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Abstract

Recent studies have uncovered an interesting phenomenon: unimodal foundation
models tend to learn convergent representations, regardless of differences in archi-
tecture, training objectives, or data modalities. However, these representations are
essentially internal abstractions of samples that characterize samples independently,
leading to limited expressiveness. In this paper, we propose The Indra Representa-
tion Hypothesis, inspired by the philosophical metaphor of Indra’s Net. We argue
that representations from unimodal foundation models are converging to implicitly
reflect a shared relational structure underlying reality, akin to the relational ontol-
ogy of Indra’s Net. We formalize this hypothesis using the V-enriched Yoneda
embedding from category theory, defining the Indra representation as a relational
profile of each sample with respect to others. This formulation is shown to be
unique, complete, and structure-preserving under a given cost function. We instan-
tiate the Indra representation using angular distance and evaluate it in cross-model
and cross-modal scenarios involving vision, language, and audio. Extensive experi-
ments demonstrate that Indra representations consistently enhance robustness and
alignment across architectures and modalities, providing a theoretically grounded
and practical framework for training-free alignment of unimodal foundation models.
Our code is available at https://github.com/Jianglin954/Indra.

1 Introduction

Through large-scale pretraining, foundation models have emerged as a transformative paradigm in
artificial general intelligence, demonstrating impressive progress across diverse domains, such as
natural language processing [12, 26, 46], computer vision [47, 76, 60, 13], and speech processing
[66, 3]. These unimodal models are typically trained on web-scale datasets and acquire generalized
representations that can be adapted to a broad range of downstream tasks. The representative models,
such as BERT [12] for language, ViT [13] for vision, and Wav2Vec [66] for audio, have demonstrated
promising performance within their respective domains.

Since real-world information is inherently multimodal (text, images, and audio frequently co-occur
and complement each other), relying on a single modality for understanding is typically insufficient.
To extend unimodal foundation models for cross-modal tasks, a growing body of research has
exploited strong unimodal encoders as the core components to build multimodal systems [62, 42, 61,
63]. They assume that unimodal models are able to provide specialized, high-quality, and high-level
representations for each individual modality, which can then be aligned, fused, or bridged to enable
multimodal interactions [41, 2, 9]. A common strategy to achieve multimodal understanding is to align
unimodal outputs in a shared representation space through cross-modal objectives [62, 41, 45, 55].
This usually relies on external mechanisms, such as alignment losses, fusion modules, and prompt
tuning, thus requiring large-scale datasets and extensive retraining for modality alignment.
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Interestingly, recent studies [59, 57, 45, 67] suggest that powerful unimodal models may already
exhibit latent cross-modal capabilities, as the representations they produce (when grounded on
the same physical entity) tend to describe the same underlying semantics from different sensory
perspectives. Previous evidence has revealed that adding only a single linear transformation is capable
of bridging an auditory model with an LLM [58], integrating a vision model into a large language
model (LLM) [55], or conversely, stitching an LLM towards a vision model [36]. Even without
retraining, well-pretrained vision encoders exhibit high semantic similarity with language encoders
[52]. Further studies [30, 34, 28, 49] have revealed that models trained on different data modalities
converge, as different models are all trying to arrive at a representation of reality. Thus, unimodal
models may encode modality-agnostic representations in abstract representational space, even without
explicit alignment. While conceptually appealing, the specific form of convergent representations
and their eventual convergence targets remain elusive and largely unexplored.

In this paper, we posit that the underlying convergent representation is inherently the Indra
Representation—a conceptual abstraction inspired by the philosophical metaphor of Indra’s Net.
Originating in ancient Buddhist philosophy, Indra’s Net describes a vast, infinite web of jewels, each
reflecting all others. Every jewel is both a part and a reflection of the whole, suggesting that all
phenomena are interdependent, mutually defining, and inherently connected. We draw an analogy
between this worldview and the notion of representation convergence, and introduce The Indra Rep-
resentation Hypothesis: well-trained unimodal models tend to produce convergent representations
that implicitly reflect a shared relational structure underlying reality, echoing the relational ontology
of Indra’s Net. In this view, the representation of each entity is not defined in isolation, but rather
emerges from its relational context, i.e., its reflections of all other entities.

