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ABSTRACT

While thinking-aware generation aims to improve performance on complex tasks,
we identify a critical failure mode where existing sequential, autoregressive ap-
proaches can paradoxically degrade performance due to error propagation. To sys-
tematically analyze this issue, we propose ParaBench, a new benchmark designed
to evaluate both text and image output modalities. Our analysis using ParaBench
reveals that this performance degradation is strongly correlated with poor align-
ment between the generated reasoning and the final image. To resolve this, we
propose a parallel multimodal diffusion framework that enables continuous, bidi-
rectional interaction between text and images throughout the entire denoising tra-
jectory. The model is trained with supervised finetuning and then further opti-
mized by Parallel Reinforcement Learning (ParaRL), a novel strategy that applies
semantic rewards along the trajectory to enforce cross-modal consistency. Exper-
iments validate that our approach significantly improves cross-modal alignment
and semantic consistency, achieving a 6.9% improvement in Output Alignment
on ParaBench compared to the state-of-the-art model, Bagel, establishing a more
robust paradigm for thinking-aware image synthesis.

1 INTRODUCTION

Recent advances in multimodal generative models have achieved remarkable progress in instruction-
based image generation and editing (Esser et al., 2024a; Labs, 2024; Wei et al., 2024; Liu et al.,
2025b). Given diverse textual prompts, these models can produce visually coherent and semantically
aligned results across a wide range of tasks. However, these models often struggle with complex
instructions that require reasoning over world knowledge, frequently leading to incorrect editing
and generation (Wu et al., 2025c; Niu et al., 2025; Zhao et al., 2025). To mitigate this gap, recent
studies have introduced intermediate reasoning steps before visual generation (Fang et al., 2025;
Jiang et al., 2025a; Deng et al., 2025a). In these approaches, textual reasoning is first performed
to guide subsequent image synthesis and editing. Such explicit reasoning has proven effective in
improving the quality and consistency of image editing and generation (Deng et al., 2025a).

Despite the general effectiveness of incorporating a reasoning process prior to image synthesis, we
observe a counterintuitive and critical phenomenon. On certain benchmarks (Wu et al., 2025c),
the inclusion of reasoning can in fact reduce the semantic fidelity of the generated images (Fig-
ure 1(c)). This raises a crucial question: What underlies this performance degradation?

To investigate this, we introduce ParaBench, our new benchmark designed to evaluate the output
alignment between a model’s generated reasoning and its final image. Using ParaBench to evalu-
ate the state-of-the-art model Bagel (Deng et al., 2025a), we find a strong correlation: performance
degradation occurs precisely in categories where output alignment is weakest (Figure 1(d)). We
attribute this to the compounding errors inherent in sequential autoregressive models, where am-
biguous or incomplete reasoning provides unreliable guidance for the subsequent image generation,
ultimately degrading the final output.

Thus, while pre-reasoning can in principle enhance multimodal generation, its reliance on an autore-
gressive pipeline makes the process vulnerable to error accumulation and semantic drift. Recently,
another line of work has explored discrete diffusion models for text or image generation (Nie et al.,
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<think> The user wants the 
prominent mountain in the image 
to be replaced with Japan's 
most famous snow-capped 
mountain, Mount Fuji. The 
layout and structure of the 
image should remain the same, 
preserving the foreground, road, 
and buildings. The mountain's 
shape and snow-capped 
appearance must be accurately 
depicted to match Mount Fuji. 
</think>

Editing Prompt: Modify 
the mountains in the 
image to Japan's most 
famous snow-capped 
mountain.

<think> The user wants the 
prominent mountain in the image 
to be replaced with Japan's 
most famous snow-capped 
mountain, Mount Fuji. The 
layout and structure of the 
image should remain the same, 
preserving the foreground, road, 
and buildings. The mountain's 
shape and snow-capped 
appearance must be accurately 
depicted to match Mount Fuji. 
</think>

(a) Sequential Thinking-Aware Synthesis

To generate the requested image by 
modifying the current mountain into 
Japan's most famous snow-capped mountain, 
Mount Fuji, I will proceed step by step.  
1. **Analyze the Current Scene**: The 
original image shows rugged, rocky
mountains with steep cliffs 2. **Transform 
the Mountain**: Replace the rocky, uneven 
peak with the iconic conical shape of 
Mount Fuji. Ensure the slopes are smooth 
and rise symmetrically toward a pointed 
summit.
3. **Add Snow Cap**: Apply a consistent 
layer of snow over the upper portion of 
the mountain, particularly the sum Mount 
Fuji in place of the original peak. Mit

To generate the requested image by 
modifying the current mountains into 
Japan's most famous snow-capped mountain, 
Mount Fuji, I will proceed step by step.  
1. **Analyze the Current Scene**: The 
original image shows rugged, rocky 
mountains with steep cliffs and green 
slopes, accompanied by winding paths, 
small houses, and a clear blue sky at 
sunset. 
2. **Transform the Mountain**: Replace the 
rocky, uneven peak with the iconic conical 
shape of Mount Fuji. Ensure the slopes are 
smooth and rise symmetrically toward a 
pointed summit……….…the final image will 
accurately depict Mount Fuji in place of 
the original peak.

(b) Parallel Thinking-Aware Synthesis

Causal Attention

Parallel
Denoise

(c) Reasoning Gains Across Categories

(d) Output Alignment in Reasoning 
and Image Across Categories

Figure 1: Sequential vs. parallel thinking-aware image editing and analysis. (a) Sequential genera-
tion (Bagel, GPT4o) may suffer from vague or incorrect reasoning. (b) Parallel generation aligns text
and image at each denoising step, reducing hallucination and errors. (c) Quantitative comparison
shows reasoning can degrade performance in certain categories. (d) Poorer categories also exhibit
weaker reasoning–image alignment, highlighting the need for stronger cross-modal alignment.

2025; Yang et al., 2025a; Ye et al., 2025a), which remove the token-by-token constraint of autore-
gression and instead employ confidence-based sampling to achieve greater global consistency.

Inspired by these advances, we ask: What if multimodal models could generate text and images
in parallel? Such a paradigm directly addresses the limitations of AR reasoning: text and images
can attend to each other at every denoising step, avoiding the propagation of hallucinations and
vague priors while grounding textual descriptions in visual evidence.

Building on this insight, we propose a purely diffusion-based framework for parallel text–image gen-
eration, where cross-modal interaction is maintained throughout the trajectory to ensure robust and
semantically faithful multimodal editing and generation. (Figure 1) We begin by performing super-
vised fine-tuning of MMaDA (Yang et al., 2025a) on our collected thinking-aware image synthesis
data. This parallel version, MMaDA-Parallel, demonstrates higher output consistency compared to
sequential baselines. Importantly, such consistency is observed not only in the final outputs but also
throughout the generation trajectory. Building on this foundation, we further introduce Parallel
Reinforcement Learning(ParaRL), which optimizes alignment along the denoising trajectory. In-
stead of focusing solely on the final outcome, ParaRL incorporates stepwise semantic supervision to
refine alignment at the trajectory level.

Extensive quantitative and qualitative results validate the effectiveness of MMaDA-Parallel for
thinking-aware image editing and generation, and further highlight the additional gains achieved
through ParaRL. On our ParaBench, MMaDA-Parallel achieves 6.9% improvemnet over Bagel, and
comparable image-only synthesis performance. Our contributions can be summarized as follows:

1. In-depth Benchmarking and Analysis of Thinking-aware Image Synthesis. We pro-
pose ParaBench, which systematically evaluates thinking-aware image generation and edit-
ing, focusing on text and image quality and their alignment.

2. Parallel Multimodal Diffusion Framework. We propose a purely discrete diffusion-
based approach for parallel thinking-aware image editing and generation, which enables
bidirectional attention between modalities at every denoising step and effectively alleviates
the error accumulation of autoregressive pipelines.

3. Parallel Reinforcement Learning. We introduce a parallel reinforcement learning strat-
egy, ParaRL, which assigns semantic rewards along the denoising trajectory, further en-
hancing alignment between the output modalities and the overall performance.
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4. Extensive Evaluation and State-of-the-Art Alignment. Our comprehensive experiments
validate the framework, establishing state-of-the-art performance among open-source mod-
els with a 6.9% gain in Output Alignment over Bagel on our ParaBench benchmark, while
maintaining comparable performance on single-modality metrics.

2 RELATED WORK

Recent progress in multimodal models for image understanding, generation, and editing has been
rapid, yet most approaches remain constrained to single-modal generation conditioned on multiple
modalities (Esser et al., 2024b; Wu et al., 2025a; Labs et al., 2025; Bai et al., 2025). To improve
the accuracy and fidelity of multimodal generation, a growing line of work has explored introduc-
ing a textual Chain-of-Thought reasoning process before image generation or editing. We refer
to this paradigm as thinking-aware image generation and editing. For instance, early efforts
such as Chameleon (Team, 2024) and Mogao (Liao et al., 2025) investigated interleaved genera-
tion, enabling interleaving sequences of text and image tokens. Image-CoT (Guo et al., 2025b)
and GoT (Fang et al., 2025) incorporated CoT reasoning prior to image synthesis, demonstrating
that reasoning traces can enhance generation quality. Bagel (Deng et al., 2025a) further extended
this idea by integrating chain-of-thought reasoning into both image generation and editing, enabling
more flexible and semantically aligned outputs. Building on this direction, follow-up works such
as OmniGen2 (Wu et al., 2025b) and IRG (Huang et al., 2025a) introduced reflective reasoning af-
ter image generation, using multi-turn textual feedback to iteratively refine visual outputs. Most
existing methods, however, rely on a sequential autoregressive interleaved pipeline, which could
limit direct cross-modal interaction and make the model prone to error accumulation from imperfect
reasoning traces. Exploring a parallel generation framework that enables more interaction within
output modalities is still lacking in this scenario. (More related work can be found in Appendix C).

3 METHOD

3.1 FINDINGS AND BENCHMARKING ON THINKING-AWARE SYNTHESIS

To investigate whether pre-generation reasoning genuinely enhances performance, we conduct a
controlled study on image editing tasks, which provides a clearer instruction-grounded evaluation
than naive synthesis. We sample inputs from established benchmarks (Wu et al., 2025c; Zhao et al.,
2025) and generate paired outputs using Bagel (Deng et al., 2025a)—one of the few open-source
unified models supporting thinking-aware generation—with and without thinking. We report the
average editing evaluation metrics in Kris-Bench (Wu et al., 2025c) in Figure 1(c) and also Table 1.

Findings. While the reasoning step enhanced performance on most tasks, a notable countertrend
emerged: performance declined in a significant subset of cases, about 23%, particularly in complex
compositional edits. A closer analysis reveals that these failures often stemmed from low-quality
or vague reasoning text, which misguides the image generation process. This exposes a critical
gap in existing protocols: they evaluate the final image but ignore the quality of the intermediate
reasoning—the other generated modality.

Benchmarking mixed modalities. This analysis reveals a fundamental limitation in current eval-
uation paradigms: existing benchmarks (Wu et al., 2025c; Zhao et al., 2025; Ghosh et al., 2023)
only evaluate images, ignoring the quality of the reasoning itself and its consistency with the im-
age. To address this gap, we introduce ParaBench, a new benchmark specifically designed for the
comprehensive evaluation of thinking-aware image synthesis. ParaBench comprises 300 challeng-
ing prompts, split into 200 for editing and 100 for generation. The editing prompts are meticulously
curated to test a wide spectrum of abilities, covering not only general operations (e.g., add, remove,
replace) but also complex tasks requiring reasoning. The 100 generation prompts focus on open-
ended creative synthesis of complex scenes. We evaluate models on ParaBench using an GPT-4.1
across six fine-grained aspects: for the textual output, we assess Text Quality and Text Alignment;
for the visual output, we evaluate Image Quality, Image Alignment, and Image Consistency; and
finally, the overall Output Alignment between them. More details are included in Appendix G.

