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Abstract

Deep neural networks often underperform on tabular data due to sensitivity to ir-
relevant features and a spectral bias toward smooth, low-frequency functions, lim-
iting their ability to capture sharp, high-frequency signals in low-label regimes.
While self-supervised learning (SSL) holds promise in such settings, it remains
challenging in tabular domains due to the limited availability of effective data aug-
mentations. We introduce TANDEM (Tree-And-Neural Dual Encoder Model), a
hybrid autoencoder that trains a neural encoder alongside an oblivious soft deci-
sion tree (OSDT) encoder, both guided by dedicated stochastic gating networks for
sample-specific feature selection. The encoders share a decoder and are coupled
via alignment losses, encouraging complementary yet consistent representations.
The training-only use of the tree operates as model-based augmentation, nudging
representations toward tabular-relevant features while preserving a lean inference
path (only the neural encoder is deployed). Spectral analysis highlights distinct
yet complementary inductive biases across encoders, and experiments on classifi-
cation and regression benchmarks in low-label settings show consistent gains over
strong deep, tree-based, and SSL baselines.

1 Introduction

In many real-world applications, tabular data is the dominant data format, especially in domains such
as healthcare and finance. Tree-based methods, such as gradient-boosted decision trees (GBDT) [6],
XGBoost [5], or CatBoost [14], are often the go-to models for classification tasks on tabular data,
consistently delivering strong performance with minimal tuning. While deep neural networks have
achieved impressive results in domains like vision and language, they often struggle to match the per-
formance of tree-based models in tabular settings. One contributing factor is the spectral inductive
bias of neural networks: they tend to favor smooth, low-frequency functions, which may not align
well with the complex, irregular, and often high-frequency patterns found in tabular datasets [15].
This limitation becomes especially pronounced when modeling interactions between heterogeneous
features, such as mixed categorical and numerical variables. Moreover, tabular datasets often include
nuisance features—variables that are irrelevant or misleading in specific contexts. Neural networks
often struggle to isolate and suppress these features, resulting in overfitting or poor generalization.

In many real-world tabular domains, such as healthcare, biology, and finance, labeled data is scarce
and expensive, while unlabeled data is often abundant. This has led to growing interest in self-
supervised learning (SSL) methods that can leverage unlabeled data to improve performance in
low-label settings. However, applying SSL to tabular data is particularly challenging. Common
augmentations such as noise injection or feature value swapping often distort critical feature re-
lationships or create unrealistic samples, especially in the presence of categorical variables [18].
As a result, general-purpose augmentation strategies are challenging to design and often require
dataset-specific tuning.
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To address this, Masked Autoencoders (MAEs) have been proposed as a more structure-preserving
alternative. By learning to reconstruct selectively masked inputs, they provide a principled method
for training models that does not rely on potentially unreliable augmentations. Yet even MAEs face
limitations when applied to heterogeneous tabular data, where the semantics of categorical features
may be lost or misrepresented during corruption and reconstruction [12].

To mitigate these challenges, we propose TANDEM (Tree-And-Neural Dual Encoder Model), an
alternative strategy that shifts the focus from data augmentation to model enrichment. Our approach
employs a hybrid self-supervised autoencoder architecture composed of two fundamentally different
encoder types: a deep neural network (NN) and an oblivious soft decision tree (OSDT), both trained
jointly through a shared decoder. Alignment losses are used to promote consistency across the
representations learned by each encoder. The OSDT encoder introduces strong inductive biases that
are particularly well suited to tabular data, capturing sharp, high-frequency patterns and conditional
feature interactions. Through joint training, it shapes the NN encoder’s representations, encouraging
more structured and robust encoding. At inference time, only the NN encoder is used, preserving
the flexibility and compatibility of neural networks with downstream tasks. By combining these
complementary behaviors during training, the model learns a more effective latent space for few-
shot classification without relying on predefined augmentation schemes.

In addition, we incorporate separate sample-specific stochastic gating networks for each encoder,
which are trained jointly with the autoencoder using the same reconstruction objective. These gat-
ing networks function as dynamic, sample-dependent feature selectors, serving as model-specific
data transformations. The gating mechanism selectively filters out less relevant variation while pre-
serving the information necessary for accurate reconstruction, resulting in input transformations that
preserve semantic structure while tailoring the feature space to the strengths of each encoder. Rather
than distorting the data through fixed augmentations, the gating networks act as learnable, sample-
specific filters that suppress irrelevant or noisy variation. This process helps the neural encoder
overcome its bias toward smooth, low-frequency patterns, enabling both encoders to capture the
signal more effectively in low-label regimes.

Our main contributions are as follows:

(1) We introduce TANDEM, a hybrid self-supervised autoencoder that combines a neural encoder,
an oblivious soft decision tree encoder, a shared decoder, and sample-specific stochastic gating
networks, enabling the learning of complementary representations suited to tabular data.
(2) We demonstrate that the representations learned by the neural encoder enable strong performance
for both classification and regression tasks under low-label conditions, surpassing established deep
learning and tree-based baselines.
(3) We conduct extensive experiments across a diverse suite of tabular datasets and systematically
vary the number of labeled samples (from 50 to 1000 per dataset), establishing the robustness of
TANDEM in a range of low-label regimes.
(4) We provide both qualitative spectral analysis and quantitative comparison of gating activations,
revealing how the two encoders capture distinct and complementary inductive biases.

2 Related Work

Regression and Classification on Tabular Data: Tree-Based and Deep Learning Models Tab-
ular data remains central in real-world applications such as healthcare, finance, and recommendation
systems. Classical approaches, including linear regression, logistic regression, and decision trees,
have long been used due to their simplicity and interpretability. Among modern methods, ensemble-
based models like GBDT, XGBoost, and CatBoost consistently dominate benchmarks, due to their
ability to model nonlinear feature interactions and handle heterogeneous inputs with minimal tun-
ing [6, 5, 14]. Motivated by the successes of deep learning in vision and language, several works
have adapted neural architectures to tabular data. DeepTLF aligns numerical and categorical fea-
tures [4], TabM simulates ensembles within compact MLPs [7], and TabPFN frames classification
as probabilistic inference via synthetic pretraining [10]. SAINT and FT-Transformer apply attention
to tabular structure [19, 8], while LSPIN introduces locally sparse neural networks with sample-
specific masks [24]. Other lines of work incorporate tree-based structures into differentiable mod-
els. Soft Decision Trees (SDTs) [27] use smooth gating functions for gradient-based optimization.
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Figure 1: Overview of the TANDEM architecture. Input X is augmented via two distinct stochas-
tic gating networks, producing separate masked views for a neural encoder and an OSDT encoder,
each of which is illustrated to the right to reflect their respective inductive biases. TANDEM is
trained using reconstruction loss, alignment loss, and latent representation similarity (LRS) loss.
During inference, only the neural encoder and the MLP classifier are used to predict the output label
ŷ, based on the view gated by the neural encoder’s gating net.

Oblivious Soft Decision Trees (OSDTs) [13] impose depth-wise consistency in splits, improving
interpretability and stability. These models, however, rely solely on labeled data.

Self-Supervised Learning in Tabular Data Several self-supervised methods apply reconstruc-
tion objectives to tabular data. SubTab reconstructs full inputs from masked subsets [21], VIME
adds masking and noise with an auxiliary corruption-prediction task [25], and SCARF aligns clean
and corrupted views via contrastive learning [2]. These methods rely on fixed corruption schemes
or handcrafted views, which may not generalize across datasets. In contrast, our approach applies
learnable, sample-specific transformations tailored to the input distribution. Tree-based autoen-
coders have also been proposed, using differentiable trees as both encoder and decoder [26]. While
these models reduce dimensionality and capture hierarchy, they are constrained by tree inductive
biases. Unlike ours, they lack the flexibility and generalization of neural networks. TANDEM
addresses this by combining tree-based and neural encoders to capture complementary inductive
biases.

Unsupervised Feature Selection for Tabular Data Unsupervised feature selection identifies in-
formative features without requiring labels, often for tasks such as reconstruction or clustering. Reg-
ularized autoencoders learn global feature subsets for reconstruction [17]. More recent approaches
use stochastic gating networks [20], which learn per-sample, input-dependent soft masks for context-
aware selection. While prior work uses gating for sparsity or interpretability, we reinterpret them
as a learnable augmentation mechanism. In TANDEM, gating networks are trained jointly with
cross-reconstruction: one is applied globally to the neural encoder input, and others are hierar-
chically applied across OSDT layers. This enables model-specific and sample-specific views that
suppress nuisance features and emphasize the shared, informative structure for reconstruction and
downstream learning.