To explore this hypothesis, we introduce a theoretical definition of the Indra representation grounded
in category theory [33]. Specifically, we define it as the V-enriched Yoneda embedding of a sample
within a category enriched over a Cost-category. This formulation effectively maps each sample to
its covariant Hom-functors in the sample category, thereby encoding its relational profile within the
structure of the dataset. We provide theoretical guarantees that the Indra representation is unique,
complete, and structure-preserving, offering a principled foundation for its effectiveness. In particular,
we prove that it uniquely and completely characterizes each sample within the relational structure
induced by a given cost function, while preserving essential properties of that structure.

To instantiate this theory in practice, we adopt angular distance as the cost function, yielding a simple
yet powerful realization of the Indra representation. This concrete formulation enables empirical
evaluation and allows us to investigate how Indra representations can uncover and support the latent
cross-modal capabilities of unimodal models. We validate our approach across a range of scenarios
involving cross-model and cross-modal understanding, including single-modality settings, vision-
language pairs, and speech-language pairs. Extensive experiments demonstrate the effectiveness and
generality of the proposed Indra representation across different architectures and modalities.

2 Preliminaries

2.1 Indra’s Net

Indra’s Net is a philosophical metaphor originating in ancient Indian and Mahayana Buddhist thought,
particularly from the Avatamsaka Sutra [10, 23]. It is used to symbolize the universe as a web of
interdependent connections among all of its members, expressing the concept of interconnectedness,
non-duality, and the interpenetration of all phenomena. Francis H. Cook describes it as [11]:

Imagine a vast, infinite cosmic net belonging to the god Indra. At each node of the net is
a jewel or crystal. Each jewel reflects every other jewel in the net, and in each of those
reflections are further reflections of all other jewels, recursively and infinitum.

The metaphor of Indra’s Net resonates deeply with the foundational principles across diverse dis-
ciplines. For instance, Gergen et al. [18] posit that identities, thoughts, and actions are not solely
products of isolated minds but are co-constructed through interactions and relationships with others.
Markus et al. [53] propose the theory of interdependent self-construal, emphasizing that the self is
defined relationally through one’s social roles, group memberships, and interpersonal obligations. In
physics, field theory [14, 54] illustrates a relational structure where the field at any point depends
on all sources throughout space, a concept reminiscent of Indra’s Net, in which each jewel reflects



and is reflected by all others. Similarly, modern particle physics [19, 5] reveals the properties of an
elementary particle through its interactions with other particles. In linguistics, the linguistic principle
articulated by J.R. Firth [16], “You shall know a word by the company it keeps", asserts that a word’s
meaning is derived from its co-occurrence with other words. This principle forms the basis for
modern language models like Word2Vec [56] and its successors. Furthermore, Kasulis [32] suggests
DNA as a better image of Indra’s Net, where every cell contains the blueprint for the whole organism.

2.2 Representation Convergence

Recent studies [30, 75, 21, 15, 74, 40, 49] have revealed a striking phenomenon: unimodal foundation
models tend to learn convergent representations, regardless of their architectures, training objectives,
or data modalities. For example, Biirger et al. [6] show that a two-dimensional representation of truth
emerges universally across LLMs of varying sizes and from different model families. Roeder et al.
[65] prove that a wide class of discriminative and autoregressive models are identifiable in function
space up to a linear transformation. Tan et al. [68] find strong correlations in both in-distribution
and out-of-distribution steerability between LLaMA [69] and Qwen [4]. Huh et al. [30] attribute
this convergence to a shared goal: approximating an underlying representation of reality. Khosla
et al. [34] argue that both artificial and biological systems converge toward representations that
capture the causal structure of the world. Hosseini et al. [28] further observe that high-performing
artificial neural networks and biological brains tend to develop similar internal representations under
naturalistic training conditions. Additional evidence and analyses on representation convergence can
be found in the comprehensive survey [49].

Despite this emerging consensus, it remains unclear how these representations converge and what
they ultimately converge to. Notably, prior studies rely primarily on model outputs (embeddings) as
proxies for representations, but these representations suffer from @ structural myopia: representations
are typically treated as isolated carriers of information, ignoring structural interrelations within the
broader data manifold; @ limited expressiveness: unimodal representations often exhibit inferior
quality in matching and alignment compared to those from multimodal foundation models; and ®
dimensional incompatibility: representations across models and modalities often differ in dimension-
ality, thus requiring additional post-processing for cross-modal matching. In light of these challenges,
we argue that representations from model outputs do not reflect the final converged form, but instead
serve as the foundation upon which such a form can be built. In the next section, we introduce a
novel representation hypothesis inspired by the metaphor of Indra’s Net to hypothesize the concrete
structure of convergent representations and illuminate what they ultimately converge to.