To demonstrate ParaBench’s diagnostic capabilities, we apply it to a representative baseline, Bagel.
While full quantitative results are presented in Sec 4.2, Table 1 highlights a crucial finding by focus-

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Bagels’ performance comparison on ParaBench editing tasks with and without thinking.
We also report the reasoning quality (Text Qual.) and cross-modal alignment (Output Align.).

Editing Category w/o Thinking w/ Thinking ∆ (w/ − w/o) Text Qual. ↑ Output Align.↑
Temporal 72.3 75.6 +3.3 92.6 57.3
General 68.9 71.4 +2.5 86.2 58.1
Causal 70.1 67.2 −2.9 75.3 46.2
Knowledge 74.5 76.8 +2.3 87.8 55.5
Spatial 69.8 65.0 −4.8 73.2 45.2

ing on two key metrics: Text Quality and Output Alignment. The results reveal a clear correlation
between the quality of the reasoning step and the final performance. Notably, the categories that ex-
hibited performance degradation also suffered from significant drops in both reasoning quality and
reasoning-image synergy. This pattern strongly suggests that poor reasoning does not merely fail
to provide helpful guidance but actively misleads the generation process, validating the necessity of
explicitly improving the synergy between text and image generation.

Motivations on parallel multimodal diffusion. Our benchmarking results reveal a critical lim-
itation in current thinking-aware generation: the sequential generation paradigm, where reasoning
precedes image synthesis, creates a rigid dependency that can propagate errors and limit cross-modal
synergy. When reasoning quality degrades, it directly undermines the subsequent image generation,
as demonstrated by the correlated performance drops in spatial and temporal editing tasks. To ad-
dress this fundamental issue, we propose a parallel unified multimodal diffusion framework that
enables simultaneous generation of both reasoning text and images, fostering genuine multimodal
collaboration while eliminating the error propagation inherent in sequential approaches.

3.2 BASIC ALGORITHM AND ARCHITECTURE

Image Response

|soi| |eoi| |bot| |eot|

Text Response

Forwarding with same ratio pmask

|soi| |eoi| |bot| |eot|

Parallel Training with  𝐿 = −𝐄[ !
"
∑ 𝑙𝑜𝑔𝑝#(𝑥𝑡|𝑥0)!!∈# ]

|soi| |eoi| |bot| |eot|

Parallel Decoding

|soi| |eoi| |bot| |eot|

Image Response

|soi| |eoi| |bot| |eot|

Text Response

Parallel Decoding

Parallel Sampling from 𝑝θ 𝑥0𝑖 𝑥𝑡

Uniform Mask Predictor

(a) Training (b) Sampling

Bi-Directional Attention Bi-Directional Attention

Figure 2: Parallel Generation Architecture: During (a) training, image and text responses are masked
and predicted in parallel with a uniform mask predictor, optimized by the masked token likelihood
objective. During (b) sampling, the model performs parallel decoding to generate both image and
text responses jointly, enabling efficient multimodal response generation.

Discrete diffusion models have demonstrated strong performance for both image and text genera-
tion (Bai et al., 2024; Nie et al., 2025; Zhu et al., 2025). Building on the unified discrete-diffusion
view, MMaDA (Yang et al., 2025a) proved that a single diffusion framework can jointly model
multiple modalities, yet its decoding remained sequential across modalities. To overcome this lim-
itation, we propose a parallel multimodal diffusion framework that: (i) represents all modalities as
discrete tokens, (ii) arranges them in an interleaved sequence with bidirectional attention, and (iii)
employs a single mask predictor shared across modalities, enabling synchronous denoising for both
text and images. An overview of this framework is shown in Figure 2.

Interleaved discrete sequence layout. Following the MMaDA framework (Yang et al., 2025a),
we process both text and images within a unified discrete token space. Specifically, we tokenize
text using the LLaDA tokenizer (Nie et al., 2025) and encode images into a grid of discrete visual
tokens using a pretrained MAGVIT-v2 (Yu et al., 2023) quantizer. These tokenized modalities are
then serialized into a single interleaved sequence, using explicit sentinels and task tags to enable full
bidirectional cross-modal attention:

Input: <|task|><|soi|>[img]<|eoi|><|bos|>[text]<|eos|>
Output: <|soi|>[output img]<|eoi|><|bos|>[output text]<|eos|>
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During training, we concatenate the input and output templates into one sequence so that the model
can attend from outputs to inputs within a single context. The task token <|task|> is instantiated
differently depending on the scenario, with <|thinkgen|> used for thinking-aware generation
and <|thinkedit|> used for thinking-aware editing. This single-sequence design eliminates the
ordering asymmetry and exposure bias introduced by autoregressive cross-modal pipelines.

Training objective. Let x0 ∈ {1, . . . , V }L denote the concatenated training sequence (input part
followed by output part), where L is the total number of tokens in the sequence. We keep the input
part static and apply noise only to the output part. At a sampled timestep t ∈ {1, . . . , T}, for each
token in the output part we replace it with [MASK] with probability βt and keep it unchanged with
probability 1− βt; tokens in the input part are left unchanged:

x
(i)
t =

{
x
(i)
0 if i in input,

x
(i)
0 with prob. (1− βt), [MASK] with prob. βt if i in output.

(1)

Equivalently, for positions in the output, the absorbing-state marginal after t steps is q(xt | x0) =

αt x0 + (1− αt)m where αt =
∏t

k=1(1− βk), and m is the one-hot distribution of [MASK].

The parallel diffusion model pθ(· | xt) is formulated as a unified masked-token predictor over
the joint vocabulary of text and image tokens. Let i ∈ 1, . . . , L denote token positions in the
concatenated input–output sequence. Since only the output segment is noised during diffusion, the
model predicts ground-truth tokens x0 at the currently masked positions within this segment. To
better balance the training dynamics across modalities, we make the timestep-dependent loss weight
modality-specific: tokens in the output image segment and the output text segment are assigned
separate weights, wimg(t) and wtext(t). For compactness, we write the objective using a unified
token-aware weight function w(t, i). We optimize a timestep-reweighted cross-entropy:

Lparallel(θ) = −Et, x0, xt

[
L∑

i=1

w(t, i)1
[
x
(i)
t = [MASK]

]
log pθ

(
x
(i)
0 | xt

)]
, (2)

where 1[·] is the indicator function and

w(t, i) =

{
wimg(t), if i lies in the output image segment,

wtext(t), if i lies in the output text segment.

We empirically find that applying a timestep-dependent weighting wtext(t) = 1/t for text tokens
and a constant weighting wimg(t) = 1 for image tokens substantially stabilizes the training of image
quality and output alignment. Additional preliminaries and ablations are detailed in Appendix D.

Parallel denoising with dual schedulers. Decoding proceeds along a shared diffusion time axis
tT →· · ·→ t0. We define two modality-specific schedulers, uimg(t), utext(t) ∈ [0, 1], which specify
the target proportion of unmasked tokens at step t. At each reverse step: (i) the model jointly predicts
distributions for all currently masked positions; (ii) for each modality, a fraction of tokens is sam-
pled (e.g., via confidence-based sampling), while the remaining positions are retained as [MASK].
Because attention is bidirectional across the entire sequence, text and image can inform each other
at every step of decoding. In our experiments, the text schedule is implemented as a fully linear
reveal schedule combined with semi-autoregressive confidence-based decoding Nie et al. (2025),
while the image schedule follows a cosine reveal schedule with global confidence-based decoding.
More details can be found in Appendix E.

3.3 POST TRAINING WITH PARALLEL REINFORCEMENT LEARNING

Supervised Finetuning for Parallel Synthesis A key challenge in our approach is that existing gen-
eration and editing datasets lack the reasoning traces required for our parallel synthesis framework.
To address this, we construct a suitable training dataset by first aggregating samples from various
sources. For each sample comprising an input image (for editing tasks), an instruction, and the final
output image, we employ a multimodal LLM (Qwen-2.5-VL in our implementation) to generate a
corresponding reasoning trace. Further details on the dataset construction process, including the
sources and categories, are provided in Appendix F. We then use this dataset to perform supervised
fine-tuning on MMaDA (Yang et al., 2025a). This process adapts it into a parallel variant capable of
performing thinking-aware synthesis, where reasoning and generation occur concurrently.
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Editing Prompt: 
Change the cow 
into a unicorn

Denoising from t=1 to t=0 

<think>... The original cow 
has a black and white face 
with[MASK][MASK]... 
<think>... The original cow 
has a black and white face 
with a single horn. The 
unicorn will have a similar 
shape but with a more, 
flowing[MASK][MASK]...

<think>... The original cow 
has a black and white face 
with a single horn. The 
unicorn will have a similar 
shape but with a more, 
flowing… ** Adjust the 
Background**: The background 
remains consistent with the 
first image, maintaining the 
grassy field and muddy [MASK 
d.  MASKdadadadadadad]...

𝑅!" 𝑅!# 𝑅!$

Trajectory 2

Trajectory 1

Trajectory 3

Denoise

Semantic Reward Function 𝑅!	
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<think>... The original cow 
has a black and white face 
with a single horn. The 
unicorn will have a similar 
shape but with a more, 
flowing ** Adjust the 
Background**: The background 
remains consistent with the 
first image, maintaining the 
grassy field and 
muddy[MASK][MASK]...

Denoise

Denoise Denoise
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1
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Figure 3: Overview of our proposed Parallel Reinforcement Learning (ParaRL). Rather than op-
timization only to the final denoised outputs, ParaRL introduces reward signals along the entire
denoising trajectory, reinforcing semantic alignment consistently throughout the generation process.

The new shirt should 
have horizontal 
stripes in<|mdm_mask|> 
colors (red, yellow, 
green, 
blue,<|mdm_mask|><|md

The new shirt should 
have horizontal 
stripes in primary
colors (red, yellow, 
green, blue, indigo, 
violet).

Text
Denoise

Image
Denoise

Denoising Step 4/11 Denoising Step 5/11

Figure 4: Synergy of sampling. Given the
prompt: “change the blue shirt to a vibrant
rainbow color,” the specific color decoding
in text and image emerges at the same step.

Synergy along the denoising trajectory. While an-
alyzing generations from the finetuned model, we
observe that certain semantic concepts emerge syn-
chronously in text and image at intermediate denois-
ing steps. As illustrated in Figure 4, when tasked
to change a shirt to a ”vibrant rainbow color,” the
specific color words and their corresponding visual
features appear at the same timestep. This observa-
tion leads to a key insight: cross-modal alignment
is not an endpoint phenomenon but is progressively
established throughout the generation trajectory.
This implies that supervision applied to these inter-
mediate steps, not just the final output, can further
improve this alignment.

Parallel reinforcement learning with trajectory optimization. Building on this insight, we in-
troduce Parallel Reinforcement Learning (ParaRL), a novel training paradigm that directly leverages
this intermediate cross-modal synergy. Instead of rewarding only the final output, ParaRL uses the
alignment between text and image tokens at each denoising step as a dense reward signal.

