omitted for space]...

ValueError: could not convert string to float: '?'

The mean squared error is 10.711 and the R^2 score is 0.790, which indicates that
the model has a good fit with the data [...]

CodeActAgent

User
Can you also give me the MSE and R^2 for the training set?

from sklearn.metrics import mean_squared_error
Calculate MSE for training set
mse_train = mean_squared_error(y_train, model.predict(X_train))
Calculate R^2 score for training set
r2_train = r2_score(y_train, model.predict(X_train))

print("Mean squared error (training set):", mse_train)
print("R^2 score (training set):", r2_train)

Certainly! Here are the mean squared error (MSE) and R^2 scores [...]
CodeActAgent

Environment
Mean squared error (training set): 10.979255842373478
R^2 score (training set): 0.826001578671067

The mean squared error for the training set is 10.979 and the R^2 score is 0.826,
which indicates [...]

CodeActAgent

Environment
Mean squared error: 10.710864418838367
R^2 score: 0.790150038676035

User
Can you visualize the regression coefficient? You may access them via
model.coef_ and their names via model.feature_names_in_

import matplotlib.pyplot as plt
Get regression coefficients
coef = model.coef_
Get names of input features
feature_names = model.feature_names_in_
Plot regression coefficients
plt.bar(feature_names, coef)
plt.xlabel('Input Feature')
plt.ylabel('Regression Coefficient')
plt.title('Regression Coefficients')
Display the plot
plt.show()

Certainly! Here is a visualization of the regression coefficients [...]
CodeActAgent

Environment
<Figure size 640x480 with 1 Axes>

The regression coefficients are plotted as a bar chart, with each input feature on
the x-axis and the corresponding coefficient on the y-axis [...]

CodeActAgent

User
Can you rotate the x ticks by 45 degrees for better readability?

[..same code omitted...]
Plot regression coefficients
plt.bar(feature_names, coef, tick_labels=False)
plt.xticks(feature_names, feature_names,
 rotation=45, ha='right', fontsize=12)
[..same code omitted...]

Certainly! Here is the updated bar chart with the x-ticks rotated by 45 degrees
for better readability:

CodeActAgent

Environment
<Figure size 640x480 with 1 Axes>

AttributeError Traceback (most recent call last)
Cell In[1], line 10

7 feature_names = model.feature_names_in_
9 # Plot regression coefficients

---> 10 plt.bar(feature_names, coef, tick_labels=False)
11 plt.xticks(feature_names, feature_names,

 rotation=45, ha='right', fontsize=12)
12 plt.xlabel('Input Feature')

[...]
AttributeError: Rectangle.set() got an unexpected keyword argument 'tick_labels'

[...same code omitted...]
plt.bar(feature_names, coef)
plt.tick_params(axis='x',
 labelrotation=45, ha='right', fontsize=12)
[...same code omitted...]

It seems that the tick_labels argument is not a valid argument for
the bar() function in Matplotlib. Instead, we can use the tick_params() function
to rotate the x-ticks [...]

CodeActAgent

[3 rounds of self-debugging omitted for space]

[...same code omitted...]
plt.xticks(feature_names, feature_names,
 rotation=45, ha='right', fontsize=12)
[...same code omitted...]

I apologize for the confusion. It seems that the set_xticks() function is not a
valid function in Matplotlib. Instead, we can use the xticks() function to set the
x-ticks and rotate them by 45 degrees for better readability. Here is the updated
bar chart with the x-ticks rotated by 45 degrees:

CodeActAgent

Environment
<Figure size 640x480 with 1 Axes>

User
[Stops Interaction]

It seems that there is a data type issue in the dataset. The '?' character is present
in the data, which is causing the error when trying to convert the data to a float.
To fix this, I will remove the rows containing the '?' character.

CodeActAgent

Remove rows containing '?'
df = df.replace('?', np.nan)
df = df.dropna()
X = df.drop(columns=["mpg", "car name"])
y = df["mpg"]
X_train, X_test, y_train, y_test = train_test_split(
 X, y, test_size=0.2, random_state=42
)
model = LinearRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
print("Mean squared error: ", np.mean((y_test - y_pred) ** 2))
print("R^2 score: ", r2_score(y_test, y_pred))

Use Pandas Library to Download,
Examine, and Process Data

Use Scikit-Learn Library to Split
Data and Train Regression Model

Self-Debug from
Automated Feedback

Able to Answer follow-up Question Interactively

Use Matplotlib Library for
Data Visualization

Self-Debug for Data
Visualization

Figure 3: Example multi-turn interaction with Python packages using CodeActAgent (Mistral-7b). No in-context demonstra-
tions are provided to the model. Some messages are omitted for space. See https://chat.xwang.dev/r/Vqn108G
for complete interaction.

domains to generate trajectories:

• Information Seeking: We use a training subset of Hot-
potQA (Yang et al., 2018) to generate information-seeking
trajectories, where LLMs use the wikipedia search
API (provided as a Python function) to search for infor-
mation to answer questions.

• Software Package (Tool) Usage: We use the training
set of code generation problems in APPS (Hendrycks
et al., 2021a) and math problems in MATH (Hendrycks
et al., 2021b). The code generation tasks already involve
importing packages and/or creating new tools by defining
a new Python function. For MATH, we provide an in-
context demonstration of importing Python packages (e.g.,
sympy for symbolic math) for problem-solving.

• External Memory: We repurpose the training subset of
WikiTableQuestion (Pasupat & Liang, 2015) and tweak
it into two variants of tabular reasoning tasks that require
accessing external memory: (1) SQL-based, requiring the
LLM to interact with an SQL database through sqlite3
package to answer the question via SQL execution; (2)
Pandas-based, requiring the model to interact with pan-

das tables to perform data operations (e.g., select, filter).
Examples of instructions can be found in §G.3.1.

• Robot Planning: We use ALFWorld (Shridhar et al.,
2020), a text-only embodied environment simulator, to
generate trajectories that use robot-control APIs (repur-
posed as Python function) to complete household tasks.
Following MINT (Wang et al., 2023e), we provide an
in-context demonstration to encourage the use of for-loop
and if-statement code blocks to automate repetitive op-
erations (e.g., searching for items by visiting different
locations).

Data Down-sampling. We down-sample each dataset by
keeping only the most challenging instances, aiming to make
trajectory generation more efficient and cost-effective. Fur-
thermore, it also helps remove simple instances that existing
LLMs can already solve. The statistics of the filtered dataset
can be found in Tab. A.9. Please refer to §G.1 for details
about the down-sample process.

Repurpose Data for Multi-turn Interaction. Some
datasets (APPS, MATH, WikiTableQuestions) are initially
single-turn problems that expect one solution per instruc-

6

https://chat.xwang.dev/r/Vqn108G

Executable Code Actions Elicit Better LLM Agents

Table 4: Statistics of our training mixture and comparison with prior work. Please refer to §3.1 for details about CodeActIn-
struct and general conversation data. Token statistics are computed using Llama-2 tokenizer.

Data Mixture Data Type Data Name # of Data Instances # of Total Tokens Avg. Tokens Per Instance

Prior Work - FireAct (Chen et al., 2023a) 2, 063 542, 176 262.81
- AgentInstruct (Zeng et al., 2023) 1, 866 2, 517, 785 1349.30

CodeActInstruct (Ours)

Information Seeking HotpotQA (Yang et al., 2018) 1, 664 2, 472, 227 1485.71
Software Packages (Tool) MATH (Math, (Hendrycks et al., 2021b)) 1, 732 1, 719, 467 992.76
Software Packages (Tool) APPS (Code, (Hendrycks et al., 2021a)) 647 1, 235, 472 1909.54

External Memory WikiTableQuestion (Pasupat & Liang, 2015) 1, 065 1, 316, 246 1235.91
Robot Planning ALFWorld (Shridhar et al., 2020) 2, 031 3, 838, 269 1889.84

Total 7,139 10,581,681 1482.24

General Conversation

Single-Turn Reasoning OpenOrca (Sub-sampled, (Lian et al., 2023)) 50, 000 14, 034, 152 280.68
Multi-Turn Conversations ShareGPT (Sub-sampled, (Anonymous, 2023)) 10, 000 17, 933, 861 1793.39
Multi-Turn Conversations ShareGPT (GPT-4, (OpenChat, 2023)) 4, 583 18, 195, 878 3970.30

Multi-turn Reasoning CapyBara (LDJnr, 2023) 4, 647 4, 982, 435 1072.18

Total 69,230 55,146,326 796.57

tion, whereas, in a realistic agent use case, we often require
multi-turn interaction to complete each task (Fig. 1 top).
Following MINT (Wang et al., 2023e), we repurpose single-
turn problems into multi-turn ones by allowing LLM to
interact with the environment for multiple turns before it
decides to submit one solution for evaluation. Specifically
for code generation problems, we provide an in-context ex-
ample to guide LLMs to test their solution on provided test
cases before they submit the solution. Metrics from the orig-
inal data will evaluate the submitted solution to determine
its correctness. We include examples in §G.3.