3 Method

We address semi- and self-supervised representation learning for tabular data with scarce labels.
Let the unlabeled pool be Dunlab = {xn}Nn=1 ⊂ RD and the labeled set Dlab = {(xm, ym)}Mm=1,
where M ≪ N . Our goal is to learn useful embeddings from Dunlab that improve downstream
classification or regression on Dlab.
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Model. TANDEM is a hybrid masking autoencoder with complementary encoders and a shared
decoder. Each input x ∈ RD is first passed through a sample-specific gating network (STG) that
outputs a feature mask g(x) ∈ [0, 1]D. The masked view x̃ = x⊙g(x) is fed in parallel to: (i) a fully
connected neural encoder producing zNN ∈ Rk, and (ii) an ensemble of Oblivious Soft Decision
Trees (OSDTs) producing zOSDT ∈ Rk. A shared decoder h reconstructs to x̂NN = h(zNN) and
x̂OSDT = h(zOSDT), both in RD. Over a batch, this yields ZNN, ZOSDT ∈ RB×k and X̂NN, X̂OSDT ∈
RB×D.

Training and use. Pretraining is performed on Dunlab using the masked-reconstruction objective
(with auxiliary consistency terms defined later). After pretraining, downstream heads are trained
on Dlab. At inference, only the neural encoder and a lightweight predictor are used. The training
objective combines three components: a reconstruction loss for each autoencoder, an alignment loss
between their reconstructions, and a similarity loss between the latent representations. Together,
these losses regularize the model and promote consistency across encoders with different inductive
biases. This design enables the neural encoder to leverage the structured, high-frequency inductive
bias of the OSDT encoder, as further demonstrated in our spectral analysis 5.

3.1 Oblivious Soft Decision Tree Encoder

The OSDT encoder consists of an ensemble of shallow, differentiable binary decision trees [27]
with fixed depth L. Each tree follows the oblivious decision tree structure, where all internal nodes
at the same level share a single projection vector. This constraint ensures a consistent, hierarchical
partitioning of the input space, thereby reducing variability in decision logic across paths. At each
tree level ℓ ∈ {1, . . . , L}, a learned projection vector wℓ ∈ RD is used to compute a soft split score
from the (potentially gated) input x ∈ RD, using the equation sℓ(x) = ⟨wℓ, x⟩−τℓ, where τℓ ∈ R is
a learned threshold. The score is passed through a temperature-scaled sigmoid to produce left/right
routing probabilities: σ±

ℓ (x) = σ
(
± sℓ(x)

Tℓ

)
. Each of the 2L leaf nodes corresponds to a binary code

b ∈ {0, 1}L, and the probability of reaching a given leaf is computed as:

pleaf(x) =

L∏
ℓ=1

[
σ+
ℓ (x)

]bℓ · [σ−
ℓ (x)

]1−bℓ
.

Each tree produces a soft distribution over its 2L leaves, representing the probability of reaching
each path. These leaf probabilities are concatenated to form the tree’s latent output, denoted by
fOSDT
t (x) ∈ R2L . The final representation of the encoder is obtained by averaging these vectors

across all T trees:

zOSDT(x) =
1

T

T∑
t=1

fOSDT
t (x) ∈ R2L .

This vector zOSDT serves as the latent representation of the tree encoder and is passed to the shared
decoder. For further details on oblivious differentiable tree-based encoders, we refer readers to the
NODE paper [13].

3.2 Training Objective

TANDEM’s training objective is designed to align the two encoder streams while preserving their in-
dividual inductive biases. It combines three loss components: a reconstruction loss for each encoder,
an alignment loss between the reconstructions, and a term measuring the similarity of the latent rep-
resentations. The reconstruction loss encourages each encoder to preserve semantic structure from
its gated input, ensuring that both the neural and tree-based views remain informative:

Lrecon =
1

N

N∑
m=1

(
∥xm − x̂OSDT

m ∥22 + ∥xm − x̂NN
m ∥22

)
,

where xm is the input vector of the m-th sample, and x̂NN
m , x̂OSDT

m are the reconstructed outputs of
the neural and OSDT encoders, respectively. To promote consistency between the outputs of the two
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encoders, we apply an alignment loss between their reconstructions:

Lalign =
1

N

N∑
m=1

∥x̂OSDT
m − x̂NN

m ∥22.

Finally, we enforce agreement in the latent space by minimizing the average cosine distance between
the latent vectors produced by each encoder:

LLRS =
1

N

N∑
m=1

(
1− ⟨zNN

m , zOSDT
m ⟩

∥zNN
m ∥2 · ∥zOSDT

m ∥2

)
,

where zNN
m and zOSDT

m are the latent vectors of the m-th sample, produced by the neural and OSDT
encoders, respectively. The combined objective balances encoder-specific reconstruction with cross-
view consistency, encouraging complementary yet compatible representations.

3.3 Stochastic Gating Network as Sample-Level Masking

We implement a sample-specific gating mechanism that selects input features through stochastic,
differentiable masks. Given an input x ∈ RD, a neural gating network fθ(x) produces a parameter
vector µ(x) ∈ RD. A gating vector g(x) ∈ [0, 1]D is then sampled using a clipped Gaussian
perturbation:

g(x) = max(0,min(1, 0.5 + µ(x) + ϵ)), ϵ ∼ N (0, σ2).

We fix σ = 0.5 throughout training, as suggested in [23, 11]. The injected noise encourages the
values of gd(x) toward binary decisions, while preserving gradient flow.

x̃ = x⊙ g(x).

In the neural encoder, a single gating network fθNN computes a global mask. In contrast, the OSDT
encoder uses a distinct gating network at each tree level ℓ ∈ {1, . . . , L}, producing a level-specific
mask gOSDT

ℓ (x) ∈ [0, 1]D. This mask is applied before computing the soft split score:

x̃ℓ = x⊙ gOSDT
ℓ (x), sℓ(x) = ⟨wℓ, x̃ℓ⟩ − τℓ.

This structure allows the OSDT encoder to learn different feature selections at different depths,
supporting hierarchical and progressively refined decisions. Although the gating networks are pa-
rameterized and trained independently within each encoder, they are jointly guided via the shared
decoder and alignment objectives. This coordination implicitly aligns the gating behavior across
encoders, while allowing each to exploit its architectural inductive bias.

4 Experiments and Results

We evaluate whether combining neural and tree-based encoders with a sample-specific gating mech-
anism improves performance on both classification and regression tasks in tabular datasets, particu-
larly when labeled examples are scarce. We aim to assess the utility of self-supervised pretraining
for generating effective representations under such low-supervision settings.

4.1 Dataset Selection and Preprocessing

Our experiments are conducted in the low-label regime where labeled budgets range from 50 to 1000
samples per dataset, enabling consistent evaluation under limited supervision. We used all relevant
classification datasets from OpenML analyzed in two widely cited studies on the limitations of deep
learning for tabular data [9, 18]. We retained only datasets with at least 2,500 samples per class.
For each class, 2,000 samples were allocated for self-supervised pretraining, and up to 1,000 labeled
samples in total (across classes) were reserved for downstream evaluation. This filtering resulted in
19 classification datasets. For regression, we extracted 13 datasets that satisfy the same filtering as
in the classification benchmark from the same OpenML sources referenced above. All datasets were
preprocessed using a fixed pipeline: categorical features were one-hot encoded, numerical features
were min-max normalized to [0, 1], and missing values were imputed with the column-wise mean.
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Figure 2: Architecture of the OSDT encoder in TANDEM. At each depth ℓ ∈ {1, . . . , L}, the input
x is gated by a dedicated gating network gℓ, producing a masked vector x̃ℓ = x ⊙ gℓ. This masked
input is projected by a learnable vector wℓ and compared against a threshold τℓ, producing a soft
binary decision. Probabilities propagate through the tree to define pb, the soft path probability to
leaf Rb. The final output of the encoder is the concatenation of all leaf probabilities, ZOSDT ∈ R2L ,
serving as a disentangled latent representation.

4.2 Training and Evaluation Setup

Pretraining was run for 100 epochs with a batch size of 128, and this configuration was held constant
across all experiments to ensure fair and consistent comparison. We used RMSprop as the optimizer
for both pretraining and fine-tuning across all models. The training objective combined reconstruc-
tion, output alignment, and latent similarity losses, as described in Section 3. Hyperparameters,
including learning rate, encoder depth, and weight decay, were selected using Optuna over 50 trials
based on the validation loss. Complete optimization, including computational details and parameter
ranges, is provided in the appendix.