Specifically, for a given query Q, the generated response is a full trajectory τi ≜(
τi(1), . . . , τi(|τi|)

)
, where |τi| is the total number of denoising steps and τi(t) is the set of tokens

decoded at step t. While this formulation provides a step-wise reward ri,t for each intermediate
response τi(t), optimizing over the entire dense trajectory is computationally prohibitive. To make
training feasible, we adopt a sparse optimization strategy. During each online rollout, we pre-select
sampling steps s and fix subset of step indices S ⊂ {1, . . . , |τi|}, |S| = s and only compute re-
wards ri,t and their corresponding standardized advantages Ai,t for timesteps t ∈ S. We adapt a
diffusion GRPO objective (Gong et al., 2025) that accommodates token-level likelihood ratios with
advantages calculated at these sampled steps:

Jpolicy(θ) = E Q∼Dtask

{τi}G
i=1∼πold(·|Q)

 G∑
i=1

∑
t∈S

1

|τi(t)|
∑

o∈τi(t)

Cϵ

(
πθ(o | Q, τi(1:t− 1))

πold(o | Q, τi(1:t− 1))
, Ai,t

)
− βKL

[
πθ ∥πold

]
,

(3)

where Cϵ(r,A) ≜ min
(
rA, clip(r, 1− ϵ, 1 + ϵ)A

)
. In this objective, the summation is performed

over the sparsely sampled steps t ∈ S. The term o ranges over all tokens within the state τi(t) at a
sampled step t, and τi(1:t − 1) denotes the full history of tokens generated prior to step t. Finally,
πold is the behavior policy for generating rollouts, and β controls the KL penalty strength.

Trajectory reward design. In typical trajectory-level optimization frameworks, a well-trained
process reward model (PRM) (Li & Li, 2024) or value function Wang et al. (2025) is often required,
since intermediate partial outputs usually lack sufficient semantic information for reliable evalua-
tion. Surprisingly, in our parallel text–image generation setting, we find that intermediate fragments
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are already semantically meaningful. For instance, even partially decoded text tokens often reveal
enough semantic cues to compute alignment with the simultaneously generated image content, as
illustrated in Fig. 3. This observation allows us to bypass the need for a dedicated PRM: we directly
employ semantic alignment between text and image as the reward signal.

Unlike tasks with binary rewards (e.g., mathematical reasoning), our cross-modal alignment ob-
jective provides a continuous reward signal. However, the raw CLIP score, which serves as our
reward source, can exhibit high variance and an arbitrary scale, making it unstable for direct use
in reinforcement learning. To ensure training stability, we therefore apply a normalization scheme
inspired by prior work in RL with continuous rewards (Liu et al., 2025a). We begins by estimating
the mean µCLIP and standard deviation σCLIP of CLIP scores across the training distribution, which
we compute on a random 1% subset of the data. Let ci,t = RCLIP(text(τi(t)), image(τi(t))) be the
raw CLIP score for the content generated at step t. We first standardize this score to obtain ĉi,t using
ĉi,t =

ci,t−µCLIP
σCLIP

. This standardized score is then clipped to the range [−1, 1] and linearly rescaled to
yield the final reward Ri,t, which is bounded within [0, 1]:

Ri,t =
1

2
(1 + clip(ĉi,t,−1, 1)) (4)

The corresponding advantages Ai,k used in Eq. 3 are then obtained by standardization over the

rollouts: Ai,t =
Ri,t−mean({Rj,t}G

j=1)
std({Rj,t}G

j=1)

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Training and datasets. Our final model, MMaDA-Parallel, is trained in a two-stage process. We
begin with supervised finetuning (SFT) on the MMaDA-MixCoT model, which integrates a LLaDA-
8B text backbone with a MagVIT-v2 image tokenizer. For this stage, we construct a new dataset of
150K thinking-aware image editing and generation pairs, meticulously sourced and filtered from
multiple existing benchmarks. In the second stage, we apply reinforcement learning with a GRPO-
based objective. To enhance training efficiency, this RL stage focuses on the most challenging 10%
of the SFT examples, optimizing the policy online to improve cross-modal semantic alignment.
More details of the dataset and training details can be found in Appendix F and H.

Evaluation setup. We conduct our primary evaluation on the ParaBench benchmark, which was
introduced in the Method section. We employ an LLM-as-a-judge framework (GPT-4.1) to assess
performance across the six fine-grained metrics previously described, covering text quality, image
fidelity, and cross-modal alignment. The prompts used for the LLM judge are detailed in the Ap-
pendix G. Our MMaDA-Parallel is compared against state-of-the-art thinking-aware models, includ-
ing Bagel (Deng et al., 2025a), GPT-4o, and Gemini-2.5, as well as leading image-only generators
like Qwen-Image (Wu et al., 2025a), Qwen-Image-Edit (Wu et al., 2025a), Flux.1-dev (Labs, 2024)
and Flux.1-Kontext (Labs et al., 2025).

4.2 MAIN RESULTS

Table 2 reports the overall performance on our ParaBench benchmark. Our proposed method,
MMaDA-Parallel, achieves the highest Output Alignment among all open-source models, confirm-
ing the effectiveness of its parallel multimodal decoding and trajectory-level optimization. In terms
of general text and image quality, MMaDA-Parallel performs on par with Bagel, despite Bagel be-
ing trained on a dataset nearly three orders of magnitude larger. Compared to leading closed-source
models like GPT-4o and Gemini-2.5, MMaDA-Parallel substantially narrows the gap in alignment
metrics while maintaining competitive text and image quality, demonstrating remarkable data effi-
ciency. Furthermore, the results indicate that our ParaRL stage consistently improves output text-
image consistency, suggesting that trajectory-level optimization effectively strengthens cross-modal
grounding throughout the generation process.

In addition, we provide a qualitative comparison with open-source models in Figure 5, showcasing
examples of both editing and generation. A key observation is that MMaDA-Parallel produces more
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Table 2: Main results on ParaBench. Evaluation across all editing and generation tasks. For non-
thinking image editing or generation models, text evaluation, output alignment cannot be computed.

Model Text Qual. Text Align. Image Cons. Image Align. Image Qual. Output Align. Overall
Open-source models (Non-thinking)
Flux.1-Dev - - - 65.2 77.5 - -
Qwen-Image - - - 67.2 84.2 - -
Flux.1-Kontext - - 77.9 65 84 - -
Qwen-Image-Edit - - 78.2 73.5 84.1 - -
Bagel (w/o think) - - 72.2 50.3 80.1 - -

Closed-source models
GPT-4o 92.5 93.4 86.2 85.7 88.1 69.5 85.9
Gemini-2.5 94.1 95.2 88.5 76.2 90.2 63.4 84.6

Open-source models (Thinking-aware)
Bagel (w/ think) 82 70.5 76.7 63.4 81.5 52.9 71.2
Show-o* (tuned) 75.2 70.7 69.1 57.5 78.5 48.9 66.6

MMaDA-Parallel w/o TSPO 76.5 70.4 70.5 58.2 80.5 51.5 67.9
MMaDA-Parallel w/ TSPO 80.4 71 73.4 63.2 81.2 59.8 71.5

precise and descriptive reasoning traces. This enhanced reasoning leads to superior visual fidelity
in the final image. For instance, our model accurately renders complex instructions like a ”melting
cake” and correctly applies causal reasoning to depict ”withered grass.” Moreover, MMaDA-Parallel
demonstrates stronger compositional abilities, particularly in counting, correctly generating ”three
people” or ”two faces of a clock” where Bagel often fails. In contrast, Bagel’s reasoning in these
challenging cases tends to be vague or omits crucial details, leading to inaccurate image synthesis.
These results further underscore MMaDA-Parallel’s capability for advanced thinking-aware editing
and generation, driven by better-aligned semantic information.

Display the cake 
melting in hot 
sunlight.

The question image shows a chocolate cake placed outdoors 
under sunlight, with a natural and serene background. The 
question text asks to display the cake "melting in hot 
sunlight," which implies a visual transformation where the 
cake appears to be melting due to the heat.  
To achieve this, I would imagine the cake's surface becoming 
glossy and slightly shiny, as if the heat causes the 
chocolate to soften and melt slightly. The sunlight should 
cast dynamic shadows and highlights, emphasizing the warmth 
and intensity of the environment. The texture of the cake 
might appear slightly uneven or glossy in certain areas, 
suggesting the melting effect.  
The answer image would likely depict the same cake but with 
a more pronounced glossy sheen, subtle melting effects, and 
a brighter, warmer tone to reflect the heat. The background 
would remain consistent, but the lighting would be adjusted 
to enhance the melting effect. This approach aligns with the 
user's request for a visual representation of the cake 
melting in hot sunlight.

To achieve the requested display of the cake melting in hot 
sunlight, I'll start by analyzing the current state of the cake 
in the question image. The cake appears intact with a smooth, 
even surface, on a white plate under bright green sunlight. The 
goal is to simulate the melting effect as described in the 
question text. 
Firstly, I need to transform the cake's appearance. The solid 
chocolate layer will start to soften and creating a glossy, 
fluid surface. The top portion of the cake will lose its crisp 
shape and begin to flow down the sides. The plate will likely 
show signs of the cake's weight,, with a of the cake sliding off 
or pooling slightly. 
Next, I'll consider the lighting conditions. The bright green 
sunlight in the question image needs to be intensified and 
softened to simulate the intense sunlight hitting the cake. 
Shadows and highlights on the cake should reflect this 
intensified light, emphasizing the melting effect. 
Lastly, I'll adjust the surrounding environment. The greenery in 
the background will remain consistent but will appear slightly 
blurred due to the melting cake. Some of the cake may drip on 
the plate, enhancing the realism of the melting process. By 
incorporating these changes, the final image will effectively 
depict the cake melting in hot sunlight.

The question_image shows a healthy, upright plant 
with vibrant green leaves under bright sunlight, 
indicating it is well-hydrated and thriving. The 
question_text asks to depict the plant wilting due to 
lack of water, which suggests the user wants a visual 
representation of the plant's condition when 
dehydrated.  
To create the answer_image, I would imagine the plant 
drooping and losing its upright posture, with leaves 
curling or turning yellowish-brown, which are typical 
signs of dehydration. The background should remain 
consistent with the original image, maintaining the 
garden setting and bright sunlight to emphasize the 
contrast between the healthy and wilted states.  
The answer_text would describe the plant's dehydrated 
state, focusing on the drooping leaves and the 
visible signs of stress. The final image should 
clearly show the plant's transition from vitality to 
distress, aligning with the user's request.

The user wants the beer replaced 
with a smaller cup of coffee 
while keeping the laptop and its 
green keyboard intact. The layout 
and structure of the image should 
remain the same, with the cup of 
coffee placed in the same 
position as the beer. The 
keyboard color should be adjusted 
to gray to match the user's 
request.

Generate a picture 
of a group of 
three individuals 
is in a brightly 
lit park, one of 
themis throwing a 
frisbee.

The image should depict a sunny park scene where one 
person is actively throwing a frisbee, while the other 
two observe or prepare to catch it, showcasing a casual 
and playful atmosphere.
Here’s the finished detailed prompt: A vibrant, sunny 
park scene featuring three individuals in a casual and 
playful atmosphere, with one person actively throwing a 
frisbee mid-air, their arm extended and motion captured, 
while the other two observe or prepare to catch it. The 
park is lush with green grass, scattered trees, and a 
few benches, bathed in warm, natural sunlight. The mood 
is cheerful and relaxed, with soft shadows and a clear 
blue sky overhead. The individuals are dressed in 
casual summer attire, such as shorts and t-shirts, and 
their expressions convey enjoyment and engagement. The 
image is ultra-realistic, with fine details like the 
texture of the grass, the frisbee's motion blur, and 
the interplay of light and shadow, creating a vivid and 
immersive scene.

Show the plant 
wilting from lack 
of water. 

To address the question of showing the plant wilting due to lack 
of water, I need to consider the current state of the question 
image and the necessary changes. The current image shows a 
healthy, robust plant with vibrant green leaves and a sturdy 
stem. However, to depict the effect of wilting from lack, I will 
focus altering the plant’s appearance and vitality.

