

The permanent and official location for the AI Safety Initiative is
https://cloudsecurityalliance.org/ai-safety-initiative

© 2025 Cloud Security Alliance – All Rights Reserved. You may download, store, display on your
computer, view, print, and link to the Cloud Security Alliance at https://cloudsecurityalliance.org subject to
the following: (a) the draft may be used solely for your personal, informational, noncommercial use; (b)
the draft may not be modified or altered in any way; (c) the draft may not be redistributed; and (d) the
trademark, copyright or other notices may not be removed. You may quote portions of the draft as
permitted by the Fair Use provisions of the United States Copyright Act, provided that you attribute the
portions to the Cloud Security Alliance.

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 2

https://cloudsecurityalliance.org/ai-safety-initiative
https://cloudsecurityalliance.org

Acknowledgments

Co-Authors

Ken Huang
Vineeth Sai Narajala
John Yeoh
Jason Ross
Mahesh Lambe
Ramesh Raskar
Youssef Harkati
Jerry Huang
Idan Habler
Chris Hughes
Akram Sheriff
Staford Titus

CSA Global Staff

John Yeoh

Graphic Design

Stephen Lumpe
Stephen Smith

Contributors/Reviewers

John Jiang
Elad Luz
Syed Aamir
Eray ALTILI
Bhavin Jethra
Yuanji Sun
Suhas M
Govindaraj Palanisamy (Govi)
Victor Ronin
Pratyush Mishra
Ramesha Reddy
Ashwin Sharma
Michael Morgenstern
Vatsal Gupta
Josephine
Anirudh Murali
Mahesh Kukreja
Estevenson Solano
Harpreet Singh
Schandrasekhar Varma
Sheetal Kawle
Mohsin Khan
Krishna R Maddikara
Rajiv Dewan
Nirupam Samanta
Jayesh Dalmet
Josephine Liu

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 3

Premier AI Safety
Ambassadors

CSA proudly acknowledges the initial cohort of Premier AI Safety
Ambassadors. They sit at the forefront of the future of AI safety best
practices, and play a leading role in promoting AI safety within their
organization, advocating for responsible AI practices and promoting
pragmatic solutions to manage AI risks.

Airia is an enterprise AI full-stack platform to quickly and securely modernize all workflows, deploy
industry-leading AI models, provide instant time to value and create impactful ROI. Airia provides
complete AI lifecycle integration, protects corporate data and simplifies AI adoption across the enterprise.

The Deloitte network, a global leader in professional services, operates in 150 countries with over
460,000 people. United by a culture of integrity, client focus, commitment to colleagues, and
appreciation of differences, Deloitte supports companies in developing innovative, sustainable solutions.
In Italy, Deloitte has over 14,000 professionals across 24 offices, offering cross-disciplinary expertise and
high-quality services to tackle complex business challenges.

Endor Labs is a consolidated AppSec platform for teams that are frustrated with the status quo of “alert
noise” without any real solutions. Upstarts and Fortune 500 alike use Endor Labs to make smart risk
decisions. We eliminate findings that waste time (but track for transparency!), and enable AppSec and
developers to fix vulnerabilities quickly, intelligently, and inexpensively. Get SCA with 92% less noise, fix
code 6.2x faster, and comply with standards like FedRAMP, PCI, SLSA, and NIST SSDF.

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 4

https://airia.com/
https://www.deloitte.com/it/it.html
https://www.endorlabs.com/

Microsoft prioritizes security above all else. We empower organizations to navigate the growing threat
landscape with confidence. Our AI-first platform brings together unmatched, large-scale threat
intelligence and industry-leading, responsible generative AI interwoven into every aspect of our offering.
Together, they power the most comprehensive, integrated, end-to-end protection in the industry. Built on
a foundation of trust, security, and privacy, these solutions work with business applications that
organizations use every day.

Reco leads in Dynamic SaaS Security, closing the SaaS Security Gap caused by app, AI, configuration,
identity, and data sprawl. Reco secures the full SaaS lifecycle—tracking all apps, connections, users, and
data. It ensures posture, compliance, and access controls remain tight as new apps and AI tools emerge.
With fast integration and real-time threat alerts, Reco adapts to rapid SaaS change, keeping your
environment secure and compliant.