3 Methodology

3.1 The Indra Representation Hypothesis

In this paper, we advocate a shift in perspective on representation convergence, inspired by the
metaphor of Indra’s Net: a sample should be represented not in isolation, but through its pattern
of relationships to other samples. In this view, representations emerge from a structure of mutual
interdependence. We formalize this perspective through the Indra Representations Hypothesis:

The Indra Representation Hypothesis: Neural networks, trained with different objectives on
different data and modalities, tend to learn convergent representations that implicitly reflect a
shared relational structure underlying reality—parallel to the relational ontology of Indra’s Net.

This hypothesis posits that unimodal foundation models, after extensive pretraining, tend to produce
representations that converge to capture the inherent relational structure of reality—a structure charac-
terized by interdependence, contextuality, and mutual influence. However, current methods that treat
model outputs as final representations fail to reflect this structure. These methods typically emphasize
individual embedding information while neglecting the crucial relational patterns between samples.
In the next section, we introduce the Indra Representation, a novel representation framework inspired
by the metaphor of Indra’s Net, to reveal the underlying relational structure. In this framework,
representations are not independent embeddings but mutually reflective entities woven into a web of
interdependent relationships, revealing the deeper relational structure that underpins the data.



3.2 From Metaphor to Theory

Indra’s Net is a philosophical metaphor that symbolizes the interconnectedness of the universe. It
aligns with the foundational principles in modern science, as mentioned in Section 2.1. To translate
this philosophical insight into representation learning, we first introduce the Yoneda Lemma and its
corollary, which provide the theoretical foundation for defining our proposed Indra representation.

Lemma 1 (Yoneda Lemma [33, 64]). Let C be a locally small category, A be an object in C, and
F : C — Set be a functor from C to the category of sets. Then, there exists a bijection, natural in
both A and F, between the set of natural transformations from the hom-functor hy = Home (A, —)
to F, and the set F'(A). This bijection is given by:

Nat(ha, F) = F(A). )

Corollary 1 (Yoneda Embedding [33, 64]). For any two objects A, B in a locally small category C,
there is a bijection:
Nat(Hom¢ (A, —),Home (B, —)) = Home (B, A). )

This demonstrates that the functor Y : C°P — [C, Set|, defined by Y (A) = ha = Homc (A, —), is
fully faithful. This functor'Y is known as the Yoneda embedding.

The Yoneda Lemma provides a profound understanding of how an object in a category is characterized
by its relationships (morphisms) with all other objects, rather than by its internal properties. Its
corollary further shows that any locally small category C can be embedded into a category of
presheaves on C. To introduce our Indra representations, we give the following definitions:

Definition 1 (Sample Category). Let X be a set of samples, possibly infinite. The sample category
C enriched over the Cost-category V = ([0, 0], >, 0, +) consists of: @ Objects: Ob(C) = X. @
Hom-objects: for every X;, X; € Ob(C), the hom-object C(X;, X;) is given by a cost function
d(X;, X;) € [0, 00], which is an object in V. ® Identity: for all X; € Ob(C), the identity morphism
idx, : I — C(X;,X;) inVis0 — d(X;,X;), where d(X;,X;) = 0. ® Composition: for
all X;, X, X}, € Ob(C), the composition morphism Mx, x; x, = C(X;, Xx) ® C(X;, X;) —
C(X;, Xy) inVis: d(X;, Xy) + d(X;, X;) = d(X;, Xy). This morphism exists in'V if and only if
d(X;, Xx) + d(X;, X;) > d(X;, Xy), which is precisely the triangle inequality.

Definition 2 (V-enriched Yoneda embedding). Let [C°P, V)] be the category of V-presheaves on C. The
V-enriched Yoneda embedding is a V-functorY : C — [C°P, V). For each object X; € Ob(C), Y (X;)
is the V-presheaf hx, : C°? — V defined by: hx,(X;) = C(X;, X;) = d(X;, X;) forany X; € C°P.
For every X;, X; € Ob(C), Y defines amap Yx, x, : C(X;, X;) — [CP, V](Y(X;), Y (X})).

Theorem 1. The V-enriched Yoneda embeddingY : C — [C°P, V)] for the sample category C enriched
overV = ([0, 00],>,0,+4) with the cost function d is V-fully faithful.