Firstly, the plant's leaves should appear limp and drooping, 
indicating wilting. The leaves should curl at the edges, showing 
how they gradually dry out. In the answer image, I would 
introduce these changes of stress and vitality. The leaves may 
become more yellow and rigid, and the overall posture should 
reflect a lack of hydration. The stem should also show signs, 
curling or droop, as the plant struggles to absorb water.

Additionally, the ground around the plant should show signs of 
drying out. The grass could appear or appear yellowish, 
suggesting lack of moisture. Adding a patch of brown or dry 
grass in the soil will enhance the wilting effect. The 
background should remain similar, with a clear blue sky and 
sunny sky, emphasizing the focus on the struggling plant. By 
incorporating these changes, the final image will effectively 
communicate the plant wilting due to lack of water.

Replace beer with 
a cup of coffee 
and make the 
keyboard space 
gray

Bagel (w/ think) MMaDA-ParallelInput

To transform the question image into the answer image, I'll 
follow these steps:
1. **Replace the Beer Bottle**: The beer glass with dark beer 
will be replaced by a cup of coffee. The cup should have a 
similar size and shape to the beer bottle but with a distinct 
color and texture (brown liquid, dark coffee).
2. **Change the Keyboard Color Thepad**: The green keyboard will 
be changed to a space gray color. This involves altering the 
color of the keyboard from green to a light gray shade, keeping 
the same layout and design but with a different color scheme.
3. **Maintain the Laptop Screen**: The laptop screen will remain 
unchanged, it should to display the same content as seen in the 
original image.
4. **Ensure the Coffee is Coffee**: The liquid inside the cup 
should appear resemble coffee rather than beer, This could be 
done by adding the characteristic dark color of coffee and a 
texture that suggests freshly brewed coffee.
5. **Positioning**: The cup should be placed be top of the 
laptop, maintaining the same orientation relative to the table 
as the original image.
By following these steps, the answer image will reflect the 
requested changes: replacing beer with a cup of coffee and 
making

To generate the requested image of three individuals 
in a brightly lit park, with one of them throwing a 
frisbee, I will first establish the scene. The park 
should appear open and sunny, with green grass and 
trees casting soft shadows. Among the group, one 
individual must be captured mid-throw, with an arm 
extended and the frisbee shown leaving the hand to 
emphasize motion. The body posture should lean 
forward naturally, suggesting realistic dynamics of 
throwing. The other two individuals should stand 
close by, one watching the frisbee’s trajectory and 
the other casually positioned to imply relaxed 
presence. Their clothing can remain casual and 
outdoor-appropriate. Lighting conditions should 
emphasize a warm afternoon atmosphere, ensuring 
highlights and shadows are consistent with bright 
sunlight. By adjusting composition, body posture, and 
object placement, the final image will effectively 
represent the requested frisbee activity in the park.

Generate a picture 
of a tall, gray 
stone clock tower 
with two clock 
faces rises above 
an industrial area 
and a distant 
cityscape under a 
cloudy sky.

The model should generate an image featuring 
the Big Ben clock tower in London, emphasizing 
its height, stone structure, and the 
surrounding urban environment.
The expanded prompt follows: A majestic, tall, 
gray stone clock tower, Big Ben in London, 
standing prominently above an industrial area 
with visible chimneys and factory buildings. 
The scene is set against a distant cityscape 
with modern skyscrapers under a cloudy, 
overcast sky, creating a dramatic and 
atmospheric mood. The image is ultra-realistic, 
with intricate details of the tower's stone 
texture, the clock faces, and the surrounding 
urban environment, capturing the grandeur and 
historical significance of the landmark.

To generate the requested image of a tall, gray stone clock 
tower with two clock faces rising above an industrial area and a 
distant cityscape under a cloudy sky, I will follow these steps:  
1. **Establish the Tower**: Place a vertically dominant gray 
stone tower at the center, ensuring a weathered texture. Add two 
visible clock faces on different sides of the structure, each 
circular and clearly readable.  
2. **Integrate Industrial Foreground**: Surround the lower 
portion with elements of an industrial area—factories, 
warehouses, metallic roofs, and chimneys—keeping the perspective 
consistent.  
3. **Add Cityscape Background**: Behind the industrial zone, 
insert a distant city skyline with smaller buildings and 
silhouettes, giving a sense of depth and scale.  
4. **Define the Atmosphere**: Fill the sky with heavy, overcast 
clouds to create a moody tone, softening shadows and 
highlighting the contrast between the stone tower and the darker 
environment.  
5. **Lighting and Consistency**: Ensure overall muted daylight 
illumination, with diffused light consistent with cloudy weather. 
The clock tower should stand as the tallest and most prominent 
element in the composition. 

Figure 5: Qualitative results in comparison with Bagel.
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4.3 ANALYSIS OF KEY CONTRIBUTIONS
Table 3: Parallel vs sequential decoding.

Denoising Text Align. Image Align. Output Align.
Sequential 70.6 56.1 48.9
Parallel 70.4 58.2 51.5

Table 4: Output vs trajectory-level RL.
Model Text Align. Image Align. Output Align.
before RL 70.4 58.2 51.5
w/ Output-level RL 70.7 62.3 53.6
w/ ParaRL (Ours) 71 63.2 59.8

Table 5: Ablation on sampling steps s in ParaRL.
ParaRL s Text Qual. Text Align. Image Cons. Image Align. Image Qual. Output Align. Overall
Before RL 76.5 70.4 70.5 58.2 80.5 51.5 67.9
ParaRL s=2 77.9 70.3 71.5 62.8 80.7 53.6 68.6
ParaRL (s=3) (default) 80.4 71.0 73.4 63.2 81.2 59.8 71.5
ParaRL (s=4) 80.5 70.8 73.2 63.5 80.8 58.7 71.3

After presenting the overall results, we now return to the two central research questions that moti-
vated our work: RQ1: Does parallel denoising improve generation quality compared with sequential
denoising? RQ2: Does trajectory-level finetuning improve over output-level finetuning?

The Benefit of Parallel Decoding (RQ1). We compare our model against a sequential baseline
(MMaA-Sequential) that generates text before images. During training, noise was applied to only
one modality at a time to align with this sequential inference process. Table 3 shows our parallel
framework substantially outperforms this baseline on key alignment metrics, with comparable text
and image quality. This result validates our core hypothesis: simultaneous, interactive decoding is
crucial for reducing error propagation and producing coherent multimodal outputs.

The Benefit of Trajectory-Level Optimization (RQ2). We compare two reinforcement learning
strategies: (i) output-level RL, where rewards are computed on the final generated sample, and (ii)
our proposed ParaRL with trajectory-level finetuning, where rewards are aggregated across denois-
ing steps. As shown in Table 4, trajectory-level optimization yields gains in text–image consistency
and output alignment, and Figure 6 further shows that it enables more stable training dynamics.

Another key hyperparameter in this strategy is the number of sampled steps, s. We analyze its
impact in Table 5 and report the training curve in Figure 7 We find that using s = 3 or s = 4 yields
substantial improvements over s = 2, as a denser reward signal provides more stable guidance. We
adopt s = 3 in the final configuration for the best balance between performance and efficiency.

Figure 6: ParaRL reward training curve between
trajectory and output level optimization.

Figure 7: ParaRL reward training curve across
different sampling steps of the trajectory.

5 CONCLUSION

In this work, we investigated a critical phenomenon where sequential thinking-aware models can
paradoxically suffer from performance degradation on complex tasks. We conducted an in-depth
analysis using our proposed ParaBench benchmark, which uniquely evaluates both output modali-
ties, and found a strong correlation between this degradation and poor alignment between the gener-
ated modalities. To resolve this, we propose a parallel multimodal diffusion framework trained with
supervised finetuning and further optimized by Parallel Reinforcement Learning (ParaRL)—our
novel method of applying rewards along the entire denoising trajectory. Experiments validate that
our approach significantly improves cross-modal alignment and semantic consistency, establishing
a more robust paradigm for thinking-aware image synthesis.
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6 ETHICS STATEMENT

This work advances research in text and image generation. We acknowledge that such models may
be misused to create deceptive or harmful content, such as falsified images or misleading infor-
mation. Our study is conducted for scientific purposes, and we encourage responsible use with
appropriate safeguards to mitigate potential misuse.

7 REPRODUCIBILITY STATEMENT

We provide detailed training implementation details in Appendix H and our main training code in
the supplementary. All code and data will be made public upon acceptance.
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A USE OF LLM

We employed large language models, specifically Gemini 2.5 Pro and ChatGPT-5, to assist in re-
fining paragraphs and performing grammar checks throughout the writing process. The typical use
cases arose in the analysis and discussion parts of the manuscript, where precise and well-structured
expression is critical. The models were not involved in idea generation, experimental design, or data
analysis; rather, they served as writing aids to enhance readability and presentation quality.

B ADDITIONAL RESULTS

B.1 QUALITATIVE RESULTS

We provide more qualitative results in Figure 8 and Figure 9 for thinking-aware image editing and
generation.

B.2 QUANTITATIVE RESULTS

We also report additional image-only results of MMaDA-Parallel on RISEBench Wu et al. (2025c)
and GenEval Ghosh et al. (2023). For fair comparison, we evaluate against the sequential version
of MMaDA, where MMaDA-Parallel achieves consistent performance improvements, demonstrat-
ing that parallel generation leads to overall gains in image alignment. Compared with the original
MMaDA, our approach further narrows the performance gap with Bagel.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

To address the question, I need to consider what changes to the scene after an 
hour sets. Observing the initial image, we have a glass with iced tea and 
scattered seeds floating on the surface. To transition to the desired outcome, 
I'll need consider how the tea’s appearance and as time approaches. \n\nAs the 
tea sets, the liquid will gradually thicken, taking on a more uniform, golden hue. 
The ice cubes may start to float more prominently and become less distinct due to 
the the warmth of the liquid. The seeds on the surface will also change, 
scattering more unevenly. Some seeds may appear larger and more prominent due to 
the increased water content. Additionally, the overall clarity of the tea will 
decrease, leading to a softer, more diffuse appearance seen in the second 
image.\n\nTo create this final image, I'll focus on adjusting the lighting and 
shadows to reflect the setting sun.. The glass should remain centered, but the 
background should subtly shift to suggest the passage of time. The seeds on the 
surface will be refined to show signs of settling and scattering, emphasizing the 
the progression of the tea process. This adjustment can effectively illustrate 
the creation of the scene an hour later, as depicted in the intended image.

Thinking-Aware Editing with MMaDA-ParallelInput Image Prompt

Draw what 
it will 
look like 
an hour 
later.

What will 
happen 
after one 
hour?

Draw an 
image 
showing a 
distant view 
of the trees 
from the 
same angle, 
farther away.

What will 
happen if 
he releases 
his hand?

Adjust the 
small 
hamburger 
to the size 
of the 
large 
hamburger

To create the image image showing a distant view of the trees from the same angle, 
farther away, I'll start by analyzing the current composition. The question image 
features a single, prominent tree in the foreground with a clear blue sky and 
scattered clouds. The goal is to extend this view and reducing the distance while 
maintaining the same, ensuring the trees appear farther away.\n\nFirstly, I need 
to expand the tree in the scene. This means reducing its size relative to the 
viewer, making it appear smaller and more distant. The sky should remain 
consistent but become less dominant as the tree stretches out. \n\nNext, I'll 
adjust the perspective slightly. The current image shows a slight tilt, 
suggesting the camera is approaching the tree. To align align with the idea of 
the trees being seen farther away, I will subtly blur the horizon and background. 
This blur will create a sense of depth, making the trees appear even more 
away.\n\nLastly, I'll consider adding subtle details such as faint outlines of 
additional trees or a horizon line in the distance, consistent with the broader 
perspective. 