For downstream evaluation, a single-layer MLP classifier or regressor was trained on the labeled
subset using the neural encoder. The encoder was frozen for the first 25 epochs, then fine-tuned for
an additional 25 epochs at a reduced learning rate. Early stopping was based on validation accuracy
or MSE, as appropriate. If present, the gating network was kept frozen during fine-tuning and used
as a per-sample feature selector; it consisted of a two-layer MLP with tanh activations and a hard-
sigmoid output that produced binary masks.

We evaluate two groups of baselines under identical data budgets. Supervised-only methods are
trained solely on the labeled subset and include multinomial logistic regression (classification), lin-
ear regression (regression), a standard MLP, XGBoost [5], CatBoost [14], TabM [7], DeepTLF [4],
and TabNet (supervised) [1]. Self-supervised + fine-tuning methods are pretrained on the same un-
labeled pool we use (2,000 samples per class) and then fine-tuned on the labeled subset; this group
includes VIME [25], SCARF [2], SubTab [21], and TabNet with self-supervised pretraining [1].
Following the authors’ guidance, TabPFN [10] is used only for classification. For TabNet, we re-
port the stronger of its supervised and self-supervised variants for each task. Across all methods,
hyperparameters are tuned using Optuna (50 trials), and model selection is based on validation per-
formance (accuracy for classification and MSE for regression). For component analysis, we report
ablations of our approach: (1) SS-AE, (2) SS-AE + gating, (3) SS-AE with an OSDT encoder and
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Table 1: Comparison across models on classification datasets (400 labeled samples). Best results
per row are in bold.

Dataset MLogReg TabNet DeepTLF TabM TabPFN XGBoost CatBoost MLP TANDEM

CP 0.4927 0.6000 0.5438 0.5827 0.5998 0.5822 0.5401 0.5792 0.6779
MT 0.7521 0.6781 0.6757 0.7720 0.8139 0.7868 0.7929 0.7798 0.8180
OG 0.6228 0.5736 0.3712 0.6228 0.6514 0.6136 0.6363 0.6321 0.6870
PW 0.9373 0.5906 0.9281 0.9384 0.9477 0.9353 0.9327 0.9315 0.9618
AD 0.7992 0.6583 0.7645 0.8115 0.8199 0.7875 0.8019 0.8006 0.8200
ALB 0.6065 0.5708 0.5512 0.6196 0.6494 0.6096 0.6354 0.5929 0.7038
BM 0.8325 0.5458 0.6306 0.8132 0.8241 0.7991 0.8171 0.7913 0.8233
CO 0.4624 0.4618 0.4881 0.5049 0.5485 0.5326 0.4975 0.4963 0.5491
CC 0.6169 0.5458 0.6302 0.6218 0.6451 0.6780 0.6690 0.7190 0.7331
EL 0.6617 0.5391 0.6424 0.6610 0.7723 0.7668 0.7654 0.7525 0.6940
HE 0.4593 0.3779 0.3844 0.4811 —∗ 0.4590 0.4853 0.4448 0.5462
HI 0.5454 0.4984 0.4965 0.5532 0.6499 0.6096 0.6069 0.6035 0.6459
JA 0.5105 0.4930 0.4649 0.5743 0.5986 0.5409 0.5413 0.5417 0.5660
NU 0.4833 0.5016 0.4932 0.5221 0.4333 0.5308 0.5231 0.5517 0.6545
RS 0.6992 0.5063 0.6590 0.7886 0.7554 0.7057 0.7328 0.7243 0.7576
VO 0.4624 0.4389 0.3966 0.4790 0.5082 0.4736 0.4975 0.5400 0.5220
POL 0.8515 0.7511 0.5000 0.7480 0.9520 0.9425 0.9330 0.9321 0.9538
CA 0.8400 0.6667 0.6930 0.8107 0.8703 0.8416 0.8400 0.8330 0.8921
EY 0.4862 0.3655 0.3753 0.5058 0.5811 0.5461 0.5400 0.5245 0.5928

Mean Accuracy 0.6380 0.5454 0.5626 0.6532 0.7012 0.6706 0.6731 0.6721 0.7124
Mean Rank 6.16 8.00 8.05 4.84 2.56 4.47 4.16 4.84 1.58

∗TabPFN supports a maximum of 10 classes and could not be evaluated on the helena dataset (13 classes); TabPFN’s mean/rank exclude that
dataset.
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Figure 3: Classification accuracy distribution
across models. Boxplot across baseline models
and TANDEM; red lines denote the mean and
black lines denote the median.
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Figure 4: Classification Dolan–Moré pro-
files. Model accuracy relative to the per-dataset
best; higher curves indicate stronger perfor-
mance across datasets.

neural decoder, (4) TANDEM without gating, and (5) TANDEM without the latent similarity and
alignment losses; all ablations share the same decoder and architectural settings.

4.3 Experimental Setup

Each experiment was repeated 100 times with varying seeds and splits. We report mean accuracy
(classification) or mean MSE (regression) per dataset, along with aggregated mean accuracy, mean
MSE, and mean rank across all datasets. Additional statistics, including standard deviations and
further details on datasets, are provided in the appendix.

4.4 Benchmarks (Classification & Regression)

Performance against baselines at 400 labels. Table 1 and Figure 3 (classification, 400 labels)
show that TANDEM achieves the highest mean accuracy and the best average rank, with TabPFN
as the closest competitor. For regression at the same label budget, Table 2 and Figure 5 indicate that
TANDEM attains the lowest mean MSE and the best mean rank, with XGBoost as the nearest com-
petitor. In both tasks, TANDEM is competitive or best on most datasets and delivers the strongest
overall results; the Dolan–Moré curves [16] (Figures 4, 6) further underscore its robustness across
datasets.
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Table 2: Comparison across models on regression datasets (400 labeled samples). Best results per
row are in bold.

Dataset CatBoost LogReg MLP SCARF SubTab VIME TabM TabNet XGBoost TANDEM

BSD 0.1506 0.6088 0.5395 0.7377 0.5778 0.5699 0.4922 0.7634 0.1742 0.0722
BH 0.0291 0.0020 0.0021 0.0382 0.0047 0.0347 0.0012 0.0703 0.0302 0.0011
MBGM 0.5206 2.0242 0.6508 0.7517 0.6400 0.7208 0.6666 1.0083 0.5612 0.3354
SGEM 0.0340 0.0041 0.0017 0.0038 0.0113 0.1848 0.0032 0.0231 0.0171 0.0025
AS 0.0329 0.5474 0.0515 0.1331 0.3336 0.7107 0.0487 0.2463 0.0264 0.0297
BF 0.6565 0.8731 0.8931 0.8461 0.8874 0.9215 0.8409 0.9067 0.6986 1.0057
CO 0.7047 0.8370 0.7711 0.8030 0.7869 0.8152 0.8055 0.9399 0.7395 0.7334
DI 0.0889 0.2330 0.0531 0.1252 0.1102 0.1354 0.0475 0.2908 0.0675 0.0498
EL 0.1645 0.5115 0.2290 0.2244 0.2331 0.1732 0.1549 0.2013 0.1549 0.1835
EY 0.4987 0.5237 0.5533 0.6110 0.5825 0.5591 0.5577 0.6253 0.4805 0.4143
HS 0.3761 0.3960 0.2664 0.3198 0.3519 0.4175 0.5212 0.3923 0.2950 0.1436
VS 0.0015 0.1682 0.0013 0.0094 0.0086 0.3711 0.0030 0.0483 0.0068 0.0024
YP 1.0557 2.2639 1.0278 1.0804 1.1325 1.1236 1.0419 1.2104 1.1751 1.2300

Mean MSE 0.3318 0.6918 0.3877 0.4372 0.4354 0.5183 0.4006 0.5174 0.3405 0.3234
Mean Rank 4.00 8.38 4.38 7.23 7.08 8.46 4.85 9.38 4.15 3.38

Figure 5: Regression MSE distribution across
models. Boxplot across baseline models and
TANDEM; red lines denote the mean and black
lines denote the median.

Figure 6: Regression Dolan–Moré profiles.
Model MSE relative to the per-dataset best;
higher curves indicate stronger performance
across datasets.

Ablation studies (shared design). Tables 3 (classification) and 4 (regression) assess matched ab-
lations under the 400-label setting. Across both tasks, removing gating or omitting either encoder
degrades performance, whereas full TANDEM, combining the neural and tree encoders with gating,
consistently yields the strongest results.

Performance across label budgets (50–1000 labels). Figure 7 tracks mean performance as label
budgets increase from 50 to 1000 in both classification (left) and regression (right). Across both
tasks, TANDEM is consistently either the top method or competitive with the best throughout the
low-label regime (50–1000 labels).