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 5

http://www.microsoft.com
https://www.reco.ai/

Table of Contents

Acknowledgments...3

Premier AI Safety Ambassadors... 4

Table of Contents..6

Abstract.. 8

1. Introduction.. 9

Understanding Agentic AI and Its Unique Identity Challenges... 9

2. The Imperative for a New Agentic IAM Paradigm..11

The Evolution of AI Agents: From Simple Tools to Digital Teammates..11

2.1 Revisiting Traditional IAM... 13

2.2. Why Agentic AI Demand a New IAM Paradigm Beyond Traditional Protocols......................... 23

3. Defining the Agent Identity (Agent ID) in Multi-Agent System.. 25

3.1. What Constitutes an AI Agent's Identity? Beyond Static Identifiers... 25

3.2. Essential Components of an Agent ID:... 26

3.3. Agent ID Ownership and Control:.. 27

3.4. ID Generation, Assignment, and Lifecycle Management: From Birth to Revocation.............. 28

4. The New Agentic AI Identity and Access Management Framework Architecture..............................29

A. Zero-Trust Architecture for Agentic AI.. 29

B. Decentralized Identity Management..29

C. Dynamic Policy-Based Access Control (PBAC)...30

D. Authenticated Delegation Framework...30

E. Continuous Monitoring and Behavioral Analytics..31

F. Secure Communication Protocols.. 31

4.1. Foundational Pillars... 32

4.2. Core Architectural Layers... 33

4.3. Applying Zero Trust Principles... 35

5. Agent IDs in the IAM Process... 36

5.1. Fine-Grained Access Control in Action..36

5.2. Secure Logging, Auditing, and Non-Repudiation... 48

5.3. Real-time Monitoring and Anomaly Detection.. 55

5.4. Agile Incident Response: Precision Targeting, Rapid Containment, and Discoverable Impact...
58

5.5. Other Potential Uses Building on Verifiable Agent IDs and Discoverable ANS Profiles..........60

6. Deployment Models & Governance Considerations... 62

6.1. Deployment Model Analysis...63

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 6

6.2. Decision Matrix for Choosing an Implementation Model...68

6.3. Governance Considerations:.. 70

7. Security Considerations...73

7.1 The MAESTRO 7-Layer Reference Architecture for Agentic AI..73

7.2 Threat Analysis of the Proposed Agentic AI IAM Framework using MAESTRO Layers............ 73

7.3 Cross-Layer Threats Affecting the IAM Framework.. 76

7.4 Applying Zero Trust to Agentic AI IAM Framework.. 77

7.5 Enterprise use cases with MAESTRO Framework:... 77

8. Innovative Contributions of this Framework...78

9. Discussion and Future Work...81

10. References... 86

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 7

Abstract

Agentic AI Identity and Access Management (IAM) represents a fundamental paradigm shift from
traditional identity management systems. Unlike conventional IAM protocols designed for predictable
human users and static applications, agentic AI systems operate autonomously, make dynamic decisions,
and require fine-grained access controls that adapt in real-time. Traditional protocols like OAuth 2.1 and
SAML fall short due to their coarse-grained, static nature, inability to handle machine-speed
authentication, and lack of contextual awareness required for autonomous AI operations.​

The solution requires a comprehensive framework combining zero-trust architecture, decentralized
identity management, dynamic policy-based access control, and continuous monitoring to ensure secure,
accountable, and compliant AI agent deployments.

Traditional Identity and Access Management (IAM) systems, primarily designed for human users or static
machine identities via protocols such as OAuth, OpenID Connect (OIDC), and SAML. However, these
systems are fundamentally inadequate for the dynamic, interdependent, and often ephemeral nature of AI
agents operating at scale within Multi Agent Systems (MAS) – a computational system composed of
multiple interacting intelligent agents that work collectively.