To address the question, we need to depict it an hour later, we'll focus on the 
current state shown in the question image. The goal is to simulate its appearance 
of several hours after passed. Observing the question image, the apple is 
partially opened with a vibrant interior and a central pit. To achieve the 
desired effect, we will need to adjust the lighting and shadows.\n\nAs the hour 
progresses, the lighting will soften, and the colors will blend more The outer 
skin of the apple will appear more translucent, possibly revealing more of its 
yellowish hue. The pit, which is currently less illuminated, should become more 
pronounced due to the light exposure. Additionally, the shadow cast by the apple 
will dark slightly, enhancing the sense of time and depth.\n\nTo achieve this, 
the we should gradually reduce the brightness and contrast of the apple's skin, 
making it a more muted and even tone.  The pit should be made more exposed and 
detailed, showcasing its natural texture. The, the shadow should be adjusted to 
suggest the passage of time, with a slight fading toward the darkness. This will 
create a realistic depiction of the apple after an hour,, with a more texture and 
color changes, as seen in the answer image.

To address the question, "What will happen if he releases his hand?" I need to 
consider the dynamics depicted in the question image. In the current image, the 
see a hand is positioned over a stack of objects, with the hand resting on top of 
a stack of stones. The question implies a scenario where the hand is released, 
suggesting a change in the arrangement of the objects.\n\nTo visualize this, 
I\'ll focus on the dynamics of the stacked objects. As the hand is removed from 
the stack, it likely will shift upward. The hand should no longer be resting on 
top of the stack, and the top object will begin to float away. The orange objects 
at the bottom of the stack will remain in their position but may shift slightly 
due to the change in the stack.\n\nTo create the answer image, I would imagine 
the hand being removed from the stack, with the top object lifted and floating 
away. The orange object at the bottom of the stack will stay in place, but its 
position will slightly adjust to reflect the release of the hand. Additionally, 
the background could subtly lighting to emphasize the connection between the hand 
and the floating objects, maintaining the continuity of the scene. This approach 
aligns with the question of what happens when the hand is released

To adjust the small hamburger to the size of the large hamburger, I'll start by 
analyzing the current differences between the two images. In the question image, 
the small hamburger appears significantly smaller compared to the large one. The 
goal is to make the small hamburger match the scale and proportions of the large 
one.\n\nFirst, I'll focus on reducing the size of the small hamburger. This 
involves scalingizing its height and width so that it appears smaller in relation 
to the large hamburger. To achieve this, I'll increase the small of the small 
burger proportionally it is, maintaining the same level of detail as the large 
burger.\n\nNext, I'll consider the toppings adjustment. The small burger already 
has a layer of lettuce, tomato, and cheese, which need to be adjusted slightly to 
align with the large burger. This involves adjusting the proportions of these 
ingredients to create a balanced appearance on the small burger.\n\nFinally, I'll 
ensure the background remains consistent between both images. The wooden surface 
and the warm lighting should should remain unchanged, creating a cohesive visual 
flow between the two images.\n\nBy making these adjustments, the final image will 
show the small hamburger harmoniously integrated with the large hamburger, 
matching the proportions as shown in the original image.

Figure 8: Additional qualitative results on thinking-aware image editing.

Table 6: Overall performance on RISEBench. .

Models Temporal Causal Spatial Logical Overall

GPT-4o-Image 34.1% 32.2% 37.0% 10.6% 28.9%
Gemini-2.0-Flash-exp 8.2% 15.5% 23.0% 4.7% 13.3%
BAGEL 3.5% 4.4% 9.0% 5.9% 5.8%

MMaDA(Sequential) 3.9 % 5.2% 8.1% 4.8% 5.5%
MMaDA-Parallel 4.2% 5.5% 8.3% 5.1% 5.75%

C MORE RELATED WORK

Diffusion large language models. Diffusion models have achieved remarkable progress in vi-
sion (Ho et al., 2020; Rombach et al., 2022; Esser et al., 2024b; Song et al., 2020; Peebles & Xie,
2023), motivating their extension to text. The discrete nature of textual tokens, however, makes
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To generate the image for the prompt "A man sitting comfortably on a 
wooden bench in the midst of a tranquil forest glade, encircled by 
towering trees," I need to focus on the following key elements: 1. 
**Main Subject**: A man sitting comfortably on a wooden bench. 2. 
**Setting**: A tranquil forest glade. 3. **Atmosphere**: Tranquil and 
serene. 4. **Details**: Wooden bench, tall trees, and a peaceful 
environment. The composition should place the man as the focal point, 
surrounded by the forest, with the bench being the central element. The 
background should feature tall trees and greenery to enhance the sense 
of being in a forest glade. The lighting should be soft and natural, 
suggesting a calm, early morning or late afternoon setting. The overall 
color palette should be earthy and green, with muted tones to match the 
tranquil atmosphere.

Thinking-Aware Generation with MMaDA-ParallelInput Prompt

A Starbucks coffee 
cup and bread 
rolls on a table 
next to a window 
with a black car 
parked outside.

A man sitting 
comfortably on a 
wooden bench in the 
midst of a tranquil 
forest glade, 
encircled by 
towering trees.

A trio of chairs, a 
trio of banners, a trio 
of desks, a quartet of 
ships, and a quartet of 
cushions.

Create an image 
featuring three 
differently colored 
baseball gloves 
arranged on a wooden 
bench.

A plate of pancakes 
topped with butter, 
bacon strips, a 
side of syrup, and 
a coffee cup on a 
table in a diner 
setting.

To generate the image based on the prompt "A trio of chairs, a trio of banners, a trio of 
desks, a quartet of ships, and a quartet of cushions," I need to focus on creating a 
balanced composition with multiple groups of objects. Here’s the planning process: 1. 
**Chairs**: Place three distinct types of chairs (e.g., a wooden chair, a metal chair, and 
a fabric chair) in the foreground, each with unique textures and colors. 2. **Banners**: 
Include three different banners, perhaps with various messages or designs, hung in a semi-
circle above the chairs to add depth and interest. 3. **Desks**: Position three desks of 
varying sizes and styles behind the chairs, ensuring they are spaced out to maintain 
balance. 4. **Ships**: Introduce four ships, possibly toy models or detailed illustrations, 
scattered around the scene, adding a nautical element. 5. **Cushions**: Add four cushions 
in soft, contrasting colors, placed near the desks to enhance the cozy atmosphere. The 
overall composition should be vibrant and varied, with each group of objects clearly 
distinguishable yet harmoniously integrated into the scene. The lighting should be even to 
highlight the details of each object.</think> To generate the image, I would start by 
sketching the layout, ensuring there is enough space for all the objects. Then, I would 
choose appropriate colors and textures for each item. After that, I would render the scene 
with careful attention to lighting and perspective to bring the image to life.

To generate the image based on the prompt "A Starbucks coffee cup and 
bread rolls on a table next to a window with a black car parked outside", 
I need to focus on the following elements: 1. Place a Starbucks coffee 
cup prominently in the foreground on the left side of the frame. 2. 
Position a plate with bread rolls on the right side of the frame. 3. 
Ensure the table is wooden and has a warm tone. 4. Include a window in 
the background with a view of a street. 5. Have a black car parked 
outside visible through the window. 6. Set the scene during daylight 
hours to capture natural light. 7. Ensure the overall composition is 
balanced with the coffee cup and bread rolls as focal points. This will 
create a realistic and appealing image that aligns with the given prompt.

To generate an image featuring three differently colored baseball gloves 
arranged on a wooden bench, I would start by choosing vibrant colors for 
the gloves, such as orange, black, and a light brown. Next, I would 
select a realistic wooden bench with a natural grain pattern to provide 
texture and contrast against the smooth leather of the gloves. The 
arrangement should showcase the gloves side by side, with their open 
palms facing forward, allowing viewers to see the detailed stitching and 
laces. The lighting should be soft and even to enhance the colors and 
textures without creating harsh shadows. Finally, the background could 
be minimal, perhaps a blurred outdoor setting like a park bench, to keep 
the focus on the gloves. 

To generate the image based on the prompt "A plate of pancakes topped 
with butter, bacon strips, a side of syrup, and a coffee cup on a table 
in a diner setting," I need to plan the following visual elements: 1. 
**Main Subject**: A plate of pancakes with toppings (butter, bacon 
strips, and syrup). 2. **Side Item**: A coffee cup placed next to the 
plate. 3. **Setting**: A diner environment, which includes a table and 
typical diner decor. 4. **Lighting**: Soft, natural light to mimic a 
cozy diner atmosphere. 5. **Composition**: Center the plate of pancakes 
in the foreground, with the coffee cup slightly off-center for balance. 
6. **Background**: Show a diner interior with tables, chairs, and 
possibly some patrons in the distance to establish the setting. The 
overall goal is to create a warm, inviting, and appetizing image that 
captures the essence of a classic diner breakfast scene. 

Figure 9: Additional qualitative results on thinking-aware image generation.

Table 7: Results on GenEval..

Method Single Obj. Two Obj. Counting Colors Position Color Attri. Overall
SDXL 0.98 0.74 0.39 0.85 0.15 0.23 0.55
Show-o Xie et al. (2024) 0.95 0.52 0.49 0.82 0.11 0.28 0.53
MMaDA (Yang et al., 2025a) 0.99 0.76 0.61 0.84 0.20 0.37 0.63
Bagel (Deng et al., 2025a) 0.98 0.95 0.84 0.95 0.78 0.77 0.88

MMaDA(Sequential) 0.99 0.78 0.66 0.87 0.34 0.37 0.68
MMaDA-Parallel 0.99 0.83 0.70 0.88 0.40 0.47 0.71

direct adaptation non-trivial. Two main approaches have emerged: learning continuous latent rep-
resentations (Chen et al., 2022; Mahabadi et al., 2023; Ye et al., 2023; Gong et al., 2022), and
designing discrete diffusion models (Ou et al., 2024; Gong et al., 2024; Liu et al., 2025c; Ye et al.,
2025b; Zhu et al., 2025). Among the latter, Masked Diffusion Models (MDMs) stand out by lever-
aging bidirectional attention for global consistency and supporting parallel decoding. Systems such
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as Dream7B (Ye et al., 2025b) and LLaDA (Nie et al., 2025) achieve performance comparable to
autoregressive LLMs. Beyond text, diffusion-based LLMs have also been extended to multimodal
domains. LaViDA (Li et al., 2025) employs multi-view image encoding with masked-denoising
training, LLaDA-V (You et al., 2025) integrates masked diffusion with visual instruction tuning,
and MMaDA (Yang et al., 2025a) unifies reasoning across text and vision generation through chain-
of-thought supervision and reinforcement learning. These advances highlight the scalability and
versatility of diffusion-based language models across both unimodal and multimodal settings. Nev-
ertheless, existing approaches have not yet explored parallel text–image co-generation, leaving
cross-modal reasoning and alignment still constrained by sequential pipelines.

Reinforcement learning for multimodal foundation models. Reinforcement Learning (RL) has
emerged as a powerful paradigm for enhancing reasoning and controllability in large models. The
widely adopted GRPO (Guo et al., 2025a) applies rewards primarily on the correctness of the final
answer and the adherence to a predefined format. Recently, RL has been adopted in multimodal
large language models (Chen et al., 2025b; Meng et al., 2025; Yang et al., 2025b; Zhang et al., 2025;
Deng et al., 2025b; Huang et al., 2025b), incorporating task-specific rewards such as answer cor-
rectness, intersection-over-union (IoU) for localization (Liu et al., 2025d), and image–text alignment
scores (e.g., T2I-R1 (Jiang et al., 2025a)). Extensions such as (Jiang et al., 2025b; Hong et al., 2025)
further introduce cross-modality coherence rewards. In the context of diffusion language models,
similar strategies have been explored with verified rewards and carefully designed probability ap-
proximations (Yang et al., 2025a; Gong et al., 2025) . Despite these advances, most existing methods
focus solely on rewards applied to the final output, while largely ignoring the generative trajectory.
This overlooks the fact that intermediate steps can provide crucial signals for alignment. In contrast,
our work investigates the synergy between modalities during the denoising process and introduces
ParaRL, which exploits stepwise semantic alignment to optimize thinking-aware multimodal gener-
ation.