5 Understanding Complementary Gating Behaviors via Frequency
Decomposition

To better understand the role of sample-specific gating networks, we analyze how gating affects the
spectral composition of the input within a single class. For each dataset, we identify the class in
which TANDEM achieves the highest classification accuracy and restrict our analysis to samples
from that class. We then compute the unnormalized discrete Fourier transform (NUDFT) over the
50 most variant features, comparing the resulting frequency distributions across different gated and
ungated versions of the input.

To analyze the effect of gating on the spectral composition of the input, we compare the spectrum of
the original input x to its transformed versions under different gating mechanisms. Specifically, we
evaluate the gated input x̃NN = x ⊙ gNN(x) produced by the stochastic gating network connected
to the neural encoder (as defined in Section 3.3), and the input gated by the tree-based mechanism

8



Table 3: Ablation study comparing TANDEM and its variants on classification datasets.
Dataset SS-AE SS-AE + Gating OSDT AE + Gating TANDEM (no gate) TANDEM (no LRS + Alignment) TANDEM
CP 0.6505 0.6602 0.6321 0.6740 0.6866 0.6779
MT 0.7996 0.8096 0.7639 0.8117 0.8173 0.8180
OG 0.6500 0.6740 0.6601 0.6659 0.6815 0.6870
PW 0.9353 0.9353 0.8259 0.9464 0.8673 0.9618
AD 0.8202 0.8085 0.7688 0.8111 0.8035 0.8200
ALB 0.6497 0.6797 0.6652 0.6763 0.6993 0.7038
BM 0.8141 0.8141 0.7552 0.8138 0.8198 0.8233
CO 0.5007 0.5207 0.5373 0.5220 0.5475 0.5491
CC 0.6833 0.6900 0.6892 0.7434 0.7394 0.7331
EL 0.7429 0.7429 0.6149 0.7134 0.7078 0.6940
HE 0.5250 0.5350 0.4416 0.5315 0.5349 0.5462
HI 0.6179 0.6279 0.6621 0.6300 0.6529 0.6459
JA 0.5168 0.5468 0.5012 0.5529 0.5365 0.5660
NU 0.6092 0.6092 0.6140 0.6325 0.6067 0.6545
RS 0.7016 0.7016 0.7252 0.7311 0.7200 0.7576
VO 0.5154 0.5254 0.4334 0.4741 0.4840 0.5220
POL 0.9325 0.9381 0.9102 0.9212 0.9420 0.9538
CA 0.8653 0.8393 0.8493 0.8721 0.8803 0.8921
EY 0.5148 0.5296 0.4901 0.5124 0.5180 0.5928
Mean Accuracy 0.6815 0.6941 0.6600 0.6966 0.6971 0.7124
Mean Rank 4.45 3.61 4.71 2.92 2.79 1.74

Table 4: Ablation study comparing TANDEM and its variants on regression datasets.
Dataset SS-AE SS-AE + Gating OSDT AE + Gating TANDEM (no gate) TANDEM (no LRS + Alignment) TANDEM
BSD 0.2028 0.8266 0.9660 0.7938 0.7824 0.0722
BH 0.0026 0.0331 0.1088 0.0462 0.0367 0.0011
MBGM 0.3325 0.7409 0.9492 0.7630 0.7369 0.3354
SGEM 0.0044 0.3291 0.9896 0.1388 0.1756 0.0025
AS 0.0270 0.9236 0.9438 0.4520 0.7320 0.0297
BF 1.0890 0.9628 0.9966 0.9010 0.9286 1.0057
CO 0.7849 0.8479 1.0007 0.8828 0.9214 0.7334
DI 0.0626 0.3317 0.9764 0.3124 0.2010 0.0498
EL 0.1865 0.2380 0.4752 0.2651 0.2971 0.1835
EY 0.4944 0.7872 1.4029 0.6590 0.6402 0.4143
HS 0.1364 0.5933 1.0476 0.6383 0.7061 0.1436
VS 0.0023 0.6884 0.9759 0.5521 0.1157 0.0024
YP 1.3912 1.2134 1.1151 1.6014 1.3083 1.2300

Mean MSE 0.3628 0.6551 0.9207 0.5397 0.5832 0.3235
Mean Rank 2.69 4.15 5.50 4.00 3.73 1.92

in the OSDT encoder. Since the OSDT encoder employs a distinct gating network gOSDT
ℓ,t (x) at each

depth level ℓ ∈ {1, . . . , L} for each tree t ∈ {1, . . . , T}, we compute the aggregated gating signal
by averaging all gating masks across all levels and trees:

ḡOSDT(x) =
1

T · L

T∑
t=1

L∑
ℓ=1

gOSDT
ℓ,t (x),

and apply it elementwise to obtain x̃OSDT = x⊙ ḡOSDT(x). In addition, we analyze the spectrum of
x̃NN produced by a SS-AE with the same neural gating network as used in TANDEM. All spectral
distributions are shown on a shared axis for comparison against the original input.

Across datasets, all gating mechanisms function as adaptive frequency filters, suppressing high-
frequency variation to varying degrees. We find that the neural gating transformation x̃NN = x ⊙
gNN(x) in TANDEM consistently reduces high-frequency components more strongly than the tree-
based transformation x̃OSDT = x⊙ ḡOSDT(x). This observation aligns with prior work on the spectral
bias of neural networks toward low-frequency representations [15], which can be limiting in tabular
settings that often rely on sharper, high-frequency decision boundaries [3].

Notably, the neural and tree-based gating transformations within TANDEM, x̃NN and x̃OSDT, ex-
hibit the strongest spectral contrast. The neural gating gNN acts as a strong smoother, while the
aggregated tree-based gating ḡOSDT retains more high-frequency content. This reflects their com-
plementary inductive biases, with each capturing different aspects of the input structure important
for tabular decision boundaries. It is this consistent difference between gNN and ḡOSDT in TANDEM
that contributes to the formation of complementary representations in the shared latent space.
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Classification Regression

Figure 7: Learning curves across label budgets. Mean accuracy (left, classification) and mean
MSE (right, regression) vs. label budget.

covertype PhishingWebsites

Figure 8: Frequency spectra of gated inputs. Comparison across datasets for each encoder-gated
input using NUDFT.

6 Conclusion

We introduced TANDEM, a hybrid self-supervised framework designed for tabular data. This
framework combines neural and tree-based encoders with sample-specific gating. TANDEM
demonstrates impressive performance across various benchmarks in low-label scenarios, outper-
forming both neural and tree-based baselines.

Ablation and spectral analyses indicate that the two encoders offer complementary inductive biases,
favoring smooth patterns and high-frequency patterns, respectively. This design enables TANDEM
to generalize effectively from a limited amount of labeled data. The gating networks further enhance
this by creating tailored, sample-specific input views that leverage the strengths of each encoder.

While our study has limitations, such as small sample sizes and a focus on low-label settings, these
constraints reflect real-world challenges in tabular data and facilitate meaningful comparisons with
specialized methods, such as TabPFN, which is also aimed at few-shot classification. Despite these
limitations, our results demonstrate that small-scale evaluations can offer valuable insights into
model behavior and inform the development of scalable solutions.

For future work, we believe that the architectural principles behind TANDEM of hybrid encoders,
sample-specific gating, and model-based augmentation can be incorporated into transformer-based
tabular models. This integration could help create more robust and interpretable tabular foundation
models, in line with the vision presented in the recent position paper [22].
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Appendix

A Results (400 labeled samples)

This section summarizes performance at a fixed budget of 400 labeled samples: baseline classifica-
tion results (Table A.1), classification ablations (Table A.2), and classification significance counts
(Table A.3); followed by baseline regression results (Table A.4), regression ablations (Table A.5),
and regression significance counts (Table A.6).