The sample category C actually forms a Lawvere metric space [39], and the corresponding V-enriched
Yoneda embedding maps each sample X; to a functor Y (X;), which captures the cost profile from all
other samples to X;. Theorem 1 shows that the sample category can be fully and faithfully represented
within a category of V-presheaf, preserving its entire structure including its metric information. In
other words, each sample X; can be uniquely represented by its cost vector d(-, X;) with all samples.
Based on these, we introduce the Indra representation and state the following theorems:

Definition 3 (Indra Representation). For each sample X; € Ob(C), we define its Indra represen-
tation as the V-functor C(X;, —), i.e., the collection of values obtained by evaluating it under the
(covariant) V-enriched Yoneda embedding on all objects of the category C.

Proposition 1. If two samples X;, X; € Ob(C) have V-naturally isomorphic Indra representations
and the cost function d satisfies the Ty separation axiom, then X; = X.

Theorem 2. For any V-functor P : C — V, the V-hom-object of V-natural transformations from the
Indra representation of sample X; to P, denoted by [C,V](C(X;, —), P), is V-isomorphic to P(X;).

Corollary 2. The relational structure among objects in the sample category C is preserved and
reflected in the relationships between their Indra representations.

The Indra representation of a sample X;, defined as the V-functor C(X;, —), can be interpreted as a
relational profile of X, that is, the cost from X to every other sample in the category. Proposition 1
establishes that the Indra representation is a faithful encoding: no two distinct samples share the same



representation. Theorem 2 further shows that the Indra representation is complete, in the sense that
it encapsulates all the information needed to determine how distances from X; behave under any
admissible distance assignment. Furthermore, Corollary 2 demonstrates that the relationships between
samples are in one-to-one correspondence with the relationships between their Indra representations.

3.3 Instantiation of Indra Representation

We now demonstrate how to instantiate the Indra representation for a real dataset X = {X1,..., X,,}
consisting of n samples. We define the object set of the enriched category as Ob(C) = X and specify
the hom-object C(X;, X;) as the cost d(X;, X;) between samples X; and X;, V.X;, X; € Ob(C). To
define a valid Indra representation, the cost function d must satisfy two properties: @ d(X;, X;) =0
for VX; € X;and @ d(X;, Xi) < d(X;, X;) + d(X;, Xy) for VX;, X;, X, € X. Several distance
metrics satisfy these conditions. In this work, we adopt a simple yet effective choice by defining
d(X;, X;) as the angular distance between the model-generated embeddings of X; and X ;:

f(Xq) - f(X5)
£ (X)LF X

where f : X — R isa modality-specific foundation model, f(X;) denotes the internal represen-
tation of X; produced by f, and d* is the output dimensionality of the model. The use of angular
distance ensures that d defines a valid Lawvere cost function. Given this cost function, the Indra
representation of each sample X; € X is the covariant Hom-functor:

d(X;, X;) := arccos ( ) , VX, X; € 0b(C) 3)

C(Xz —) X = [0,00], Xj — d(X“XJ) 4

This distance-based embedding forms a principled and interpretable representation. In the finite case,
it can be written as C(X;, —) = [d(X;, X1), ..., d(X;, X,,)], which captures the relational profile of
X, with respect to all other samples.

3.4 Relational Matching across Modalities

Our hypothesis in Section 3.1 posits that unimodal foundation models learn convergent representations
that capture the shared relational structure underlying reality. The proposed Indra representations
are designed to reflect this inherent structure and can thus be leveraged to improve cross-modal
understanding. To demonstrate how Indra representations facilitate relational matching across
modalities, we consider a dataset D = {(U;, Q;)}7-, of n samples, where U; € U and Q; € Q
correspond to instances from two distinct modalities, and D C U x Q. For single-modality scenarios,
we define U; = Q;, Vi € {1,...,n}. We use two pretrained foundation models f : & — R”

andg: Q — R* to extract modality-specific embeddings, where d* and d” are the embedding
dimensionalities of the two models, respectively. Based on these embeddings, we construct the Indra
representations I and I for each modality as follows:

I =d(U,U;), I3=d(Qi,Q;), Vi,je{l,...,n}, )

where the cost function d is defined in Equation 3. In practice, we may apply post-processing
operations such as sparsification and normalization to enhance robustness:

I = operator(I“), 1< = operator(I9), (6)

where operator(-) denotes the chosen post-processing function. Unlike traditional representation
approaches that reflect only internal characteristics of samples, the proposed Indra representations act
as external representations, where each vector captures interdependencies by encoding the sample’s
relative profile within the dataset.