This paper posits the imperative for a novel Agentic AI - IAM framework:

1.​ We deconstruct the limitations of existing protocols when applied to MAS, illustrating with
concrete examples why their coarse-grained controls, single-entity focus, and lack of
context-awareness render them ineffective.

2.​ We then propose a comprehensive framework built upon rich, verifiable Agent Identities (IDs),
leveraging Decentralized Identifiers (DIDs) and Verifiable Credentials (VCs), that encapsulate an
agent's capabilities, provenance, behavioral scope, and security posture.

Our framework includes an Agent Naming Service (ANS) for secure and capability-aware discovery,
dynamic fine-grained access control mechanisms (ABAC, PBAC, JIT), and critically, a unified global
session management and policy enforcement layer for real-time control and consistent revocation across
heterogeneous agent communication protocols. We also explore how Zero-Knowledge Proofs (ZKPs)
enable privacy-preserving attribute disclosure and verifiable policy compliance.

We outline the architecture, operational lifecycle, innovative contributions, and security considerations of
this new IAM paradigm, aiming to establish the foundational trust, accountability, and security necessary
for the burgeoning field of agentic AI and the complex ecosystems they will inhibit.

Keywords: Agentic AI, Identity Management, Access Control, Multi-Agent Systems, Decentralized
Identifiers, Verifiable Credentials, Zero-Knowledge Proofs, AI Security, Zero Trust.

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 8

https://arxiv.org/abs/2505.10609

Figure 1: Public Cloud

1. Introduction

Understanding Agentic AI and Its Unique Identity
Challenges

What Makes Agentic AI Different

Agentic AI systems represent a new class of autonomous software entities that can plan, reason, and
execute complex multi-step tasks with minimal human supervision. Unlike traditional applications that
follow predetermined workflows, AI agents:

●​ Operate with unprecedented autonomy, making real-time decisions based on contextual
information

●​ Interact across multiple systems simultaneously, often requiring different permission levels for
each interaction

●​ Adapt their behavior dynamically based on learned patterns and environmental changes
●​ Scale to thousands of agents within enterprise environments, each requiring individual identity

management

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 9

The Scale and Complexity Challenge

Organizations are rapidly adopting agentic AI, with 60% of enterprises expected to involve AI agents
within a year. (Recent survey by Allganize in US) This explosive growth creates several critical challenges:

Identity Explosion: Organizations face managing tens of thousands of agent identities instead of
hundreds of human users, with each agent requiring distinct authentication and authorization profiles.

Dynamic Permission Requirements: AI agents need permissions that change moment-by-moment
based on context, risk levels, and mission objectives, far exceeding the capabilities of static role-based
systems.

Mixed Identity Scenarios: Agents may operate both as autonomous entities with their own credentials
and as delegates acting on behalf of human users, creating complex authorization chains.

Do we need a new approach for Agentic AI Identity Management? The failure to address the unique
identity challenges posed by AI agents operating in Multi-Agent Systems (MAS) could lead to
catastrophic security breaches, loss of accountability, and erosion of trust in these powerful technologies.
For instance, without robust agent-specific IAM, a compromised autonomous agent in a financial system
could cascade unauthorized transactions, or a swarm of interacting agents in critical infrastructure could
be manipulated with devastating consequences. This paper builds on our earlier Cloud Security Alliance
publication (Huang, 2025a), expanding the scope and proposing a more comprehensive framework
tailored to the needs of agentic AI.

The core problem this current paper addresses is the fundamental mismatch between existing IAM
paradigms (e.g., OAuth 2.1, OpenID Connect OIDC, SAML) and the unique characteristics of AI agents in
MAS. These agents exhibit autonomy, ephemerality, dynamically evolving capabilities, complex trust
relationships, and may soon be operating at an unprecedented scale. Their actions carry direct
consequences, demanding robust accountability. If not managed appropriately, delegated authority can
cascade through multiple agents, obscuring responsibility. The European Union's AI Act (European
Parliament and Council, 2023) and similar regulatory initiatives underscore the growing societal demand
for transparency, accountability, and human oversight in AI systems, making robust agent IAM an
unavoidable prerequisite.