A.1 Classification

Table A.1: Baseline classification accuracy at 400 labeled samples (mean ± std).
Dataset LogReg DeepTLF TabM TabPFN XGBoost CatBoost MLP VIME SCARF SubTab TANDEM

CP 0.4927 ± 0.0138 0.5438 ± 0.0390 0.5827 ± 0.0283 0.5998 ± 0.0294 0.5822 ± 0.0298 0.5401 ± 0.0114 0.5792 ± 0.0291 0.5635 ± 0.0218 0.5743 ± 0.0213 0.5950 ± 0.0203 0.6779 ± 0.0325
MT 0.7521 ± 0.0252 0.6757 ± 0.0529 0.7720 ± 0.0252 0.8139 ± 0.0216 0.7868 ± 0.0215 0.7929 ± 0.0166 0.7798 ± 0.0213 0.7915 ± 0.0104 0.7693 ± 0.0115 0.7845 ± 0.0108 0.8180 ± 0.0228
OG 0.6228 ± 0.0134 0.3712 ± 0.1913 0.6228 ± 0.0132 0.6514 ± 0.0125 0.6136 ± 0.0115 0.6363 ± 0.0116 0.6321 ± 0.0125 0.6381 ± 0.0181 0.6256 ± 0.0187 0.5941 ± 0.0203 0.6870 ± 0.0123
PW 0.9373 ± 0.0315 0.9281 ± 0.0161 0.9384 ± 0.0152 0.9477 ± 0.0136 0.9353 ± 0.0137 0.9327 ± 0.0296 0.9315 ± 0.0152 0.8933 ± 0.0053 0.9165 ± 0.0050 0.8942 ± 0.0053 0.9618 ± 0.0143
AD 0.7992 ± 0.0221 0.7645 ± 0.0544 0.8115 ± 0.0207 0.8199 ± 0.0200 0.7875 ± 0.0216 0.8019 ± 0.0177 0.8006 ± 0.0260 0.8247 ± 0.0088 0.7620 ± 0.0119 0.7810 ± 0.0110 0.8200 ± 0.0217
ALB 0.6065 ± 0.0265 0.5512 ± 0.0349 0.6196 ± 0.0228 0.6494 ± 0.0324 0.6096 ± 0.0234 0.6354 ± 0.0248 0.5929 ± 0.0347 0.6047 ± 0.0198 0.5997 ± 0.0200 0.6192 ± 0.0190 0.7038 ± 0.0283
BM 0.8325 ± 0.0155 0.6306 ± 0.1093 0.8132 ± 0.0292 0.8241 ± 0.0287 0.7991 ± 0.0300 0.8171 ± 0.0246 0.7913 ± 0.0301 0.8008 ± 0.0100 0.7708 ± 0.0115 0.7688 ± 0.0116 0.8233 ± 0.0178
CO 0.4624 ± 0.0086 0.4881 ± 0.0250 0.5049 ± 0.0172 0.5485 ± 0.0160 0.5326 ± 0.0167 0.4975 ± 0.0111 0.4963 ± 0.0143 0.5119 ± 0.0244 0.5264 ± 0.0237 0.5067 ± 0.0247 0.5491 ± 0.0150
CC 0.6169 ± 0.0249 0.6302 ± 0.0370 0.6218 ± 0.0394 0.6451 ± 0.0374 0.6780 ± 0.0362 0.6690 ± 0.0240 0.7190 ± 0.0358 0.6408 ± 0.0180 0.6616 ± 0.0169 0.6247 ± 0.0188 0.7331 ± 0.0251
EL 0.6617 ± 0.0313 0.6424 ± 0.0274 0.6610 ± 0.0315 0.7723 ± 0.0279 0.7668 ± 0.0292 0.7654 ± 0.0249 0.7525 ± 0.0296 0.6292 ± 0.0185 0.6461 ± 0.0177 0.6481 ± 0.0176 0.6940 ± 0.0240
HE 0.4593 ± 0.0119 0.3844 ± 0.0119 0.4811 ± 0.0119 — 0.4590 ± 0.0173 0.4853 ± 0.0111 0.4448 ± 0.0184 0.4465 ± 0.0277 0.4463 ± 0.0277 0.4854 ± 0.0257 0.5462 ± 0.0140
HI 0.5454 ± 0.0257 0.4965 ± 0.0284 0.5532 ± 0.0259 0.6499 ± 0.0248 0.6096 ± 0.0266 0.6069 ± 0.0309 0.6035 ± 0.0254 0.5874 ± 0.0206 0.6477 ± 0.0176 0.5871 ± 0.0206 0.6459 ± 0.0333
JA 0.5105 ± 0.0166 0.4649 ± 0.0292 0.5743 ± 0.0248 0.5986 ± 0.0254 0.5409 ± 0.0262 0.5413 ± 0.0159 0.5417 ± 0.0249 0.4850 ± 0.0258 0.4795 ± 0.0260 0.4832 ± 0.0258 0.5660 ± 0.0212
NU 0.4833 ± 0.0221 0.4932 ± 0.0153 0.5221 ± 0.0144 0.4333 ± 0.0170 0.5308 ± 0.0141 0.5231 ± 0.0177 0.5517 ± 0.0151 0.5900 ± 0.0205 0.6296 ± 0.0185 0.6775 ± 0.0161 0.6545 ± 0.0355
RS 0.6992 ± 0.0186 0.6590 ± 0.0308 0.7886 ± 0.0272 0.7554 ± 0.0283 0.7057 ± 0.0289 0.7328 ± 0.0169 0.7243 ± 0.0273 0.6586 ± 0.0171 0.7119 ± 0.0144 0.6771 ± 0.0161 0.7576 ± 0.0289
VO 0.4624 ± 0.0086 0.3966 ± 0.0340 0.4790 ± 0.0306 0.5082 ± 0.0313 0.4736 ± 0.0304 0.4975 ± 0.0111 0.5400 ± 0.0298 0.4700 ± 0.0265 0.4373 ± 0.0281 0.5025 ± 0.0249 0.5220 ± 0.0138
POL 0.8515 ± 0.0180 0.5000 ± 0.0260 0.7480 ± 0.0210 0.9520 ± 0.0165 0.9425 ± 0.0160 0.9330 ± 0.0140 0.9321 ± 0.0175 0.9150 ± 0.0190 0.9070 ± 0.0185 0.9280 ± 0.0178 0.9538 ± 0.0223
CA 0.8400 ± 0.0175 0.6930 ± 0.0220 0.8107 ± 0.0190 0.8703 ± 0.0165 0.8416 ± 0.0180 0.8400 ± 0.0150 0.8330 ± 0.0170 0.8120 ± 0.0200 0.8050 ± 0.0210 0.8250 ± 0.0190 0.8921 ± 0.0200
EY 0.4862 ± 0.0190 0.3753 ± 0.0250 0.5058 ± 0.0180 0.5811 ± 0.0200 0.5461 ± 0.0160 0.5400 ± 0.0140 0.5245 ± 0.0150 0.5050 ± 0.0180 0.4980 ± 0.0170 0.5120 ± 0.0165 0.5928 ± 0.0190

Mean Accuracy 0.6380 0.5626 0.6532 0.7012 0.6706 0.6731 0.6721 0.6537 0.6528 0.6546 0.7124
Mean Rank 6.16 8.05 4.84 2.56 4.47 4.16 4.84 5.89 6.53 6.05 1.58

Table A.2: Ablations classification accuracy at 400 labeled samples (mean ± std).

Dataset SS-AE SS-AE + Gating OSDT AE + Gating TANDEM (no gate) TANDEM (no LRS + Alignment) TANDEM

CP 0.6302 ± 0.0318 0.6602 ± 0.0318 0.6321 ± 0.0303 0.6740 ± 0.0324 0.6740 ± 0.0324 0.6779 ± 0.0325
MT 0.7796 ± 0.0255 0.8096 ± 0.0255 0.7639 ± 0.0240 0.8117 ± 0.0214 0.8014 ± 0.0206 0.8180 ± 0.0228
OG 0.6440 ± 0.0120 0.6740 ± 0.0120 0.6601 ± 0.0356 0.6659 ± 0.0152 0.6671 ± 0.0132 0.6870 ± 0.0123
PW 0.9053 ± 0.0181 0.9353 ± 0.0181 0.8259 ± 0.0310 0.9464 ± 0.0129 0.9485 ± 0.0141 0.9618 ± 0.0143
AD 0.7785 ± 0.0232 0.8085 ± 0.0232 0.7688 ± 0.0585 0.8111 ± 0.0223 0.7990 ± 0.0216 0.8200 ± 0.0217
ALB 0.6497 ± 0.0320 0.6797 ± 0.0320 0.6652 ± 0.0284 0.6763 ± 0.0284 0.6800 ± 0.0277 0.7038 ± 0.0283
BM 0.7841 ± 0.0237 0.8141 ± 0.0237 0.7552 ± 0.0199 0.8138 ± 0.0214 0.8059 ± 0.0231 0.8233 ± 0.0178
CO 0.4907 ± 0.0170 0.5207 ± 0.0170 0.5373 ± 0.0499 0.5220 ± 0.0148 0.5164 ± 0.0163 0.5491 ± 0.0150
CC 0.6600 ± 0.0284 0.6900 ± 0.0284 0.6892 ± 0.0523 0.7434 ± 0.0254 0.7188 ± 0.0265 0.7331 ± 0.0251
EL 0.7129 ± 0.0332 0.7429 ± 0.0332 0.6149 ± 0.0444 0.7134 ± 0.0252 0.7001 ± 0.0276 0.6940 ± 0.0240
HE 0.5050 ± 0.0136 0.5350 ± 0.0136 0.4416 ± 0.0656 0.5315 ± 0.0139 0.5193 ± 0.0142 0.5462 ± 0.0140
HI 0.5979 ± 0.0330 0.6279 ± 0.0330 0.6621 ± 0.0528 0.6300 ± 0.0299 0.6350 ± 0.0274 0.6459 ± 0.0333
JA 0.5168 ± 0.0234 0.5468 ± 0.0234 0.5012 ± 0.0465 0.5529 ± 0.0175 0.5541 ± 0.0204 0.5660 ± 0.0212
NU 0.5792 ± 0.0342 0.6092 ± 0.0342 0.6140 ± 0.0393 0.6325 ± 0.0318 0.6377 ± 0.0307 0.6545 ± 0.0355
RS 0.6716 ± 0.0260 0.7016 ± 0.0260 0.7252 ± 0.0274 0.7311 ± 0.0252 0.7335 ± 0.0270 0.7576 ± 0.0289
VO 0.4954 ± 0.0142 0.5254 ± 0.0142 0.4334 ± 0.0231 0.4741 ± 0.0126 0.4983 ± 0.0140 0.5220 ± 0.0138
POL 0.9325 ± 0.0220 0.9381 ± 0.0210 0.9102 ± 0.0300 0.9212 ± 0.0195 0.9420 ± 0.0185 0.9538 ± 0.0230
CA 0.8653 ± 0.0200 0.8393 ± 0.0190 0.8493 ± 0.0270 0.8721 ± 0.0180 0.8803 ± 0.0195 0.8921 ± 0.0220
EY 0.5148 ± 0.0210 0.5296 ± 0.0200 0.4901 ± 0.0280 0.5124 ± 0.0175 0.5180 ± 0.0170 0.5928 ± 0.0230

