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ABSTRACT

Many tasks in natural language processing involve comparing two sentences to
compute some notion of relevance, entailment, or similarity. Typically this com-
parison is done either at the word level or at the sentence level, with no attempt to
leverage the inherent structure of the sentence. When sentence structure is used for
comparison, it is obtained during a non-differentiable pre-processing step, leading
to propagation of errors. We introduce a model of structured alignments between
sentences, showing how to compare two sentences by matching their latent struc-
tures. Using a structured attention mechanism, our model matches possible spans
in the first sentence to possible spans in the second sentence, simultaneously dis-
covering the tree structure of each sentence and performing a comparison, in a
model that is fully differentiable and is trained only on the comparison objective.
We evaluate this model on two sentence comparison tasks: the Stanford natural
language inference dataset and the TREC-QA dataset. We find that comparing
spans results in superior performance to comparing words individually, and that
the learned trees are consistent with actual linguistic structures.

1 INTRODUCTION

There are many tasks in natural language processing that require comparing two sentences: natural
language inference (Bowman et al., 2015; Nangia et al., 2017) and paraphrase detection (Wang
et al., 2017b) are classification tasks over sentence pairs, and question answering often requires an
alignment between a question and a passage of text that may contain the answer (Voorhees & Tice,
2000; Tan et al., 2016; Rajpurkar et al., 2016; Joshi et al., 2017).

Neural models for these tasks almost always perform comparisons between the two sentences either
at the word level (Parikh et al., 2016), or at the sentence level (Bowman et al., 2015). Word-level
comparisons ignore the inherent structure of the sentences being compared, at best relying on a re-
current neural network such as an LSTM (Hochreiter & Schmidhuber, 1997) to incorporate some
amount of context from neighboring words into each word’s representation. Sentence-level compar-
isons can incorporate the structure of each sentence individually (Bowman et al., 2016; Tai et al.,
2015), but cannot easily compare substructures between the sentences, as these are all squashed into
a single vector. Some models do incorporate sentence structure by comparing subtrees between the
two sentences (Zhao et al., 2016; Chen et al., 2017), but require pipelined approaches where a parser
is run in a non-differentiable preprocessing step, losing the benefits of end-to-end training.

In this paper we propose a method, which we call structured alignment networks, to perform com-
parisons between substructures in two sentences, without relying on an external, non-differentiable
parser. We use a structured attention mechanism (Kim et al., 2017; Liu & Lapata, 2017b) to compute
a structured alignment between the two sentences, jointly learning a latent tree structure for each
sentence and aligning spans between the two sentences.

Our method constructs a CKY chart for each sentence using the inside-outside algorithm (Manning
et al., 1999), which is fully differentiable (Li & Eisner, 2009; Gormley et al., 2015). This chart
has a node for each possible span in the sentence, and a score for the likelihood of that span being
a constituent in a parse of the sentence, marginalized over all possible parses. We take these two
charts and find alignments between them, representing each span in each sentence with a structured
attention over spans in the other sentence. These span representations, weighted by the span’s likeli-
hood, are then used to compare the two sentences. In this way we can perform comparisons between
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sentences that leverage the internal structure of each sentence in an end-to-end, fully differentiable
model, trained only on one final objective.

We evaluate this model on several sentence comparison datasets. In experiments on SNLI (Bowman
et al., 2015) and TREC-QA (Voorhees & Tice, 2000), we find that comparing sentences at the span
level consistently outperforms comparing at the word level. Additionally, and in contrast to prior
work (Williams et al., 2017), we find that learning sentence structure on the comparison objective
results in well-formed trees that closely mimic syntax. Our results provide strong motivation for
incorporating latent structure into models that implicitly or expliclty compare two sentences.

2 WORD-LEVEL COMPARISON BASELINE

We first describe a common word-level comparison model, called decomposable attention (Parikh
et al., 2016). This model was first proposed for the natural language inference task, but similar
mechanisms have been used in many other places, such as for aligning question and passage words
in the bi-directional attention model for question answering (Seo et al., 2016). This model serves
as our main point of comparison, as our latent tree matching model simply replaces the word-level
comparisons done in decomposable attention with span comparisons.