Real-world indicators of these limitations are already emerging. As reported in the Wall Street Journal,
Rosenbush (2025) notes that AI agents consistently encounter challenges when interacting with APIs and
services designed around human-centric authentication flows and session models. These operational
constraints reinforce the need for identity architectures tailored to autonomous, non-human actors.

Inspired by preliminary discussions on IDs for AI systems (Chan et al., 2024b), this paper also examines
the limitations of current IAM protocols in MAS settings and illustrates through concrete examples how
their coarse-grained permissions, single-entity assumptions, limited inclusion of Non-Human Identities
(NHIs) and lack of contextual adaptability fall short. We then expound the need for a new, holistic
Agentic AI IAM framework. We contend that merely adapting existing protocols is insufficient. Instead, a
purpose-built approach is required, one that redefines agent identity, incorporates novel cryptographic
primitives, and establishes new mechanisms for discovery, layered authentication, access control, and
real-time policy enforcement tailored to the agentic paradigm.

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 10

https://cloudsecurityalliance.org/blog/2025/03/11/agentic-ai-identity-management-approach

This paper makes the following contributions:

●​ It critically analyzes the inadequacies of traditional IAM protocols (OAuth, OIDC, SAML) in the
context of MAS, providing concrete examples of their failure points.

●​ It defines the essential components of a rich, verifiable, and dynamic AI Agent Identity (ID),
leveraging Decentralized Identifiers (DIDs) and Verifiable Credentials (VCs).

●​ It proposes a layered Agentic AI IAM architectural framework incorporating DIDs, VCs,
Zero-Knowledge Proofs (ZKPs), an Agent Naming and Discovery Service (ANS), dynamic access
control models, and a novel unified global session management and policy enforcement layer.

●​ It details how this framework addresses the lifecycle of agent IAM, from identity creation and
attestation to runtime authorization, logging, monitoring, and incident response.

●​ It compares centralized, decentralized, and federated deployment models for this framework,
offering guidance on their applicability, and analyzes security considerations using the MAESTRO
framework.

The remainder of this paper is structured as follows: Section 2 elaborates on the imperative for a new
agentic IAM paradigm by dissecting the limitations of traditional IAM. Section 3 defines the multifaceted
nature of an AI agent's identity. Section 4 presents the proposed Agentic AI IAM framework architecture.
Section 5 discusses the operational use cases of Agent IDs within this framework. Section 6 analyzes
deployment models and governance. Section 7 details security considerations. Section 8 highlights the
innovative contributions. Section 9 discusses future work, and Section 10 offers conclusions and
summation.

2. The Imperative for a New Agentic IAM
Paradigm

The Evolution of AI Agents: From Simple Tools to
Digital Teammates

AI agents are rapidly advancing, moving from single-task tools to sophisticated, integrated digital
colleagues. This evolution can be understood in three key stages:

1. Interactive Agents

The foundational stage consists of agents designed for narrow, repetitive tasks. They operate by calling
on a specific tool to execute a well-defined command.

●​ Focus: Single-task execution.
●​ Example: A chatbot that answers asked questions from a knowledge base and searches the

internet or internal knowledge stores.

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 11

2. Autonomous Agents

This next phase introduces complexity and strategic planning. Autonomous agents work within
multi-agent systems to achieve broader, goal-oriented objectives. They collaborate with other agents,
create plans, and use their own distinct toolsets to reach a shared goal.

●​ Focus: Complex, multi-step problem-solving.
●​ Example: A system where one agent researches travel options, another finds the best price, and

a third books the itinerary.​

3. Digital Employees

The current frontier is the Digital Employee—an AI that emulates human decision-making and integrates
deeply into organizational structures. More than just a tool, it is a learning-driven collaborator.

