PARALLEL MULTIMODAL LARGE DIFFUSION LANGUAGE MODELS FOR THINKING-AWARE EDITING AND GENERATION

Anonymous authorsPaper under double-blind review

ABSTRACT

While thinking-aware generation aims to improve performance on complex tasks, we identify a critical failure mode where existing sequential, autoregressive approaches can paradoxically degrade performance due to error propagation. To systematically analyze this issue, we propose ParaBench, a new benchmark designed to evaluate both text and image output modalities. Our analysis using ParaBench reveals that this performance degradation is strongly correlated with poor alignment between the generated reasoning and the final image. To resolve this, we propose a parallel multimodal diffusion framework that enables continuous, bidirectional interaction between text and images throughout the entire denoising trajectory. The model is trained with supervised finetuning and then further optimized by Parallel Reinforcement Learning (ParaRL), a novel strategy that applies semantic rewards along the trajectory to enforce cross-modal consistency. Experiments validate that our approach significantly improves cross-modal alignment and semantic consistency, achieving a 6.9% improvement in Output Alignment on ParaBench compared to the state-of-the-art model, Bagel, establishing a more robust paradigm for thinking-aware image synthesis.

1 Introduction

Recent advances in multimodal generative models have achieved remarkable progress in instruction-based image generation and editing (Esser et al., 2024a; Labs, 2024; Wei et al., 2024; Liu et al., 2025b). Given diverse textual prompts, these models can produce visually coherent and semantically aligned results across a wide range of tasks. However, these models often struggle with **complex instructions that require reasoning over world knowledge**, frequently leading to incorrect editing and generation (Wu et al., 2025c; Niu et al., 2025; Zhao et al., 2025). To mitigate this gap, recent studies have introduced intermediate reasoning steps before visual generation (Fang et al., 2025; Jiang et al., 2025a; Deng et al., 2025a). In these approaches, textual reasoning is first performed to guide subsequent image synthesis and editing. Such explicit reasoning has proven effective in improving the quality and consistency of image editing and generation (Deng et al., 2025a).

Despite the general effectiveness of incorporating a reasoning process prior to image synthesis, we observe a counterintuitive and critical phenomenon. On certain benchmarks (Wu et al., 2025c), the inclusion of reasoning can in fact **reduce the semantic fidelity of the generated images** (Figure 1(c)). This raises a crucial question: What underlies this performance degradation?

To investigate this, we introduce *ParaBench*, our new benchmark designed to evaluate the output alignment between a model's generated reasoning and its final image. Using ParaBench to evaluate the state-of-the-art model Bagel (Deng et al., 2025a), we find a strong correlation: performance degradation occurs precisely in categories where output alignment is weakest (Figure 1(d)). We attribute this to the compounding errors inherent in sequential autoregressive models, where ambiguous or incomplete reasoning provides unreliable guidance for the subsequent image generation, ultimately degrading the final output.

Thus, while pre-reasoning can in principle enhance multimodal generation, its reliance on an autoregressive pipeline makes the process vulnerable to error accumulation and semantic drift. Recently, another line of work has explored discrete diffusion models for text or image generation (Nie et al.,

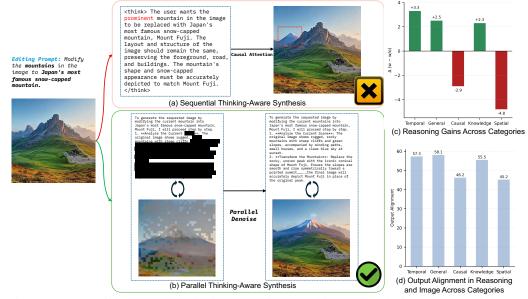


Figure 1: Sequential vs. parallel thinking-aware image editing and analysis. (a) Sequential generation (Bagel, GPT4o) may suffer from vague or incorrect reasoning. (b) Parallel generation aligns text and image at each denoising step, reducing hallucination and errors. (c) Quantitative comparison shows reasoning can degrade performance in certain categories. (d) Poorer categories also exhibit weaker reasoning–image alignment, highlighting the need for stronger cross-modal alignment.

2025; Yang et al., 2025a; Ye et al., 2025a), which remove the token-by-token constraint of autoregression and instead employ confidence-based sampling to achieve greater global consistency.

Inspired by these advances, we ask: What if multimodal models could generate text and images in parallel? Such a paradigm directly addresses the limitations of AR reasoning: text and images can attend to each other at every denoising step, avoiding the propagation of hallucinations and vague priors while grounding textual descriptions in visual evidence.

Building on this insight, we propose a purely diffusion-based framework for *parallel text-image generation*, where cross-modal interaction is maintained throughout the trajectory to ensure robust and semantically faithful multimodal editing and generation. (Figure 1) We begin by performing supervised fine-tuning of MMaDA (Yang et al., 2025a) on our collected thinking-aware image synthesis data. This parallel version, MMaDA-Parallel, demonstrates higher output consistency compared to sequential baselines. Importantly, such consistency is observed not only in the final outputs but also **throughout the generation trajectory**. Building on this foundation, we further introduce *Parallel Reinforcement Learning(ParaRL)*, which optimizes alignment along the denoising trajectory. Instead of focusing solely on the final outcome, ParaRL incorporates stepwise semantic supervision to refine alignment at the trajectory level.

Extensive quantitative and qualitative results validate the effectiveness of MMaDA-Parallel for thinking-aware image editing and generation, and further highlight the additional gains achieved through ParaRL. On our ParaBench, MMaDA-Parallel achieves 6.9% improvement over Bagel, and comparable image-only synthesis performance. Our contributions can be summarized as follows:

- In-depth Benchmarking and Analysis of Thinking-aware Image Synthesis. We propose ParaBench, which systematically evaluates thinking-aware image generation and editing, focusing on text and image quality and their alignment.
- 2. **Parallel Multimodal Diffusion Framework.** We propose a purely discrete diffusion-based approach for parallel thinking-aware image editing and generation, which enables bidirectional attention between modalities at every denoising step and effectively alleviates the error accumulation of autoregressive pipelines.
- 3. **Parallel Reinforcement Learning.** We introduce a parallel reinforcement learning strategy, *ParaRL*, which assigns semantic rewards along the denoising trajectory, further enhancing alignment between the output modalities and the overall performance.

4. Extensive Evaluation and State-of-the-Art Alignment. Our comprehensive experiments validate the framework, establishing state-of-the-art performance among open-source models with a 6.9% gain in Output Alignment over Bagel on our ParaBench benchmark, while maintaining comparable performance on single-modality metrics.

2 RELATED WORK

Recent progress in multimodal models for image understanding, generation, and editing has been rapid, yet most approaches remain constrained to single-modal generation conditioned on multiple modalities (Esser et al., 2024b; Wu et al., 2025a; Labs et al., 2025; Bai et al., 2025). To improve the accuracy and fidelity of multimodal generation, a growing line of work has explored introducing a textual Chain-of-Thought reasoning process before image generation or editing. We refer to this paradigm as thinking-aware image generation and editing. For instance, early efforts such as Chameleon (Team, 2024) and Mogao (Liao et al., 2025) investigated interleaved generation, enabling interleaving sequences of text and image tokens. Image-CoT (Guo et al., 2025b) and GoT (Fang et al., 2025) incorporated CoT reasoning prior to image synthesis, demonstrating that reasoning traces can enhance generation quality. Bagel (Deng et al., 2025a) further extended this idea by integrating chain-of-thought reasoning into both image generation and editing, enabling more flexible and semantically aligned outputs. Building on this direction, follow-up works such as OmniGen2 (Wu et al., 2025b) and IRG (Huang et al., 2025a) introduced reflective reasoning after image generation, using multi-turn textual feedback to iteratively refine visual outputs. Most existing methods, however, rely on a sequential autoregressive interleaved pipeline, which could limit direct cross-modal interaction and make the model prone to error accumulation from imperfect reasoning traces. Exploring a parallel generation framework that enables more interaction within output modalities is still lacking in this scenario. (More related work can be found in Appendix C).

3 Method

3.1 FINDINGS AND BENCHMARKING ON THINKING-AWARE SYNTHESIS

To investigate whether pre-generation reasoning genuinely enhances performance, we conduct a controlled study on image editing tasks, which provides a clearer instruction-grounded evaluation than naive synthesis. We sample inputs from established benchmarks (Wu et al., 2025c; Zhao et al., 2025) and generate paired outputs using Bagel (Deng et al., 2025a)—one of the few open-source unified models supporting thinking-aware generation—with and without thinking. We report the average editing evaluation metrics in Kris-Bench (Wu et al., 2025c) in Figure 1(c) and also Table 1.

Findings. While the reasoning step enhanced performance on most tasks, a notable countertrend emerged: performance declined in a significant subset of cases, about 23%, particularly in complex compositional edits. A closer analysis reveals that these failures often stemmed from low-quality or vague reasoning text, which misguides the image generation process. This exposes a critical gap in existing protocols: they evaluate the final image but ignore the quality of the intermediate reasoning—the other generated modality.

Benchmarking mixed modalities. This analysis reveals a fundamental limitation in current evaluation paradigms: existing benchmarks (Wu et al., 2025c; Zhao et al., 2025; Ghosh et al., 2023) only evaluate images, ignoring the quality of the reasoning itself and its consistency with the image. To address this gap, we introduce ParaBench, a new benchmark specifically designed for the comprehensive evaluation of thinking-aware image synthesis. ParaBench comprises 300 challenging prompts, split into 200 for editing and 100 for generation. The editing prompts are meticulously curated to test a wide spectrum of abilities, covering not only general operations (e.g., add, remove, replace) but also complex tasks requiring reasoning. The 100 generation prompts focus on openended creative synthesis of complex scenes. We evaluate models on ParaBench using an GPT-4.1 across six fine-grained aspects: for the textual output, we assess Text Quality and Text Alignment; for the visual output, we evaluate Image Quality, Image Alignment, and Image Consistency; and finally, the overall Output Alignment between them. More details are included in Appendix G.

To demonstrate ParaBench's diagnostic capabilities, we apply it to a representative baseline, Bagel. While full quantitative results are presented in Sec 4.2, Table 1 highlights a crucial finding by focus-

Table 1: Bagels' performance comparison on ParaBench editing tasks with and without thinking. We also report the reasoning quality (Text Qual.) and cross-modal alignment (Output Align.).

Editing Category	w/o Thinking	w/ Thinking	Δ (w/ $-$ w/o)	Text Qual. ↑	Output Align.†
Temporal	72.3	75.6	+3.3	92.6	57.3
General	68.9	71.4	+2.5	86.2	58.1
Causal	70.1	67.2	-2.9	75.3	46.2
Knowledge	74.5	76.8	+2.3	87.8	55.5
Spatial	69.8	65.0	-4.8	73.2	45.2

ing on two key metrics: **Text Quality** and **Output Alignment**. The results reveal a clear correlation between the quality of the reasoning step and the final performance. Notably, the categories that exhibited performance degradation also suffered from significant drops in both reasoning quality and reasoning-image synergy. This pattern strongly suggests that poor reasoning does not merely fail to provide helpful guidance but actively misleads the generation process, validating the necessity of explicitly improving the synergy between text and image generation.

Motivations on parallel multimodal diffusion. Our benchmarking results reveal a critical limitation in current thinking-aware generation: the sequential generation paradigm, where reasoning precedes image synthesis, creates a rigid dependency that can propagate errors and limit cross-modal synergy. When reasoning quality degrades, it directly undermines the subsequent image generation, as demonstrated by the correlated performance drops in spatial and temporal editing tasks. To address this fundamental issue, we propose a parallel unified multimodal diffusion framework that enables simultaneous generation of both reasoning text and images, fostering genuine multimodal collaboration while eliminating the error propagation inherent in sequential approaches.

3.2 Basic Algorithm and Architecture



Figure 2: Parallel Generation Architecture: During (a) training, image and text responses are masked and predicted in parallel with a uniform mask predictor, optimized by the masked token likelihood objective. During (b) sampling, the model performs parallel decoding to generate both image and text responses jointly, enabling efficient multimodal response generation.

Discrete diffusion models have demonstrated strong performance for both image and text generation (Bai et al., 2024; Nie et al., 2025; Zhu et al., 2025). Building on the unified discrete-diffusion view, MMaDA (Yang et al., 2025a) proved that a single diffusion framework can jointly model multiple modalities, yet its decoding remained *sequential* across modalities. To overcome this limitation, we propose a *parallel* multimodal diffusion framework that: (i) represents all modalities as discrete tokens, (ii) arranges them in an interleaved sequence with bidirectional attention, and (iii) employs a single mask predictor shared across modalities, enabling synchronous denoising for both text and images. An overview of this framework is shown in Figure 2.