4 Experiments

To comprehensively assess the effectiveness of our Indra representation, we perform evaluations
across a range of settings, including unimodal vision, vision-language, and speech—language tasks.



Table 1: Accuracy (%) on CIFAR-10 and CIFAR-100 under different Gaussian noise levels.

CIFAR-10 ¢=0.0 0=3.0 0=5.0 0o=7.0 CIFAR-100 0=0.0 0=3.0 0=5.0 o=7.0

ViT 93.98 &7.75 T79.77 68.15 ViT 79.45 54.69 35.76 27.45
Indra 94.84 89.51 80.84 68.71 Indra 80.09 69.00 51.59 32.74
Convnext 97.00 85.89 80.10 65.85 Convnext 85.77 62.79 34.39 21.28
Indra 97.21 92.86 81.59 66.64 Indra 85.64 72.16 51.51 30.25
Dinov?2 99.19 95.21 85.57 76.54 Dinov2 91.97 82.21 63.06 40.16
Indra 99.14 96.87 89.73 77.92 Indra 91.93 84.83 74.29 58.67

Table 2: Accuracy (%) on Office-Home dataset under different Gaussian noise levels.

Art 0=0.0 ¢=3.0 0=5.0 o=7.0 Clipart 0=0.0 ¢=3.0 0=5.0 o=7.0
ViT 80.25 64.40 44.03 22.63 ViT 73.20 50.40 28.64 15.23
Indra 79.63 65.02 43.62 27.57 Indra 69.76 54.98 33.10 18.21
Convnext 89.71 62.76 27.98 12.14 Convnext 83.62 54.07 20.85 09.74
Indra 87.86 59.88 28.81 14.20 Indra 82.70 57.85 25.09 11.34
Dinov2 87.65 73.06 46.91 27.78 Dinov2 88.43 75.14 51.09 31.04
Indra 87.04 70.99 47.53 27.37 Indra 87.29 76.63 54.75 33.56
Product c=0.0 ¢=3.0 ¢=5.0 ¢=7.0 Real c=0.0 ¢=3.0 0=5.0 ¢=7.0
ViT 92.34 80.74 61.15 35.25 ViT 89.22 82.11 60.09 35.32
Indra 89.75 81.53 64.08 40.77 Indra 87.16 83.49 63.65 40.48
Convnext 96.62 84.91 44.26 19.37 Convnext 93.46 82.11 38.30 17.78
Indra 96.73 85.92 45.61 22.18 Indra 93.35 84.63 40.71 19.61
Dinov2 96.73 93.24 83.33 60.70 Dinov2 92.78 87.39 71.44 48.51
Indra 96.40 92.79 84.46 60.59 Indra 92.89 88.53 73.17 49.89

4.1 Evaluation on Single Modality

Datasets. We first conduct classification tasks on the CIFAR-10 [37], CIFAR-100 [37], and Office-
Home [72] datasets. For CIFAR-10 and CIFAR-100, we use the standard data splits provided by
torchvision.datasets [51]. For Office-Home, we evaluate classification accuracy across four
distinct domains: Art, Clipart, Product, and Real-World, using an 80/20 split for training and testing.
Each domain exhibits unique visual styles and distribution shifts, making the dataset a widely used
benchmark for evaluating the robustness and generalization of vision models in object recognition
tasks. Across all datasets, we adopt logistic regression (i.e., linear probing) to assess the quality of
the extracted representations.

Foundation Models. For vision models, we evaluate ViT [13], Convnext [76], and Dinov2 [60].

Evaluation Metrics. We assess model classification accuracy (%) using ground-truth labels. To
investigate the robustness of Indra representations, we inject Gaussian noise into the features with
varying standard deviations o € {0.0, 3.0, 5.0, 7.0}. For each noise level, we perturb the features
accordingly and train a linear classifier on the noisy representations. This allows us to assess how
classification performance degrades as the feature representations are increasingly corrupted by noise.

Analysis. In Tables 1 and 2, we report the classification results on the CIFAR-10, CIFAR-100, and
Office-Home datasets. The results clearly show that stronger backbone models (e.g., Dinov?2) lead
to better performance for Indra representations across all noise levels. For instance, on CIFAR-100
with 0=0.0, our Indra representations achieve 91.93% accuracy using Dinov2 as the backbone,
compared to 85.64% with Convnext and 80.09% with ViT. This performance gap persists and
even widens under higher noise: at ¢ = 7.0, Indra representations with Dinov2 maintain 58.67%,



Table 3: Performance on image-text datasets D using different representations R (Orign: original,
Indra: Indra representation) with various vision (Vis-E) and language (Lan-E) models.