The decomposable attention model consists of three steps: attend, compare, and aggregate. As
input, the model takes two sentences a and b represented by sequences of word embeddings
[a1, · · · ,am] and [b1, · · · ,bm]. In the attend step, the model computes attention scores for each
pair of tokens across the two input sentences and normalizes them as a soft alignment from a to b
(and vice versa):

eij = F (ai)
TF (bj) (1)

βi =

n∑
j=1

exp(eij)∑n
k=1 exp(eik)

bj (2)

αi =

m∑
i=1

exp(eii)∑m
k=1 exp(eki)

ai (3)

where F is a feed-forward neural network, βi is the weighted summation of the tokens in b that are
softly aligned to token ai and vice versa for αi.

In the compare step, the input vectors ai and bi are concatenated with their corresponding attended
vector βi and αi, and fed into a feed-forward neural network, giving a comparison between each
word and the words it aligns to in the other sentence:

vai = G([ai,βi]) ∀i ∈ [1, · · · ,m] (4)
vbj = G([bj ,αj ]) ∀j ∈ [1, · · · , n] (5)

The aggregate step is a simple summation of vai and vbj for each token in sentence a and b, and the
two resulting fixed-length vectors are concatenated and fed into a linear layer, followed by a softmax
layer for classification:

va =

m∑
i=1

vai (6)

vb =

n∑
j=1

vnj (7)

y = softmax(H([va,vb])) (8)

The decomposable attention model completely ignores the order and context of words in the se-
quence. There are some efforts strengthening decomposable attention model with a recurrent neural
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A: Boeing is in Seattle      

Boeing is a company based in WAB: 

Figure 1: Example span alignments of a sentence pair, where different colors indicate matching
spans. Note that some spans overlap, which cannot happen in a single tree; our model considers all
possible span comparisons, weighted by the spans’ marginal likelihood.

network (Liu & Lapata, 2017b) or intra-sentence attention (Parikh et al., 2016). However, these
models amount to simply changing the input vectors a and b, and still only perform a token-level
alignment between the two sentences.

3 STRUCTURED ALIGNMENT NETWORKS

Language is inherently tree structured, and the meaning of sentences comes largely from composing
the meanings of subtrees (Chomsky, 2002). It is natural, then, to compare the meaning of two
sentences by comparing their substructures (MacCartney & Manning, 2009). For example, when
determining the relationship between “Boeing is in Seattle” and “Boeing is a company based in
WA”, the ideal units of comparison are spans determined by subtrees: “in Seattle” compared to
“based in WA”, etc. (see Figure 1).

The challenge with comparing spans drawn from subtrees is that the tree structure of the sentence
is latent and must be inferred, either during pre-processing or in the model itself. In this section we
present a model that operates on the latent tree structure of each sentence, comparing all possible
spans in one sentence with all possible spans in the second sentence, weighted by how likely each
span is to appear as a constituent in a parse of the sentence. We use the non-terminal nodes of
a binary constituency parse to represent spans. Because of this choice of representation, we can
use the nodes in a CKY parsing chart to efficiently marginalize span likelihood over all possible
parses for each sentence, and compare nodes in each sentence’s chart to compare spans between the
sentences.

3.1 LEARNING LATENT CONSTITUENCY TREES

A constituency parser can be partially formalized as a graphical model with the following
cliques (Klein & Manning, 2004): the latent variables cijk for all i < j, indicating the span from
the i-th token to the j-th token (spanij) is a constituency node built from the merging of sub-node
spanik and span(k+1)j . Given the sentence x = [xi, · · · , xn], the probability of a parse tree z is,

p(c|x) =
exp(

∑
cijk∈z cijk)∑

z∈Z exp(
∑

cijk∈c cijk)
(9)

where Z represents all possible constituency trees for x.

The parameters to the graph-based CRF constituency parser are the unary potentials γi, reflecting the
score of the token xi forming a unary constituency node and δikj reflecting the score of spanij form-
ing a binary constituency node with k as the splitting point. It is possible to calculate the marginal
probability of each constituency node p(cijk = 1|x) using the inside-outside algorithm (Klein &
Manning, 2003), and marginalize on the splitting points with p(sij = 1|x) =

∑
i≤k<j p(cijk = 1|x)

to compute the probability for a spanij being a constituency node. The inside-outside algorithm is
constrained to generate a binary tree; this is not a severe limitation, however, as most structures can
be easily binarized (Finkel et al., 2008).