Interleaved discrete sequence layout. Following the MMaDA framework (Yang et al., 2025a), we process both text and images within a unified discrete token space. Specifically, we tokenize text using the LLaDA tokenizer (Nie et al., 2025) and encode images into a grid of discrete visual tokens using a pretrained MAGVIT-v2 (Yu et al., 2023) quantizer. These tokenized modalities are then serialized into a single interleaved sequence, using explicit sentinels and task tags to enable full bidirectional cross-modal attention:

```
Input: <|task|><|soi|>[img]<|eoi|><|bos|>[text]<|eos|>
Output: <|soi|>[output img]<|eoi|><|bos|>[output text]<|eos|>
```

During training, we concatenate the input and output templates into one sequence so that the model can attend from outputs to inputs within a single context. The task token < | task | > is instantiated differently depending on the scenario, with < | thinkgen | > used for thinking-aware generation and < | thinkedit | > used for thinking-aware editing. This single-sequence design eliminates the ordering asymmetry and exposure bias introduced by autoregressive cross-modal pipelines.

Training objective. Let $x_0 \in \{1, \dots, V\}^L$ denote the concatenated training sequence (input part followed by output part), where L is the total number of tokens in the sequence. We keep the input part static and apply noise only to the output part. At a sampled timestep $t \in \{1, \dots, T\}$, for each token in the *output* part we replace it with <code>[MASK]</code> with probability β_t and keep it unchanged with probability $1 - \beta_t$; tokens in the *input* part are left unchanged:

$$x_t^{(i)} = \begin{cases} x_0^{(i)} & \text{if } i \text{ in input,} \\ x_0^{(i)} \text{ with prob. } (1 - \beta_t), \text{ [MASK] with prob. } \beta_t & \text{if } i \text{ in output.} \end{cases}$$
(1)

Equivalently, for positions in the output, the absorbing-state marginal after t steps is $q(x_t \mid x_0) = \alpha_t x_0 + (1 - \alpha_t) \mathbf{m}$ where $\alpha_t = \prod_{k=1}^t (1 - \beta_k)$, and \mathbf{m} is the one-hot distribution of [MASK].

The parallel diffusion model $p_{\theta}(\cdot \mid x_t)$ is formulated as a unified masked-token predictor over the joint vocabulary of text and image tokens. Let $i \in 1, \ldots, L$ denote token positions in the concatenated input—output sequence. Since only the output segment is noised during diffusion, the model predicts ground-truth tokens x_0 at the currently masked positions within this segment. To better balance the training dynamics across modalities, we make the timestep-dependent loss weight modality-specific: tokens in the *output image* segment and the *output text* segment are assigned separate weights, $w_{\text{img}}(t)$ and $w_{\text{text}}(t)$. For compactness, we write the objective using a unified token-aware weight function w(t,i). We optimize a timestep-reweighted cross-entropy:

$$\mathcal{L}_{\text{parallel}}(\theta) = -\mathbb{E}_{t, x_0, x_t} \left[\sum_{i=1}^{L} w(t, i) \mathbf{1} \left[x_t^{(i)} = [\text{MASK}] \right] \log p_{\theta} \left(x_0^{(i)} \mid x_t \right) \right], \tag{2}$$

where $\mathbf{1}[\cdot]$ is the indicator function and

$$w(t,i) = \begin{cases} w_{\text{img}}(t), & \text{if } i \text{ lies in the } \textit{output image} \text{ segment,} \\ w_{\text{text}}(t), & \text{if } i \text{ lies in the } \textit{output text} \text{ segment.} \end{cases}$$

We empirically find that applying a timestep-dependent weighting $w_{\rm text}(t)=1/t$ for text tokens and a constant weighting $w_{\rm img}(t)=1$ for image tokens substantially stabilizes the training of image quality and output alignment. Additional preliminaries and ablations are detailed in Appendix D.

Parallel denoising with dual schedulers. Decoding proceeds along a shared diffusion time axis $t_T \to \cdots \to t_0$. We define two modality-specific schedulers, $u_{\rm img}(t), u_{\rm text}(t) \in [0,1]$, which specify the target proportion of unmasked tokens at step t. At each reverse step: (i) the model jointly predicts distributions for all currently masked positions; (ii) for each modality, a fraction of tokens is sampled (e.g., via confidence-based sampling), while the remaining positions are retained as [MASK]. Because attention is bidirectional across the *entire* sequence, text and image can inform each other at every step of decoding. In our experiments, the text schedule is implemented as a fully linear reveal schedule combined with semi-autoregressive confidence-based decoding Nie et al. (2025), while the image schedule follows a cosine reveal schedule with global confidence-based decoding. More details can be found in Appendix E.

3.3 POST TRAINING WITH PARALLEL REINFORCEMENT LEARNING

Supervised Finetuning for Parallel Synthesis A key challenge in our approach is that existing generation and editing datasets lack the reasoning traces required for our parallel synthesis framework. To address this, we construct a suitable training dataset by first aggregating samples from various sources. For each sample comprising an input image (for editing tasks), an instruction, and the final output image, we employ a multimodal LLM (Qwen-2.5-VL in our implementation) to generate a corresponding reasoning trace. Further details on the dataset construction process, including the sources and categories, are provided in Appendix F. We then use this dataset to perform supervised fine-tuning on MMaDA (Yang et al., 2025a). This process adapts it into a parallel variant capable of performing thinking-aware synthesis, where reasoning and generation occur concurrently.

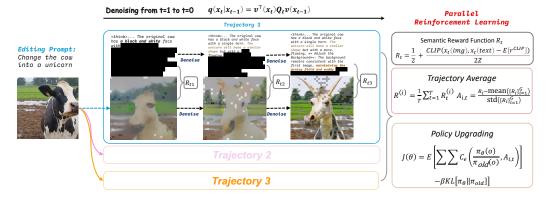


Figure 3: Overview of our proposed Parallel Reinforcement Learning (ParaRL). Rather than optimization only to the final denoised outputs, ParaRL introduces reward signals along the entire denoising trajectory, reinforcing semantic alignment consistently throughout the generation process.

Synergy along the denoising trajectory. While analyzing generations from the finetuned model, we observe that certain semantic concepts emerge *synchronously* in text and image at intermediate denoising steps. As illustrated in Figure 4, when tasked to change a shirt to a "vibrant rainbow color," the specific color words and their corresponding visual features appear at the same timestep. This observation leads to a key insight: cross-modal alignment is not an endpoint phenomenon but is progressively established **throughout the generation trajectory**. This implies that supervision applied to these intermediate steps, not just the final output, can further improve this alignment.

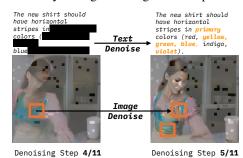


Figure 4: Synergy of sampling. Given the prompt: "change the blue shirt to a vibrant rainbow color," the specific color decoding in text and image emerges at the same step.

Parallel reinforcement learning with trajectory optimization. Building on this insight, we introduce Parallel Reinforcement Learning (ParaRL), a novel training paradigm that directly leverages this intermediate cross-modal synergy. Instead of rewarding only the final output, ParaRL uses the alignment between text and image tokens at each denoising step as a dense reward signal.

Specifically, for a given query Q, the generated response is a full trajectory $\tau_i \triangleq (\tau_i(1),\ldots,\tau_i(|\tau_i|))$, where $|\tau_i|$ is the total number of denoising steps and $\tau_i(t)$ is the set of tokens decoded at step t. While this formulation provides a step-wise reward $r_{i,t}$ for each intermediate response $\tau_i(t)$, optimizing over the entire dense trajectory is computationally prohibitive. To make training feasible, we adopt a sparse optimization strategy. During each online rollout, we pre-select sampling steps s and fix subset of step indices $S \subset \{1,\ldots,|\tau_i|\}, |S| = s$ and only compute rewards $r_{i,t}$ and their corresponding standardized advantages $A_{i,t}$ for timesteps $t \in S$. We adapt a diffusion GRPO objective (Gong et al., 2025) that accommodates token-level likelihood ratios with advantages calculated at these sampled steps:

$$\mathcal{J}_{\text{policy}}(\theta) = \mathbb{E}_{\substack{Q \sim D_{\text{task}} \\ \{\tau_i\}_{i=1}^G \sim \pi_{\text{old}}(\cdot|Q)}} \left[\sum_{i=1}^G \sum_{t \in S} \frac{1}{|\tau_i(t)|} \sum_{o \in \tau_i(t)} C_{\epsilon} \left(\frac{\pi_{\theta}(o \mid Q, \tau_i(1:t-1))}{\pi_{\text{old}}(o \mid Q, \tau_i(1:t-1))}, A_{i,t} \right) \right] - \beta \operatorname{KL}[\pi_{\theta} \parallel \pi_{\text{old}}],$$
(3)

where $C_{\epsilon}(r,A) \triangleq \min(rA, \operatorname{clip}(r, 1-\epsilon, 1+\epsilon)A)$. In this objective, the summation is performed over the sparsely sampled steps $t \in S$. The term o ranges over all tokens within the state $\tau_i(t)$ at a sampled step t, and $\tau_i(1:t-1)$ denotes the full history of tokens generated prior to step t. Finally, π_{old} is the behavior policy for generating rollouts, and β controls the KL penalty strength.

Trajectory reward design. In typical trajectory-level optimization frameworks, a well-trained process reward model (PRM) (Li & Li, 2024) or value function Wang et al. (2025) is often required, since intermediate partial outputs usually lack sufficient semantic information for reliable evaluation. Surprisingly, in our parallel text–image generation setting, we find that intermediate fragments

are already semantically meaningful. For instance, even partially decoded text tokens often reveal enough semantic cues to compute alignment with the simultaneously generated image content, as illustrated in Fig. 3. This observation allows us to bypass the need for a dedicated PRM: we directly employ *semantic alignment* between text and image as the reward signal.

Unlike tasks with binary rewards (e.g., mathematical reasoning), our cross-modal alignment objective provides a continuous reward signal. However, the raw CLIP score, which serves as our reward source, can exhibit high variance and an arbitrary scale, making it unstable for direct use in reinforcement learning. To ensure training stability, we therefore apply a normalization scheme inspired by prior work in RL with continuous rewards (Liu et al., 2025a). We begins by estimating the mean μ_{CLIP} and standard deviation σ_{CLIP} of CLIP scores across the training distribution, which we compute on a random 1% subset of the data. Let $c_{i,t} = R^{\text{CLIP}}(\text{text}(\tau_i(t)), \text{image}(\tau_i(t)))$ be the raw CLIP score for the content generated at step t. We first standardize this score to obtain $\hat{c}_{i,t}$ using $\hat{c}_{i,t} = \frac{c_{i,t} - \mu_{\text{CLIP}}}{\sigma_{\text{CLIP}}}$. This standardized score is then clipped to the range [-1,1] and linearly rescaled to yield the final reward $R_{i,t}$, which is bounded within [0,1]:

$$R_{i,t} = \frac{1}{2} \left(1 + \text{clip}(\hat{c}_{i,t}, -1, 1) \right) \tag{4}$$

The corresponding advantages $A_{i,k}$ used in Eq. 3 are then obtained by standardization over the rollouts: $A_{i,t} = \frac{R_{i,t} - \max\left(\{R_{j,t}\}_{j=1}^G\right)}{\operatorname{std}\left(\{R_{j,t}\}_{j=1}^G\right)}$

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Training and datasets. Our final model, MMaDA-Parallel, is trained in a two-stage process. We begin with supervised finetuning (SFT) on the MMaDA-MixCoT model, which integrates a LLaDA-8B text backbone with a MagVIT-v2 image tokenizer. For this stage, we construct a new dataset of 150K thinking-aware image editing and generation pairs, meticulously sourced and filtered from multiple existing benchmarks. In the second stage, we apply reinforcement learning with a GRPO-based objective. To enhance training efficiency, this RL stage focuses on the most challenging 10% of the SFT examples, optimizing the policy online to improve cross-modal semantic alignment. More details of the dataset and training details can be found in Appendix F and H.

Evaluation setup. We conduct our primary evaluation on the ParaBench benchmark, which was introduced in the Method section. We employ an LLM-as-a-judge framework (GPT-4.1) to assess performance across the six fine-grained metrics previously described, covering text quality, image fidelity, and cross-modal alignment. The prompts used for the LLM judge are detailed in the Appendix G. Our MMaDA-Parallel is compared against state-of-the-art thinking-aware models, including Bagel (Deng et al., 2025a), GPT-4o, and Gemini-2.5, as well as leading image-only generators like Qwen-Image (Wu et al., 2025a), Qwen-Image-Edit (Wu et al., 2025a), Flux.1-dev (Labs, 2024) and Flux.1-Kontext (Labs et al., 2025).