. Top-5 Top-10 Top-30 Top-50

D|Vis-E | Lan-E R oI Tl 15T Tl 1T Tl IST Tl IsT
| CLIP-I | CLIP-T |Orign| 1.420 1.381 2.734 2.661 7.634 7.470 12212 11.986
ViT BERT Orign| 0.482 0.483 0.967 0.966 2.911 2.905 4.863  4.846
Indra| 0.663 0.832 1.303 1.613 3.787 4.426 6.199 7.036

ViT Roberta | 0718 | 0486 0.491 0970 0.981 2912 2927 4.853 4.874
o Indra| 1.048 0.880 2.065 1.749 5.970 5.149 9.702  8.446
S| convnoxt | BERT Orign| 0.396 0.474 0.837 0950 2.603 2.851 4.412 4.755
O Indra| 0.612 0.537 1.127 1.022 3.182 2.875 5.242  4.783
< convnext | Roberta | OF8R | 0492 0480 0.985 0964 2962 2.889 4.940 4.824
Indra| 1.005 0.616 1.930 1.217 5.247 3.538 8267 5.790

Dinovs | BERT Orign| 0.496 0.473 0.991 0.947 2.969 2.852 4.936  4.760
1nov Indra | 0.540 0.539 1.123 1.022 3.194 2872 5277 4.804
binov2 | Roberta | OTi8R | 0468 0490 0.945 0.982 2.859 2.949 4779 4914
Lnov Indra | 1.016 0.949 1.978 1.863 5.603 5.370 9.021 8.766
CLIP-I | CLIP-T |Orign| 1.357 1.325 2.556 2.499 6.860 6.717 10.795 10.584
ViT BERT Orign| 0.479 0.474 0.956 0.947 2.864 2.844 4.769  4.742
Indra | 0.701 0.667 1.375 1.293 3.960 3.712 6.449  6.069

ViT Roberta | 0718 | 0484 0.483 0966 0.963 2.891 2886 4.814  4.805
Indra | 0.924 0.727 1.792 1.419 5.014 4.102 8.011 6.700

é convnext | BERT Orign | 0.449 0.451 0.904 0.910 2.754 2.752 4.640 4.604
g Indra| 0.415 0.485 0.906 0.971 2.911 2.907 4.821 4.845
z Orign | 0.472 0.462 0944 0.926 2.833 2.781 4.721  4.647

Convnext | Roberta | ; 0 | 0.764 0557 1.472 1.102 4.079 3.338 6.494  5.526

Orign | 0.465 0.439 0.928 0.883 2.701 2.674 4.500 4.485
Indra | 0.566 0.485 1.065 0.971 3.179 2907 5.238 4.845

Orign | 0.497 0.467 0.993 0.936 2969 2.822 4.938 4.712
Indra | 0.830 0.774 1.604 1.513 4.549 4.324 7.335 7.019

Dinov2 BERT

Dinov2 Roberta

while Convnext and ViT drop to 30.25% and 32.74%, respectively. In addition, as Gaussian noise
increases, our Indra representations consistently retain higher classification accuracy compared to the
original representations, highlighting their robustness in the classification tasks. The performance
gains of Indra representations hold across multiple backbone architectures (i.e., ViT, Convnext, and
Dinov?2), indicating the broad applicability of the proposed method.

4.2 Evaluation on Vision & Language Modalities

Datasets. We adopt two widely used image-text datasets: MS-COCO [44] and NOCAPS [1] to
evaluate performance on vision and language modalities. MS-COCO serves as a standard benchmark
for image captioning and retrieval tasks, while NOCAPS poses a greater challenge due to its focus on
novel object categories. We use the validation sets of both datasets for evaluation.

Foundation Models. We use the same vision models as in Section 4.1. For language models, we
evaluate BERT [12] and Roberta [46], both of which are pretrained independently on unimodal data
without cross-modal alignment. We include CLIP [62] as the aligned baseline for evaluation.

Evaluation Metrics: We adopt CLIPScore [27] as the evaluation metric, which measures semantic
alignment between image and text based on the cosine similarity of their embeddings within the CLIP
multimodal space. We report Top-k matching accuracy (k € {5, 10,30, 50}) in both text-to-image
(T—1) and image-to-text (I—T) tasks.