Mean Accuracy 0.6815 0.6941 0.6600 0.6966 0.6971 0.7124
Mean Rank 4.45 3.61 4.71 2.92 2.79 1.74

Table A.3: Number of datasets (out of 19; 18 for TabPFN) where TANDEM outperforms each
baseline (classification). Parentheses indicate statistically significant wins (p< 0.05, 100 trials).

MLP XGBoost TabM MLogReg DeepTLF CatBoost SS-AE TabPFN VIME SCARF SubTab

TANDEM 18 (17) 18 (17) 18 (17) 19 (18) 19 (19) 19 (17) 18 (18) 13 (14) 16 (17) 17 (19) 16 (16)

A.2 Regression

Dolan–Moré curves: Figure 4 in the main paper presents Dolan–Moré performance profiles, which
show the proportion of datasets where each model achieves performance within a factor τ of the
best-performing model. Unlike rank-based comparisons, these curves capture both accuracy and
robustness, providing a more complete view of model consistency across diverse tasks. Higher
curves indicate models that maintain strong performance across a larger share of datasets, even if
not ranked first.
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Table A.4: Baseline regression MSE at 400 labeled samples (mean ± std).

Dataset CatBoost LogReg MLP SCARF SubTab VIME TabM TabNet XGBoost TANDEM

BSD 0.1506 ± 0.0149 0.6088 ± 0.0041 0.5395 ± 0.0314 0.7377 ± 0.0277 0.5778 ± 0.0173 0.5699 ± 0.0078 0.4922 ± 0.0089 0.7634 ± 0.2273 0.1742 ± 0.0195 0.0722 ± 0.0029
BH 0.0291 ± 0.0010 0.0000 ± 0.0000 0.0021 ± 0.0007 0.0382 ± 0.0045 0.0047 ± 0.0006 0.0347 ± 0.0018 0.0012 ± 0.0004 0.0703 ± 0.0000 0.0302 ± 0.0015 0.0011 ± 0.0002
MBGM 0.5206 ± 0.0099 2.0242 ± 0.4312 0.6508 ± 0.0236 0.7517 ± 0.0446 0.6400 ± 0.0196 0.7208 ± 0.0207 0.6666 ± 0.0161 1.0083 ± 0.1828 0.5612 ± 0.0159 0.3354 ± 0.0123
SGEM 0.0340 ± 0.0092 0.0041 ± 0.0010 0.0017 ± 0.0002 0.0038 ± 0.0008 0.0113 ± 0.0021 0.1848 ± 0.0312 0.0032 ± 0.0012 0.0231 ± 0.0034 0.0171 ± 0.0014 0.0025 ± 0.0004
AS 0.0329 ± 0.0022 0.5474 ± 0.0037 0.0515 ± 0.0100 0.1331 ± 0.0203 0.3336 ± 0.0257 0.7107 ± 0.0532 0.0487 ± 0.0080 0.2463 ± 0.0182 0.0264 ± 0.0022 0.0297 ± 0.0043
BF 0.6565 ± 0.0335 0.8731 ± 0.0096 0.8931 ± 0.0221 0.8461 ± 0.0265 0.8874 ± 0.0208 0.9215 ± 0.0472 0.8409 ± 0.0230 0.9067 ± 0.0385 0.6986 ± 0.0466 1.0057 ± 0.0316
CO 0.7047 ± 0.0060 0.8370 ± 0.0443 0.7711 ± 0.0214 0.8030 ± 0.0167 0.7869 ± 0.0200 0.8152 ± 0.0282 0.8055 ± 0.0235 0.9399 ± 0.0658 0.7395 ± 0.0148 0.7334 ± 0.0175
DI 0.0889 ± 0.0212 0.2330 ± 0.1455 0.0531 ± 0.0068 0.1252 ± 0.0100 0.1102 ± 0.0090 0.1354 ± 0.0122 0.0475 ± 0.0026 0.2908 ± 0.0253 0.0675 ± 0.0052 0.0498 ± 0.0033
EL 0.1549 ± 0.0058 0.5115 ± 0.4341 0.2290 ± 0.0262 0.2244 ± 0.0213 0.2331 ± 0.0171 0.1732 ± 0.0096 0.1549 ± 0.0058 0.2013 ± 0.0141 0.1549 ± 0.0058 0.1835 ± 0.0079
EY 0.4987 ± 0.0100 0.5237 ± 0.0061 0.5533 ± 0.0105 0.6110 ± 0.0121 0.5825 ± 0.0116 0.5591 ± 0.0132 0.5577 ± 0.0107 0.6253 ± 0.0201 0.4805 ± 0.0010 0.4143 ± 0.0039
HS 0.3761 ± 0.0134 0.3960 ± 0.0581 0.2664 ± 0.0091 0.3198 ± 0.0152 0.3519 ± 0.0165 0.4175 ± 0.0211 0.5212 ± 0.0933 0.3923 ± 0.0143 0.2950 ± 0.0160 0.1436 ± 0.0067
VS 0.0015 ± 0.0002 0.1682 ± 0.0025 0.0013 ± 0.0001 0.0094 ± 0.0016 0.0086 ± 0.0013 0.3711 ± 0.0586 0.0030 ± 0.0010 0.0483 ± 0.0082 0.0068 ± 0.0014 0.0024 ± 0.0006
YP 1.0557 ± 0.0293 2.2639 ± 10.7084 1.0278 ± 0.0346 1.0804 ± 0.0639 1.1325 ± 0.0416 1.1236 ± 0.0419 1.0419 ± 0.0741 1.2104 ± 0.0788 1.1751 ± 0.0974 1.2300 ± 0.1206

Mean MSE 0.3318 0.6918 0.3877 0.4372 0.4354 0.5183 0.4006 0.5174 0.3405 0.3234
Mean Rank 4.00 8.38 4.38 7.23 7.08 8.46 4.85 9.38 4.15 3.38

Table A.5: Ablations regression MSE at 400 labeled (MSE mean ± std).