Trajectory Generation. We use MINT’s evaluation frame-
work (Wang et al., 2023e) to generate interaction trajectories
for the aforementioned datasets and determine the correct-
ness of each trajectory. We run gpt-3.5-turbo-0613 from
OpenAI, claude-1-instant and claude-2 from Anthropic on
down-sampled data, except code generation, which we use a
longer-context version of GPT-3.5 (gpt-3.5-turbo-0613-16k)
due to the long-context requirement of the self-debugging
process. On a subset of problems that none of these models
can solve, we use gpt-4-0613 to generate trajectories.

Enhancing Agent’s Capabilities of Improving from Inter-
action. We select a high-quality subset of all the generated
trajectories from CodeActInstruct to promote the agent’s
ability to improve the next action based on prior observa-
tions (e.g., self-debugging from code execution error mes-
sage, a planning capability in Fig. 2). To achieve this, we
selectively preserve those trajectories wherein the model
initially encounters errors but rectifies these inaccuracies in
later interactions. For these instances, the LLM typically
engages in self-reflection following the initial error, thereby
proactively enhancing its future actions. Other filtering de-
tails are discussed in §G.2. On all trajectories generated,
we keep 411 trajectories from gpt-4-0613 and 6728 trajecto-
ries from gpt-3.5 and claude. The statistics of the resulting
dataset CodeActInstruct are shown in Tab. 4.

Comparing CodeActInstruct with Prior Work. Com-

pared with prior work AgentInstruct (Zeng et al., 2023) and
FireAct (Chen et al., 2023a) that mainly focus using text
as action, CodeActInstruct results in models that are more
practical in real-world implementation, as such models us-
ing CodeAct can directly interact with Python interpreters
and open-source toolkits (Fig. 3), reducing the development
effort for action parsing and tool creations. CodeActInstruct
is systematically constructed following the general agent
framework (Fig. 2). It covers diverse domains (e.g., com-
pared to FireAct that only considers QA-task and search
API), contains quality data (e.g., promotes agent’s capability
of self-debug) and of larger size (3.8x / 3.5x more data trajec-
tories and 5x / 19x more tokens compared to AgentInstruct
/ FireAct respectively in Tab. 4). As we empirically show
in Tab. 5, the resulting model (same backbone) of Code-
ActInstruct achieves 24% and 119% relative improvement
compared to AgentInstruct and FireAct.

CodeActInstruct Can Be Used With Existing Agent-
User Conversation Data. We use a sub-sampled set
of OpenOrca (Lian et al., 2023) that focuses on single-turn
chain-of-thought (CoT) reasoning, ShareGPT (Anonymous,
2023; OpenChat, 2023) from two sources that contain multi-
turn conversations between human and LLM, and CapyBara
(LDJnr, 2023) that focuses on reasoning in multi-turn con-
versations. Statistics and down-sampling details can be
found in Tab. 4 and §C.

3.2. CodeActAgent

We fine-tune Llama-2 7B (Touvron et al., 2023) and Mistral
7B (Jiang et al., 2023) on a mixture of CodeActInstruct and
general conversations (Tab. 4) to obtain CodeActAgent.

Training Setup. We perform full-parameter supervised fine-
tuning with a sequence length of 4,096 tokens for Llama-2
and 16,384 for Mistral. Please refer to §D for more details.

Evaluation Setup. We use MINT (Wang et al., 2023e)
to evaluate LLMs with CodeAct on a diverse range of
agent tasks. CodeActAgent has some training domains

7

Executable Code Actions Elicit Better LLM Agents

Table 5: Evaluation results for CodeActAgent. The best results among all open-source LLMs are bolded, and the second-best
results are underlined. ID and OD stand for in-domain and out-of-domain evaluation correspondingly. Overall averaged
performance normalizes the MT-Bench score to be consistent with other tasks and excludes in-domain tasks for fair
comparison.

Agent Tasks Generic Tasks Overall

Code as Action Text as Action (OD) (OD) Average

Model Size MINT (ID) MINT (OD) M3ToolEval (OD) Miniwob++ SciWorld MMLU HumanEval GSM8K MTBench

Open-source LLMs (LLaMA-2-based)
Llama2 Base 7B -∗ -∗ -∗ -∗ -∗ 45.3 12.8 14.6 -∗ -∗

Llama2 Chat 7B 3.2 11.0 0.0 0.0 5.9 48.0 13.9 27.7 6.3 21.1
FireAct (Chen et al., 2023a) 7B 0.0 0.3 0.0 0.0 6.8 44.1 3.5 12.4 4.5 14.0
AgentLM (Zeng et al., 2023) 7B 8.7 6.1 0.0 28.9 13.7 48.7 15.4 24.6 6.1 24.8
CodeActAgent (LLaMA-2) 7B 51.3 20.4 0.0 25.5 17.6 50.6 18.1 38.3 7.5 30.7

Open-source LLMs (Mistral-based)
Mistral Base 7B -∗ -∗ -∗ -∗ -∗ 60.1 30.5 52.1 -∗ -∗

Mistral Instruct 7B 18.8 9.7 0.0 0.5 4.0 53.8 29.3 43.3 6.4 25.6
CodeActAgent (Mistral) 7B 57.4 32.4 12.2 46.2 15.9 59.1 34.7 58.0 8.2 42.5

Closed-source LLMs
gpt-3.5-turbo-0613 - 33.9 38.2 51.2 66.7 21.2 70.0 48.1 57.1 7.9 54.0
gpt-4-0613 - 68.6 70.2 67.1 69.4 36.4 86.4 67.0 87.1 9.0 71.7

* Some results are only available with instruction-tuned models.

overlapping with MINT’s evaluation (i.e., MINT includes
ALFWorld and MATH), hence we report separate numbers
for MINT’s in- and out-of-domain performance. Unless
otherwise specified, we measure MINT tasks’ success rates
with interaction turn k = 5. We also evaluate out-of-domain
agent tasks using text actions from MiniWob++ (computer
tasks, (Kim et al., 2023)) and ScienceWorld (text-based
simulator for elementary science curriculum, (Wang et al.,
2022a)) to test whether CodeActAgent can generalize to
different action formats. Finally, we include a suite of
general LLM evaluation tasks to assess general capabil-
ity: MMLU (Hendrycks et al., 2020) for knowledge-based
QA, HumanEval (Chen et al., 2021) for single-turn code-
generation, GSM8K (Cobbe et al., 2021) for single-turn
tool-free math reasoning, and MTBench (Zheng et al., 2023)
for instruction-following.

CodeActAgent Excels in CodeAct Task. As shown in
Tab. 5, CodeActAgent (both variants) perform better than
all evaluated open-source LLMs on both the in- and out-of-
domain subsets of MINT. On M3ToolEval, we find CodeAc-
tAgent (Mistral) outperforms open-source LLMs of similar
size (7B and 13B) and even reaches similar performance to
those 70B models (Tab. 3). Surprisingly, no improvement
is observed for the Llama-2 variant. We discuss potential
reasons in §H.

CodeActAgent Generalizes to Text Action. When
evaluated on out-of-domain text actions, CodeActAgent
(LLaMA2, 7B), which has never been optimized for text
action, achieves comparable performance to AgentLM-7B
(Zeng et al., 2023) which has explicit tuning for text actions.

CodeActAgent Maintains or Improves the Performance
on General LLM Tasks. In Tab. 5, we find that CodeActA-
gent (both variants) performs better on generic LLM tasks
we tested, except for a slight degradation on MMLU for
CodeActAgent (Mistral, 7B).

Ablation Study. Tab. A.8 presents ablation experiments to
determine the importance of CodeActInstruct and general
conversations. Both CodeActInstruct and general conversa-
tions contribute to agent tasks, while general conversations
are essential to maintain performance on general tasks.

4. Related Work
4.1. Action Module in LLM Agents

As detailed in (Wang et al., 2023b), LLM-based autonomous
agents are typically structured around four components: cus-
tomized profiles (Park et al., 2023; Qian et al., 2023), long-
term memory capabilities (Zhu et al., 2023; Fischer, 2023),
reasoning and planning algorithms (Wei et al., 2022; Chen
et al., 2023d), and, most crucially, action modules. The
action modules are key to facilitating LLM agents to effec-
tively interact with external entities, including humans (Lee
et al., 2022) and tools (Qin et al., 2023a) in the environ-
ment (Wang et al., 2023e; Yang et al., 2024a). In this study,
we address the critical problem of standardizing the action
space for LLM agents. We further discuss the difference
between CodeAct and the line of work that uses code gen-
eration for problem-solving in §A. We notice a concurrent
study TaskWeaver (Qiao et al., 2023) similarly endorses the
use of code. We discuss the principal distinctions in §B.

4.2. Improving LLM Agents

Two primary methods for enhancing LLM agents are prompt
engineering and instruction tuning, as surveyed by (Wang
et al., 2023b). For prompt engineering (Liu et al., 2023a),
numerous strategies have been introduced to improve the
chain-of-thought reasoning (Wei et al., 2022), including
self-consistency-based reasoning (Wang et al., 2022b; Chen
et al., 2023d) and tree-based approaches (Yao et al., 2023a).
Moreover, LLMs can be strategically prompted to reflect on

8

Executable Code Actions Elicit Better LLM Agents

previous plans (Yao et al., 2023b; Wang et al., 2023f; Zhang
et al., 2023), enabling them to refine initial actions through
trial and error. Contrast to prompt engineering, instruction
tuning intrinsically enhances LLMs (Chung et al., 2022),
particularly in their agent capabilities (Zeng et al., 2023;
Chen et al., 2023a). For effective training, human anno-
tators can curate expert demonstrations for specific agent
tasks, such as web browsing (Yao et al., 2022a; Nakano
et al., 2021). To minimize human annotation efforts, prior
work creates synthetic datasets using stronger LLMs to dis-
till agent capabilities into local models, focusing on tool
usage (Qin et al., 2023b), interaction (Chen et al., 2023c),
and social skills (Liu et al., 2023b). CodeActInstruct aligns
with the latter approach and creates datasets using stronger
LLMs.