Analysis. Table 3 compares the performance of original embeddings versus Indra representations
across both datasets using various combinations of vision and language models. The results clearly



Table 4: Performance on audio-text dataset D using different representations R (Orign: original,
Indra: Indra representation) with various audio (Aud-E) and language (Lan-E) models, where *-b
and *-1 refer to the base and large versions of model *, respectively.

Top-5 Top-10 Top-30 Top-50
T—A A—-T T—A A>T T—A A>T T—A A—-T

‘CLAP—I CLAP-T ‘Orign‘ 1.062 1.836 2.046 3.611 5.726 10.146 9.204 16.225

Orign | 0.319 0.072 0.670 0.276 2.214 1.409 3.655 2.750
Indra | 0.413 0.578 0.819 1.209 2.506 2.953 4.225 4.692

Orign | 0.418 0.308 0.864 0.634 2.548 2.194 4.200 3.738
Indra | 0.363 0.578 0.908 1.243 2.783 2.956 4.640 4.318

Orign | 0.328 0.328 0.659 0.648 2.080 1.920 3.518 3.208
Indra | 0.436 0.578 0.913 1.241 2.493 2.976 4.227 4.338

Orign| 0.472 0.426 0.912 0.876 2.450 2.518 3.997 4.148
Indra | 0.504 0.578 0.971 1.229 2.693 2.967 4.387 4.335

Orign | 0.280 0.431 0.553 0.793 1.978 2.069 3.282 3.240
Indra | 0.322 0.578 0.697 1.232 2.230 2.971 3.880 4.369

Orign | 0.449 0.308 0.861 0.638 2.475 1949 4.119 3.286
Indra | 0.454 0.578 0.878 1.248 2.610 3.003 4.461 4.255

D | Aud-E Lan-E R

wav2vec-b | Roberta

wav2vec-1 | Roberta

wavlm-b Roberta

TIMIT

wavlm-1 Roberta

hubert-b | Roberta

hubert-1 | Roberta

demonstrate that Indra representations lead to consistent performance gains across different archi-
tectures and modalities. Significant improvements are observed in both T—1I and [—T retrieval,
highlighting the effectiveness of our method for cross-modal alignment. These findings suggest that
the Indra representation offers a generalizable mechanism to improve vision-language matching, inde-
pendent of model architecture or dataset. Nonetheless, there remains a noticeable gap in performance
compared to the fully aligned CLIP model, indicating further room for improvement.

4.3 Evaluation on Speech & Language Modalities

Datasets. We adopt the TIMIT dataset [17] for audio and language modality experiments. TIMIT
contains recordings from 630 speakers representing eight major dialect regions of American English,
each reading ten phonetically rich sentences. The dataset provides time-aligned phonetic and word-
level transcriptions along with 165kHz audio recordings.

Foundation Models. For audio models, we evaluate wav2vec [66], wavlm [7], and hubert[29],
using both base and large variants. For the language modality, we use Roberta [46]. All models
are pretrained independently on unimodal data, without any cross-modal alignment. As an aligned
baseline, we include CLAP [77], an audio-language model jointly trained on paired audio-text data.

Evaluation Metrics: Similarly, we adopt CLAPScore [77] as the evaluation metric. We report Top-k
matching (k € {5, 10, 30,50}) in both text-to-audio (T—A) and audio-to-text (A—T) tasks.

Analysis. Table 4 presents the audio-text matching results using different audio models. As shown, the
Indra representations consistently improve matching performance in both directions across all model
configurations. However, compared to the vision-language setting, the improvements in the audio-
language modality are relatively modest. This is likely due to the comparatively weaker capacity of the
audio models used. Nonetheless, we observe that larger audio models yield better matching accuracy,
further supporting the notion that model capacity positively influences cross-modal alignment.

5 Related Work

Instance-Level Representation Learning. In conventional deep learning paradigms, each data
instance is independently encoded into a fixed-dimensional vector, optimized using either supervised
signals or unsupervised objectives. In supervised learning, representations are shaped by categorical
labels [38, 25], whereas in unsupervised settings, objectives such as reconstruction (e.g., autoencoders
[73]) or self-prediction (e.g., BERT [12]) guide the learning of instance-level representations. These



approaches primarily focus on learning standalone embeddings and do not explicitly model the
relationships between samples, either in training or inference stages.