D PRELIMINARIES

D.1 PRELIMINARIES OF DISCRETE DIFFUSION MODELS.

In recent years, diffusion models have set new standards in generative modeling. While De-
noising Diffusion Probabilistic Models (DDPMs) excel in continuous domains like raw pixel
spaces, Discrete Denoising Diffusion Probabilistic Models (D3PMs) have proven highly effec-
tive for discrete data, such as tokenized images and text. Models like VQ-Diffusion Gu et al.
(2022), MaskGIT (Chang et al., 2022), Muse (Chang et al., 2023), Show-o (Xie et al., 2024), and
MMaDA Yang et al. (2025a) have demonstrated that a discrete diffusion process can generate high-
fidelity outputs with great efficiency. Our model’s architecture is built upon this discrete diffusion
paradigm. We now provide the formal preliminaries, beginning with the foundational forward and
reverse processes and culminating in the simplified mask-and-predict training objective that our
model employs.

Forward and reverse processes. A discrete diffusion model consists of two key processes: (1)
The Forward Process (q), a fixed Markov chain that gradually corrupts input data x0 over T
timesteps into noisy latents x1, . . . ,xT ; and (2) The Reverse Process (pθ), a learned neural network
that reverses this corruption by progressively denoising xT to recover the original data distribution.
Let’s consider a single token x0 ∈ {1, . . . ,K} from a codebook of size K. The forward process
at each step t is defined by a stochastic transition matrix Qt ∈ RK×K . A key property is that the
distribution of xt conditioned on the initial state x0 is tractable:

q(xt|x0) = Cat(xt|x0Qt), where Qt = Q1Q2 · · ·Qt. (5)

The posterior probability, which is essential for training, is also tractable:

q(xt−1|xt,x0) =
q(xt|xt−1)q(xt−1|x0)

q(xt|x0)
∝ Cat

(
xt−1

∣∣∣∣∣xtQ
⊤
t ⊙ x0Qt−1

x0Qtx
⊤
t

)
, (6)

where ⊙ denotes element-wise product.
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Absorbing mask state and transition matrix. The design of the transition matrix Qt dictates the
nature of the corruption. A highly effective approach, inspired by masked language modeling, is to
introduce a special absorbing [MASK] state. This expands the token vocabulary to K + 1 states.
Once a token becomes [MASK], it remains masked for all subsequent timesteps. This explicitly sig-
nals corrupted positions to the model. The transition matrix for this ”Absorbing-Uniform” process
is defined as:

Qt =


ωt + νt νt · · · νt αt

νt ωt + νt · · · νt αt

...
...

. . .
...

...
νt νt · · · ωt + νt αt

0 0 · · · 0 1

 ∈ R(K+1)×(K+1), (7)

where at each step t, a token has a probability αt to be masked, a probability βt to be replaced by a
random token, and a probability ωt = (1−αt − βt) to remain unchanged. The [MASK] token (last
row) always transitions to itself.

Objective as mask prediction. The training objective for diffusion models is derived by maxi-
mizing the Evidence Lower Bound (ELBO) on the data log-likelihood. The negative ELBO, which
is minimized during training, can be decomposed into several terms representing different stages of
the diffusion process:

−LELBO = Eq

[
− log pθ(x0|x1)︸ ︷︷ ︸
Reconstruction Term

+

T∑
t=2

KL(q(xt−1|xt,x0)∥pθ(xt−1|xt))︸ ︷︷ ︸
Denoising Matching

+ KL(q(xT |x0)∥p(xT ))︸ ︷︷ ︸
Prior Matching

]
.

(8)

Here, the objective consists of three main components: (1) a reconstruction term that learns to
generate the final data from x1, (2) a series of KL divergence terms that train the reverse process pθ
to match the true posterior at each denoising step, and (3) a prior matching term that aligns the final
noisy latent with a simple prior distribution. Following derivations in D3PMs Austin et al. (2021),
this complex objective can be simplified to a weighted sum of reconstruction terms:

Lsimple =

T∑
t=1

Eq(x0,xt)[− log pθ(x0|xt)]. (9)

When using the absorbing mask state strategy, this simplified objective becomes equivalent to a
Cross-Entropy loss for mask token prediction, as used in MaskGIT Chang et al. (2022). This ap-
proach is highly effective as it focuses the model’s capacity on reconstructing only the corrupted
parts of the data. Our work leverages this powerful paradigm for both text and image token genera-
tion.

D.2 GROUP RELATIVE POLICY OPTIMIZATION FOR DISCRETE DIFFUSION MODELS

Group Relative Policy Optimization (GRPO) (Guo et al., 2025a) is a powerful policy gradient al-
gorithm originally designed for autoregressive models. However, its direct application to discrete
diffusion models is non-trivial. The core challenge lies in computing the importance sampling ratios
and sequence-level likelihoods; these are straightforward in an autoregressive chain but ill-defined
in a non-autoregressive, parallel decoding process. Diffusion models lack a sequential history for
token-level probabilities, and their policy distributions are implicitly dependent on masking patterns,
making direct likelihood estimation computationally prohibitive.

To bridge this gap, we adopt the efficient random masking framework from MMaDA (Yang et al.,
2025a) to adapt GRPO for our diffusion-based architecture. This strategy circumvents the need
for direct likelihood computation by using the model’s predictions on randomly masked inputs as
an unbiased estimate of the policy likelihoods. First, the advantage Âi for each response oi in a
generated group {oj}Gj=1 is computed in the standard group-relative manner:

Âi =
ri − mean({rj}Gj=1)

std({rj}Gj=1) + ϵ
, (10)
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where ri is the reward for response oi. The policy gradient is then calculated using an importance
sampling ratio r′i,t(θ) defined over a randomly masked version of each response, where a unique
mask ratio pi ∼ U [0, 1] is sampled for each response at each training step. This allows the standard
clipped GRPO objective to be adapted for diffusion models as follows:

JDiff-GRPO(θ) = Eq∼D,{oi}∼πold,
{pi}∼U [0,1]

[
1

G

G∑
i=1

1

|Mi|
∑
t∈Mi

(
min

(
r′i,t(θ)Âi,

clip
(
r′i,t(θ), 1− ε, 1 + ε

)
Âi

))
− βDKL(π

′
θ||π′

ref)

]
,

(11)

where the expectation is also taken over the random mask ratios, the inner summation is only over
the masked tokens Mi, and π′ denotes the policy likelihoods approximated via the masking scheme.
This formulation enables stable and efficient policy optimization by effectively adapting the princi-
ples of GRPO to a non-autoregressive setting.

E SAMPLING DETAILS ON TEXT AND IMAGE

Parallel sampling and denoising strategy. Our model employs a parallel sampling strategy, pre-
dicting logits for all text and image tokens simultaneously in a single forward pass. The denois-
ing process for both modalities is guided by a confidence-based re-masking schedule, inspired by
MaskGIT (Chang et al., 2022) and LLaDA (Nie et al., 2025). Crucially, while the logits are gen-
erated jointly, we apply distinct masking schedulers and confidence metrics to the text and image
tokens to account for their different statistical properties and generation requirements.

Image token denoising. For image generation, we follow the iterative decoding process from
MaskGIT. At each timestep t, given the current set of M masked image tokens, the model predicts
logits ℓt = {ℓti}Mi=1. For each masked position i, we sample a candidate token u′

i from the predicted
probability distribution and compute its confidence score si. A mask scheduling function γ(t/T )
determines the number of tokens m = ⌈γ(t/T )M⌉ that should be kept (i.e., remain unmasked).
We select the m tokens with the highest confidence scores to keep for the next step t + 1, and the
remaining M −m tokens are re-masked. The update rule for a token at position i is:

u
(t+1)
i =

{
u∗, if si < sortedj(sj)[m]

u′
i, otherwise

, (12)

where u∗ represents the [MASK] token and sortedj(sj)[m] is the m-th value in the sorted list of
confidence scores. This iterative refinement continues until all image tokens are finalized. In our
implementation, we generate a 512px image, which is encoded into 1024 discrete tokens and takes
30 steps to decode.

Text token denoising. For text generation, we adopt the semi-autoregressive denoising strategy
from LLaDA (Nie et al., 2025), where the output sequence is generated in blocks from left to right.
Within each block, however, generation is non-autoregressive and iterative. The core of this process
is a reverse sampling step that transforms a partially masked sequence xt at step t into a less masked
sequence xs at an earlier step s < t. This transition is formally characterized by the probability:

qs|t(xs|xt) =

N−1∏
i=0

qs|t(x
i
s|xi

t) and qs|t(x
i
s|xi

t) =


1, xi

t ̸= [M], xi
s = xi

t
1

1−αt
, xi

t = [M], xi
s = [M]

αs−αt

1−αt
pθ(x

i
0|xt), xi

t = [M], xi
s ̸= [M]

0, otherwise,
(13)

where pθ(x
i
0|xt) is the model’s prediction of the original token for the masked position i and αt =

1− t. In practice, this involves an iterative refinement loop. At each step, given the current sequence
xt, we first sample candidate tokens for all masked positions. Then, following the deterministic low-
confidence re-masking strategy adopted by LLaDA, we identify the tokens with the lowest prediction
confidence scores and re-mask them for the next refinement iteration.
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In our implementation, we generate the sequence with 256 sequence length, in blocks of 64 tokens
and 128 steps. At each denoising step within a block, we unmask the two tokens with the low-
est confidence scores. This block-based, semi-autoregressive approach is essential for generating
coherent and naturally structured sentences, as it mitigates issues like the premature generation of
end-of-sequence (|EOS|) tokens that can arise in a fully non-autoregressive setting.

F DETAILS OF TRAINING DATASET CURATION

Figure 10: Overview of our dataset for thinking-aware editing

Figure 11: Overview of our dataset for thinking-aware editing

Our training dataset is a carefully curated collection of 150,000 high-quality samples designed for
thinking-aware image synthesis. The primary challenge was that existing public datasets for image
editing and generation typically provide input-output pairs without the intermediate reasoning traces
required by our method. Therefore, our curation process involved three main stages: (1) aggregating
data from state-of-the-art sources, (2) generating high-quality reasoning traces to augment this data,
and (3) applying a rigorous filtering and enhancement pipeline. The final dataset consists of 100,000
editing pairs and 50,000 generation pairs, achieving a 2:1 ratio. An overview of the dataset is shown
in Figure 10 and 11

Source datasets for editing data. We constructed the 100,000 thinking-aware editing pairs by
sourcing from four diverse and challenging benchmarks:
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• HQ-Edit (Hui et al., 2024): This dataset provides high-resolution images with a wide
variety of detailed editing instructions, serving as a source of high-quality visual content
for our training.

• UltraEdit (Zhao et al., 2024): We leverage UltraEdit for its collection of complex editing
instructions that require strong reasoning and compositional abilities, pushing the model
beyond simple object manipulation.

• AnyEdit (Yu et al., 2025): Given the vast size of AnyEdit, we selectively sampled from its
more challenging categories. Specifically, we focused on the implicit editing sub-
set, which contains instructions that do not explicitly mention the target object, requiring
the model to infer the user’s intent.