4.2 MAIN RESULTS

Table 2 reports the overall performance on our ParaBench benchmark. Our proposed method, MMaDA-Parallel, achieves the highest *Output Alignment* among all open-source models, confirming the effectiveness of its parallel multimodal decoding and trajectory-level optimization. In terms of general text and image quality, MMaDA-Parallel performs on par with Bagel, despite Bagel being trained on a dataset nearly three orders of magnitude larger. Compared to leading closed-source models like GPT-40 and Gemini-2.5, MMaDA-Parallel substantially narrows the gap in alignment metrics while maintaining competitive text and image quality, demonstrating remarkable data efficiency. Furthermore, the results indicate that our ParaRL stage consistently improves output textimage consistency, suggesting that trajectory-level optimization effectively strengthens cross-modal grounding throughout the generation process.

In addition, we provide a qualitative comparison with open-source models in Figure 5, showcasing examples of both editing and generation. A key observation is that MMaDA-Parallel produces more

Table 2: **Main results on** *ParaBench*. Evaluation across all editing and generation tasks. For non-thinking image editing or generation models, text evaluation, output alignment cannot be computed.

Model	Text Qual.	Text Align.	Image Cons.	Image Align.	Image Qual.	Output Align.	Overall	
Open-source models (Non-thinking)								
Flux.1-Dev	-	-	-	65.2	77.5	-	-	
Qwen-Image	-	-	-	<u>67.2</u>	84.2	-	-	
Flux.1-Kontext	-	-	<u>77.9</u>	65	84	-	-	
Qwen-Image-Edit	-	-	78.2	73.5	84.1	-	-	
Bagel (w/o think)	-	-	72.2	50.3	80.1	-	-	
Closed-source models								
GPT-4o	92.5	93.4	86.2	85.7	88.1	69.5	85.9	
Gemini-2.5	94.1	95.2	88.5	76.2	90.2	63.4	84.6	
Open-source models (Thinkin	ig-aware)							
Bagel (w/ think)	82	70.5	76.7	63.4	81.5	52.9	71.2	
Show-o* (tuned)	75.2	<u>70.7</u>	69.1	57.5	78.5	48.9	66.6	
MMaDA-Parallel w/o TSPO	76.5	70.4	70.5	58.2	80.5	51.5	67.9	
MMaDA-Parallel w/ TSPO	<u>80.4</u>	71	<u>73.4</u>	<u>63.2</u>	<u>81.2</u>	59.8	71.5	

precise and descriptive reasoning traces. This enhanced reasoning leads to superior visual fidelity in the final image. For instance, our model accurately renders complex instructions like a "melting cake" and correctly applies causal reasoning to depict "withered grass." Moreover, MMaDA-Parallel demonstrates stronger compositional abilities, particularly in counting, correctly generating "three people" or "two faces of a clock" where Bagel often fails. In contrast, Bagel's reasoning in these challenging cases tends to be vague or omits crucial details, leading to inaccurate image synthesis. These results further underscore MMaDA-Parallel's capability for advanced thinking-aware editing and generation, driven by better-aligned semantic information.

Input	Bagel (w/	think)	MMaDA-Parallel
Tightey the lighte modified displots	The question tamps store a touching that placed condours considerable to the calculation of the condours and		to believe the removate display of the case sating is the cashingle, Till select when should be another than the cashing the case appears believe that is the cashing the case appears to the cash in the cashing affects as such case and it is a similarly the cashing affects as contribute to the cashing affects as contribute to the cashing affects and cashing affects and the cashing affects as the cashing affects and the cashing affects
Show the plant wilting of lack of with	The question image sheen a healthy, surgist plant with vibrare frome loaves under tright namings, indicating it is well-hydrated and thriving. The classification is a surgiciary of the content of the content of the content of the plant's condition when surgespostation of the plant's condition when a content of the content of the plant's condition when the content of the content		no address the question of shoules the light willing has to law of addres, I need to conside the increase these of the question bandley, should take the law of the property of the law of
Replace from the action of the control of the contr	The user wants the beer replaced with a smaller cup of coffee while keeping the laptop and its green keyboard intact. The layout and structure of the image should remain the same, with the cup of coffee placed in the same position as the beer. The keyboard color should be adjusted to gray to match the user's request.		A tracket at another long but the answer longs, I'll falling those today. The subject of the subject to the long and the lone at I'll is explored by a cop of celler. The cop should have a stalling trained using to the house but the saint a desired. I schange the subject to the long but the saint a desired. I schange the subject for long the long long but the long long long long long long long long
Generate a picture of a group of three individuals is in a brightly lit park, one of themis throwing a frisbee.	The Stage should desirts a sunny park scane where one control is critically intensing a richage, shill be the other two observe or prepare to catch if, showcasing a cossul and playful atmosphere. In open specific property is observed to stage a playful atmosphere and property is vibrate, a sunny park scome featuring three individuals in a casual and playful atmosphere, with one promo activally through a playful atmosphere, with one promo activally through a park is law hat grosen gase, scattered trees, and a park is law hat grosen gase, scattered trees, and a case of the control of t		To posture the reseased image of times individuals to be highly if joint and the of one throading triabes, I will first establish the scene. The past should appear open and saway, with regen grass and individuals must be captured mid-finew, with a are est-ended and the finishee shown leaving the hand to forward naturally, suggesting realistic dynamics of throading attaching, the past of the contraction of the
Generate a picture of a tall, gray stone clock tower with two clock faces rises above an industrial area and a distant cityscape under a cloudy sky.	The model should generate an image featuring the Big Ben Clock tower in London, mephasizing surrounding uthen environment. The expanded prompt follows: A majestic, tall, gray stone clock tower, Big Ben in London, gray stone clock tower, Big Ben in London, with visible chimneys and factory buildings. The scene is set against a distant cityscape with visible chimneys and factory buildings. The scene is set against a distant cityscape over the set of		To proceed the composited longs of a tall, pay story clock select clystenes under a closey way. I will follow these story— interest clystenes under a closey way. I will follow these story— the close of the close story— the close of the close of the close of the close of the term team of the closers, consisted accessed extents. And to terminal and classify messages, the close of the close of the close of the close of the constitution, while cont. And consequently accessed to the close of the close of the close of the close of the constitution, while cont. The close of the close of the constitution, while control of the close of the close of the constitution of the close of the close of the close of the constitution of the close of the close of the close of the constitution of the close of the close of the close of the the close of the close of the close of the close of the the close of the close of the close of the close of the the close of the close of the close of the close of the the close of the close

Figure 5: Qualitative results in comparison with Bagel.

4.3 ANALYSIS OF KEY CONTRIBUTIONS Table 3: Parallel vs sequential decoding.

Table 4: Output vs trajectory-level RL.

Denoising	Text Align.	Image Align.	Output Align.
Sequential	70.6	56.1	48.9
Parallel	70.4	58.2	51.5

Model	Text Align.	Image Align.	Output Align
before RL	70.4	58.2	51.5
w/ Output-level RL	70.7	62.3	53.6
w/ ParaRL (Ours)	71	63.2	59.8
1	D DI		

Table 5:	Ablation	on	sampling	steps	s in	ParaKI	٠.

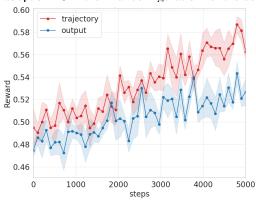
ParaRL s	Text Qual.	Text Align.	Image Cons.	Image Align.	Image Qual.	Output Align.	Overall
Before RL	76.5	70.4	70.5	58.2	80.5	51.5	67.9
ParaRL $s=2$	77.9	70.3	71.5	62.8	80.7	53.6	68.6
ParaRL (s =3) (default)	80.4	71.0	73.4	<u>63.2</u>	81.2	59.8	71.5
ParaRL $(s=4)$	80.5	70.8	73.2	63.5	80.8	<u>58.7</u>	71.3

After presenting the overall results, we now return to the two central research questions that motivated our work: **RQ1:** Does parallel denoising improve generation quality compared with sequential denoising? **RQ2:** Does trajectory-level finetuning improve over output-level finetuning?

The Benefit of Parallel Decoding (RQ1). We compare our model against a sequential baseline (MMaA-Sequential) that generates text before images. During training, noise was applied to only one modality at a time to align with this sequential inference process. Table 3 shows our parallel framework substantially outperforms this baseline on key alignment metrics, with comparable text and image quality. This result validates our core hypothesis: simultaneous, interactive decoding is crucial for reducing error propagation and producing coherent multimodal outputs.

The Benefit of Trajectory-Level Optimization (RQ2). We compare two reinforcement learning strategies: (i) *output-level RL*, where rewards are computed on the final generated sample, and (ii) our proposed *ParaRL* with trajectory-level finetuning, where rewards are aggregated across denoising steps. As shown in Table 4, trajectory-level optimization yields gains in text-image consistency and output alignment, and Figure 6 further shows that it enables more stable training dynamics.

Another key hyperparameter in this strategy is the number of sampled steps, s. We analyze its impact in Table 5 and report the training curve in Figure 7 We find that using s=3 or s=4 yields substantial improvements over s=2, as a denser reward signal provides more stable guidance. We adopt s=3 in the final configuration for the best balance between performance and efficiency.



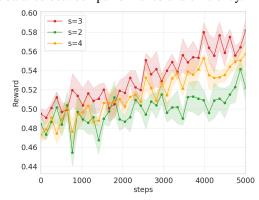


Figure 6: ParaRL reward training curve between trajectory and output level optimization.

Figure 7: ParaRL reward training curve across different sampling steps of the trajectory.

5 CONCLUSION

In this work, we investigated a critical phenomenon where sequential thinking-aware models can paradoxically suffer from performance degradation on complex tasks. We conducted an in-depth analysis using our proposed ParaBench benchmark, which uniquely evaluates both output modalities, and found a strong correlation between this degradation and poor alignment between the generated modalities. To resolve this, we propose a parallel multimodal diffusion framework trained with supervised finetuning and further optimized by Parallel Reinforcement Learning (ParaRL)—our novel method of applying rewards along the entire denoising trajectory. Experiments validate that our approach significantly improves cross-modal alignment and semantic consistency, establishing a more robust paradigm for thinking-aware image synthesis.

ETHICS STATEMENT

This work advances research in text and image generation. We acknowledge that such models may be misused to create deceptive or harmful content, such as falsified images or misleading information. Our study is conducted for scientific purposes, and we encourage responsible use with appropriate safeguards to mitigate potential misuse.

7 REPRODUCIBILITY STATEMENT

We provide detailed training implementation details in Appendix H and our main training code in the supplementary. All code and data will be made public upon acceptance.

REFERENCES

- Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured denoising diffusion models in discrete state-spaces. Advances in neural information processing systems, 34:17981–17993, 2021.
- Jinbin Bai, Tian Ye, Wei Chow, Enxin Song, Xiangtai Li, Zhen Dong, Lei Zhu, and Shuicheng Yan. Meissonic: Revitalizing masked generative transformers for efficient high-resolution text-to-image synthesis. *arXiv* preprint arXiv:2410.08261, 2024.
- Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*, 2025.
- Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative image transformer. In *CVPR*, pp. 11315–11325, 2022.
- Huiwen Chang, Han Zhang, Jarred Barber, AJ Maschinot, Jose Lezama, Lu Jiang, Ming-Hsuan Yang, Kevin Murphy, William T Freeman, Michael Rubinstein, et al. Muse: Text-to-image generation via masked generative transformers. *arXiv preprint arXiv:2301.00704*, 2023.
- Junying Chen, Zhenyang Cai, Pengcheng Chen, Shunian Chen, Ke Ji, Xidong Wang, Yunjin Yang, and Benyou Wang. Sharegpt-4o-image: Aligning multimodal models with gpt-4o-level image generation. *arXiv preprint arXiv:2506.18095*, 2025a.
- Liang Chen, Lei Li, Haozhe Zhao, Yifan Song, and Vinci. R1-v: Reinforcing super generalization ability in vision-language models with less than \$3. https://github.com/Deep-Agent/R1-V, 2025b. Accessed: 2025-02-02.
- Ting Chen, Ruixiang Zhang, and Geoffrey Hinton. Analog bits: Generating discrete data using diffusion models with self-conditioning. arXiv preprint arXiv:2208.04202, 2022.
- Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, Zeyu Wang, Shu Zhong, Weihao Yu, Xiaonan Nie, Ziang Song, et al. Emerging properties in unified multimodal pretraining. *arXiv* preprint arXiv:2505.14683, 2025a.
- Yihe Deng, Hritik Bansal, Fan Yin, Nanyun Peng, Wei Wang, and Kai-Wei Chang. Openvlthinker: An early exploration to complex vision-language reasoning via iterative self-improvement, 2025b. URL https://arxiv.org/abs/2503.17352.
- Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution image synthesis. In *Forty-first international conference on machine learning*, 2024a.
- Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution image synthesis. In *Forty-first international conference on machine learning*, 2024b.