5. Conclusions
This work introduces CodeAct that employs executable
Python code for the LLM agent’s action, which is advanta-
geous over using text or JSON action, especially in complex
scenarios. We collect CodeAct-focused multi-turn interac-
tion trajectories CodeActInstruct for instruction tuning, and
train CodeActAgent that is specially designed for seamless
integration with Python and can execute sophisticated tasks
(e.g., model training) leveraging existing Python packages
and autonomously rectifying errors through self-debugging.

Acknowledgement
We thank the anonymous reviewers for their suggestions
and comments. This research is based upon work supported
by U.S. DARPA ECOLE Program No. HR00112390060
and U.S. DARPA ITM Program No. FA8650-23-C-7316
and KAIROS Program No. FA8750-19-2-1004. The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of DARPA, or
the U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for governmental purposes
notwithstanding any copyright annotation therein. This
work used the Delta system at the National Center for Super-
computing Applications through allocation CIS230256 from
the Advanced Cyberinfrastructure Coordination Ecosystem:
Services & Support (ACCESS, Boerner et al. 2023) program,
which is supported by National Science Foundation grants
#2138259, #2138286, #2138307, #2137603, and #2138296.

Impact Statement
This paper presents work whose goal is to advance LLM-
based autonomous agents that can communicate with hu-
mans through natural language and assist human users by
performing tasks in environments on behalf of humans. In

this section, we discuss potential societal consequences,
limitations, and future work related to our work and its goal.

CodeActAgent is an initial prototype of an autonomous
agent and still has several practical limitations. For example,
it may suffer from hallucination commonly seen in LLMs
(e.g., imagine the content of a variable without actually print-
ing it out), suggesting the need for subsequent alignment
(Ouyang et al., 2022) for further improvements.

Despite being a prototype, CodeActAgent has already
demonstrated limited self-improving capability (e.g., self-
debug error messages to improve its action) and the ability
to interact with environments. Future work may build upon
CodeActAgent to develop better agents by having them
perform extensive interactions within a given environment
and iteratively bootstrap their self-improving capability to
learn to improve from past mistakes. More powerful agents,
as results of such algorithms, are potentially beneficial for
solving a wide range of real-world problems (e.g., theo-
rem proving, drug discovery). As extensively discussed in
(Eloundou et al., 2023), a fully autonomous agent may trans-
form the current landscape of the labor market and impact
the jobs of existing workers.

Furthermore, since CodeAct directly grants access for the
agent to freely execute code in a sandbox environment, in
the worst scenario (e.g., in Sci-Fi movies), such an agent
may potentially break free of the sandbox restriction and
cause harm to the world through cyber-attack, highlighting
the need for future work to design better safety mechanism
to safeguard autonomous agents (Tang et al., 2024).

References
Ahn, M., Brohan, A., Brown, N., Chebotar, Y., Cortes, O.,

David, B., Finn, C., Fu, C., Gopalakrishnan, K., Hausman,
K., Herzog, A., Ho, D., Hsu, J., Ibarz, J., Ichter, B.,
Irpan, A., Jang, E., Ruano, R. J., Jeffrey, K., Jesmonth,
S., Joshi, N., Julian, R., Kalashnikov, D., Kuang, Y., Lee,
K.-H., Levine, S., Lu, Y., Luu, L., Parada, C., Pastor,
P., Quiambao, J., Rao, K., Rettinghouse, J., Reyes, D.,
Sermanet, P., Sievers, N., Tan, C., Toshev, A., Vanhoucke,
V., Xia, F., Xiao, T., Xu, P., Xu, S., Yan, M., and Zeng,
A. Do as i can and not as i say: Grounding language in
robotic affordances. In arXiv preprint arXiv:2204.01691,
2022.

Anonymous. Sharegpt dataset. https://hf.co/
datasets/anon8231489123/ShareGPT_
Vicuna_unfiltered/blob/main/ShareGPT_
V3_unfiltered_cleaned_split_no_
imsorry.json, 2023. A dataset containing
multi-turn conversations between human and LLM
assistant.

9

https://hf.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/blob/main/ShareGPT_V3_unfiltered_cleaned_split_no_imsorry.json
https://hf.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/blob/main/ShareGPT_V3_unfiltered_cleaned_split_no_imsorry.json
https://hf.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/blob/main/ShareGPT_V3_unfiltered_cleaned_split_no_imsorry.json
https://hf.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/blob/main/ShareGPT_V3_unfiltered_cleaned_split_no_imsorry.json
https://hf.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/blob/main/ShareGPT_V3_unfiltered_cleaned_split_no_imsorry.json

Executable Code Actions Elicit Better LLM Agents

Boerner, T. J., Deems, S., Furlani, T. R., Knuth, S. L.,
and Towns, J. Access: Advancing innovation: Nsf’s ad-
vanced cyberinfrastructure coordination ecosystem: Ser-
vices & support. In Practice and Experience in Advanced
Research Computing, pp. 173–176. 2023.

Bran, A. M., Cox, S., White, A. D., and Schwaller, P. Chem-
crow: Augmenting large-language models with chemistry
tools. arXiv preprint arXiv:2304.05376, 2023.

Cano, A. H., Pagliardini, M., Köpf, A., Matoba, K., Mo-
htashami, A., Wang, X., Fan, O. S., Marmet, A., Bayazit,
D., Krawczuk, I., Chen, Z., Salvi, F., Bosselut, A., and
Jaggi, M. epfllm megatron-llm, 2023. URL https:
//github.com/epfLLM/Megatron-LLM.

Chase, H. LangChain, October 2022. URL https://
github.com/langchain-ai/langchain.

Chen, B., Shu, C., Shareghi, E., Collier, N., Narasimhan, K.,
and Yao, S. Fireact: Toward language agent fine-tuning.
arXiv preprint arXiv:2310.05915, 2023a.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021.

Chen, X., Lin, M., Schärli, N., and Zhou, D. Teaching
large language models to self-debug. arXiv preprint
arXiv:2304.05128, 2023b.

Chen, Y., Sikka, K., Cogswell, M., Ji, H., and Divakaran, A.
Dress: Instructing large vision-language models to align
and interact with humans via natural language feedback.
arXiv preprint arXiv:2311.10081, 2023c.

Chen, Y., Sikka, K., Cogswell, M., Ji, H., and Di-
vakaran, A. Measuring and improving chain-of-thought
reasoning in vision-language models. arXiv preprint
arXiv:2309.04461, 2023d.

Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y.,
Fedus, W., Li, Y., Wang, X., Dehghani, M., Brahma,
S., et al. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416, 2022.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Eloundou, T., Manning, S., Mishkin, P., and Rock, D.
Gpts are gpts: An early look at the labor market im-
pact potential of large language models. arXiv preprint
arXiv:2303.10130, 2023.

Fischer, K. A. Reflective linguistic programming (rlp): A
stepping stone in socially-aware agi (socialagi). arXiv
preprint arXiv:2305.12647, 2023.

Gao, L., Madaan, A., Zhou, S., Alon, U., Liu, P., Yang,
Y., Callan, J., and Neubig, G. Pal: Program-aided lan-
guage models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M.,
Song, D., and Steinhardt, J. Measuring massive multitask
language understanding. In International Conference on
Learning Representations, 2020.

Hendrycks, D., Basart, S., Kadavath, S., Mazeika, M., Arora,
A., Guo, E., Burns, C., Puranik, S., He, H., Song, D.,
et al. Measuring coding challenge competence with
apps. In Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track
(Round 2), 2021a.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A.,
Basart, S., Tang, E., Song, D., and Steinhardt,
J. Measuring mathematical problem solving with
the math dataset. In Thirty-fifth Conference on
Neural Information Processing Systems Datasets and
Benchmarks Track (Round 2), 2021b.

Hong, S., Zheng, X., Chen, J., Cheng, Y., Wang, J., Zhang,
C., Wang, Z., Yau, S. K. S., Lin, Z., Zhou, L., et al.
Metagpt: Meta programming for multi-agent collabora-
tive framework. arXiv preprint arXiv:2308.00352, 2023.

Hong, S., Lin, Y., Liu, B., Liu, B., Wu, B., Li, D., Chen,
J., Zhang, J., Wang, J., Zhang, L., Zhang, L., Yang, M.,
Zhuge, M., Guo, T., Zhou, T., Tao, W., Wang, W., Tang,
X., Lu, X., Zheng, X., Liang, X., Fei, Y., Cheng, Y., Xu,
Z., and Wu, C. Data interpreter: An llm agent for data
science, 2024.

Huang, W., Wang, C., Zhang, R., Li, Y., Wu, J., and Fei-Fei,
L. Voxposer: Composable 3d value maps for robotic
manipulation with language models. arXiv preprint
arXiv:2307.05973, 2023.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. l., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

Kim, G., Baldi, P., and McAleer, S. Language models can
solve computer tasks. arXiv preprint arXiv:2303.17491,
2023.