• EditWorld (Yang et al., 2024): This dataset is crucial for its focus on edits that require
world knowledge and complex reasoning, such as causal (e.g., ”what if a storm occurs”)
and temporal (e.g., ”What’s this man like in twenty years?”) edits. To further bolster our
model’s capabilities in these areas, we performed data augmentation on this subset, using
GPT-4o to generate three times the amount of similar, complex reasoning-based instruc-
tions and corresponding edits.

Source dataset for generation Data. For the 50,000 thinking-aware generation pairs, we sourced
data from ShareGPT4o (Chen et al., 2025a). This dataset contains a rich collection of diverse,
real-world prompts and corresponding high-quality image outputs, providing a strong foundation
for general-purpose, knowledge-intensive image synthesis.

Reasoning trace generation. A core step in our curation process was to augment the source data
with reasoning traces. Since the original datasets only provide triplets of (‘input image‘, ‘instruc-
tion‘, ‘output image‘), we utilized the powerful multimodal model Qwen2.5-VL-7B (Bai et al.,
2025) to generate a plausible reasoning text for each sample. The model was prompted with the
input/output image pair and the instruction to produce a step-by-step rationale explaining the trans-
formation. This transformed our dataset into quadruplets: (‘input image‘, ‘instruction‘, ‘reasoning
trace‘, ‘output image‘), which is the required format for our thinking-aware training.

Data filtering and quality control. Finally, to ensure the highest quality, we applied a multi-
stage filtering pipeline to the entire 150,000-sample dataset. First, we removed near-duplicates to
increase data diversity. Second, we used a scoring mechanism based on Qwen-VL to identify and
discard samples with low-quality or visually unappealing images. For cases where the instruction
was valuable but the image quality was poor, we leveraged GPT-4o to regenerate higher-fidelity
candidate images. This comprehensive curation process resulted in a clean, diverse, and high-quality
dataset optimized for our training objectives.

G DETAILS OF PARABENCH

ParaBench is a comprehensive benchmark designed to address the limitations of existing evaluation
protocols for thinking-aware image synthesis. Unlike traditional benchmarks that focus solely on
the final image, ParaBench is built to assess the entire generation process, including the quality of
the intermediate reasoning trace and its synergy with the visual output. It comprises a total of 300
challenging prompts, curated from various sources and divided into 200 for editing and 100 for
generation.

Composition of editing prompts. The 200 editing prompts are meticulously curated and synthe-
sized from various existing benchmarks to test a wide spectrum of complex reasoning abilities. To
provide a structured analysis, we group them into five distinct categories:

• Spatial Reasoning (40 prompts): These are tasks requiring a deep understanding of object
locations, orientations, and spatial relationships. Examples include instructions like ”place
the book to the left of the lamp” or ”make the person in the background larger.”

• Temporal Reasoning (40 prompts): These prompts involve reasoning about time and
require the model to infer past or future states. Examples include ”show what this street
might look like 50 years from now” or ”revert the shattered vase to its original state.”
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• Causal Reasoning (40 prompts): This category contains instructions that require the
model to infer and depict cause-and-effect relationships. Examples include ”show the
ground after a heavy rain” or ”make the plants look like they haven’t been watered for
weeks.”

• World Knowledge (40 prompts): These are edits that require external, real-world knowl-
edge to execute correctly. Examples include instructions like ”turn this car into a model
from the 1980s” or ”edit the painting to be in the style of Van Gogh.”

• General Editing (40 prompts): This category includes a broad set of common, founda-
tional editing operations that do not fit into the specialized categories above. It primarily
consists of instructions for adding, removing, or replacing objects and serves as a baseline
for fundamental editing capabilities.

Composition of generation prompts. The 100 generation prompts are sourced from the
ShareGPT4o (Chen et al., 2025a) dataset. They are designed to be open-ended and cover a wide
range of scenarios, including the generation of creative scenes, complex compositions with multiple
interacting objects, and images that require interpreting long, descriptive narratives.

Evaluation axes. All 300 prompts in ParaBench are evaluated using our LLM-as-a-judge frame-
work across six fine-grained axes to provide a holistic assessment of a model’s performance. The
evaluation criteria are as follows:

• Text Quality: Assesses the fluency, coherence, and grammatical correctness of the gener-
ated reasoning text.

• Text Alignment: Measures how well the reasoning text follows the user’s input instruction
and accurately plans the edit/generation.

• Image Quality: Evaluates the photorealism, aesthetic quality, and absence of visual arti-
facts in the generated image.

• Image Alignment: Measures how faithfully the generated image adheres to the user’s
instruction.

• Image Consistency (for editing tasks): Assesses how well the model preserves the
unedited parts of the original image, maintaining background, style, and object identity.

• Output Alignment: Evaluates the cross-modal consistency between the generated reason-
ing text and the final generated image.

We provide the prompts for thinking-aware image editing in Appendix K.The prompts for image
generation follow the same format, with only minor modifications in the input and representation
style.

H MORE IMPLEMENTATION DETAILS

Training details. Our model is initialized from the weights of MMaDA-MixCoT (Yang et al.,
2025a), which utilizes LLaDA-8B as its text backbone and MagVIT-v2 for image tokenization. The
post-training process consists of two stages. In the first stage, we perform supervised finetuning
(SFT) for 30,000 steps on our curated dataset of 150,000 thinking-aware samples. In the second
stage, we conduct Parallel Reinforcement Learning (ParaRL) for 10,000 steps, using a challeng-
ing subset of approximately 15,000 examples (10%) drawn from the SFT dataset. Both training
stages were conducted on 32 NVIDIA A100 GPUs with a global batch size of 768. We utilized the
AdamW optimizer with a learning rate of 2e-5 and a cosine learning rate schedule with a warm-up
of 500 steps. We drop 10% of text input and 10% of image input to support classifier-free guidance
sampling.

In ParaRL, we randomly sample s = 3 trajectory points. The steps of these certain points are
identical in the same rollout and uniformly sampled in all rollouts. We set KL constraints β =
0.0001 to keep the same with MMaDA’s baseline.
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Inference details. During inference, our model employs a parallel sampling strategy, generating
the logits for all text and image tokens simultaneously in a single forward pass. The images are
generated with classifier-free guidance scale of 3.5, and text with a scale of 0.

I MORE ABLATION STUDIES

Table 8: Ablation on modality reweighting.
Default uses wtext(t)=1/t, wimg(t)=1.

Setting Text Align. Image Align. Output Align.
Both 1/t 69.5 58.1 56.3
Both 1 65.7 61.9 57.0
wtext=1/t, wimg=1 71 63.2 59.8

Table 9: Ablation on decoding strategy. Fully
parallel is our default.

Strategy Text Align. Image Align. Output Align.
Sequential (text → image) 64.2 56.5 54.1
Semi-parallel (grouped) 68.3 60.7 57.5
Fully parallel (ours) 71 63.2 59.8

We further analyze three key design choices of our framework: (1) modality-aware reweighting in
the training objective, and (2) the decoding strategy (parallel vs semi-parallel vs sequential).

Modality reweighting. Table 8 shows that using wtext(t) = 1/t and wimg(t) = 1 stabilizes image
training and yields the best overall performance. Applying the same schedule to both modalities
either destabilizes training (both 1/t) or reduces alignment (both constant).

Decoding strategy. Table 9 contrasts fully parallel, semi-parallel, and fully sequential decoding.
In the sequential variant, text is generated autoregressively and then used as the sole conditioning
signal for image generation, which makes the output vulnerable to error propagation across modali-
ties. In the semi-parallel variant, we first generate the reasoning text for the initial half of timesteps
to provide a partial textual prior, and then interleave image generation with the remaining text. This
strategy mitigates some sequential errors and yields improvements over the fully sequential baseline.
Finally, the fully parallel variant, i.e., MMaDA-Parallel, generates text and image jointly at every
denoising step. We find that fully parallel decoding achieves strong results without requiring exten-
sive textual priors, likely because the early image steps can already establish coarse scene layouts,
and excessive initial text may even bias attention toward irrelevant details.

J LIMITATIONS AND FUTURE WORK

Although our approach achieves notable improvements, several limitations remain. First, our base
model MMaDA is trained on relatively limited data, which constrains its fundamental capabilities.
As a result, it is difficult to consistently surpass large-scale models such as Bagel that benefit from
substantially larger training corpora. Second, our current sampling and training strategies are not
yet fully unified across modalities, and exploring more integrated interaction paradigms may further
enhance performance.

For future work, we plan to extend our paradigm to broader scenarios, such as story generation and
multimodal outputs that combine text and images, which we believe will further demonstrate the
potential of parallel thinking-aware generation.

K PROMPTS FOR EVALUATION
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Generation of Image Reasoning Following Scores:
You are a professional digital artist and image evaluation specialist.

You will be given:
1. **Input Image**: the original image.
2. **Output Image**: the generated/edited image.
3. **Output Text**: the thinking/reasoning text that describes the intended result or 
modification process.

Your Objective:
Your task is to **evaluate how well the output image aligns with the descriptions, 
reasoning, or expectations outlined in the. output text (thinking)**. Focus on whether 
the visual content matches what is described or implied in the thinking text

## Reasoning:
You must follow these reasoning steps before scoring:
**1. Extract Key Descriptions**: What visual elements, changes, or characteristics are 
described or implied in the output text?
**2. Visual Analysis**: What do you actually observe in the output image? Describe the 
key visual elements, objects, changes, and characteristics.
**3. Alignment Check**: 
Compare the descriptions from **1** with the visual observations from **2**:
- Do the visual elements match what's described in the thinking text?
- Are the described changes or characteristics actually present in the image?
- Is the reasoning or process described in the text reflected in the visual result?
**4. Decision**: Use the 1–5 scale to assign a final score.

## Evaluation Scale (1 to 5):
You will assign a **output_alignment_score** with following rule:
- **5 Perfect Alignment**: The output image perfectly matches all descriptions and 
expectations in the output text.
- **4 Minor Mismatch**: The image largely aligns with the text, but one minor detail 
differs from the description.
- **3 Partial Alignment**: The main elements described are present, but there are 
noticeable discrepancies or missing aspects.
- **2 Major Mismatch**: Several key elements described in the text are missing or 
incorrectly represented in the image.
- **1 No Alignment**: The image does not match the descriptions in the output text or 
contradicts the stated reasoning.

## Guidance:
- Pay attention to both explicit descriptions and implied visual outcomes in the output 
text.
- Consider whether the thinking process described is reflected in the visual result.
- If the output text describes specific objects, colors, positions, or changes, check if 
these are accurately represented.
- If the text explains reasoning for certain visual choices, evaluate whether those 
choices are evident in the image.

## Output Format
Provide the evaluation score and explanation in the following JSON format:
{{
”output alignment_score": X,
"reasoning": "1. Extract Key Descriptions: ... 2. Visual Analysis: ... 3. Alignment 
Check: ... 4. Decision: ..."
}}

Output Alignment Score Evaluation

Figure 12: Output alignment evaluation prompt
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# Generation of Text Reasoning Quality Scores:
You are a professional multimodal reasoning and evaluation specialist.

You will be given:
- **Input Text**: a reasoning prompt describing how to generate or edit an image.