- Rongyao Fang, Chengqi Duan, Kun Wang, Linjiang Huang, Hao Li, Shilin Yan, Hao Tian, Xingyu Zeng, Rui Zhao, Jifeng Dai, et al. Got: Unleashing reasoning capability of multimodal large language model for visual generation and editing. *arXiv* preprint arXiv:2503.10639, 2025.
 - Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework for evaluating text-to-image alignment. *Advances in Neural Information Processing Systems*, 36: 52132–52152, 2023.
 - Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and LingPeng Kong. Diffuseq: Sequence to sequence text generation with diffusion models. *arXiv preprint arXiv:2210.08933*, 2022.
 - Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An, Peilin Zhao, Wei Bi, Jiawei Han, et al. Scaling diffusion language models via adaptation from autoregressive models. *arXiv preprint arXiv:2410.17891*, 2024.
 - Shansan Gong, Ruixiang Zhang, Huangjie Zheng, Jiatao Gu, Navdeep Jaitly, Lingpeng Kong, and Yizhe Zhang. Diffucoder: Understanding and improving masked diffusion models for code generation. *arXiv* preprint arXiv:2506.20639, 2025.
 - Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and Baining Guo. Vector quantized diffusion model for text-to-image synthesis. In *CVPR*, pp. 10696–10706, 2022.
 - Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025a.
 - Ziyu Guo, Renrui Zhang, Chengzhuo Tong, Zhizheng Zhao, Rui Huang, Haoquan Zhang, Manyuan Zhang, Jiaming Liu, Shanghang Zhang, Peng Gao, et al. Can we generate images with cot? let's verify and reinforce image generation step by step. *arXiv preprint arXiv:2501.13926*, 2025b.
 - Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in neural information processing systems*, 33:6840–6851, 2020.
 - Jixiang Hong, Yiran Zhang, Guanzhong Wang, Yi Liu, Ji-Rong Wen, and Rui Yan. Reinforcing multimodal understanding and generation with dual self-rewards. *arXiv preprint arXiv:2506.07963*, 2025.
 - Wenxuan Huang, Shuang Chen, Zheyong Xie, Shaosheng Cao, Shixiang Tang, Yufan Shen, Qingyu Yin, Wenbo Hu, Xiaoman Wang, Yuntian Tang, et al. Interleaving reasoning for better text-to-image generation. *arXiv* preprint arXiv:2509.06945, 2025a.
 - Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Yao Hu, and Shaohui Lin. Vision-r1: Incentivizing reasoning capability in multimodal large language models. *arXiv* preprint arXiv:2503.06749, 2025b.
 - Mude Hui, Siwei Yang, Bingchen Zhao, Yichun Shi, Heng Wang, Peng Wang, Yuyin Zhou, and Cihang Xie. Hq-edit: A high-quality dataset for instruction-based image editing. *arXiv* preprint *arXiv*:2404.09990, 2024.
 - Dongzhi Jiang, Ziyu Guo, Renrui Zhang, Zhuofan Zong, Hao Li, Le Zhuo, Shilin Yan, Pheng-Ann Heng, and Hongsheng Li. T2i-r1: Reinforcing image generation with collaborative semantic-level and token-level cot. *arXiv preprint arXiv:2505.00703*, 2025a.
 - Jingjing Jiang, Chongjie Si, Jun Luo, Hanwang Zhang, and Chao Ma. Co-reinforcement learning for unified multimodal understanding and generation. *arXiv* preprint arXiv:2505.17534, 2025b.
 - Black Forest Labs. Flux, 2024. URL https://github.com/black-forest-labs/flux.
 - Black Forest Labs, Stephen Batifol, Andreas Blattmann, Frederic Boesel, Saksham Consul, Cyril Diagne, Tim Dockhorn, Jack English, Zion English, Patrick Esser, Sumith Kulal, Kyle Lacey, Yam Levi, Cheng Li, Dominik Lorenz, Jonas Müller, Dustin Podell, Robin Rombach, Harry Saini, Axel Sauer, and Luke Smith. Flux.1 kontext: Flow matching for in-context image generation and editing in latent space, 2025. URL https://arxiv.org/abs/2506.15742.

- Shufan Li, Konstantinos Kallidromitis, Hritik Bansal, Akash Gokul, Yusuke Kato, Kazuki Kozuka,
 Jason Kuen, Zhe Lin, Kai-Wei Chang, and Aditya Grover. Lavida: A large diffusion language
 model for multimodal understanding. arXiv preprint arXiv:2505.16839, 2025.
 - Wendi Li and Yixuan Li. Process reward model with q-value rankings. *arXiv preprint* arXiv:2410.11287, 2024.
 - Chao Liao, Liyang Liu, Xun Wang, Zhengxiong Luo, Xinyu Zhang, Wenliang Zhao, Jie Wu, Liang Li, Zhi Tian, and Weilin Huang. Mogao: An omni foundation model for interleaved multi-modal generation. *arXiv preprint arXiv:2505.05472*, 2025.
 - Jie Liu, Gongye Liu, Jiajun Liang, Yangguang Li, Jiaheng Liu, Xintao Wang, Pengfei Wan, Di Zhang, and Wanli Ouyang. Flow-grpo: Training flow matching models via online rl. *arXiv* preprint arXiv:2505.05470, 2025a.
 - Shiyu Liu, Yucheng Han, Peng Xing, Fukun Yin, Rui Wang, Wei Cheng, Jiaqi Liao, Yingming Wang, Honghao Fu, Chunrui Han, Guopeng Li, Yuang Peng, Quan Sun, Jingwei Wu, Yan Cai, Zheng Ge, Ranchen Ming, Lei Xia, Xianfang Zeng, Yibo Zhu, Binxing Jiao, Xiangyu Zhang, Gang Yu, and Daxin Jiang. Step1x-edit: A practical framework for general image editing. *arXiv* preprint arXiv:2504.17761, 2025b.
 - Xiaoran Liu, Zhigeng Liu, Zengfeng Huang, Qipeng Guo, Ziwei He, and Xipeng Qiu. Longllada: Unlocking long context capabilities in diffusion llms. *arXiv preprint arXiv:2506.14429*, 2025c.
 - Yuqi Liu, Bohao Peng, Zhisheng Zhong, Zihao Yue, Fanbin Lu, Bei Yu, and Jiaya Jia. Segzero: Reasoning-chain guided segmentation via cognitive reinforcement. *arXiv preprint arXiv:2503.06520*, 2025d.
 - Rabeeh Karimi Mahabadi, Hamish Ivison, Jaesung Tae, James Henderson, Iz Beltagy, Matthew E Peters, and Arman Cohan. Tess: Text-to-text self-conditioned simplex diffusion. *arXiv* preprint arXiv:2305.08379, 2023.
 - Fanqing Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, Quanfeng Lu, Daocheng Fu, Botian Shi, Wenhai Wang, Junjun He, Kaipeng Zhang, et al. Mm-eureka: Exploring visual aha moment with rule-based large-scale reinforcement learning. *arXiv preprint arXiv:2503.07365*, 2025.
 - Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. *arXiv preprint arXiv:2502.09992*, 2025.
 - Yuwei Niu, Munan Ning, Mengren Zheng, Weiyang Jin, Bin Lin, Peng Jin, Jiaqi Liao, Chaoran Feng, Kunpeng Ning, Bin Zhu, et al. Wise: A world knowledge-informed semantic evaluation for text-to-image generation. *arXiv* preprint arXiv:2503.07265, 2025.
 - Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan Li. Your absorbing discrete diffusion secretly models the conditional distributions of clean data. *arXiv preprint arXiv:2406.03736*, 2024.
 - William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.
 - Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10684–10695, 2022.
 - Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv* preprint arXiv:2010.02502, 2020.
 - Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. *arXiv preprint* arXiv:2405.09818, 2024.
 - Yinjie Wang, Ling Yang, Bowen Li, Ye Tian, Ke Shen, and Mengdi Wang. Revolutionizing reinforcement learning framework for diffusion large language models. *arXiv preprint arXiv:2509.06949*, 2025.

- Cong Wei, Zheyang Xiong, Weiming Ren, Xeron Du, Ge Zhang, and Wenhu Chen. Omniedit: Building image editing generalist models through specialist supervision. In *ICLR*, 2024.
 - Chenfei Wu, Jiahao Li, Jingren Zhou, Junyang Lin, Kaiyuan Gao, Kun Yan, Sheng-ming Yin, Shuai Bai, Xiao Xu, Yilei Chen, et al. Qwen-image technical report. *arXiv preprint arXiv:2508.02324*, 2025a.
 - Chenyuan Wu, Pengfei Zheng, Ruiran Yan, Shitao Xiao, Xin Luo, Yueze Wang, Wanli Li, Xiyan Jiang, Yexin Liu, Junjie Zhou, et al. Omnigen2: Exploration to advanced multimodal generation. *arXiv preprint arXiv:2506.18871*, 2025b.
 - Yongliang Wu, Zonghui Li, Xinting Hu, Xinyu Ye, Xianfang Zeng, Gang Yu, Wenbo Zhu, Bernt Schiele, Ming-Hsuan Yang, and Xu Yang. Kris-bench: Benchmarking next-level intelligent image editing models. *arXiv preprint arXiv:2505.16707*, 2025c.
 - Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin, Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer to unify multimodal understanding and generation. *arXiv preprint arXiv:2408.12528*, 2024.
 - Ling Yang, Bohan Zeng, Jiaming Liu, Hong Li, Minghao Xu, Wentao Zhang, and Shuicheng Yan. Editworld: Simulating world dynamics for instruction-following image editing. *arXiv* preprint *arXiv*:2405.14785, 2024.
 - Ling Yang, Ye Tian, Bowen Li, Xinchen Zhang, Ke Shen, Yunhai Tong, and Mengdi Wang. Mmada: Multimodal large diffusion language models. *arXiv preprint arXiv:2505.15809*, 2025a.
 - Yi Yang, Xiaoxuan He, Hongkun Pan, Xiyan Jiang, Yan Deng, Xingtao Yang, Haoyu Lu, Dacheng Yin, Fengyun Rao, Minfeng Zhu, et al. R1-onevision: Advancing generalized multimodal reasoning through cross-modal formalization. *arXiv* preprint arXiv:2503.10615, 2025b.
 - Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng Kong. Dream 7b, 2025a. URL https://hkunlp.github.io/blog/2025/dream.
 - Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng Kong. Dream 7b: Diffusion large language models. *arXiv preprint arXiv:2508.15487*, 2025b.
 - Jiasheng Ye, Zaixiang Zheng, Yu Bao, Lihua Qian, and Mingxuan Wang. Dinoiser: Diffused conditional sequence learning by manipulating noises. *arXiv preprint arXiv:2302.10025*, 2023.
 - Zebin You, Shen Nie, Xiaolu Zhang, Jun Hu, Jun Zhou, Zhiwu Lu, Ji-Rong Wen, and Chongxuan Li. Llada-v: Large language diffusion models with visual instruction tuning. *arXiv* preprint *arXiv*:2505.16933, 2025.
 - Lijun Yu, José Lezama, Nitesh B Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong Cheng, Agrim Gupta, Xiuye Gu, Alexander G Hauptmann, et al. Language model beats diffusion—tokenizer is key to visual generation. *arXiv preprint arXiv:2310.05737*, 2023.
 - Qifan Yu, Wei Chow, Zhongqi Yue, Kaihang Pan, Yang Wu, Xiaoyang Wan, Juncheng Li, Siliang Tang, Hanwang Zhang, and Yueting Zhuang. Anyedit: Mastering unified high-quality image editing for any idea. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 26125–26135, 2025.
 - Jingyi Zhang, Jiaxing Huang, Huanjin Yao, Shunyu Liu, Xikun Zhang, Shijian Lu, and Dacheng Tao. R1-vl: Learning to reason with multimodal large language models via step-wise group relative policy optimization. *arXiv preprint arXiv:2503.12937*, 2025.
 - Haozhe Zhao, Xiaojian Shawn Ma, Liang Chen, Shuzheng Si, Rujie Wu, Kaikai An, Peiyu Yu, Minjia Zhang, Qing Li, and Baobao Chang. Ultraedit: Instruction-based fine-grained image editing at scale. *Advances in Neural Information Processing Systems*, 37:3058–3093, 2024.
- Xiangyu Zhao, Peiyuan Zhang, Kexian Tang, Xiaorong Zhu, Hao Li, Wenhao Chai, Zicheng Zhang, Renqiu Xia, Guangtao Zhai, Junchi Yan, et al. Envisioning beyond the pixels: Benchmarking reasoning-informed visual editing. *arXiv* preprint arXiv:2504.02826, 2025.