In a typical constituency parser, the score δikj is parameterized according to the production rules
of a grammar, e.g., with normalized categorical distributions for each non-terminal. Our unla-
beled grammar effectively has only a single production rule, however, so we instead parameter-
ize these scores as multi-layer perceptrons operating on the representations of the subtrees being
combined. For computational and statistical efficiency given this parameterization, we drop the de-
pendence on the splitting point in this score, resulting in a score for each span δij representing how

3



Under review as a conference paper at ICLR 2018

“constituent-like” the span is, independent of the merging of its children in the tree. This allows
for a slightly-modified computation of the inside score in the inside-outside algorithm. Where the
inside score αij is typically computed as αij =

∑
i≤k<j δikjαikα(k+1)j , we instead compute it as

αij = δij
∑

i≤k<j αikα(k+1)j .

Up to this point, the tags of constituency nodes are not considered1, leading to an unlabeled tree
structure. However, with the binary tree constraint, not all tree nodes are syntactically complete,
and thus some nodes may not be useful for comparison between the sentences. To overcome this,
we introduce two artificial tags T0 and T1, where the former tag represents that this is a comparable
constituent and the latter represents that this is just an intermediate node. In other words, the T1 tag
gives the model a fallback option when the span should not be compared to other spans, but is still
helpful to building the tree structure. The inside pass is described in Algorithm 1, where γ0i and γ1i
are unary potentials for the i-th word being a unary constituent with T0 and T1, and δ0i and δ1i are
potentials for a span being a constituent with T0 and T1.

Algorithm 1 The variant of the Inside algorithm
1: for k:=1 to n: do
2: α0

kk = γ0k
3: α1

kk = γ1k
4: end for
5: for width:=2 to n do
6: for i:=1 to n− width+ 1 do
7: j := i+ width− 1

8: for k:=i+ 1 to k do
9: α0

ij+ = δ0ij(α
0
ikα

0
(k+1)j + α1

ikα
1
(k+1)j + α0

ikα
1
(k+1)j + α1

ikα
0
(k+1)j)

10: α1
ij+ = δ1ij(α

0
ikα

0
(k+1)j + α1

ikα
1
(k+1)j + α0

ikα
1
(k+1)j + α1

ikα
0
(k+1)j)

11: end for
12: end for
13: end for
14: return α0, α1

The α values are the inside scores for all the spans in the sentence, which are basically the un-
normalized scores indicating the whether the spans are proper constituents. After feeding these
values into the outside algorithm, we can obtain the normalized marginal probability for each span
[ρ11, ρ01, · · · , ρij , · · · , ρ(n−1)n, ρnn], where 1 ≤ j ≤ n, 1 < i ≤ j .

When computing the unary and binary potentials γ and δ, we use Long Short-Term Memory Neural
Networks (LSTMs) (Hochreiter & Schmidhuber, 1997) and LSTM span features (Cross & Huang,
2016; Liu & Lapata, 2017a) for representing all the spans. We represent each sentence as a sequence
of word embeddings [wsos,w1, · · · ,wt, · · · ,wn,weos]. We run a bidirectional LSTM over the
sentence and obtain the output vector sequence [h0, · · · ,ht, · · · ,hn+1], where ht = [~ht, ~ht] is the
output vector for the tth token, and ~ht and ~ht are the output vectors from the forward and backward
directions, respectively. We represent a constituent c from position i to j with a span vector spij
which is the concatenation of the vector differences ~hj+1 − ~hi and ~hi−1 − ~hj :

And the potentials are computed by:

γ0ij =MLP 0
u(wi), γ

1
ij =MLP 1

u(wi) (10)

δ0ij =MLP 0
b (spij), δ

1
ij =MLP 1

b (spij) (11)

where MLPT0
and MLPT1

are two multilayer perceptions with a scalar output and ReLU as the
activation function for the hidden layer.

1In computational linguistics, the tags are usually part-of-speech or phrase labels, such as Proper noun,
plural, Coordinating conjunction, or Noun phrase.
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After applying the parsing process on two sentences, we will get the marginal probability for all
potential spans of the two constituency trees, which can then be used for aligning.

3.2 LEARNING STRUCTURED ALIGNMENTS

After learning latent constituency trees for each sentence, we are able to do span-level comparisons
between the two sentences, instead of the word-level comparisons done by the decomposable atten-
tion model. The structure of these two comparison models are the same, but the basic elements of
our structured alignment model are spans instead of words, and the marginal probabilities output
from the inside-outside algorithm are used as a re-normalization value for incorporating structural
information into the alignments.