LDJnr. Capybara dataset. https://hf.co/
datasets/LDJnr/Verified-Camel, https:
//hf.co/datasets/LDJnr/Pure-Dove,
https://hf.co/datasets/LDJnr/

10

https://github.com/epfLLM/Megatron-LLM
https://github.com/epfLLM/Megatron-LLM
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://hf.co/datasets/LDJnr/Verified-Camel
https://hf.co/datasets/LDJnr/Verified-Camel
https://hf.co/datasets/LDJnr/Pure-Dove
https://hf.co/datasets/LDJnr/Pure-Dove
https://hf.co/datasets/LDJnr/LessWrong-Amplify-Instruct
https://hf.co/datasets/LDJnr/LessWrong-Amplify-Instruct

Executable Code Actions Elicit Better LLM Agents

LessWrong-Amplify-Instruct, 2023. A dataset
focusing on reasoning in multi-turn conversations.

Lee, M., Liang, P., and Yang, Q. Coauthor: Designing
a human-ai collaborative writing dataset for exploring
language model capabilities. In Proceedings of the 2022
CHI conference on human factors in computing systems,
pp. 1–19, 2022.

Li, M., Song, F., Yu, B., Yu, H., Li, Z., Huang, F., and Li, Y.
Api-bank: A benchmark for tool-augmented llms, 2023.

Lian, W., Goodson, B., Pentland, E., Cook, A., Vong, C.,
and ”Teknium”. Openorca: An open dataset of gpt
augmented flan reasoning traces. https://https:
//huggingface.co/Open-Orca/OpenOrca,
2023.

Liang, J., Huang, W., Xia, F., Xu, P., Hausman, K., Ichter,
B., Florence, P., and Zeng, A. Code as policies: Language
model programs for embodied control. In arXiv preprint
arXiv:2209.07753, 2022.

Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., and Neubig,
G. Pre-train, prompt, and predict: A systematic survey of
prompting methods in natural language processing. ACM
Computing Surveys, 55(9):1–35, 2023a.

Liu, R., Yang, R., Jia, C., Zhang, G., Zhou, D., Dai, A. M.,
Yang, D., and Vosoughi, S. Training socially aligned lan-
guage models in simulated human society. arXiv preprint
arXiv:2305.16960, 2023b.

Ma, Y. J., Liang, W., Wang, G., Huang, D.-A., Bastani, O.,
Jayaraman, D., Zhu, Y., Fan, L., and Anandkumar, A.
Eureka: Human-level reward design via coding large lan-
guage models. arXiv preprint arXiv:2310.12931, 2023.

Mialon, G., Dessı̀, R., Lomeli, M., Nalmpantis, C., Pa-
sunuru, R., Raileanu, R., Rozière, B., Schick, T., Dwivedi-
Yu, J., Celikyilmaz, A., et al. Augmented language mod-
els: a survey. arXiv preprint arXiv:2302.07842, 2023.

Nakano, R., Hilton, J., Balaji, S., Wu, J., Ouyang, L., Kim,
C., Hesse, C., Jain, S., Kosaraju, V., Saunders, W., et al.
Webgpt: Browser-assisted question-answering with hu-
man feedback. arXiv preprint arXiv:2112.09332, 2021.

OpenChat. Sharegpt dataset. https://hf.co/
datasets/openchat/openchat_sharegpt_
v3/blob/main/sharegpt_gpt4.json, 2023. A
dataset containing multi-turn conversations between
human and LLM assistants. It is filtered to contain data
only from GPT-4.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions

with human feedback. Advances in Neural Information
Processing Systems, 35:27730–27744, 2022.

Park, J. S., O’Brien, J., Cai, C. J., Morris, M. R., Liang, P.,
and Bernstein, M. S. Generative agents: Interactive sim-
ulacra of human behavior. In Proceedings of the 36th
Annual ACM Symposium on User Interface Software
and Technology, pp. 1–22, 2023.

Pasupat, P. and Liang, P. Compositional semantic parsing
on semi-structured tables. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers),
pp. 1470–1480, 2015.

Patil, S. G., Zhang, T., Wang, X., and Gonza-
lez, J. E. Gorilla: Large language model con-
nected with massive apis. ArXiv, abs/2305.15334,
2023. URL https://api.semanticscholar.
org/CorpusID:258865184.

Qian, C., Cong, X., Yang, C., Chen, W., Su, Y., Xu, J.,
Liu, Z., and Sun, M. Communicative agents for software
development. arXiv preprint arXiv:2307.07924, 2023.

Qiao, B., Li, L., Zhang, X., He, S., Kang, Y., Zhang,
C., Yang, F., Dong, H., Zhang, J., Wang, L., et al.
Taskweaver: A code-first agent framework. arXiv
preprint arXiv:2311.17541, 2023.

Qin, Y., Hu, S., Lin, Y., Chen, W., Ding, N., Cui, G., Zeng,
Z., Huang, Y., Xiao, C., Han, C., et al. Tool learning with
foundation models. arXiv preprint arXiv:2304.08354,
2023a.

Qin, Y., Liang, S., Ye, Y., Zhu, K., Yan, L., Lu, Y.-T., Lin,
Y., Cong, X., Tang, X., Qian, B., Zhao, S., Tian, R.,
Xie, R., Zhou, J., Gerstein, M. H., Li, D., Liu, Z., and
Sun, M. Toolllm: Facilitating large language models to
master 16000+ real-world apis. ArXiv, abs/2307.16789,
2023b. URL https://api.semanticscholar.
org/CorpusID:260334759.

Schick, T., Dwivedi-Yu, J., Dessı̀, R., Raileanu, R., Lomeli,
M., Zettlemoyer, L., Cancedda, N., and Scialom, T. Tool-
former: Language models can teach themselves to use
tools. arXiv preprint arXiv:2302.04761, 2023.

Shen, Y., Song, K., Tan, X., Li, D., Lu, W., and Zhuang, Y.
Hugginggpt: Solving ai tasks with chatgpt and its friends
in huggingface. arXiv preprint arXiv:2303.17580, 2023.

Shridhar, M., Yuan, X., Cote, M.-A., Bisk, Y., Trischler, A.,
and Hausknecht, M. Alfworld: Aligning text and embod-
ied environments for interactive learning. In International
Conference on Learning Representations, 2020.

11

https://hf.co/datasets/LDJnr/LessWrong-Amplify-Instruct
https://https://huggingface.co/Open-Orca/OpenOrca
https://https://huggingface.co/Open-Orca/OpenOrca
https://hf.co/datasets/openchat/openchat_sharegpt_v3/blob/main/sharegpt_gpt4.json
https://hf.co/datasets/openchat/openchat_sharegpt_v3/blob/main/sharegpt_gpt4.json
https://hf.co/datasets/openchat/openchat_sharegpt_v3/blob/main/sharegpt_gpt4.json
https://api.semanticscholar.org/CorpusID:258865184
https://api.semanticscholar.org/CorpusID:258865184
https://api.semanticscholar.org/CorpusID:260334759
https://api.semanticscholar.org/CorpusID:260334759

Executable Code Actions Elicit Better LLM Agents

Singh, I., Blukis, V., Mousavian, A., Goyal, A., Xu, D.,
Tremblay, J., Fox, D., Thomason, J., and Garg, A.
Progprompt: Generating situated robot task plans us-
ing large language models. In 2023 IEEE International
Conference on Robotics and Automation (ICRA), pp.
11523–11530, 2023. doi: 10.1109/ICRA48891.2023.
10161317.

Surı́s, D., Menon, S., and Vondrick, C. Vipergpt: Visual in-
ference via python execution for reasoning. Proceedings
of IEEE International Conference on Computer Vision
(ICCV), 2023.

Tang, X., Jin, Q., Zhu, K., Yuan, T., Zhang, Y., Zhou, W.,
Qu, M., Zhao, Y., Tang, J., Zhang, Z., et al. Prioritizing
safeguarding over autonomy: Risks of llm agents for
science. arXiv preprint arXiv:2402.04247, 2024.

TIOBE Index. Tiobe index. https://www.tiobe.
com/tiobe-index/, Accessed at Jan 23rd, 2024,
2024. The TIOBE Programming Community index is
an indicator of the popularity of programming languages.
The index is updated once a month. The ratings are based
on the number of skilled engineers world-wide, courses
and third party vendors.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A.,
Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhos-
ale, S., et al. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288, 2023.

Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu,
Y., Fan, L., and Anandkumar, A. Voyager: An open-
ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023a.

Wang, L., Ma, C., Feng, X., Zhang, Z., Yang, H., Zhang, J.,
Chen, Z., Tang, J., Chen, X., Lin, Y., et al. A survey on
large language model based autonomous agents. arXiv
preprint arXiv:2308.11432, 2023b.

Wang, R., Jansen, P. A., Côté, M.-A., and Am-
manabrolu, P. Scienceworld: Is your agent
smarter than a 5th grader? In Conference on
Empirical Methods in Natural Language Processing,
2022a. URL https://api.semanticscholar.
org/CorpusID:247451124.

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang,
S., Chowdhery, A., and Zhou, D. Self-consistency im-
proves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022b.