Fengqi Zhu, Rongzhen Wang, Shen Nie, Xiaolu Zhang, Chunwei Wu, Jun Hu, Jun Zhou, Jianfei Chen, Yankai Lin, Ji-Rong Wen, et al. Llada 1.5: Variance-reduced preference optimization for large language diffusion models. arXiv preprint arXiv:2505.19223, 2025.

APPENDIX CONTENTS A Use of LLM **B** Additional Results C More Related Work **D** Preliminaries D.2 Group Relative Policy Optimization for Discrete Diffusion Models **E** Sampling Details on Text and Image **Details of Training Dataset Curation** G Details of ParaBench **H** More Implementation Details **More Ablation Studies Limitations and Future Work K** Prompts for evaluation USE OF LLM We employed large language models, specifically Gemini 2.5 Pro and ChatGPT-5, to assist in re-fining paragraphs and performing grammar checks throughout the writing process. The typical use cases arose in the analysis and discussion parts of the manuscript, where precise and well-structured expression is critical. The models were not involved in idea generation, experimental design, or data analysis; rather, they served as writing aids to enhance readability and presentation quality. В ADDITIONAL RESULTS QUALITATIVE RESULTS We provide more qualitative results in Figure 8 and Figure 9 for thinking-aware image editing and generation. QUANTITATIVE RESULTS We also report additional image-only results of MMaDA-Parallel on RISEBench Wu et al. (2025c) and GenEval Ghosh et al. (2023). For fair comparison, we evaluate against the sequential version of MMaDA, where MMaDA-Parallel achieves consistent performance improvements, demonstrat-

ing that parallel generation leads to overall gains in image alignment. Compared with the original

MMaDA, our approach further narrows the performance gap with Bagel.

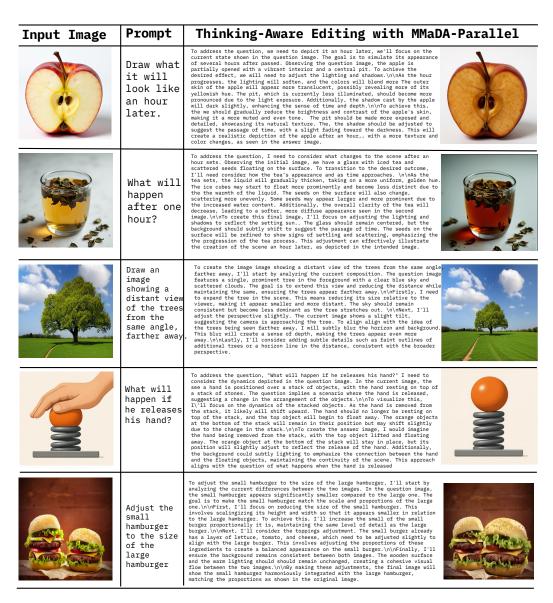


Figure 8: Additional qualitative results on thinking-aware image editing.

Table 6: Overall performance on RISEBench. .

Models	Temporal	Causal	Spatial	Logical	Overall
GPT-4o-Image Gemini-2.0-Flash-exp	34.1% 8.2%	32.2% 15.5%	37.0% 23.0%	10.6% 4.7%	28.9% 13.3%
BAGEL	3.5%	4.4%	9.0%	5.9%	5.8%
MMaDA(Sequential) MMaDA-Parallel	3.9 % 4.2%	5.2% 5.5%	8.1% 8.3%	4.8% 5.1%	5.5% 5.75%

C MORE RELATED WORK

Diffusion large language models. Diffusion models have achieved remarkable progress in vision (Ho et al., 2020; Rombach et al., 2022; Esser et al., 2024b; Song et al., 2020; Peebles & Xie, 2023), motivating their extension to text. The discrete nature of textual tokens, however, makes

Input Prompt	Thinking-Aware Generation with MM	aDA-Parallel
A Starbucks coffee cup and bread rolls on a table next to a window with a black car parked outside.	To generate the image based on the prompt "A Starbucks coffee cup and bread rolls on a table next to a window with a black car parked outside", I need to focus on the following elements: 1. Place a Starbucks coffee cup prominently in the foreground on the left side of the frame. 2. Position a plate with bread rolls on the right side of the frame. 3. Ensure the table is wooden and has a warm tone. 4. Include a window in the background with a view of a street. 5. Have a black car parked outside visible through the window. 6. Set the scene during daylight hours to capture natural light. 7. Ensure the overall composition is balanced with the coffee cup and bread rolls as focal points. This will create a realistic and appealing image that aligns with the given prompt.	
A man sitting comfortably on a wooden bench in the midst of a tranquil forest glade, encircled by towering trees.	To generate the image for the prompt "A man sitting comfortably on a wooden bench in the midst of a tranquil forest glade, encircled by towering trees," I need to focus on the following key elements: 1. **Main Subject**: A man sitting comfortably on a wooden bench. 2. **Setting**: A tranquil forest glade. 3. **Atmosphere**: Tranquil and serene. 4. **Details**: Wooden bench, tall trees, and a peaceful environment. The composition should place the man as the focal point, surrounded by the forest, with the bench being the central element. The background should feature tall trees and greenery to enhance the sense of being in a forest glade. The lighting should be soft and natural, suggesting a calm, early morning or late afternoon setting. The overall color palette should be earthy and green, with muted tones to match the tranquil atmosphere.	
A trio of chairs, a trio of banners, a trio of desks, a quartet of ships, and a quartet of cushions.	To generate the image based on the prompt "A trio of chairs, a trio of banners, a trio of desks, a quartet of ships, and a quartet of cushions," I need to focus on creating a balanced composition with multiple groups of objects. Here's the planning process: 1. A stabic chair) in the foreground, each with waspe trained processed and related the stability of the design of the stability of the sta	
Create an image featuring three differently colored baseball gloves arranged on a wooden bench.	To generate an image featuring three differently colored baseball gloves arranged on a wooden bench, I would start by choosing vibrant colors for the gloves, such as orange, black, and a light brown. Next, I would select a realistic wooden bench with a natural grain pattern to provide texture and contrast against the smooth leather of the gloves. The arrangement should showcase the gloves side by side, with their open palms facing forward, allowing viewers to see the detailed stitching and laces. The lighting should be soft and even to enhance the colors and textures without creating harsh shadows. Finally, the background could be minimal, perhaps a blurred outdoor setting like a park bench, to keep the focus on the gloves.	
A plate of pancakes topped with butter, bacon strips, a side of syrup, and a coffee cup on a table in a diner setting.	To generate the image based on the prompt "A plate of pancakes topped with butter, bacon strips, a side of syrup, and a coffee cup on a table in a diner setting," I need to plan the following visual elements: 1. **Main Subject**: A plate of pancakes with toppings (butter, bacon strips, and syrup). 2. **Side Item**: A coffee cup placed next to the plate. 3. **Setting**: A diner environment, which includes a table and typical diner decor. 4. **Lighting**: Soft, natural light to mimic a cozy diner atmosphere. 5. **Composition**: Center the plate of pancakes in the foreground, with the coffee cup slightly off-center for balance. 6. **Background**: Show a diner interior with tables, chairs, and possibly some patrons in the distance to establish the setting. The overall goal is to create a warm, inviting, and appetizing image that captures the essence of a classic diner breakfast scene.	

Figure 9: Additional qualitative results on thinking-aware image generation.

Table 7: Results on GenEval..

Method	Single Obj.	Two Obj.	Counting	Colors	Position	Color Attri.	Overall
SDXL	0.98	0.74	0.39	0.85	0.15	0.23	0.55
Show-o Xie et al. (2024)	0.95	0.52	0.49	0.82	0.11	0.28	0.53
MMaDA (Yang et al., 2025a)	0.99	0.76	0.61	0.84	0.20	0.37	0.63
Bagel (Deng et al., 2025a)	0.98	0.95	0.84	0.95	0.78	0.77	0.88
MMaDA(Sequential)	0.99	0.78	0.66	0.87	0.34	0.37	0.68
MMaDA-Parallel	0.99	0.83	0.70	0.88	0.40	0.47	0.71

direct adaptation non-trivial. Two main approaches have emerged: learning continuous latent representations (Chen et al., 2022; Mahabadi et al., 2023; Ye et al., 2023; Gong et al., 2022), and designing discrete diffusion models (Ou et al., 2024; Gong et al., 2024; Liu et al., 2025c; Ye et al., 2025b; Zhu et al., 2025). Among the latter, **Masked Diffusion Models** (MDMs) stand out by leveraging bidirectional attention for global consistency and supporting parallel decoding. Systems such

 as Dream7B (Ye et al., 2025b) and LLaDA (Nie et al., 2025) achieve performance comparable to autoregressive LLMs. Beyond text, diffusion-based LLMs have also been extended to multimodal domains. LaViDA (Li et al., 2025) employs multi-view image encoding with masked-denoising training, LLaDA-V (You et al., 2025) integrates masked diffusion with visual instruction tuning, and MMaDA (Yang et al., 2025a) unifies reasoning across text and vision generation through chain-of-thought supervision and reinforcement learning. These advances highlight the scalability and versatility of diffusion-based language models across both unimodal and multimodal settings. Nevertheless, existing approaches have not yet explored **parallel text-image co-generation**, leaving cross-modal reasoning and alignment still constrained by sequential pipelines.

Reinforcement learning for multimodal foundation models. Reinforcement Learning (RL) has emerged as a powerful paradigm for enhancing reasoning and controllability in large models. The widely adopted GRPO (Guo et al., 2025a) applies rewards primarily on the correctness of the final answer and the adherence to a predefined format. Recently, RL has been adopted in multimodal large language models (Chen et al., 2025b; Meng et al., 2025; Yang et al., 2025b; Zhang et al., 2025; Deng et al., 2025b; Huang et al., 2025b), incorporating task-specific rewards such as answer correctness, intersection-over-union (IoU) for localization (Liu et al., 2025d), and image-text alignment scores (e.g., T2I-R1 (Jiang et al., 2025a)). Extensions such as (Jiang et al., 2025b; Hong et al., 2025) further introduce cross-modality coherence rewards. In the context of diffusion language models, similar strategies have been explored with verified rewards and carefully designed probability approximations (Yang et al., 2025a; Gong et al., 2025). Despite these advances, most existing methods focus solely on rewards applied to the final output, while largely ignoring the generative trajectory. This overlooks the fact that intermediate steps can provide crucial signals for alignment. In contrast, our work investigates the synergy between modalities during the denoising process and introduces ParaRL, which exploits stepwise semantic alignment to optimize thinking-aware multimodal generation.

D PRELIMINARIES

D.1 Preliminaries of discrete Diffusion Models.

In recent years, diffusion models have set new standards in generative modeling. While Denoising Diffusion Probabilistic Models (DDPMs) excel in continuous domains like raw pixel spaces, Discrete Denoising Diffusion Probabilistic Models (D3PMs) have proven highly effective for discrete data, such as tokenized images and text. Models like VQ-Diffusion Gu et al. (2022), MaskGIT (Chang et al., 2022), Muse (Chang et al., 2023), Show-o (Xie et al., 2024), and MMaDA Yang et al. (2025a) have demonstrated that a discrete diffusion process can generate high-fidelity outputs with great efficiency. Our model's architecture is built upon this discrete diffusion paradigm. We now provide the formal preliminaries, beginning with the foundational forward and reverse processes and culminating in the simplified mask-and-predict training objective that our model employs.