For sentence a, with LSTM span features, we can obtain the representation for all poten-
tial spans, [spa11, sp

a
12, · · · , spaij , · · · , spa(m−1)m, sp

a
mm] and the marginal probability for them

[ρa11, ρ
a
12, · · · , ρaij , · · · , ρa(m−1)m, ρmm]. And for sentence b, we can also get [spb11, · · · , spbnn] and

[ρb11, · · · , ρbnn].
The attention scores are computed between all pairs of spans across the two sentences, and the
attended vectors can be calculated as:

eij,kl = F (spaij)
TF (spbkl) (12)

βij =

n∑
k=1

n∑
l=k

exp(eij,kl + ln(ρbkl))∑n
s=1

∑n
t=s(exp(eij,st + ln(ρbst))

spbkl (13)

αkl =

m∑
i=1

m∑
j=i

exp(eij,kl + ln(ρaij))∑m
s=1

∑m
t=s exp(est,kl + ln(ρast))

spaij (14)

here the method is similar to the process in the decomposable attention model, but the basic ele-
ments are text spans instead of tokens, and the marginal probabilities output from the inside-outside
algorithm are used as a re-normalization value for incorporating structural information into the align-
ments.

Then, the span vectors are concatenated with the attended vectors and fed into a feed-forward neural
network:

vaij = G([aij ,βij ]) (15)

vbkl = G([bkl,αkl])ρ (16)

To aggregate these vectors, instead of using a direct summation, here we apply a weighted summa-
tion with the marginal probabilities as weights:

va =

m∑
i=1

m∑
j=i

ρaijv
a
ij (17)

vb =

n∑
k=1

n∑
l=1

ρbklv
b
kl (18)

Here ρa and ρb work like the self-attention mechanism in (Lin et al., 2017) to replace the summation
pooling step. The final output will still be obtained by a softmax function:

y = softmax(H([va,vb])) (19)

4 EXPERIMENTS

We evaluate our structured alignment model with two natural language matching tasks: question
answering as sentence selection and natural language inference. Since our approach can be consid-
ered as a module for replacing the widely-used token-level alignment, and can be plugged into other
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neural models, the experiments are not intended to show that our approach can beat state-of-the-
art baselines, but to test whether these methods can be trained effectively in an end-to-end fashion,
can yield improvements over standard token-level alignment models, and can learn plausible latent
constituency tree structures.

4.1 ANSWER SENTENCE SELECTION

We first study the effectiveness of our model for answer sentence selection tasks. Given a question,
answer sentence selection is the task of ranking a list of candidate answer sentences based on their
relatedness to the question, and the performance is measured by the mean average precision (MAP)
and mean reciprocal rank (MRR). We experiment on the TREC-QA dataset (Wang et al., 2007), in
which all questions with only positive or negative answers are removed. This leaves us with 1162
training questions, 65 development questions and 68 test questions. Experimental results of the state-
of-the-art models and our structured alignment model are listed in Table 1, where the performances
are evaluated with the standard TREC evaluation script.

The baseline model is the token-level decomposable attention strengthened with a bidirectional
LSTM at the bottom for obtaining a contextualized representation for each token. For selecting
the answer sentences, we consider this as a binary classification problem and the final ranking is
based on the predicted possibility of being positive. We use 300-dimensional 840B GloVe word
embeddings (Pennington et al., 2014) for initialization. The hidden size for BiLSTM is 150 and the
feed-forward neural networks F and G are two-layer perceptrons with ReLU as activation function
and 300 as hidden size. We apply dropout to the output of the BiLSTM and two-layer perceptrons
with dropout ratio as 0.2. All parameters (including word embeddings) were updated with Ada-
grad (Duchi et al., 2011), and the learning rate was set to 0.05. Since the structure of the question
and the answer sentence may be different, we use two variants of the structured alignment model in
the experiment; the first shares parameters for computing the structures and the second uses separate
parameters.