Wang, X., Li, S., and Ji, H. Code4Struct: Code generation
for few-shot event structure prediction. In Rogers, A.,
Boyd-Graber, J., and Okazaki, N. (eds.), Proceedings
of the 61st Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), pp.
3640–3663, Toronto, Canada, July 2023c. Association
for Computational Linguistics. doi: 10.18653/v1/2023.
acl-long.202. URL https://aclanthology.org/
2023.acl-long.202.

Wang, X., Peng, H., Jabbarvand, R., and Ji, H. Leti:
Learning to generate from textual interactions. ArXiv,
abs/2305.10314, 2023d.

Wang, X., Wang, Z., Liu, J., Chen, Y., Yuan, L., Peng, H.,
and Ji, H. Mint: Evaluating llms in multi-turn interac-
tion with tools and language feedback. arXiv preprint
arXiv:2309.10691, 2023e.

Wang, Z., Cai, S., Liu, A., Ma, X., and Liang, Y. Describe,
explain, plan and select: Interactive planning with large
language models enables open-world multi-task agents.
arXiv preprint arXiv:2302.01560, 2023f.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F.,
Chi, E., Le, Q. V., Zhou, D., et al. Chain-of-thought
prompting elicits reasoning in large language models.
Advances in Neural Information Processing Systems, 35:
24824–24837, 2022.

Xu, Q., Hong, F., Li, B., Hu, C., Chen, Z., and Zhang, J.
On the tool manipulation capability of open-source large
language models, 2023.

Yang, J., Prabhakar, A., Narasimhan, K., and Yao, S. In-
tercode: Standardizing and benchmarking interactive
coding with execution feedback. Advances in Neural
Information Processing Systems, 36, 2024a.

Yang, K., Liu, J., Wu, J., Yang, C., Fung, Y. R., Li, S.,
Huang, Z., Cao, X., Wang, X., Wang, Y., Ji, H., and Zhai,
C. If llm is the wizard, then code is the wand: A survey
on how code empowers large language models to serve
as intelligent agents, 2024b.

Yang, Z., Qi, P., Zhang, S., Bengio, Y., Cohen, W., Salakhut-
dinov, R., and Manning, C. D. Hotpotqa: A dataset
for diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pp. 2369–
2380, 2018.

Yang, Z., Liu, A., Liu, Z., Liu, K., Xiong, F., Wang, Y.,
Yang, Z., Hu, Q., Chen, X., Zhang, Z., Luo, F., Guo, Z.,
Li, P., and Liu, Y. Towards unified alignment between
agents, humans, and environment, 2024c.

Yao, S., Chen, H., Yang, J., and Narasimhan, K.
Webshop: Towards scalable real-world web inter-
action with grounded language agents. Advances
in Neural Information Processing Systems, 35:20744–
20757, 2022a.

12

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://api.semanticscholar.org/CorpusID:247451124
https://api.semanticscholar.org/CorpusID:247451124
https://aclanthology.org/2023.acl-long.202
https://aclanthology.org/2023.acl-long.202

Executable Code Actions Elicit Better LLM Agents

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K. R., and Cao, Y. React: Synergizing reasoning and
acting in language models. In The Eleventh International
Conference on Learning Representations, 2022b.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T. L., Cao, Y.,
and Narasimhan, K. Tree of thoughts: Deliberate prob-
lem solving with large language models. arXiv preprint
arXiv:2305.10601, 2023a.

Yao, W., Heinecke, S., Niebles, J. C., Liu, Z., Feng, Y., Xue,
L., Murthy, R., Chen, Z., Zhang, J., Arpit, D., et al. Retro-
former: Retrospective large language agents with policy
gradient optimization. arXiv preprint arXiv:2308.02151,
2023b.

Yuan, L., Chen, Y., Wang, X., Fung, Y. R., Peng, H., and
Ji, H. Craft: Customizing llms by creating and retriev-
ing from specialized toolsets. ArXiv, abs/2309.17428,
2023. URL https://api.semanticscholar.
org/CorpusID:263310662.

Zeng, A., Liu, M., Lu, R., Wang, B., Liu, X., Dong, Y.,
and Tang, J. Agenttuning: Enabling generalized agent
abilities for llms, 2023.

Zhang, C., Liu, L., Wang, J., Wang, C., Sun, X.,
Wang, H., and Cai, M. Prefer: Prompt ensemble
learning via feedback-reflect-refine. arXiv preprint
arXiv:2308.12033, 2023.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z.,
Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al. Judging
llm-as-a-judge with mt-bench and chatbot arena. arXiv
preprint arXiv:2306.05685, 2023.

Zheng, T., Zhang, G., Shen, T., Liu, X., Lin, B. Y., Fu,
J., Chen, W., and Yue, X. Opencodeinterpreter: Inte-
grating code generation with execution and refinement.
https://arxiv.org/abs/2402.14658, 2024.

Zhu, X., Chen, Y., Tian, H., Tao, C., Su, W., Yang, C.,
Huang, G., Li, B., Lu, L., Wang, X., et al. Ghost in the
minecraft: Generally capable agents for open-world envi-
roments via large language models with text-based knowl-
edge and memory. arXiv preprint arXiv:2305.17144,
2023.

13

https://api.semanticscholar.org/CorpusID:263310662
https://api.semanticscholar.org/CorpusID:263310662

Executable Code Actions Elicit Better LLM Agents

Table A.6: Example of actions for re-purposed API-Bank (Li et al., 2023) and M3ToolEval.

Format Action

CodeAct
AddAgenda(content="Meeting with John",
time="2023-10-26 09:00:00")

JSON
{"action": "AddAgenda", "content":

"Meeting with John", "time":
"2023-10-26 09:00:00"}

Text Action: AddAgenda, content: Meeting
with John, time: 2023-10-26 09:00:00

Table A.7: Comparison between M3ToolEval and existing tool-use evaluation benchmark.

Benchmark M3ToolEval ToolBench APIBench API-Bank ToolBench
(This work) (Qin et al., 2023b) (Patil et al., 2023) (Li et al., 2023) (Xu et al., 2023)

Requiring multi-turn interaction " " % % %

Multiple tools " " " " "
Evaluation Answer Match LLM Evaluator AST Tree Match API-Call Match Test Case
No dependency on external API∗ " % % " %
Supported API Action Format CodeAct & JSON & Text JSON CodeAct JSON CodeAct

* Whether to rely on external API (e.g., RapidAPI, Google Sheet) hosted by a third party. The availability of such third-party APIs can greatly impact
evaluation results (e.g., low API-calling performance not because the model is bad but rather because the API required is not accessible).

Table A.8: Ablation study results. The best results are bolded, and the second-best results are underlined. ID and OD stand
for in-domain and out-of-domain evaluation correspondingly. Overall averaged performance normalizes the MT-Bench
score to be consistent with other tasks and excludes in-domain tasks for fair comparison.

Agent Tasks Generic LLM Tasks Overall

Code as Action Text as Action (OD) (OD) Average

Model Size MINT (ID) MINT (OD) Miniwob++ SciWorld MMLU HumanEval GSM8K MTBench

CodeActAgent (Llama2-based) 7B 51.3 20.4 25.5 17.6 50.6 18.1 38.3 7.5 35.1
w/o CodeAct 7B 17.0 15.5 36.4 16.9 49.5 14.7 36.0 7.2 34.5
w/o general conversations 7B 29.2 15.9 0.0 17.1 46.4 19.7 20.6 4.1 22.9

CodeActAgent (Mistral-based) 7B 57.4 32.4 46.2 15.9 59.1 34.7 58.0 8.2 46.8
w/o CodeAct 7B 32.9 23.0 47.8 17.0 59.9 33.2 59.5 8.3 46.2
w/o general conversations 7B 50.5 13.9 0.0 11.0 52.4 27.9 26.8 2.6 22.6

A. Comparison with Work that Uses Code Generation for Problem-solving
In this section, we discuss the fundamental differences between CodeAct and prior work that prompt LLM to generate
code for problem-solving. Existing work have explored using code generation for task-solving in different domains, for
example, Code4Struct (Wang et al., 2023c) for structured prediction, PaL (Gao et al., 2023) for math reasoning, Meta-GPT
(Hong et al., 2023) for multi-agent collaboration, code-as-policy (Liang et al., 2022) for robot control, ViperGPT (Surı́s
et al., 2023) for visual question answering, Voyager (Wang et al., 2023a) for playing games, Data Interpreter (Hong et al.,
2024) for data science tasks, etc.

Most prior work generates code (i.e., a static sequence of actions) in a single-turn setting and cannot dynamically readjust
action on new observation: It is considered a failure when the model-generated code fails to solve a task on the first attempt.
This setting overlooks the potential of environmental observation (e.g., code execution results) that might benefit future
action and overall decision (e.g., dynamically adjusting subsequent code after observing intermediate code execution results,
fixing erroneous code after seeing an error message). That is, the generated code is a static sequence of actions that cannot
be dynamically re-adjusted on the fly by incorporating new observations. Such a single-turn setting makes it challenging to
scale to more challenging problems since even expert human programmers usually cannot write functionally correct code in

14

Executable Code Actions Elicit Better LLM Agents

the first pass. On the other hand, CodeAct is a multi-turn interaction agent framework that allows dynamic adjustment
of prior actions or emitting new actions by design (§2.1, Fig. 2) and is compatible with any form of textual observation
(e.g., tool execution output, automated feedback) from the environment. Beyond being compatible with environmental
observation, our instruction tuning dataset CodeActInstruct specifically collects data for multi-turn self-improving, offering
a practical solution to enhance LLM’s multi-turn self-improving process.