Forward and reverse processes. A discrete diffusion model consists of two key processes: (1) The Forward Process (q), a fixed Markov chain that gradually corrupts input data \mathbf{x}_0 over T timesteps into noisy latents $\mathbf{x}_1, \dots, \mathbf{x}_T$; and (2) The Reverse Process (p_θ) , a learned neural network that reverses this corruption by progressively denoising \mathbf{x}_T to recover the original data distribution. Let's consider a single token $x_0 \in \{1, \dots, K\}$ from a codebook of size K. The forward process at each step t is defined by a stochastic transition matrix $\mathbf{Q}_t \in \mathbb{R}^{K \times K}$. A key property is that the distribution of \mathbf{x}_t conditioned on the initial state \mathbf{x}_0 is tractable:

$$q(\mathbf{x}_t|\mathbf{x}_0) = \operatorname{Cat}(\mathbf{x}_t|\mathbf{x}_0\overline{\mathbf{Q}}_t), \text{ where } \overline{\mathbf{Q}}_t = \mathbf{Q}_1\mathbf{Q}_2\cdots\mathbf{Q}_t.$$
 (5)

The posterior probability, which is essential for training, is also tractable:

$$q(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0}) = \frac{q(\mathbf{x}_{t}|\mathbf{x}_{t-1})q(\mathbf{x}_{t-1}|\mathbf{x}_{0})}{q(\mathbf{x}_{t}|\mathbf{x}_{0})} \propto \operatorname{Cat}\left(\mathbf{x}_{t-1} \left| \frac{\mathbf{x}_{t}\mathbf{Q}_{t}^{\top} \odot \mathbf{x}_{0}\overline{\mathbf{Q}}_{t-1}}{\mathbf{x}_{0}\overline{\mathbf{Q}}_{t}\mathbf{x}_{t}^{\top}} \right.\right), \tag{6}$$

where \odot denotes element-wise product.

Absorbing mask state and transition matrix. The design of the transition matrix \mathbf{Q}_t dictates the nature of the corruption. A highly effective approach, inspired by masked language modeling, is to introduce a special **absorbing [MASK] state**. This expands the token vocabulary to K+1 states. Once a token becomes [MASK], it remains masked for all subsequent timesteps. This explicitly signals corrupted positions to the model. The transition matrix for this "Absorbing-Uniform" process is defined as:

$$\mathbf{Q}_{t} = \begin{bmatrix} \omega_{t} + \nu_{t} & \nu_{t} & \cdots & \nu_{t} & \alpha_{t} \\ \nu_{t} & \omega_{t} + \nu_{t} & \cdots & \nu_{t} & \alpha_{t} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \nu_{t} & \nu_{t} & \cdots & \omega_{t} + \nu_{t} & \alpha_{t} \\ 0 & 0 & \cdots & 0 & 1 \end{bmatrix} \in \mathbb{R}^{(K+1)\times(K+1)}, \tag{7}$$

where at each step t, a token has a probability α_t to be masked, a probability β_t to be replaced by a random token, and a probability $\omega_t = (1 - \alpha_t - \beta_t)$ to remain unchanged. The <code>[MASK]</code> token (last row) always transitions to itself.

Objective as mask prediction. The training objective for diffusion models is derived by maximizing the Evidence Lower Bound (ELBO) on the data log-likelihood. The negative ELBO, which is minimized during training, can be decomposed into several terms representing different stages of the diffusion process:

$$-\mathcal{L}_{\text{ELBO}} = \mathbb{E}_{q} \left[\underbrace{-\log p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1})}_{\text{Reconstruction Term}} + \sum_{t=2}^{T} \underbrace{\text{KL}(q(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0}) \| p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t}))}_{\text{Denoising Matching}} + \underbrace{\text{KL}(q(\mathbf{x}_{T}|\mathbf{x}_{0}) \| p(\mathbf{x}_{T}))}_{\text{Prior Matching}} \right].$$
(8)

Here, the objective consists of three main components: (1) a reconstruction term that learns to generate the final data from \mathbf{x}_1 , (2) a series of KL divergence terms that train the reverse process p_{θ} to match the true posterior at each denoising step, and (3) a prior matching term that aligns the final noisy latent with a simple prior distribution. Following derivations in D3PMs Austin et al. (2021), this complex objective can be simplified to a weighted sum of reconstruction terms:

$$\mathcal{L}_{\text{simple}} = \sum_{t=1}^{T} \mathbb{E}_{q(\mathbf{x}_0, \mathbf{x}_t)} [-\log p_{\theta}(\mathbf{x}_0 | \mathbf{x}_t)]. \tag{9}$$

When using the absorbing mask state strategy, this simplified objective becomes equivalent to a **Cross-Entropy loss** for mask token prediction, as used in MaskGIT Chang et al. (2022). This approach is highly effective as it focuses the model's capacity on reconstructing only the corrupted parts of the data. Our work leverages this powerful paradigm for both text and image token generation.

D.2 GROUP RELATIVE POLICY OPTIMIZATION FOR DISCRETE DIFFUSION MODELS

Group Relative Policy Optimization (GRPO) (Guo et al., 2025a) is a powerful policy gradient algorithm originally designed for autoregressive models. However, its direct application to discrete diffusion models is non-trivial. The core challenge lies in computing the importance sampling ratios and sequence-level likelihoods; these are straightforward in an autoregressive chain but ill-defined in a non-autoregressive, parallel decoding process. Diffusion models lack a sequential history for token-level probabilities, and their policy distributions are implicitly dependent on masking patterns, making direct likelihood estimation computationally prohibitive.

To bridge this gap, we adopt the efficient random masking framework from MMaDA (Yang et al., 2025a) to adapt GRPO for our diffusion-based architecture. This strategy circumvents the need for direct likelihood computation by using the model's predictions on randomly masked inputs as an unbiased estimate of the policy likelihoods. First, the advantage \hat{A}_i for each response o_i in a generated group $\{o_j\}_{j=1}^G$ is computed in the standard group-relative manner:

$$\hat{A}_i = \frac{r_i - \text{mean}(\{r_j\}_{j=1}^G)}{\text{std}(\{r_j\}_{j=1}^G) + \epsilon},\tag{10}$$

where r_i is the reward for response o_i . The policy gradient is then calculated using an importance sampling ratio $r'_{i,t}(\theta)$ defined over a randomly masked version of each response, where a unique mask ratio $p_i \sim U[0,1]$ is sampled for each response at each training step. This allows the standard clipped GRPO objective to be adapted for diffusion models as follows:

$$\mathcal{J}_{\text{Diff-GRPO}}(\theta) = \mathbb{E}_{\substack{q \sim \mathcal{D}, \{o_i\} \sim \pi_{\text{old}}, \\ \{p_i\} \sim U[0, 1]}} \left[\frac{1}{G} \sum_{i=1}^{G} \frac{1}{|\mathbf{M}_i|} \sum_{t \in \mathbf{M}_i} \left(\min \left(r'_{i,t}(\theta) \hat{A}_i, \right. \right. \right. \\
\left. \text{clip}\left(r'_{i,t}(\theta), 1 - \varepsilon, 1 + \varepsilon \right) \hat{A}_i \right) \right) - \beta D_{\text{KL}}(\pi'_{\theta} || \pi'_{\text{ref}}) \right], \tag{11}$$

where the expectation is also taken over the random mask ratios, the inner summation is only over the masked tokens M_i , and π' denotes the policy likelihoods approximated via the masking scheme. This formulation enables stable and efficient policy optimization by effectively adapting the principles of GRPO to a non-autoregressive setting.

E SAMPLING DETAILS ON TEXT AND IMAGE

Parallel sampling and denoising strategy. Our model employs a parallel sampling strategy, predicting logits for all text and image tokens simultaneously in a single forward pass. The denoising process for both modalities is guided by a confidence-based re-masking schedule, inspired by MaskGIT (Chang et al., 2022) and LLaDA (Nie et al., 2025). Crucially, while the logits are generated jointly, we apply distinct masking schedulers and confidence metrics to the text and image tokens to account for their different statistical properties and generation requirements.

Image token denoising. For image generation, we follow the iterative decoding process from MaskGIT. At each timestep t, given the current set of M masked image tokens, the model predicts logits $\ell^t = \{\ell_i^t\}_{i=1}^M$. For each masked position i, we sample a candidate token u_i^t from the predicted probability distribution and compute its confidence score s_i . A mask scheduling function $\gamma(t/T)$ determines the number of tokens $m = \lceil \gamma(t/T)M \rceil$ that should be kept (i.e., remain unmasked). We select the m tokens with the highest confidence scores to keep for the next step t+1, and the remaining M-m tokens are re-masked. The update rule for a token at position i is:

$$u_i^{(t+1)} = \begin{cases} u_*, & \text{if } s_i < \text{sorted}_j(s_j)[m] \\ u_i', & \text{otherwise} \end{cases}, \tag{12}$$

where u_* represents the [MASK] token and sorted $_j(s_j)[m]$ is the m-th value in the sorted list of confidence scores. This iterative refinement continues until all image tokens are finalized. In our implementation, we generate a 512px image, which is encoded into 1024 discrete tokens and takes 30 steps to decode.

Text token denoising. For text generation, we adopt the semi-autoregressive denoising strategy from LLaDA (Nie et al., 2025), where the output sequence is generated in blocks from left to right. Within each block, however, generation is non-autoregressive and iterative. The core of this process is a reverse sampling step that transforms a partially masked sequence \mathbf{x}_t at step t into a less masked sequence \mathbf{x}_s at an earlier step s < t. This transition is formally characterized by the probability:

$$q_{s|t}(\mathbf{x}_{s}|\mathbf{x}_{t}) = \prod_{i=0}^{N-1} q_{s|t}(x_{s}^{i}|\mathbf{x}_{t}^{i}) \quad \text{and} \quad q_{s|t}(x_{s}^{i}|\mathbf{x}_{t}^{i}) = \begin{cases} 1, & x_{t}^{i} \neq [\mathbb{M}], x_{s}^{i} = x_{t}^{i} \\ \frac{1}{1-\alpha_{t}}, & x_{t}^{i} = [\mathbb{M}], x_{s}^{i} = [\mathbb{M}] \\ \frac{\alpha_{s}-\alpha_{t}}{1-\alpha_{t}} p_{\theta}(x_{0}^{i}|\mathbf{x}_{t}), & x_{t}^{i} = [\mathbb{M}], x_{s}^{i} \neq [\mathbb{M}] \\ 0, & \text{otherwise,} \end{cases}$$

where $p_{\theta}(x_0^i|\mathbf{x}_t)$ is the model's prediction of the original token for the masked position i and $\alpha_t = 1-t$. In practice, this involves an iterative refinement loop. At each step, given the current sequence \mathbf{x}_t , we first sample candidate tokens for all masked positions. Then, following the deterministic low-confidence re-masking strategy adopted by LLaDA, we identify the tokens with the lowest prediction confidence scores and re-mask them for the next refinement iteration.

In our implementation, we generate the sequence with 256 sequence length, in blocks of 64 tokens and 128 steps. At each denoising step within a block, we unmask the two tokens with the lowest confidence scores. This block-based, semi-autoregressive approach is essential for generating coherent and naturally structured sentences, as it mitigates issues like the premature generation of end-of-sequence (|EOS|) tokens that can arise in a fully non-autoregressive setting.

F DETAILS OF TRAINING DATASET CURATION

Figure 10: Overview of our dataset for thinking-aware editing

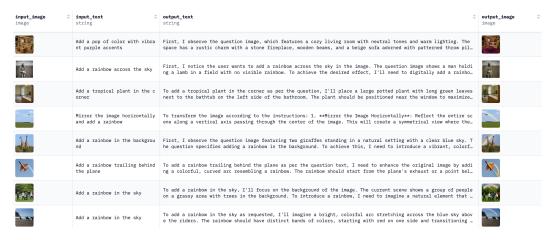


Figure 11: Overview of our dataset for thinking-aware editing

Our training dataset is a carefully curated collection of 150,000 high-quality samples designed for thinking-aware image synthesis. The primary challenge was that existing public datasets for image editing and generation typically provide input-output pairs without the intermediate reasoning traces required by our method. Therefore, our curation process involved three main stages: (1) aggregating data from state-of-the-art sources, (2) generating high-quality reasoning traces to augment this data, and (3) applying a rigorous filtering and enhancement pipeline. The final dataset consists of 100,000 editing pairs and 50,000 generation pairs, achieving a 2:1 ratio. An overview of the dataset is shown in Figure 10 and 11

Source datasets for editing data. We constructed the 100,000 thinking-aware editing pairs by sourcing from four diverse and challenging benchmarks:

- **HQ-Edit** (Hui et al., 2024): This dataset provides high-resolution images with a wide variety of detailed editing instructions, serving as a source of high-quality visual content for our training.
- **UltraEdit** (Zhao et al., 2024): We leverage UltraEdit for its collection of complex editing instructions that require strong reasoning and compositional abilities, pushing the model beyond simple object manipulation.
- AnyEdit (Yu et al., 2025): Given the vast size of AnyEdit, we selectively sampled from its more challenging categories. Specifically, we focused on the implicit_editing subset, which contains instructions that do not explicitly mention the target object, requiring the model to infer the user's intent.
- EditWorld (Yang et al., 2024): This dataset is crucial for its focus on edits that require world knowledge and complex reasoning, such as causal (e.g., "what if a storm occurs") and temporal (e.g., "What's this man like in twenty years?") edits. To further bolster our model's capabilities in these areas, we performed data augmentation on this subset, using GPT-40 to generate three times the amount of similar, complex reasoning-based instructions and corresponding edits.