## Objective:
Your task is to **evaluate the quality of the reasoning prompt**, focusing on:
- **Clarity**: whether the instructions are clearly expressed and unambiguous
- **Completeness**: whether key details necessary for correct image editing/generation 
are included
- **Consistency**: whether the reasoning flow is logically connected and free from 
contradictions
- **Relevance**: whether the text focuses on the image editing task rather than 
irrelevant details
- **Conciseness**: whether the reasoning avoids redundancy and unnecessary verbosity

## Evaluation Scale (1 to 5):

- **5 Excellent Quality**: Instructions are clear, complete, logically consistent, and 
concise. No ambiguity.
- **4 Minor Issues**: Mostly clear, with only small redundancies or slightly missing 
details, but task remains well defined.
- **3 Noticeable Flaws**: Some ambiguous phrasing, partial omissions, or unnecessary 
verbosity that may confuse interpretation.
- **2 Significant Issues**: Multiple contradictions, missing steps, or unclear 
instructions that risk incorrect or incoherent image editing.
- **1 Poor Quality**: Completely unclear, contradictory, or irrelevant to the image task.

## Guidance:
Check the following aspects and mark them as ✔ (satisfactory) or ✘ (problematic):
- **Clarity**: Clear, unambiguous instructions
- **Completeness**: Includes all essential details for the task
- **Consistency**: Logical step-by-step reasoning, no contradictions
- **Relevance**: Focused on the image generation/editing task
- **Conciseness**: Free from redundancy and unnecessary verbosity
- **Accuracy**: Descriptions align with the intended visual changes

✔ The more checks, the higher the score.

## Output Format:
After evaluation, provide your score and concise reasoning using the following JSON 
format:
```json
{
”text_quality_score": X,
"reasoning": "Clarity: ✔/✘, Completeness: ✔/✘, Consistency: ✔/✘, Relevance: ✔/✘, 
Conciseness: ✔/✘, Accuracy: ✔/✘. [Brief explanation of key issues or strengths]"
}

Text Quality Score Evaluation

Figure 13: Text quality evaluation prompt
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# Generation of Text Alignment Scores:
You are a professional multimodal reasoning evaluation specialist. You will evaluate the 
alignment between an **input image**, an **input text instruction**, and an **AI-
generated reasoning text**.
You will be given:
1. **Input Image**: the original image before editing or generation.  
2. **Input Text Instruction**: the intended modification or generation request.  
3. **Output Reasoning Text**: the step-by-step reasoning produced by the model.  
## Objective:
Your task is to **evaluate how well the output reasoning text aligns with both the input 
instruction and the input image**, focusing on whether the reasoning correctly interprets 
the request and remains faithful to the visual content.  
You must:
- **Identify the core visual and textual requirements** from the input image + 
instruction.  
- **Check whether the reasoning text explicitly and correctly reflects these 
requirements.**  
- **Not penalize stylistic differences**, only misalignment, hallucination, or omission.  
- **Be careful**: reasoning may mention edits unrelated to the instruction or 
inconsistent with the input image, which should reduce the score.  

## Reasoning:
You must follow these steps before scoring:  
**1. Instruction Understanding**: Summarize the main requirement(s) from the input text 
instruction.  
**2. Image Context**: Identify relevant details from the input image that the instruction 
refers to (e.g., objects, attributes, positions).  
**3. Reasoning Analysis**: Summarize what the output reasoning text proposes (step-by-
step actions, described changes).  
**4. Alignment Check**: Compare (1)+(2) with (3):  
- Does the reasoning focus on the correct object(s) and attributes in the image?  
- Does it correctly interpret the requested change(s)?  
- Are all requested aspects addressed (not omitted or contradicted)?  
- Does it avoid introducing unrelated or hallucinated edits not supported by the 
image/instruction?  
**5. Decision**: Use the 1–5 scale to assign a final score.  

## Evaluation Scale (1 to 5):
You will assign an **text_alignment_score** with the following rule:  
- **5 Perfect Alignment**: Reasoning fully and faithfully reflects both the image and 
instruction, with no omissions or hallucinations.  
- **4 Minor Issues**: Reasoning captures the main intent but slightly misses a visual 
detail or minor nuance.  
- **3 Partial Alignment**: Reasoning covers the main idea but has noticeable omissions, 
inaccuracies, or weak grounding in the image.  
- **2 Major Misalignment**: Reasoning only weakly relates to the instruction or image; 
key aspects are missing or wrong.  
- **1 Non-Alignment**: Reasoning ignores or contradicts both the instruction and the 
input image.  

## Output Format:
Provide your evaluation in the following JSON format:  
```json
{
”text_alignment_score": X,
"reasoning": "1. Instruction Understanding: ... 2. Image Context: ... 3. Reasoning 
Analysis: ... 4. Alignment Check: ... 5. Decision: ..."
}

Text Alignment Score Evaluation

Figure 14: Text alignment evaluation prompt
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Generation of Image Consistency Scores:
You are a professional digital artist and image evaluation specialist.

You will be given:
1. **Input Image**: the original image.
2. **Output Image**: the generated/edited image.
3. **Input Text**: the instruction describing the intended modification.

Your Objective:
Your task is to **evaluate the visual consistency between the input and output images, 
focusing exclusively on elements that are NOT specified for change in the input text 
instruction**. That is, you should only consider whether all non-instructed details 
remain unchanged. Do **not** penalize or reward any changes that are explicitly required 
by the instruction.

## Evaluation Scale (1 to 5):
You will assign a **consistency_score** according to the following rules:
- **5 Perfect Consistency**: All non-instruction elements are completely unchanged and 
visually identical.
- **4 Minor Inconsistency**: Only one very small, non-instruction detail is different 
(e.g., a tiny accessory, a subtle shadow, or a minor background artifact).
- **3 Noticeable Inconsistency**: One clear non-instruction element is changed (e.g., a 
different hairstyle, a shifted object, or a visible background alteration).
- **2 Significant Inconsistency**: Two or more non-instruction elements have been 
noticeably altered.
- **1 Severe Inconsistency**: Most or all major non-instruction details are different 
(e.g., changed identity, gender, or overall scene layout).

## Guidance:
- First, **identify all elements that the input text instruction explicitly allows or 
requires to be changed**. Exclude these from your consistency check.
- For all other elements (e.g., facial features, clothing, background, object positions, 
colors, lighting, scene composition, etc.), **compare the output image to the input 
image** and check if they remain visually identical.
- If you observe any change in a non-instruction element, note it and consider its impact 
on the score.
- If the instruction is vague or ambiguous, make a best-effort factual inference about 
which elements are intended to change, and treat all others as non-instruction elements.

## Note:
- **Do not penalize changes that are required by the instruction.**
- **Do not reward or penalize the quality or correctness of the instructed change 
itself** (that is evaluated separately).
- If the output image introduces new artifacts, objects, or changes to non-instruction 
elements, this should lower the consistency score.

## Output Format
First, clearly explain your comparison process: list each major non-instruction element 
and state whether it is consistent (unchanged) or inconsistent (changed), with brief 
reasoning.
Then, provide your evaluation in the following JSON format:
{{
"reasoning": "Compared to input image, [list of non-instruction elements that changed or 
remained the same] in the output image.",
"consistency_score": X
}}

Image Consistency Score Evaluation

Figure 15: Image consistency evaluation prompt
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Generation of Image Quality Scores:
You are a professional digital artist and image evaluation specialist.

You will be given:
- **Output Image**: an AI-generated image.

## Objective:
Your task is to **evaluate the perceptual quality** of the output image, focusing on:
- **Structural and semantic coherence**
- **Natural appearance**
- **Absence of generation artifacts**
- **Visual clarity and composition**

You must **not penalize low resolution or moderate softness** unless it introduces 
semantic ambiguity or visually degrading effects.

## Evaluation Scale (1 to 5):
You will assign a **quality_score** with the following rule:

- **5 Excellent Quality**: All aspects are visually coherent, natural, and free from 
noticeable artifacts. Structure, layout, and textures are accurate and consistent. The 
image has clear composition and professional appearance.
- **4 Minor Issues**: One small imperfection (e.g., slight texture blending, minor 
lighting inconsistency, small compositional flaw).
- **3 Noticeable Artifacts**: One or two clear visual flaws or semantic problems (e.g., 
extra fingers, minor duplication, slight distortion, unnatural lighting).
- **2 Structural Degradation**: Multiple distracting errors (e.g., melted hands, warped 
shapes, unreadable text, poor composition, obvious artifacts).
- **1 Severe Errors**: Major structural failures or hallucinations (e.g., broken anatomy, 
garbled symbols, severe distortions, completely unnatural appearance).

## Guidance:
Check the following visual aspects and mark them as ✔ (satisfactory) or ✘ (problematic):
- **Structural coherence**: Correct anatomy, object shapes, legible text, proper 
proportions
- **Natural appearance**: Realistic lighting, perspective, shadow logic, believable 
textures
- **Artifact-free**: No duplication, ghosting, watermarks, obvious generation artifacts
- **Texture fidelity**: Clothing, hair, surfaces not melted or corrupted
- **Composition**: Clear focal points, balanced elements, appropriate framing
- **Color harmony**: Natural color relationships, appropriate saturation and contrast

✔ The more checks, the higher the score.

## Output Format:
After evaluation, provide your score and concise reasoning using the following JSON 
format:
{{
"quality_score": X,
"reasoning": "Structural coherence: ✔/✘, Natural appearance: ✔/✘, Artifacts: ✔/✘, 
Texture fidelity: ✔/✘, Composition: ✔/✘, Color harmony: ✔/✘. [Brief explanation of 
key issues or strengths]"
}}

Image Quality Score Evaluation

Figure 16: Image quality evaluation prompt
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Generation of Image Instruction Following Scores:
You are a professional digital artist and image evaluation specialist. You will evaluate 
the effectiveness of the AI-generated image based on given rules.

You will be given:
1. **Input Image**: the original image.
2. **Output Image**: the generated/edited image.
3. **Input Text**: the instruction describing the intended modification.

Your Objective:
Your task is to **evaluate how the output image faithfully fulfills the input text 
instruction**, focusing **exclusively on the presence and correctness of the specified 
changes**.

You must:
- **Identify detailed visual differences** between Input Image and Output Image 
**correctly and faithfully**.
- Determine if those differences **match exactly what the input text instruction 
requests**
- **Not assess any unintended modifications beyond the instruction**; such evaluations 
fall under separate criteria.
- **Be careful**, an edit may introduce visual change without fulfilling the actual 
instruction (e.g., replacing the object instead of modifying it)

## Reasoning:
You must follow these reasoning steps before scoring:
**1. Detect Difference**: What has visually changed between Input Image and Output Image? 
(e.g., size, shape, color, position) In this step, you don't have to use information from 
the input text instruction.
**2. Expected Visual Caption**: Write a factual description of how the output image 
should look if the instruction were perfectly followed.
**3. Instruction Match**: 
Compare the observed differences in **1** to the expected change in **2**:
- Was the correct object modified (not replaced)?
- Was the requested attribute (e.g., size, color, position) modified as intended?
- Is the degree of modification accurate (e.g., "match size," "slightly increase," etc.)?
**4. Decision**: Use the 1–5 scale to assign a final score.

## Evaluation Scale (1 to 5):
You will assign an **instruction_score** with following rule:
- **5 Perfect Compliance**: The output image **precisely matches** the intended 
modification; all required changes are present and accurate.
- **4 Minor Omission**: The core change is made, but **minor detail** is missing or 
slightly incorrect.
- **3 Partial Compliance**: The main idea is present, but one or more required aspects 
are wrong or incomplete.
- **2 Major Omission**: Most of the required changes are missing or poorly implemented.
- **1 Non-Compliance**: The instruction is **not followed at all** or is **completely 
misinterpreted**

## Output Format
Look at the input again, provide the evaluation score and the explanation in the 
following JSON format:
{{
"instruction_score": X,
"reasoning": "1. Detect Difference: ... 2. Expected Visual Caption: ... 3. Instruction 
Match: ... 4. Decision: ..."
}}

Image Alignment Score Evaluation

Figure 17: Image alignment evaluation prompt
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