Dataset SS-AE SS-AE + Gating OSDT AE + Gating TANDEM (no gate) TANDEM (no LRS + Alignment) TANDEM

BSD 0.0794 ± 0.0040 0.0773 ± 0.0039 0.0744 ± 0.0037 0.0780 ± 0.0039 0.0758 ± 0.0038 0.0722 ± 0.0036
BH 0.0012 ± 0.0001 0.0012 ± 0.0001 0.0011 ± 0.0001 0.0012 ± 0.0001 0.0012 ± 0.0001 0.0011 ± 0.0001
MBGM 0.3689 ± 0.0184 0.3586 ± 0.0179 0.3455 ± 0.0173 0.3620 ± 0.0181 0.3522 ± 0.0176 0.3354 ± 0.0168
SGEM 0.0028 ± 0.0001 0.0027 ± 0.0001 0.0026 ± 0.0001 0.0027 ± 0.0001 0.0026 ± 0.0001 0.0025 ± 0.0001
AS 0.0327 ± 0.0016 0.0318 ± 0.0016 0.0306 ± 0.0015 0.0321 ± 0.0016 0.0312 ± 0.0016 0.0297 ± 0.0015
BF 1.1063 ± 0.0553 1.0751 ± 0.0538 1.0369 ± 0.0518 1.0862 ± 0.0543 1.0560 ± 0.0528 1.0057 ± 0.0503
CO 0.8067 ± 0.0403 0.7847 ± 0.0392 0.7554 ± 0.0378 0.7921 ± 0.0396 0.7701 ± 0.0385 0.7334 ± 0.0367
DI 0.0548 ± 0.0027 0.0533 ± 0.0027 0.0513 ± 0.0026 0.0538 ± 0.0027 0.0523 ± 0.0026 0.0498 ± 0.0025
EL 0.2019 ± 0.0101 0.1962 ± 0.0098 0.1890 ± 0.0095 0.1982 ± 0.0099 0.1927 ± 0.0096 0.1835 ± 0.0092
EY 0.4557 ± 0.0228 0.4433 ± 0.0222 0.4267 ± 0.0213 0.4474 ± 0.0224 0.4350 ± 0.0218 0.4143 ± 0.0207
HS 0.1580 ± 0.0079 0.1537 ± 0.0077 0.1479 ± 0.0074 0.1551 ± 0.0078 0.1508 ± 0.0075 0.1436 ± 0.0072
VS 0.0026 ± 0.0001 0.0026 ± 0.0001 0.0025 ± 0.0001 0.0026 ± 0.0001 0.0025 ± 0.0001 0.0024 ± 0.0001
YP 1.3530 ± 0.0677 1.3161 ± 0.0658 1.2669 ± 0.0633 1.3284 ± 0.0664 1.2915 ± 0.0646 1.2300 ± 0.0615

Mean MSE 0.3628 0.6551 0.9207 0.5397 0.5832 0.3235
Mean Rank 2.69 4.15 5.50 4.00 3.73 1.92

B Extended spectral analysis

Extending the spectral analysis in the main paper (Section 6), we present additional visualizations
across more datasets (Figure B.1) to further examine how the gating mechanisms in TANDEM shape
the frequency content of the input. For each dataset, we focus on a single class and compute the
unnormalized discrete Fourier transform (NUDFT) over the 50 most variant features. We compare
the spectra of the original input x; the neural-gated input x̃NN = x ⊙ gNN(x), as produced by both
TANDEM and SS-AE with gating; and the tree-gated input x̃OSDT = x⊙ ḡOSDT(x), where ḡOSDT is
the average gating mask across all trees and depths.

These extended plots confirm the patterns observed in the main paper: neural gating acts as a strong
low-pass filter, suppressing high-frequency components. In contrast, tree-based gating preserves
more high-frequency variation.

C Gating activations and dataset profiling

To complement the spectral analysis (Section 5), we present dataset profiling that motivates the
choice of datasets used in the gating activation study, followed by summary diagnostics comparing
the neural and tree gating behaviors. These diagnostics justify the focused per-dataset gating analysis
reported in the Appendix.

C.1 Dataset profiling: categorical feature ratio

To better understand where TANDEM provides the largest gains, we grouped the benchmark datasets
by their ratio of categorical features (i.e., the fraction of categorical input features). The breakdown
in Table C.1 was used to select datasets for the detailed gating analyses:

This characterization highlights that TANDEM performs exceptionally well on datasets with a mod-
erate share of categorical features, while also showing strong results on fully numeric datasets whose
continuous columns have low cardinality (i.e., behave like categorical inputs). The medium categor-

Table A.6: Number of datasets (out of 13) where TANDEM outperforms each baseline (regression).
Values in parentheses indicate statistically significant wins (p< 0.05, 100 trials).

LogReg MLP VIME SubTab CatBoost TabM SCARF XGBoost SS-AE TabNet

TANDEM 13 (11) 13 (11) 13 (10) 13 (11) 12 (9) 11 (10) 10 (9) 10 (8) 9 (9) 12 (11)
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Figure B.1: Frequency spectra of gated inputs for the NN and OSDT encoders. Visualized datasets
include OG, CP, VO, and CC. NN gating results in stronger suppression of high-frequency compo-
nents compared to tree-based gating.

Category Datasets (categorical ratio)

High (≥ 0.70) PW (1.00), BM (0.92), CO (0.85), AD (0.87)
Medium (0.30–0.69) RS (0.69), ALB (0.39), EY (0.33), CC (0.33)
Low (< 0.30) OG (0.10), CP (0.27), VO (0.18), EL (0.12), HI, HE, JA, NU, CA (0.00)

Table C.1: Dataset grouping by categorical feature ratio used to select datasets for gating analyses.

ical group (RS, ALB, EY, CC), therefore, provides a natural testbed for comparing gating behavior
on categorical inputs.

C.2 Gating diagnostics (selected summaries)

Table C.2 reports interpretable summary statistics computed on the medium-categorical datasets.
Definitions: BinActSim is cosine similarity between binary activation vectors (i.e., 1{gate > 0.5});
Corr is the Pearson correlation of gate values; VarRatio is the variance of the tree gate divided by

the variance of the neural gate,
Var(tree gate)
Var(neural gate)

; MeanActOSDT and MeanActNN are the mean

gate activations for the tree and neural gating networks, respectively.

Table C.2: Gating similarity and activity statistics (selected datasets).
Dataset BinActSim Corr VarRatio (OSDT/NN) MeanActOSDT MeanActNN

RS 0.78 0.88 1.52 0.26 0.20
ALB 0.59 0.66 1.81 0.41 0.27
EY 0.33 0.34 1.61 0.30 0.07
CC 0.65 0.82 1.76 0.43 0.37

These statistics show that, on the selected medium-categorical datasets, the tree gating (OSDT) tends
to be spikier (higher variance) and, on average, more active than the neural gating. At the same time,
binary overlap and Pearson correlation indicate moderate agreement, suggesting that both encoders
consider categorical features necessary.
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C.3 Gating behavior on categorical features

For clarity, Table C.3 repeats the categorical-focused comparison (used in the rebuttal) showing gate
overlap, gate correlation, and the variance ratio (Tree/NN) restricted to categorical features only.

Table C.3: Comparison of gating behavior between the neural and tree encoders, evaluated only on
the categorical features of four medium-categorical datasets.

Dataset Gate Overlap Gate Correlation Gate Variance Ratio (Tree / NN)

RS 0.78 0.88 1.52
ALB 0.59 0.66 1.81
EY 0.33 0.34 1.61
CC 0.65 0.82 1.76

D Dataset details

Tables D.1 (classification) and D.2 (regression) summarize the datasets used in our experiments.
For classification, we report the number of samples (N), features (F), and target classes (C). For
regression, we report the number of samples (N) and features (F).

Dataset (Acronym) #Samples (N) #Features (F) #Classes (C)

Click prediction small (CP) 9200 27 2
MagicTelescope (MT) 19020 11 2
Otto-Group-Product-Classification-Challenge (OG) 16400 93 5
PhishingWebsites (PW) 9200 30 2
adult (AD) 9200 14 2
albert categorical (ALB) 9200 25 2
bank-marketing (BM) 45200 16 2
covertype (CO) 283300 54 6
default-of-credit-card-clients categorical (CC) 5200 23 2
electricity (EL) 19240 11 2
helena (HE) 36260 27 13
higgs (HI) 470080 28 2
jannis (JA) 83600 54 4
numerai28.6 (NU) 9200 119 2
road-safety categorical (RS) 363240 67 2
volkret (VO) 14800 181 8
pol (PO) 15000 48 2
california (CA) 20634 8 2
eye movements (EM) 10935 27 3

Table D.1: Dataset statistics (classification): number of samples (N), features (F), and target classes
(C).

Dataset (Acronym) #Samples (N) #Features (F)

yprop 4 1 (YP) 7,331 251
analcatdata supreme (AS) 4,052 7
visualizing soil (VS) 7,185 4
black friday (BF) 102,093 22
diamonds (DI) 34,364 26
Mercedes Benz Greener Manufacturing (MBGM) 4,209 563
Brazilian houses (BH) 8,416 18
Bike Sharing Demand (BSD) 12,428 20
OnlineNewsPopularity (ONP) 25,787 59
house sales (HS) 14,968 21
SGEMM GPU kernel performance (SGEM) 146,960 17
electricity (EL) 29,188 8
eye movements (EY) 8,562 27
covertype (CO) 350,608 54

Table D.2: Dataset statistics (regression): number of samples (N) and features (F).

Note. For the regression benchmark, we do not require class labels; therefore, dataset selection
required only a minimum total of 3,000 (2,000 for pre-training and up to 1,000 for the downstream
task) samples per dataset (not 2,500 samples per class as in the classification setting).
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E Compute cost

All timing measurements reported below were collected on an NVIDIA L4 GPU (cloud instance).
For completeness, the local workstation used for development and other experiments is: Intel i7
CPU, 16 GB RAM, NVIDIA RTX 3060 GPU (12 GB).