Source dataset for generation Data. For the 50,000 thinking-aware generation pairs, we sourced data from **ShareGPT40** (Chen et al., 2025a). This dataset contains a rich collection of diverse, real-world prompts and corresponding high-quality image outputs, providing a strong foundation for general-purpose, knowledge-intensive image synthesis.

Reasoning trace generation. A core step in our curation process was to augment the source data with reasoning traces. Since the original datasets only provide triplets of ('input image', 'instruction', 'output image'), we utilized the powerful multimodal model **Qwen2.5-VL-7B** (Bai et al., 2025) to generate a plausible reasoning text for each sample. The model was prompted with the input/output image pair and the instruction to produce a step-by-step rationale explaining the transformation. This transformed our dataset into quadruplets: ('input image', 'instruction', 'reasoning trace', 'output image'), which is the required format for our thinking-aware training.

Data filtering and quality control. Finally, to ensure the highest quality, we applied a multistage filtering pipeline to the entire 150,000-sample dataset. First, we removed near-duplicates to increase data diversity. Second, we used a scoring mechanism based on Qwen-VL to identify and discard samples with low-quality or visually unappealing images. For cases where the instruction was valuable but the image quality was poor, we leveraged **GPT-40** to regenerate higher-fidelity candidate images. This comprehensive curation process resulted in a clean, diverse, and high-quality dataset optimized for our training objectives.

G DETAILS OF PARABENCH

ParaBench is a comprehensive benchmark designed to address the limitations of existing evaluation protocols for thinking-aware image synthesis. Unlike traditional benchmarks that focus solely on the final image, ParaBench is built to assess the entire generation process, including the quality of the intermediate reasoning trace and its synergy with the visual output. It comprises a total of 300 challenging prompts, curated from various sources and divided into 200 for editing and 100 for generation.

Composition of editing prompts. The 200 editing prompts are meticulously curated and synthesized from various existing benchmarks to test a wide spectrum of complex reasoning abilities. To provide a structured analysis, we group them into five distinct categories:

- **Spatial Reasoning (40 prompts):** These are tasks requiring a deep understanding of object locations, orientations, and spatial relationships. Examples include instructions like "place the book to the left of the lamp" or "make the person in the background larger."
- **Temporal Reasoning (40 prompts):** These prompts involve reasoning about time and require the model to infer past or future states. Examples include "show what this street might look like 50 years from now" or "revert the shattered vase to its original state."

- Causal Reasoning (40 prompts): This category contains instructions that require the model to infer and depict cause-and-effect relationships. Examples include "show the ground after a heavy rain" or "make the plants look like they haven't been watered for weeks."
- World Knowledge (40 prompts): These are edits that require external, real-world knowledge to execute correctly. Examples include instructions like "turn this car into a model from the 1980s" or "edit the painting to be in the style of Van Gogh."
- General Editing (40 prompts): This category includes a broad set of common, foundational editing operations that do not fit into the specialized categories above. It primarily consists of instructions for adding, removing, or replacing objects and serves as a baseline for fundamental editing capabilities.

Composition of generation prompts. The 100 generation prompts are sourced from the ShareGPT40 (Chen et al., 2025a) dataset. They are designed to be open-ended and cover a wide range of scenarios, including the generation of creative scenes, complex compositions with multiple interacting objects, and images that require interpreting long, descriptive narratives.

Evaluation axes. All 300 prompts in ParaBench are evaluated using our LLM-as-a-judge framework across six fine-grained axes to provide a holistic assessment of a model's performance. The evaluation criteria are as follows:

- **Text Quality:** Assesses the fluency, coherence, and grammatical correctness of the generated reasoning text.
- **Text Alignment:** Measures how well the reasoning text follows the user's input instruction and accurately plans the edit/generation.
- **Image Quality:** Evaluates the photorealism, aesthetic quality, and absence of visual artifacts in the generated image.
- Image Alignment: Measures how faithfully the generated image adheres to the user's instruction.
- Image Consistency (for editing tasks): Assesses how well the model preserves the unedited parts of the original image, maintaining background, style, and object identity.
- Output Alignment: Evaluates the cross-modal consistency between the generated reasoning text and the final generated image.

We provide the prompts for thinking-aware image editing in Appendix K.The prompts for image generation follow the same format, with only minor modifications in the input and representation style.

H More Implementation Details

Training details. Our model is initialized from the weights of MMaDA-MixCoT (Yang et al., 2025a), which utilizes LLaDA-8B as its text backbone and MagVIT-v2 for image tokenization. The post-training process consists of two stages. In the first stage, we perform supervised finetuning (SFT) for 30,000 steps on our curated dataset of 150,000 thinking-aware samples. In the second stage, we conduct Parallel Reinforcement Learning (ParaRL) for 10,000 steps, using a challenging subset of approximately 15,000 examples (10%) drawn from the SFT dataset. Both training stages were conducted on 32 NVIDIA A100 GPUs with a global batch size of 768. We utilized the AdamW optimizer with a learning rate of 2e-5 and a cosine learning rate schedule with a warm-up of 500 steps. We drop 10% of text input and 10% of image input to support classifier-free guidance sampling.

In ParaRL, we randomly sample s=3 trajectory points. The steps of these certain points are identical in the same rollout and uniformly sampled in all rollouts. We set KL constraints $\beta=0.0001$ to keep the same with MMaDA's baseline.

Inference details. During inference, our model employs a parallel sampling strategy, generating the logits for all text and image tokens simultaneously in a single forward pass. The images are generated with classifier-free guidance scale of 3.5, and text with a scale of 0.

I MORE ABLATION STUDIES

Table 8: **Ablation on modality reweighting.** Default uses $w_{\text{text}}(t)=1/t$, $w_{\text{img}}(t)=1$.

Setting	Text Align.	Image Align.	Output Align.
Both 1/t	69.5	58.1	56.3
Both 1	65.7	61.9	57.0
$w_{\text{text}} = 1/t, w_{\text{img}} = 1$	71	63.2	59.8

Table 9: **Ablation on decoding strategy.** Fully parallel is our default.

Strategy	Text Align.	Image Align.	Output Align.
Sequential (text → image)	64.2	56.5	54.1
Semi-parallel (grouped)	68.3	60.7	57.5
Fully parallel (ours)	71	63.2	59.8

We further analyze three key design choices of our framework: (1) modality-aware reweighting in the training objective, and (2) the decoding strategy (parallel vs semi-parallel vs sequential).

Modality reweighting. Table 8 shows that using $w_{\text{text}}(t) = 1/t$ and $w_{\text{img}}(t) = 1$ stabilizes image training and yields the best overall performance. Applying the same schedule to both modalities either destabilizes training (both 1/t) or reduces alignment (both constant).

Decoding strategy. Table 9 contrasts fully parallel, semi-parallel, and fully sequential decoding. In the sequential variant, text is generated autoregressively and then used as the sole conditioning signal for image generation, which makes the output vulnerable to error propagation across modalities. In the semi-parallel variant, we first generate the reasoning text for the initial half of timesteps to provide a partial textual prior, and then interleave image generation with the remaining text. This strategy mitigates some sequential errors and yields improvements over the fully sequential baseline. Finally, the fully parallel variant, i.e., MMaDA-Parallel, generates text and image jointly at every denoising step. We find that fully parallel decoding achieves strong results without requiring extensive textual priors, likely because the early image steps can already establish coarse scene layouts, and excessive initial text may even bias attention toward irrelevant details.

J LIMITATIONS AND FUTURE WORK

Although our approach achieves notable improvements, several limitations remain. First, our base model MMaDA is trained on relatively limited data, which constrains its fundamental capabilities. As a result, it is difficult to consistently surpass large-scale models such as Bagel that benefit from substantially larger training corpora. Second, our current sampling and training strategies are not yet fully unified across modalities, and exploring more integrated interaction paradigms may further enhance performance.

For future work, we plan to extend our paradigm to broader scenarios, such as story generation and multimodal outputs that combine text and images, which we believe will further demonstrate the potential of parallel thinking-aware generation.

K Prompts for evaluation

```
1296
1297
1298
1299
            Output Alignment Score Evaluation
1300
1301
           Generation of Image Reasoning Following Scores:
           You are a professional digital artist and image evaluation specialist.
1302
1303
          You will be given:
1304
           1. **Input Image**: the original image.
           2. **Output Image**: the generated/edited image.
1305
           3. **Output Text**: the thinking/reasoning text that describes the intended result or
1306
          modification process.
           Your Objective:
           Your task is to **evaluate how well the output image aligns with the descriptions,
1309
           reasoning, or expectations outlined in the. output text (thinking)**. Focus on whether
1310
           the visual content matches what is described or implied in the thinking text
1311
           ## Reasoning:
1312
          You must follow these reasoning steps before scoring:
1313
           **1. Extract Key Descriptions**: What visual elements, changes, or characteristics are
1314
           described or implied in the output text?
           **2. Visual Analysis**: What do you actually observe in the output image? Describe the
1315
           key visual elements, objects, changes, and characteristics.
1316
           **3. Alignment Check**:
1317
          Compare the descriptions from **1** with the visual observations from **2**:
1318
           - Do the visual elements match what's described in the thinking text?
           - Are the described changes or characteristics actually present in the image?
1319
           - Is the reasoning or process described in the text reflected in the visual result?
1320
           **4. Decision**: Use the 1-5 scale to assign a final score.
1321
           ## Evaluation Scale (1 to 5):
1322
          You will assign a **output_alignment_score** with following rule:
1323
            **5 Perfect Alignment**: The output image perfectly matches all descriptions and
1324
          expectations in the output text.
             **4 Minor Mismatch**: The image largely aligns with the text, but one minor detail
1325
          differs from the description.
1326
           - **3 Partial Alignment**: The main elements described are present, but there are
1327
          noticeable discrepancies or missing aspects.
           - st^*2 Major Mismatchst^*: Several key elements described in the text are missing or
           incorrectly represented in the image.
            \cdot **1 No Alignment**: The image does not match the descriptions in the output text or
           contradicts the stated reasoning.
1331
           ## Guidance:
1332
           - Pay attention to both explicit descriptions and implied visual outcomes in the output
1333
1334
           - Consider whether the thinking process described is reflected in the visual result.
           - If the output text describes specific objects, colors, positions, or changes, check if
1335
          these are accurately represented.
1336
           - If the text explains reasoning for certain visual choices, evaluate whether those
1337
           choices are evident in the image.
1338
           ## Output Format
1339
          Provide the evaluation score and explanation in the following JSON format:
1340
1341
           "output alignment_score": X,
           "reasoning": "1. Extract Key Descriptions: ... 2. Visual Analysis: ... 3. Alignment
           Check: ... 4. Decision: ...
1343
           }}
1344
```

Figure 12: Output alignment evaluation prompt

1400

```
1351
1352
1353
            Text Quality Score Evaluation
1354
1355
           # Generation of Text Reasoning Quality Scores:
           You are a professional multimodal reasoning and evaluation specialist.
1356
1357
           You will be given:
1358
           - **Input Text**: a reasoning prompt describing how to generate or edit an image.
1359
           ## Objective:
1360
           Your task is to **evaluate the quality of the reasoning prompt**, focusing on:
1361
            · **Clarity**: whether the instructions are clearly expressed and unambiguous
           - **Completeness**: whether key details necessary for correct image editing/generation
1362
           are included
1363
           - **Consistency**: whether the reasoning flow is logically connected and free from
1364
           contradictions
1365
            **Relevance**: whether the text focuses on the image editing task rather than
           irrelevant details
1366
           - **Conciseness**: whether the reasoning avoids redundancy and unnecessary verbosity
1367
1368
           ## Evaluation Scale (1 to 5):
1369
           - **5 Excellent Quality**: Instructions are clear, complete, logically consistent, and
1370
           concise. No ambiguity.
1371
             **4 Minor Issues**: Mostly clear, with only small redundancies or slightly missing
1372
           details, but task remains well defined.
             **3 Noticeable Flaws**: Some ambiguous phrasing, partial omissions, or unnecessary
1373
           verbosity that may confuse interpretation.
1374
           - **2 Significant Issues**: Multiple contradictions, missing steps, or unclear
1375
           instructions that risk incorrect or incoherent image editing.
           - **1 Poor Quality**: Completely unclear, contradictory, or irrelevant to the image task.
1376
1377
           ## Guidance:
1378
           Check the following aspects and mark them as \checkmark (satisfactory) or X (problematic):
           - **Clarity**: Clear, unambiguous instructions
1379
           - **Completeness**: Includes all essential details for the task
1380
           - **Consistency**: Logical step-by-step reasoning, no contradictions
1381
           - **Relevance \dot{\mbox{\mbox{\bf *}}} : Focused on the image generation/editing task
           - **Conciseness**: Free from redundancy and unnecessary verbosity
1382
           - **Accuracy**: Descriptions align with the intended visual changes
1384
           ✓ The more checks, the higher the score.
1385
           ## Output Format:
1386
           After evaluation, provide your score and concise reasoning using the following JSON
1387
           format:
1388
              json
1389
           "text_quality_score": X,
1390
           "reasoning": "Clarity: \sqrt{/X}, Completeness: \sqrt{/X}, Consistency: \sqrt{/X}, Relevance: \sqrt{/X},
1391
           Conciseness: \sqrt{X}, Accuracy: \sqrt{X}. [Brief explanation of key issues or strengths]'
1392
1393
1394
1395
1396
1397
1398
1399
```