Contrastive Representation Learning. Contrastive methods such as SimCLR [8], MoCo [24],
and BYOL [20] introduce pairwise relational inductive bias during training by encouraging the
embeddings of similar (augmented) views to be close, while pushing apart dissimilar ones. Building
on this framework, CLIP [62] extends contrastive learning to vision-language pretraining by aligning
paired image-text embeddings within a shared multimodal space, enabling strong zero-shot perfor-
mance. BLIP [42] further integrates contrastive and generative objectives to enhance cross-modal
representation learning, achieving state-of-the-art results on several vision-language benchmarks.
Despite these advances, the sample representations in contrastive frameworks remain inherently
instance-centric during inference. Additionally, contrastive learning approaches typically require
large-scale datasets to achieve satisfactory performance, as the training objectives rely heavily on
diverse and abundant positive and negative pairs.

Graph-based Representation Learning. Graph neural networks [35] offer a framework for encoding
relational information through message passing across graph-structured data. Variants such as
GraphSAGE [22] and GAT [71] have improved flexibility and representation ability. However, most
graph-based approaches rely on predefined adjacency structures or proximity assumptions [50], which
may embed inductive biases that are misaligned with the latent semantics of the data. They typically
operate over local k-hop neighborhoods [48], limiting their ability to capture long-range dependencies
unless deeply stacked, which can lead to oversmoothing and degraded performance [43].

Attention-based Representation Learning. Transformer-based architectures [70] offer a powerful
alternative by leveraging global self-attention to aggregate contextual information. Vision Transform-
ers (ViT) [13] and Perceiver [31] have demonstrated that attention-based architectures can be highly
effective even in non-sequential domains. While attention enables global interactions both during
training and inference, the resulting token-level representations are determined through dynamic
mixing rather than explicitly encoding pairwise or global sample-to-sample relationships, making
their geometric interpretation less transparent.

In contrast to the above paradigms, our approach explicitly constructs each representation as a
relational profile, specifically, a distance-based reflection of its relationship to all other samples. This
design is motivated by the philosophical ontology of Indra’s Net, where each entity reflects and is
reflected by all others, forming a holistic network of interdependence. More importantly, our Indra
representation is formally grounded in the Yoneda Lemma from enriched category theory, offering a
theoretically sound and interpretable framework for relational representation learning.

6 Conclusion

In this paper, we present a theoretical and empirical investigation into the convergent behavior of
unimodal foundation models. Motivated by the philosophical metaphor of Indra’s Net and grounded
in enriched category theory, we introduce the Indra representation as a relational encoding that reflects
each sample through its relationships with all others. We demonstrate that this representation can be
derived via the V-enriched Yoneda embedding and instantiated practically using angular distance. Our
theoretical analysis proves that the proposed Indra representations are unique, complete, and structure-
preserving, offering a principled basis for training-free alignment of various foundation models.
Through extensive experiments across single-modality, vision-language, and speech-language settings,
we demonstrate that Indra representations improve robustness and latent cross-modal capabilities of
unimodal foundation models. Our findings suggest a new perspective for bridging modalities, which
emphasizes the importance of the intrinsic relational structure of data or reality.

Limitations. Constructing exact Indra representations requires a computational complexity of O(n?d)
and a memory complexity of O(n?) for a dataset with n samples and embedding dimension d.
This quadratic scaling potentially limits the direct applicability of the exact Indra representations to
large-scale datasets. However, the scalability concern is addressable in practice. In the literature,
there exists a rich body of work on approximating pairwise distances efficiently. For example,
approximate nearest neighbor search (e.g., FAISS, HNSW), landmark-based approximation (e.g.,
K-means centroids, random subsampling), hashing-based methods (locality sensitive hashing), and
sparsified graph constructions. From an application view, these techniques can be readily adapted to
approximate the Indra representation at scale without sacrificing its robustness and interpretation.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Our abstract and introduction clearly showcased our main contributions.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.
* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in Section 6.
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: We provide the details in the supplementary.
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» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We include the implementation details and will release the code for repro-
ducibility.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
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Justification: We will release the code for reproducibility.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We conduct experiments following the standard protocol and include the
experimental details.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We provide the details in the supplementary.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide the details in the supplementary.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have read and follow the rules.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our work has no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have cited the papers that created the datasets.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

19


paperswithcode.com/datasets

14.

15.

16.

Answer: [NA]
Justification: We do not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: We did not use LLMs in our paper except polishing our presentation.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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