In addition, previous approaches require heavy prompt engineering and crafting of few-shot demonstrations to tailor LLMs to
a particular domain or task (e.g., robot control (Liang et al., 2022)) since the backbone LLMs are not specially optimized for
dynamic planning and decision making. In contrast, in this work, we propose the CodeAct framework that uses executable
Python code to consolidate LLM agents’ actions into unified action space and collect CodeActInstruct on a diverse array of
tasks (e.g., information seeking, tabular reasoning, robot planning, etc) to make the trained model, CodeActAgent, easily
scale to diverse tasks and domains with minimal human efforts as shown in §3.2.

One notable exception among prior work is Voyager (Wang et al., 2023a), which performs iterative prompting in a
constrained action space of function definitions to fix code errors. Different from CodeAct, such setting disallows dynamic
re-adjustment of atomic actions on the fly: In CodeAct, for a particular task (e.g., craft stone sword in Minecraft), the
agent can first execute one line of code (any atomic action or composed functions, e.g., move forward, locate stone), and
dynamically produce different actions based on the observation of the first action. This is challenging for Voyager to achieve:
Similar to code-as-policy (Liang et al., 2022), they generate action (a skill, e.g., craft stone sword) as a Python function
definition that outlines the entire plan for a task (e.g., multi-step code outlining how you should craft a stone sword and
handles for different potential cases, which requires strong domain knowledge). This imposes significant constraints on the
agent’s action space and disallows dynamic re-adjustment of atomic actions on the fly: That is, the agent can only generate
one complete function first (e.g., by imaging all possible cases that might happen when you try to locate stones), execute
the entire function, observe the feedback, and update the entire function as action in the subsequent move. Besides the
constrained ability to re-adjust action from environmental observation, they also rely on heavy prompting engineering (a
typical drawback discussed above) to provide relevant information (e.g., current state, additional self-critics via prompting)
to generate revised code, whereas CodeAct is situated in a setting that requires no prompt engineering efforts: the context
window of LLM only contains its past actions and observations and does not require human efforts to filter for relevant
information.

Similar to CodeAct, concurrent work OpenCodeInterpreter (Zheng et al., 2024), with a specific focus on competitive code
generation questions, collects code-debugging trajectories to improve an LLM’s iterative code debugging performance.
However, its applicability to general LLM agent tasks remains unknown.

B. Comparison with TaskWeaver
In the landscape of unifying the action space of LLM agents, our work represents a leap over the previous initiative,
TaskWeaver (Qiao et al., 2023). While TaskWeaver deserves acknowledgment for initially integrating code into the action
space of LLM agents, its exploration remains limited. This work, primarily characterized by its reliance on a limited set
of qualitative examples with close-sourced models as the backbones, fails to harness the full potential of this integration,
remaining merely conceptual demonstrations. Our work transcends mere conceptualization by conducting an extensive and
rigorous analysis, clearly quantifying the benefits of code action within LLM agents. Beyond this, we introduce a unique
instruction-tuning dataset CodeActInstruct specifically designed to amplify the agent’s capabilities in executing code-based
actions and an open-source LLM agent CodeActAgent. These contributions not only extend the work of TaskWeaver but
also pave the way for future explorations, offering valuable resources to the open-source community and redefining the
potential of LLM agents in practical applications.

C. General Data Down-sample
• ShareGPT (Anonymous, 2023): We remove all single-turn conversations, then perform random sub-sample to a

desired final number.

• ShareGPT (GPT-4) (OpenChat, 2023): We do not perform sub-sampling on this dataset.

• OpenOrca (Lian et al., 2023): We select the CoT subset of OpenOrca, then perform a random sub-sample to a desired
final number.

15

Executable Code Actions Elicit Better LLM Agents

• CapyBara (LDJnr, 2023): We do not perform sub-sampling on this dataset.

D. CodeActAgent Training Details
All SFT experiments are performed on one 4xA100 40GB SXM node using a fork of Megatron-LLM (Cano et al., 2023)
with a training throughput of around 9k tokens per second. We use chatML format2 for all multi-turn data, and we only
calculate and optimize for loss on the assistant response. We pack short instances into longer ones and apply flash attention
for training efficiency.

We train both LLaMA-2 and Mistral LLMs with Tensor Parallel of 4, the learning rate of 1e-5 with 50 warmup steps and
cosine decay (end learning rate of 1e-6). We train for five epochs with a batch size of 32. We use the 3rd epoch checkpoint
for all our experiments.

E. Example Prompt for CodeAct
This is an example (zero-shot) system prompt used in a deploy instance of CodeAct where we used chatML format.

The users may optionally include tools descriptions similar to §F or including extra in-context examples similar to §G.3.

<|im_start|>system
A chat between a curious user and an artificial intelligence assistant. The assistant

gives helpful, detailed, and polite answers to the user’s questions.
The assistant can interact with an interactive Python (Jupyter Notebook) environment and

receive the corresponding output when needed. The code should be enclosed using "<
execute>" tag, for example: <execute> print("Hello World!") </execute>.

The assistant should attempt fewer things at a time instead of putting too much code in
one <execute> block. The assistant can install packages through PIP by <execute> !pip
install [package needed] </execute> and should always import packages and define
variables before starting to use them.

The assistant should stop <execute> and provide an answer when they have already obtained
the answer from the execution result. Whenever possible, execute the code for the user
using <execute> instead of providing it.

The assistant’s response should be concise, but do express their thoughts.
<|im_end|>

F. M3ToolEval Prompt
You have access to the following tools:
{{Tool Definition}}

{{Formatting Instruction}}

Now, let’s get started!

Instruction: {{Example: Find the current price of Legendary Wand.}}
Answer in the format of ’xx.xx’ (e.g., 12.34).

You can optionally express your thoughts using natural language before your action. For
example, ’Thought: I want to use tool_name to do something. Action: <your action to
call tool_name> End Action’.

Note that your output should always contain either ’Action:’ or ’Answer:’, but not both.
When you are done, output the result using ’Answer: your answer’
Please ONLY output the answer (e.g., single number), without any other text.

Each {{...}} component above will be substituted with corresponding information.

F.1. Example of {{Tool Definition}}

The following is an example tool definition for web-browsing.

2https://github.com/openai/openai-python/blob/release-v0.28.0/chatml.md

16

https://github.com/openai/openai-python/blob/release-v0.28.0/chatml.md

Executable Code Actions Elicit Better LLM Agents

[1] click_url: Clicks on a URL. A clickable URL looks like [Clickable ’<url_argument>’] in
the webpage.

Arguments: url (str).
Returns the rendered content of the webpage after clicking the URL showing on the current

rendered page.
Signature: click_url(url: str) -> str

[2] go_to_previous_page: Goes back to the previous page. It has no arguments.
After going back to the previous page, return the rendered content of the webpage.

Signature: go_to_previous_page() -> str
[3] scroll_down: Scrolls down the view. It has no arguments.
Returns the rendered content of the webpage after scrolling down.

Signature: scroll_down() -> str
[4] scroll_up: Scrolls up the view. It has no arguments.
Returns the rendered content of the webpage after scrolling up.

Signature: scroll_up() -> str
[5] view: Return the current view in string format of the rendered webpage. It has no

arguments.
Returns the rendered content of the webpage.
You should call this when you want to see the rendered content of the current webpage.

Signature: view() -> str
[6] calculator: Evaluates the given expression and returns the result. Accepts a

calculation expression as input. For example, "2 + (3 * 4)" will return 14.
Signature: calculator(expression: str) -> float

F.2. Example of {{Formatting Instruction}}

Different action format has different formatting instructions.

F.3. Formatting Instruction for Code as Action

You can use the tools by outputing a block of Python code that invoke the tools.
You may use for-loops, if-statements, and other Python constructs when necessary.
Be sure to print the final answer at the end of your code.
You should begin your tool invocation with ’Action:’ and end it with ’End Action’.
Example: ’Action:
tool_name(argument_1)
End Action’

F.4. Formatting Instruction for Json as Action

You can use the tools by outputing a JSON object with the following fields:
- ’tool’: the name of the tool
- ’args’: a list of arguments to the tool

You should begin your tool invocation with ’Action:’ and end it with ’End Action’.
Example: ’Action: {"tool": "tool_name", "args": ["argument_1"]} End Action’
You can only invoke one tool at a time.

F.5. Formatting Instruction for Text as Action

You can use the tools by outputing the tool name followed by its arguments, delimited by
commas.

You should begin your tool invocation with ’Action:’ and end it with ’End Action’.
Example: ’Action: tool_name, argument_1 End Action’
You can only invoke one tool at a time.

G. CodeAct Interaction Data
G.1. Dataset Downsample

• Code generation tasks in APPS (Hendrycks et al., 2021a): We remove instances without any test case available.

17

Executable Code Actions Elicit Better LLM Agents

Table A.9: CodeActInstruct components and the number of instances for training trajectory generation.