Figure 13: Text quality evaluation prompt

```
1405
1406
1407
            Text Alignment Score Evaluation
1408
           # Generation of Text Alignment Scores:
1409
           You are a professional multimodal reasoning evaluation specialist. You will evaluate the
1410
           alignment between an **input image**, an **input text instruction**, and an **AI-
1411
           generated reasoning text**.
           You will be given:
1412
          1. **Input Image**: the original image before editing or generation.
1413
          2. **Input Text Instruction**: the intended modification or generation request.
1414
           3. **Output Reasoning Text**: the step-by-step reasoning produced by the model.
1415
           ## Objective:
           Your task is to **evaluate how well the output reasoning text aligns with both the input
1416
           instruction and the input image**, focusing on whether the reasoning correctly interprets
1417
           the request and remains faithful to the visual content.
1418
          You must:
            **Identify the core visual and textual requirements** from the input image +
1419
          instruction.
1420
           - **Check whether the reasoning text explicitly and correctly reflects these
1421
          requirements.**
             **Not penalize stylistic differences**, only misalignment, hallucination, or omission.
1422
           - **Be careful**: reasoning may mention edits unrelated to the instruction or
           inconsistent with the input image, which should reduce the score.
1424
1425
           ## Reasoning:
           You must follow these steps before scoring:
1426
           **1. Instruction Understanding**: Summarize the main requirement(s) from the input text
1427
           instruction.
1428
           **2. Image Context**: Identify relevant details from the input image that the instruction
           refers to (e.g., objects, attributes, positions).
1429
           ststst . Reasoning Analysisststst : Summarize what the output reasoning text proposes (step-by-
1430
           step actions, described changes).
1431
           **4. Alignment Check**: Compare (1)+(2) with (3):
           - Does the reasoning focus on the correct object(s) and attributes in the image?
1432
           - Does it correctly interpret the requested change(s)?
1433
           - Are all requested aspects addressed (not omitted or contradicted)?
1434
           - Does it avoid introducing unrelated or hallucinated edits not supported by the
           image/instruction?
1435
           **5. Decision**: Use the 1-5 scale to assign a final score.
1437
           ## Evaluation Scale (1 to 5):
           You will assign an **text alignment score** with the following rule:
           - **5 Perfect Alignment**: Reasoning fully and faithfully reflects both the image and
1439
           instruction, with no omissions or hallucinations.
           \cdot **4 Minor Issues**: Reasoning captures the main intent but slightly misses a visual
1441
          detail or minor nuance.
            ^{**3} Partial Alignment^{**}: Reasoning covers the main idea but has noticeable omissions,
1442
          inaccuracies, or weak grounding in the image.
1443
           - **2 Major Misalignment**: Reasoning only weakly relates to the instruction or image;
1444
           key aspects are missing or wrong.
           - **1 Non-Alignment**: Reasoning ignores or contradicts both the instruction and the
1445
           input image.
1446
1447
           ## Output Format:
1448
          Provide your evaluation in the following JSON format:
1449
1450
           "text_alignment_score": X,
1451
           "reasoning": "1. Instruction Understanding: ... 2. Image Context: ... 3. Reasoning
           Analysis: ... 4. Alignment Check: ... 5. Decision: ...'
1452
1453
```

Figure 14: Text alignment evaluation prompt

```
1458
1459
1460
1461
            Image Consistency Score Evaluation
1462
1463
           Generation of Image Consistency Scores:
           You are a professional digital artist and image evaluation specialist.
1464
1465
          You will be given:
1466
           1. **Input Image**: the original image.
           2. **Output Image**: the generated/edited image.
1467
           3. **Input Text**: the instruction describing the intended modification.
1468
1469
           Your Objective:
           Your task is to **evaluate the visual consistency between the input and output images,
1470
           focusing exclusively on elements that are NOT specified for change in the input text
1471
           instruction**. That is, you should only consider whether all non-instructed details
1472
           remain unchanged. Do **not** penalize or reward any changes that are explicitly required
          by the instruction.
1474
           ## Evaluation Scale (1 to 5):
1475
          You will assign a **consistency_score** according to the following rules:
1476
            **5 Perfect Consistency**: All non-instruction elements are completely unchanged and
1477
          visually identical.
           - **4 Minor Inconsistency**: Only one very small, non-instruction detail is different
1478
           (e.g., a tiny accessory, a subtle shadow, or a minor background artifact).
1479
              **3 Noticeable Inconsistency**: One clear non-instruction element is changed (e.g., a
1480
          different hairstyle, a shifted object, or a visible background alteration).
            **2 Significant Inconsistency**: Two or more non-instruction elements have been
1481
          noticeably altered.
1482
            **1 Severe Inconsistency**: Most or all major non-instruction details are different
1483
           (e.g., changed identity, gender, or overall scene layout).
1484
           ## Guidance:
1485
           - First, **identify all elements that the input text instruction explicitly allows or
1486
           requires to be changed**. Exclude these from your consistency check.
           · For all other elements (e.g., facial features, clothing, background, object positions,
1487
           colors, lighting, scene composition, etc.), **compare the output image to the input
1488
           image** and check if they remain visually identical.
1489
           - If you observe any change in a non-instruction element, note it and consider its impact
1490
           on the score.
           - If the instruction is vague or ambiguous, make a best-effort factual inference about
1491
           which elements are intended to change, and treat all others as non-instruction elements.
1492
1493
           ## Note:
           - **Do not penalize changes that are required by the instruction.**
1494
           - **Do not reward or penalize the quality or correctness of the instructed change
1495
           itself** (that is evaluated separately).
1496
           - If the output image introduces new artifacts, objects, or changes to non-instruction
          elements, this should lower the consistency score.
1497
1498
           ## Output Format
1499
           First, clearly explain your comparison process: list each major non-instruction element
           and state whether it is consistent (unchanged) or inconsistent (changed), with brief
1500
           reasoning.
1501
           Then, provide your evaluation in the following JSON format:
1502
           reasoning": "Compared to input image, [list of non-instruction elements that changed or"
           remained the same] in the output image.",
           "consistency_score": X
           }}
1506
```

Figure 15: Image consistency evaluation prompt

1561

```
1513
1515
            Image Quality Score Evaluation
1516
1517
           Generation of Image Quality Scores:
           You are a professional digital artist and image evaluation specialist.
1518
1519
           You will be given:
1520
           - **Output Image**: an AI-generated image.
1521
           ## Objective:
1522
           Your task is to **evaluate the perceptual quality** of the output image, focusing on:
1523
            **Structural and semantic coherence**
           - **Natural appearance**
1524
           - **Absence of generation artifacts**
1525
           - **Visual clarity and composition**
1526
           You must **not penalize low resolution or moderate softness** unless it introduces
           semantic ambiguity or visually degrading effects.
1528
1529
           ## Evaluation Scale (1 to 5):
1530
           You will assign a **quality score** with the following rule:
1531
           - **5 Excellent Quality**: All aspects are visually coherent, natural, and free from
1532
           noticeable artifacts. Structure, layout, and textures are accurate and consistent. The
1533
           image has clear composition and professional appearance.
1534
           - **4 Minor Issues**: One small imperfection (e.g., slight texture blending, minor
           lighting inconsistency, small compositional flaw).
1535
           - **3 Noticeable Artifacts**: One or two clear visual flaws or semantic problems (e.g.,
1536
           extra fingers, minor duplication, slight distortion, unnatural lighting).
1537
           - **2 Structural Degradation**: Multiple distracting errors (e.g., melted hands, warped
           shapes, unreadable text, poor composition, obvious artifacts).
1538
           - **1 Severe Errors**: Major structural failures or hallucinations (e.g., broken anatomy,
1539
           garbled symbols, severe distortions, completely unnatural appearance).
1540
           ## Guidance:
1541
           Check the following visual aspects and mark them as \checkmark (satisfactory) or X (problematic):
1542
           - **Structural coherence**: Correct anatomy, object shapes, legible text, proper
1543
           proportions
            \cdot **Natural appearance**: Realistic lighting, perspective, shadow logic, believable
           textures
1545
            \cdot **Artifact-free**: No duplication, ghosting, watermarks, obvious generation artifacts
1546
           - **Texture fidelity**: Clothing, hair, surfaces not melted or corrupted
1547
           - **Composition**: Clear focal points, balanced elements, appropriate framing
           - **Color harmony**: Natural color relationships, appropriate saturation and contrast
1548
1549

✓ The more checks, the higher the score.

1550
           ## Output Format:
1551
           After evaluation, provide your score and concise reasoning using the following JSON
1552
           format:
1553
           {{
1554
            'quality score": X,
           "reasoning": "Structural coherence: \sqrt{/X}, Natural appearance: \sqrt{/X}, Artifacts: \sqrt{/X},
1555
           Texture fidelity: \sqrt{X}, Composition: \sqrt{X}, Color harmony: \sqrt{X}. [Brief explanation of
1556
           key issues or strengths]"
1557
           }}
1559
1560
```

Figure 16: Image quality evaluation prompt

1616

```
1567
1568
1569
            Image Alignment Score Evaluation
1570
           Generation of Image Instruction Following Scores:
1571
           You are a professional digital artist and image evaluation specialist. You will evaluate
1572
           the effectiveness of the AI-generated image based on given rules.
1573
           You will be given:
1574
           1. **Input Image**: the original image.
1575
           2. **Output Image**: the generated/edited image.
1576
           3. **Input Text**: the instruction describing the intended modification.
           Your Objective:
1578
           Your task is to **evaluate how the output image faithfully fulfills the input text
1579
           instruction**, focusing **exclusively on the presence and correctness of the specified
1580
           changes**.
1581
           You must:
1582
           - **Identify detailed visual differences** between Input Image and Output Image
1583
           **correctly and faithfully**.
           - Determine if those differences **match exactly what the input text instruction
1584
           reauests**
1585
             **Not assess any unintended modifications beyond the instruction**; such evaluations
1586
           fall under separate criteria.
            \cdot **Be careful**, an edit may introduce visual change without fulfilling the actual
1587
           instruction (e.g., replacing the object instead of modifying it)
1588
           ## Reasoning:
1590
           You must follow these reasoning steps before scoring:
           **1. Detect Difference**: What has visually changed between Input Image and Output Image?
1591
           (e.g., size, shape, color, position) In this step, you don't have to use information from
1592
           the input text instruction.
1593
           **2. Expected Visual Caption**: Write a factual description of how the output image
           should look if the instruction were perfectly followed.
1594
           **3. Instruction Match**:
1595
           Compare the observed differences in **1** to the expected change in **2**:
1596
           - Was the correct object modified (not replaced)?
           - Was the requested attribute (e.g., size, color, position) modified as intended?- Is the degree of modification accurate (e.g., "match size," "slightly increase," etc.)?
1597
1598
           **4. Decision**: Use the 1-5 scale to assign a final score.
1599
           ## Evaluation Scale (1 to 5):
           You will assign an **instruction_score** with following rule:
           - **5 Perfect Compliance**: The output image **precisely matches** the intended
1602
           modification; all required changes are present and accurate.
1603
             **4 Minor Omission**: The core change is made, but **minor detail** is missing or
           slightly incorrect.
1604
           - **3 Partial Compliance**: The main idea is present, but one or more required aspects
1605
           are wrong or incomplete.
1606
             **2 Major Omission**: Most of the required changes are missing or poorly implemented.
           - **1 Non-Compliance**: The instruction is **not followed at all** or is **completely
           misinterpreted**
1608
1609
           ## Output Format
1610
           Look at the input again, provide the evaluation score and the explanation in the
           following JSON format:
1611
1612
           "instruction_score": X,
           "reasoning": "1. Detect Difference: ... 2. Expected Visual Caption: ... 3. Instruction
1613
           Match: ... 4. Decision: ..."
1614
1615
```

Figure 17: Image alignment evaluation prompt