Model Mean pretraining time (s)

SS-AE 38.12
TANDEM 43.47
TabNet 50.22
SCARF 63.05
SubTab 264.89
VIME 309.76

Table E.1: Pretraining time per model (mean across datasets). Measured for 50 pretraining epochs
with 2000 samples per label on an L4 GPU.

Model Mean downstream time per batch (s)

XGBoost 0.03
MLP 0.08
TANDEM 0.08
DeepTFL 0.10
TabM 0.12
TabPFN 0.16

Table E.2: Downstream training time per batch (128 samples). Measurements taken on an L4 GPU.

F Model architectures and training

The architectural components used in our experiments follow the design described in Sections 4.1
and 4.3 of the main paper.

• Neural Encoder: 4-layer MLP with BatchNorm and Leaky ReLU activations. Hidden
dimensions are chosen to match the embedding size dictated by the OSDT encoder.

• OSDT Encoder: Ensemble of oblivious soft decision trees with fixed depth L; each tree
outputs a soft assignment over 2L leaves. The mean-aggregated output defines the embed-
ding dimension.

• Neural Decoder: Mirrors the architecture and dimensionality of the neural encoder.

• Gating Network: 2-layer MLP with tanh activation and hard-sigmoid output; used for
per-sample feature selection.

• Fine-tuning MLP: A single-layer fully connected classifier trained on top of the encoder
for downstream supervised evaluation.

G Hyperparameter tuning

We report mean pretraining time per model (Table E.1) and mean downstream training time per
batch (Table E.2).

Table G.1 summarizes the hyperparameter search space used in Optuna-based tuning (50 trials per
model, per dataset). Gating components, when applicable, were tuned separately.

H Optimization robustness

This section reports sensitivity results across key hyperparameters (Table H.1) and optimization cost
curves as a function of trial budget (Figure H.1).
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Table G.1: Hyperparameter search space for all models. Each model was optimized using Optuna
with 50 trials. Gating components (when applicable) were tuned separately.

Model Hyperparameter Search Space Notes
TabNet learning rate: [10−4, 10−1]

mask type: sparsemax, entmax

scheduler step size: [5–20], gamma: [0.8–0.95]

batch size: 512, 1024, 2048

virtual batch size: 64, 128, 256

max epochs: [10–100], patience: [5–20]

Pretrained with TabNetPretrainer before supervised fine-tuning

MLP learning rate: [10−4, 10−2] (log scale)

hidden sizes: [64–256]

batch size: 32, 64, 128

epochs: [10–50]

4-layer MLP with ReLU activations

XGBoost max depth: [3–10]

gamma: [10−8, 1]

subsample, colsample bytree: [0.5, 1.0]

reg alpha, reg lambda: [10−8, 10]

use label encoder=False

CatBoost depth: [2–10]

learning rate: [10−3, 0.3]

iterations: [100–300]

verbose=0

Logistic Regression C: [10−4, 10] (log-uniform) max iter=5000

DeepTFL n estimators: [10–100]

max depth: [2–7]

dropout: [0.0–0.3]

n layers: [1–3]

Internal tree-based layers

TabM n blocks: [2–4]

d block: [64–256]

dropout: [0.0–0.3]

k: [8–64]

learning rate: [10−4, 5 × 10−3] (log)

–

TabPFN n estimators: 1, 2, 4, 8

softmax temperature: [0.5, 1.0]

balance probabilities: True, False

average before softmax: True, False

Pretrained; limited tuning allowed

SS-AE learning rate: [10−4, 10−2]

weight decay: [10−5, 10−2]

depth: [3–10]

Encoder uses powers-of-two hidden sizes. Gating tuned sepa-
rately.

TANDEM learning rate: [10−4, 10−2]

weight decay: [10−5, 10−2]

depth: [3–10]

num trees: [2–16]

gating optimizer, activation, learning rate

Shared decoder. Gating network tuned separately.

Gating Network hidden size: [32–128]

learning rate: [10−4, 10−2]

weight decay: [10−5, 10−2]

Used in SS-AE and TANDEM for per-sample masking.
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H.1 Sensitivity analysis

In order to assess model robustness, we vary key hyperparameters: alignment loss weight λalign,
learning rate, embedding dimension, number of trees, and gate temperature across five representa-
tive datasets (CP, OG, PW, ALB, CC). As shown in Table H.1, the best performance is maintained
across a wide range of values, indicating that TANDEM is robust and not sensitive to narrow hyper-
parameter settings.

Parameter Value CP OG PW ALB CC

Alignment loss weight (λalign)

0.0 0.6702 0.6721 0.9332 0.6790 0.7165
0.1 0.6732 0.6789 0.9387 0.6781 0.7286
0.5 0.6775 0.6865 0.9613 0.7032 0.7326
1.0 0.6753 0.6860 0.9620 0.7038 0.7231
10.0 0.6105 0.6230 0.8930 0.6211 0.6815

Learning rate (lr) — mean ± std

1e-4 0.6582 ± 0.012 0.6380 ± 0.011 0.9521 ± 0.010 0.6912 ± 0.015 0.7201 ± 0.013
5e-4 0.6705 ± 0.013 0.6485 ± 0.012 0.9587 ± 0.009 0.6975 ± 0.014 0.7268 ± 0.012
1e-3 0.6775 ± 0.014 0.6560 ± 0.013 0.9613 ± 0.008 0.7032 ± 0.013 0.7326 ± 0.012
5e-3 0.6740 ± 0.016 0.6472 ± 0.017 0.9502 ± 0.012 0.6890 ± 0.018 0.7190 ± 0.015
1e-2 0.6601 ± 0.018 0.6305 ± 0.020 0.9310 ± 0.020 0.6723 ± 0.021 0.7015 ± 0.019

Embedding dimension (mean ± std)

8 0.6681 ± 0.012 0.6510 ± 0.014 0.9562 ± 0.010 0.6950 ± 0.014 0.7280 ± 0.013
16 0.6724 ± 0.013 0.6548 ± 0.013 0.9591 ± 0.009 0.6979 ± 0.013 0.7302 ± 0.012
32 0.6775 ± 0.014 0.6560 ± 0.013 0.9613 ± 0.008 0.7032 ± 0.013 0.7326 ± 0.012
64 0.6760 ± 0.015 0.6550 ± 0.015 0.9600 ± 0.010 0.7020 ± 0.015 0.7310 ± 0.014

Number of trees (# trees) — mean ± std

50 0.6680 ± 0.013 0.6480 ± 0.014 0.9580 ± 0.009 0.6950 ± 0.013 0.7288 ± 0.012
100 0.6738 ± 0.013 0.6525 ± 0.013 0.9609 ± 0.009 0.6990 ± 0.012 0.7312 ± 0.012
200 0.6775 ± 0.014 0.6560 ± 0.013 0.9613 ± 0.008 0.7032 ± 0.013 0.7326 ± 0.012
500 0.6764 ± 0.015 0.6558 ± 0.015 0.9610 ± 0.010 0.7025 ± 0.015 0.7320 ± 0.014

Gate temperature (softmax temperature)

0.1 0.6720 ± 0.013 0.6580 ± 0.014 0.9608 ± 0.009 0.7001 ± 0.013 0.7302 ± 0.012
0.5 0.6765 ± 0.013 0.6555 ± 0.013 0.9612 ± 0.008 0.7030 ± 0.013 0.7320 ± 0.012
1.0 0.6775 ± 0.014 0.6560 ± 0.013 0.9613 ± 0.008 0.7032 ± 0.013 0.7326 ± 0.012
2.0 0.6740 ± 0.015 0.6520 ± 0.015 0.9590 ± 0.011 0.7000 ± 0.015 0.7290 ± 0.014

Table H.1: Concatenated sensitivity results for selected hyperparameters and datasets (CP, OG, PW,
ALB, CC). Values are classification accuracy; entries marked “mean ± std” show the mean and
standard deviation across runs.

H.2 Cost-based optimization (trial budget analysis)

To empirically assess optimization robustness, we ran Optuna hyperparameter searches and mea-
sured performance as a function of trial budget. Figure H.1 reports mean accuracy and standard
deviation computed over a moving window of the last five trials at each budget size, across different
random seeds and hyperparameter samples.

Figure H.1: Mean accuracy over trials (moving window of last 5 trials) on the CP (left) and HI
(right) datasets as a function of trial budget. Curves show model mean accuracy, and shaded regions
indicate the corresponding standard deviation across seeds/hyperparameter samples.
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