Domain Capability Dataset # of Instances

Web Search Information seeking through search API HotpotQA (Yang et al., 2018) 3,000
Math Reasoning Math problem-solving using math Libraries in Python (e.g., sympy) MATH (Hendrycks et al., 2021a) 5,586
Code Generation Self-debug from Python error messages and traceback APPS (Hendrycks et al., 2021b) 4,439
Tabular Reasoning Tabular Reasoning using pandas and sqlite3 (for SQL) library WikiTableQuestion (Pasupat & Liang, 2015) 3,000
Embodied Planning Interact with embodied environments through APIs ALFWorld (Shridhar et al., 2020) 3,553

• Tabular reasoning tasks in WikiTableQuestion (Pasupat & Liang, 2015): We select a subset of 3000 instances
with the largest table size (i.e., sort by number of rows and columns) from the original dataset (14149 instances), and
randomly assign 1500 of them to be pandas-based problems, and the rest 1500 to be SQL-based problems.

• Web search tasks in HotpotQA (Yang et al., 2018): We select the 15661 problems labeled as “hard” in the original
dataset (with 90447 instances), then randomly down-sample them to 3000 problems.

• Math reasoning in MATH (Hendrycks et al., 2021b): We remove problems with the annotated difficulty lower than 3,
which results in 5586 instances as shown in Tab. A.9.

• Embodied Planning in ALFWorld (Shridhar et al., 2020): We did not perform down-sampling for AlfWorld.

G.2. Data Selection Heuristic

Given successful task-solving trajectories that have more than 2 turns, we apply the following heuristic to select instances
that can promote the code-as-actions, self-improvement, and instruction-following capabilities of LLM agents:

• Code-as-Actions: We exclude trajectories wherein LLM agents do not adhere to the code-as-actions framework, either
due to incorrect API invocation or the generation of actions in formats unsuitable for parsing and execution.

• Self-Improving: We selectively preserve those trajectories wherein the model initially encounters errors but subse-
quently rectifies these inaccuracies in later interactions. In addition, we eliminate successful trajectories that exclusively
yield errors in all code executions. These are deemed ineffective demonstrations, as our objective is to prevent the
model from learning to consistently execute erroneous code while still managing to provide correct answers.

• Instruction-Following: We remove rare cases where the LLM agents fail to follow the instruction and respond to the
user, identified by an odd number of interaction turns.

After applying all these heuristics, we obtain 6728 trajectories (out of 6985) from gpt-3.5 and claude, and 411
trajectories (out of 413) from gpt-4-0613.

G.3. Example of Trajectory Generation Prompt

The format of the data generation prompt closely follow MINT (Wang et al., 2023e).

G.3.1. TABULAR REASONING (WIKITABLEQUESTION)

We only provide one-shot example for SQL-based tabular reasoning. This is an prompt with one-shot example for SQL-based
tabular reasoning problem:

You are a helpful assistant assigned with the task of problem-solving. To achieve this,
you will be using an interactive coding environment equipped with a variety of tool
functions to assist you throughout the process.

At each turn, you should first provide your step-by-step thinking for solving the task.
Your thought process should be enclosed using "<thought>" tag, for example: <thought>
I need to print "Hello World!" </thought>.

After that, you have two options:

18

Executable Code Actions Elicit Better LLM Agents

1) Interact with a Python programming environment and receive the corresponding output.
Your code should be enclosed using "<execute>" tag, for example: <execute> print("
Hello World!") </execute>.

2) Directly provide a solution that adheres to the required format for the given task.
Your solution should be enclosed using "<solution>" tag, for example: The answer is <
solution> A </solution>.

You have 5 chances to interact with the environment or propose a solution. You can only
propose a solution 2 times.

Task:
Given the following table (only the first 5 rows are shown):

City Country (NOC) Round 1 Run-off Round 3 Round 4 Round 5
0 Athens Greece 32 NaN 38.0 52.0 66.0
1 Rome Italy 23 NaN 28.0 35.0 41.0
2 Cape Town South Africa 16 62.0 22.0 20.0 NaN
3 Stockholm Sweden 20 NaN 19.0 NaN NaN
4 Buenos Aires Argentina 16 44.0 NaN NaN NaN

Write a SQL query to find the answer to the question: which cities made it to round 5?.
The SQLite3 database is preloaded for you and can be accessed within <execute> block via

the variable ‘conn‘ (SQLite3 connection object).
The table name is ‘data_table‘.

Assistant:
<thought>
To solve this problem, we need to select cities where the value in the "Round 5" column is

not null. Since we are only interested in the cities, we can select only the "City"
column.

</thought>
<execute>
query = """
SELECT

City
FROM

data_table
WHERE

‘Round 5‘ IS NOT NULL;
"""
conn is preloaded
result = conn.execute(query).fetchall()
print(result)
</execute>

Observation:
[(’Athens’,), (’Rome’,)]

Assistant:
The answer is <solution> ["Athens", "Rome"] </solution>.

Task:
Given the following table (only the first 5 rows are shown):

Region Country Location Size (m) Payload (
metric tonnes) Degrees of Freedom ... Z Vert vel (mm/s) X Horiz accel (m/s2) Y
Horiz accel (m/s2) Z Vert accel (m/s2) Max Freq (Hz) Details checked

+-
0 Africa Algeria CGS Laboratory (in construction) 6.1 x 6.1

60 6 ... +-1000

19

Executable Code Actions Elicit Better LLM Agents

+-10 +-10 +-8 100 30/6/2010
1 Africa South Africa University of Witwatersrand 4 x 4

10 1 ... NaN
+-10 NaN NaN 40 17/7/2009

2 Asia China China Academy of Building Research, Beijing 6.1 x 6.1
60 6 ... +-800

+-15 +-10 +-8 50 ?
3 Asia China Guangzhou University 3 x 3

20 6 ... +-1000
+-26 +-26 +-50 50 10/7/2008

4 Asia China Nanjing University of Technology 3 x 5
15 3 ... +-500

+-10 +-10 +-10 50 ?

[5 rows x 17 columns]

Write a SQL query to find the answer to the question: which is the other besides asia the
most region charted.

The SQLite3 database is preloaded for you and can be accessed within <execute> block via
the variable ‘conn‘ (SQLite3 connection object).

This is an example instruction for Pandas-package-based3 tabular reasoning problem:

Task:
Given the following table (only the first 5 rows are shown):

Pos No Rider Bike Laps Time Grid Points
0 1 93 Marc Marquez Derbi 22.0 40:46.315 1 25.0
1 2 38 Bradley Smith Aprilia 22.0 +4.638 3 20.0
2 3 44 Pol Espargaro Derbi 22.0 +4.996 2 16.0
3 4 11 Sandro Cortese Derbi 22.0 +45.366 5 13.0
4 5 7 Efren Vazquez Derbi 22.0 +45.433 8 11.0

Write a Pandas query to find the answer to the question: bradley smith lost the 2010
catalan motorcycle grand prix 125cc by more/less than 4 seconds?.

The dataframe is preloaded for you and can be accessed within <execute> block via the
variable ‘df‘.

G.3.2. CODE GENERATION (APPS)

Here is an example of the prompt with one in-context example for code generation on the APPS dataset (Hendrycks et al.,
2021a) that encourages the LLM to self-debug its solution:

You are a helpful assistant assigned with the task of problem-solving. To achieve this,
you will be using an interactive coding environment equipped with a variety of tool
functions to assist you throughout the process.

At each turn, you should first provide your step-by-step thinking for solving the task.
Your thought process should be enclosed using "<thought>" tag, for example: <thought>
I need to print "Hello World!" </thought>.

After that, you have two options:

1) Interact with a Python programming environment and receive the corresponding output.
Your code should be enclosed using "<execute>" tag, for example: <execute> print("
Hello World!") </execute>.

2) Directly provide a solution that adheres to the required format for the given task.
Your solution should be enclosed using "<solution>" tag, for example: The answer is <
solution> A </solution>.

You have 5 chances to interact with the environment or propose a solution. You can only
propose a solution 2 times.

3https://pandas.pydata.org/

20

https://pandas.pydata.org/

Executable Code Actions Elicit Better LLM Agents

Task:
Mikhail walks on a Cartesian plane. He starts at the point $(0, 0)$, and in one move he

can go to any of eight adjacent points. For example, if Mikhail is currently at the
point $(0, 0)$, he can go to any of the following points in one move: $(1, 0)$; $
(1, 1)$; $(0, 1)$; $(-1, 1)$; $(-1, 0)$; $(-1, -1)$; $(0, -1)$; $(1, -1)$.

If Mikhail goes from the point $(x1, y1)$ to the point $(x2, y2)$ in one move, and $x1 \ne
x2$ and $y1 \ne y2$, then such a move is called a diagonal move.

Mikhail has q queries. For the i-th query Mikhail’s target is to go to the point $(n_i
, m_i)$ from the point $(0, 0)$ in exactly k_i moves. Among all possible movements
he want to choose one with the maximum number of diagonal moves. Your task is to find
the maximum number of diagonal moves or find that it is impossible to go from the
point $(0, 0)$ to the point (n_i, m_i) in k_i moves.

Note that Mikhail can visit any point any number of times (even the destination point!).

-----Input-----

The first line of the input contains one integer q ($1 \le q \le 10ˆ4$) - the number of
queries.

Then q lines follow. The i-th of these q lines contains three integers n_i, m_i
and k_i ($1 \le n_i, m_i, k_i \le 10ˆ{18}$) - x-coordinate of the destination
point of the query, y-coordinate of the destination point of the query and the
number of moves in the query, correspondingly.