Models MAP MRR
QA-LSTM (Tan et al., 2017) 0.730 0.824
Attentive Pooling Network (Santos et al., 2016) 0.753 0.851
Pairwise Word Interaction (He & Lin, 2016) 0.777 0.836
Lexical Decomposition and Composition (Wang et al., 2016) 0.771 0.845
Noise-Contrastive Estimation (Rao et al., 2016) 0.801 0.877
BiMPM (Wang et al., 2017b) 0.802 0.875
Decomposable Attention (Parikh et al., 2016) 0.764 0.842
Structured Alignment (Shared Parameters) (ours) 0.770 0.850
Structured Alignment (Separated Parameters) (ours) 0.776 0.850

Table 1: Results of our models (bottom) and others (top) on the TREC-QA test set.

From the results we can see that on both the MAP and MRR metrics, structured alignment models
perform better than the decomposable attention model, showing that the structural bias is helpful
for matching the question to the correct answer sentence. Furthermore, the setting of separated
parameters achieves higher scores on both metrics.

4.2 NATURAL LANGUAGE INFERENCE

The second task we consider is natural language inference, where the input is two sentences, a
premise and a hypothesis, and the goal is to predict whether the premise entails the hypothesis,
contradicts the hypothesis, or neither. For this task, we use the Stanford NLI dataset (Bowman et al.,
2015). After removing sentences with unknown labels, we obtained 549,367 pairs for training,
9,842 for development and 9,824 for testing.

The baseline decomposable attention model is the same as in the question answering task. The hid-
den size of the LSTM was set to 150. We used 300-dimensional Glove 840B vectors to initialize the
word embeddings. All parameters (including word embeddings) were updated with Adagrad (Duchi
et al., 2011), and the learning rate was set to 0.05. The hidden size of the two-layer perceptrons was
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Models Acc
Classifier with handcrafted features (Bowman et al., 2015) 78.2
LSTM encoders (Bowman et al., 2015) 80.6
Stack-Augmented Parser-Interpreter Neural Net (Bowman et al., 2016) 83.2
LSTM with inter-attention (Rocktäschel et al., 2016) 83.5
Matching LSTMs (Wang & Jiang, 2015) 86.1
LSTMN with deep attention fusion (Cheng et al., 2016) 86.3
Enhanced BiLSTM Inference Model (Chen et al., 2016) 88.0
Densely Interactive Inference Network Gong et al. (2017) 88.0
Decomposable Attention (Parikh et al., 2016) 85.8
Structured Alignment (ours) 86.6

Table 2: Test accuracy on the SNLI dataset.

set to 300 and dropout was used with ratio 0.2. The structured alignment model in this experiment
uses shared parameters for computing latent tree structures, since both the premise and hypothesis
are declarative sentences.

The results of our experiments are shown in Table 2. Our structured alignment model gains almost
a full point of accuracy (a 6% error reduction) over the baseline word-level comparison model with
no additional annotation, simply from introducing a structural bias in the alignment between the
sentences.

Table 2 shows the performances of the state-of-the-art models and our approaches. Similar to the
answer selection task, the tree matching model outperforms the decomposable model stably.

4.3 ANALYSIS OF LEARNED TREE STRUCTURES

Here we give a brief qualitative analysis of the automatically learned tree structures. We present the
CKY charts for two randomly-selected sentences in the SNLI test set in Figure 2. Recall that the
CKY chart shows the likelihood of each span appearing as a constituent in the parse of the sentence,
marginalized over all possible parses. By looking at these span probabilities, we can see that the
model learned a model of sentence structure that corresponds well to known syntactic structures.

In the first example, we can see that “five children playing soccer” is a very likely span, as is “chase
after a ball”. Nonsensical spans, such as “playing soccer chase”, have very low probability. In the
second example, we can see that the model can even resolve some attachment ambiguities correctly.
The prepositional phrase “at a large venue”, which our model correctly identifies as a likely con-
stituent in this sentence, has a very low score for attaching to “music” to form the constituent “music
at a large venue”. Instead, the model (correctly) prefers to attach “at a large venue” to “playing”,
giving the span “playing music at a large venue”.

Our model is able to recover tree structures that very closely mimic syntax, without ever being given
any access to syntactic supervision. This is in contrast to prior work by Williams et al. (2017), who
were unable to learn syntax trees from a semantic objective. We use the same supervision as their
model; we hypothesize that the difference in result is that they were trying to learn tree structures for
each sentence independently, only performing comparisons at the sentence level. Comparing spans
directly forces the model to induce trees with comparable constituents, giving the model a strong
signal that was lacking in prior work.

5 RELATED WORK

Sentence comparison models: The Stanford natural language inference dataset (Bowman et al.,
2015), and the expanded multi-genre natural language inference dataset (Nangia et al., 2017), are
the most well-known recent sentence comparison tasks. The literature of models addressing this
comparison task is far too extensive to include here, though the recent shared task on Multi-NLI
gives a good survey of sentence-level comparison models (Nangia et al., 2017). Some of these
sentence-level comparison models do use sentence structure, obtained either latently (Bowman et al.,
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 five children playing soccer chase after a ball 
five         

children         

playing         

soccer         

chase         

after         

a         

ball         

� (a) Example sentence 1

 the band is playing music at a large venue 
the          

band          

is          

playing          

music          

at          

a          

large          

venue          

� (b) Example sentence 2

Figure 2: CKY charts showing marginalized span probabilities for two sentences in the SNLI test
set. Each cell uses depth of the color to represent the probability of the span from the i-th word to
the j-th word forming a proper constituent. Both trees capture the correct linguistic structure of the
sentence.

2016) or during pre-processing (Zhao et al., 2016), but they squash all of the structure into a single
vector, losing the ability to easily compare substructures between the two sentences.

For models doing a word-level comparison, the decomposable attention model, which we have dis-
cussed already in this paper (Parikh et al., 2016), is the most salient example, though many similar
models exist in the literature (Chen et al., 2017; Wang et al., 2017b). The idea of word-level align-
ments between a question and a passage of text is also pervasive in the recent question answering
literature (Seo et al., 2016; Wang et al., 2017a).

Finally, and most similar to our model, there have been many sentence comparison models proposed
that directly compare subtrees between the two sentences (Chen et al., 2017; Zhao et al., 2016).
However, all of these models are pipelined; they obtain the sentence structure in a non-differentiable
preprocessing step, losing the benefits of end-to-end training. Ours is the first model to allow com-
parison between latent tree structures, trained end-to-end on the comparison objective.

Structured attention: While it has long been known that inference in graphical models is differen-
tiable (Li & Eisner, 2009; Domke, 2011), and using inference in, e.g., a CRF (laf, 2001) as the last
layer in a neural network is common practice (Liu & Lapata, 2017a; Lample et al., 2016), including
inference algorithms as intermediate layers in end-to-end neural networks is a recent development.
Kim et al. (2017) were the first to use inference to compute structured attentions over latent sen-
tence variables, inducing tree structures trained on the end-to-end objective. Liu & Lapata (2017b)
showed how to do this more efficiently, though their work was still limited to structured attention
over a single sentence. Our model is the first to include latent structured alignments between two
sentences.

Inferring latent trees: Unsupervised grammar induction is a well-studied problem (Cohen &
Smith, 2009). The most recent work in this direction was the Neural E-DMV model of Jiang et al.
(2016). While our goal is not to induce a grammar, we do produce a probabilistic grammar as a
byproduct of our model. Our results suggest that training on more complex objectives may be a
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good way to pursue grammar induction in the future; forcing the model to construct consistent,
comparable subtrees between the two sentences is a strong signal for grammar induction.

6 CONCLUSION

We have considered the problem of comparing two sentences in natural language processing models.
We have shown how to move beyond word- and sentence-level comparison to comparing spans
between the two sentences, without the need for an external parser. Through experiments on several
sentence comparison datasets, we have seen that span comparisons consistently outperform word-
level comparisons, with no additional supervision. We additionally found our model was able to
discover latent tree structures that closely mimic syntax, without any syntactic supervision.

Our results have several implications for future work. First, the success of span comparisons over
word-level comparisons suggests that it may be profitable to include such comparisons in more
complex models, either for comparing two sentences directly, or as intermediate parts of models
for more complex tasks, such as reading comprehension. Second, though we have not yet done a
formal comparison with prior work on grammar induction, our model’s ability to infer trees that
look like syntax from a semantic objective is intriguing, and suggestive of future opportunities in
grammar induction research. Also, the speed of the model remains a problem, with the inside-
outside algorithm involved, the speed of the full model will be be 15-20 times slower than the
decomposable attention model, mainly due the the fact this dynamic programming method can not
be effectively accelerated on a GPU.
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Tim Rocktäschel, Edward Grefenstette, Karl Moritz Hermann, Tomáš Kočiskỳ, and Phil Blunsom.
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