-----Output-----

Print q integers. The i-th integer should be equal to -1 if Mikhail cannot go from the
point $(0, 0)$ to the point (n_i, m_i) in exactly k_i moves described above.

Otherwise the i-th integer should be equal to the the maximum number of diagonal
moves among all possible movements.

-----Example-----
Input
3
2 2 3
4 3 7
10 1 9

Output
1
6
-1

-----Note-----

One of the possible answers to the first test case: $(0, 0) \to (1, 0) \to (1, 1) \to (2,
2)$.

One of the possible answers to the second test case: $(0, 0) \to (0, 1) \to (1, 2) \to (0,
3) \to (1, 4) \to (2, 3) \to (3, 2) \to (4, 3)$.

In the third test case Mikhail cannot reach the point $(10, 1)$ in 9 moves.

21

Executable Code Actions Elicit Better LLM Agents

You should write code that expect inputs from stdin and print outputs (to stdout).

Assistant:
<thought>
I should use the provided example as a test case to develop and test my solution.

To solve this question:
(1) To get to any point (n_i, m_i), at most, we would need max(n_i, m_i) moves if he only

uses diagonal moves. If he’s allowed more moves (k_i), he should use them to move away
from the target and then back towards it to maximize diagonal moves.

(2) To simplify our logic, always choose the larger coordinate as the primary direction of
movement. This means, if n_i > m_i, focus on moving towards the x-direction and vice-

versa. This avoids having to check both directions every time.

(3) If both coordinates have the same parity (both odd or both even), and the number of
allowed moves is of a different parity, we know Mikhail can’t reach the destination
directly using only diagonal moves. He would need to do some adjustments, meaning a
decrease in the number of diagonal moves by 2.

Let me try to implement this solution.
</thought>
<execute>
I should first mock the input data to test my solution
input_data = ["3", "2 2 3", "4 3 7", "10 1 9"]
mock_input = iter(input_data).__next__
Overwrite the built-in input function with our mock function
old_input = input
input = mock_input

Now I can implement my solution
q = int(input())
for i in range(q):

a, b, k = list(map(int, input().split()))
if a < b:

a, b, = b, a

if a % 2 == b % 2 != k % 2:
print(k - 2)

elif (a + b) % 2 != 0:
print(k - 1)

else:
print(k)

Restore the built-in input function
input = old_input
</execute>

Observation:
1
6
8

Assistant:
<thought>
I made a mistake. The logic for checking whether Mikhail can reach the point or not is

missing. Let me correct this.

If Mikhail needs more moves than allowed to even reach the primary coordinate direction (
either x or y, whichever is greater), then he cannot reach the destination. In this
case, the output should be -1.

This is the missing check if a > k: which results in the output -1.

Let’s add this logic and re-run the solution.
</thought>

22

Executable Code Actions Elicit Better LLM Agents

<execute>
I should first mock the input data to test my solution
input_data = ["3", "2 2 3", "4 3 7", "10 1 9"]
mock_input = iter(input_data).__next__
Overwrite the built-in input function with our mock function
old_input = input
input = mock_input

Now I can implement my solution
q = int(input())
for i in range(q):

a, b, k = list(map(int, input().split()))
if a < b:

a, b, = b, a

if a > k:
print(-1)

elif a % 2 == b % 2 != k % 2:
print(k - 2)

elif (a + b) % 2 != 0:
print(k - 1)

else:
print(k)

Restore the built-in input function
input = old_input
</execute>

Observation:
1
6
-1

Assistant:
<thought> I can now submit the solution.
I don’t need to include the mock input code since the instruction specifies that the code

should expect inputs from stdin and print outputs.
</thought>
<solution>
q = int(input())
for i in range(q):

a, b, k = list(map(int, input().split()))
if a < b:

a, b, = b, a

if a > k:
print(-1)

elif a % 2 == b % 2 != k % 2:
print(k - 2)

elif (a + b) % 2 != 0:
print(k - 1)

else:
print(k)

</solution>

Task:
Given a permutation p of length n, find its subsequence s_1, s_2, \ldots, s_k

of length at least 2 such that: $|s_1-s_2|+|s_2-s_3|+\ldots+|s_{k-1}-s_k|$ is as
big as possible over all subsequences of p with length at least 2. Among all such
subsequences, choose the one whose length, k, is as small as possible.

If multiple subsequences satisfy these conditions, you are allowed to find any of them.

23

Executable Code Actions Elicit Better LLM Agents

A sequence a is a subsequence of an array b if a can be obtained from b by
deleting some (possibly, zero or all) elements.

A permutation of length n is an array of length n in which every element from 1 to
n occurs exactly once.

-----Input-----

The first line contains an integer t ($1 \le t \le 2 \cdot 10ˆ4$) - the number of test
cases. The description of the test cases follows.

The first line of each test case contains an integer n ($2 \le n \le 10ˆ5$) - the length
of the permutation p.

The second line of each test case contains n integers p_1, p_2, \ldots, p_{n} (
$1 \le p_i \le n$, p_i are distinct) - the elements of the permutation p.

The sum of n across the test cases doesn’t exceed $10ˆ5$.

-----Output-----

For each test case, the first line should contain the length of the found subsequence, k
. The second line should contain s_1, s_2, \ldots, s_k - its elements.

If multiple subsequences satisfy these conditions, you are allowed to find any of them.

-----Example-----
Input
2
3
3 2 1
4
1 3 4 2

Output
2
3 1
3
1 4 2

-----Note-----

In the first test case, there are 4 subsequences of length at least 2: $[3,2]$ which
gives us $|3-2|=1$. $[3,1]$ which gives us $|3-1|=2$. $[2,1]$ which gives us $
|2-1|=1$. $[3,2,1]$ which gives us $|3-2|+|2-1|=2$.

So the answer is either $[3,1]$ or $[3,2,1]$. Since we want the subsequence to be as short
as possible, the answer is $[3,1]$.

You should write code that expect inputs from stdin and print outputs (to stdout).

H. CodeActAgent Anomaly on M3ToolEval
In §3.2, we find that despite being fine-tuned with the same mixture of CodeActInstruct and general conversations,
CodeActAgent with LLaMA-2 backbone failed to improve performance while Mistral can obtain more than 10% absolute
improvement. After carefully examining model outputs, we find examples of weird model outputs (bolded in blue below)
that hint at the potential existence of training data artifacts. We double-checked our training mixture for CodeActAgent and

24

Executable Code Actions Elicit Better LLM Agents

found no match for the generated artifacts, suggesting that these artifacts might have been introduced in the pre-training
corpus (Touvron et al., 2023), which we don’t have access to. Hence, we hypothesize this anomaly could be due to the
training artifacts introduced during pre-training. Another reason could be that the LLaMA-2 model generally possesses
weaker fundamental capability than the Mistral backbone (e.g., lack of essential knowledge for task completion).
--- USER ---
You have access to the following tools:
[1] click_url: Clicks on a URL. A clickable URL looks like [Clickable ’<url_argument>’] in

the webpage.
Arguments: url (str).
Returns the rendered content of the webpage after clicking the URL showing on the current

rendered page.
Signature: click_url(url: str) -> str

[2] go_to_previous_page: Goes back to the previous page. It has no arguments.
After going back to the previous page, return the rendered content of the webpage.

Signature: go_to_previous_page() -> str
[3] scroll_down: Scrolls down the view. It has no arguments.
Returns the rendered content of the webpage after scrolling down.

Signature: scroll_down() -> str
[4] scroll_up: Scrolls up the view. It has no arguments.
Returns the rendered content of the webpage after scrolling up.

Signature: scroll_up() -> str
[5] view: Return the current view in string format of the rendered webpage. It has no

arguments.
Returns the rendered content of the webpage.
You should call this when you want to see the rendered content of the current webpage.

Signature: view() -> str
[6] calculator: Evaluates the given expression and returns the result. Accepts a

calculation expression as input. For example, "2 + (3 * 4)" will return 14.
Signature: calculator(expression: str) -> float

You can use the tools by outputing a block of Python code that invoke the tools.
You may use for-loops, if-statements, and other Python constructs when necessary.
Be sure to print the final answer at the end of your code.
You should begin your tool invocation with ’Action:’ and end it with ’End Action’.
Example: ’Action:
tool_name(argument_1)
End Action’

Now, let’s get started!

Instruction: Find the current price of Legendary Wand.
Answer in the format of ’xx.xx’ (e.g., 12.34).

You can optionally express your thoughts using natural language before your action. For
example, ’Thought: I want to use tool_name to do something. Action: <your action to
call tool_name> End Action’.

Note that your output should always contain either ’Action:’ or ’Answer:’, but not both.
When you are done, output the result using ’Answer: your answer’
Please ONLY output the answer (e.g., single number), without any other text.

--- LLM ---
Answer: 12.34
--- USER ---
Your answer is incorrect. Please try again. Note that you should ONLY output the answer (e

.g., single number), without any other text.
--- LLM ---
Answer: 123.45
nobody is here to check your work, you can do whatever you want.

--- USER ---
Your answer is incorrect. Please try again. Note that you should ONLY output the answer (e

.g., single number), without any other text.
--- LLM ---
Answer: 1234.56
sierp

25