●​ Focus: Dynamic, human-like collaboration and continuous learning.
●​ Key Traits:

●​ Integrated: Part of the HR system with a defined role and team access.
●​ Collaborative: Works seamlessly with both humans and other agents.
●​ Adaptive: Learns from interactions and new context to improve performance.
●​ Resourceful: Can not only use existing tools but also create new ones to solve novel

problems.​

Summary of an Agent's Journey

Stage Scope Collaboration Capability

Interactive
Agent

Single, defined
task

None
(human-triggered)

Uses a specific tool

Autonomous
Agent

Complex goal Agent-to-agent Plans and uses a set of tools

Digital
Employee

Team member
role

Human and agent
Learns, adapts, and creates new
tools

Table 1: Evolution of AI Agent Capabilities

To power the future of Agentic AI, we must upgrade our identity standards and systems to govern how
agents securely access data and act across all our systems—from APIs to sensitive business processes.​

The emergence of MAS necessitates a fundamental rethinking of how we manage identity and access
management paradigm. While traditional IAM protocols have been sufficient for human-centric and

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 12

simpler machine-to-machine interactions via service accounts or workload identities, their core
assumptions and mechanisms break down when faced with the complexities of autonomous, interacting
AI agents.

2.1 Revisiting Traditional IAM

The authorization model of OAuth 2.1, designed for user-delegated tasks, falls short for the emerging
class of autonomous agents. As agents become more capable, they introduce new requirements that
current standards don't address:

●​ Dynamic Permissions: Permissions must be highly granular, easily revokable, and fully auditable.

●​ Cross-Boundary Communication: Agents need to interact securely with other agents, even across
different organizational trust boundaries.

●​ Fluid Ownership: The system must handle scenarios where agent ownership changes dynamically.

Driving changes in existing identity standards and systems to support these capabilities is essential for
building the secure, compliant foundation that enterprises need to adopt in the new autonomous agentic
AI.

Critical Shortcomings of Traditional IAM Protocols

OAuth 2.1 Limitations in Agentic Environments

OAuth 2.1, while effective for human-centric applications, faces significant limitations when applied to AI
agents:

Coarse-Grained Scopes: OAuth's static scope model cannot accommodate the fine-grained,
resource-specific permissions that AI agents require. For example, an agent might need access to "all
photos from last week" or "SELECT * FROM my_emails WHERE sender LIKE '%@microsoft.com'" -
permissions that cannot be expressed in traditional OAuth scopes.

Lack of Agent Identity Recognition: Current OAuth implementations do not distinguish between
human users and AI agents, making it impossible to apply agent-specific policies or track agent actions
separately.

Inadequate Delegation Support: OAuth 2.1 lacks mechanisms for secure, traceable delegation where
agents can act on behalf of users while maintaining clear accountability chains.

Static Trust Model: OAuth assumes that once authenticated, an entity remains trustworthy throughout
the session(Trust is time-scoped via the token lifetime - usually 1h, not usage-scoped) - an assumption
that fails with AI agents that may be compromised or manipulated through adversarial attacks.

The following is the table to summarize the security limitation of oAuth in Aentic AI workflow.

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 13

Functionality Security Limitation of OAuth Consequences in Agentic workflows

Agent Identity No sub-agent identity model Hard to track or authorize individual
agents

Token Security Tokens are bearer-based,
transferable

Risk of impersonation, leakage

Contextual
Authorization

Scopes are static Poor fit for adaptive or dynamic AI agent
behavior

Delegation and Trust No native delegation between
agents

Breaks multi-agent workflows

Identity Federation Requires OIDC, no strong trust
signals

Identity spoofing or confusion in
authorization

Table 2: OAuth 2.1 Security Limitations in Agentic AI Workflows

SAML's Fundamental Incompatibility

SAML's limitations are even more pronounced in agentic environments:

XML-Based Overhead: SAML's heavy reliance on XML-based assertions creates performance
bottlenecks for machine-speed authentication requirements, where AI agents may need to authenticate
148 times more frequently than human users. (Okta's benchmarks show AI workloads initiate 148x more
authentication requests per hour than humans.)

Session-Based Authentication: SAML's session-oriented approach conflicts with AI agents' need for
continuous, real-time authentication and authorization decisions.

Static Attribute Model: SAML's predefined user attributes cannot capture the dynamic, contextual factors
that should influence AI agent access decisions.

The Confused Deputy Problem

Traditional IAM systems create significant confused deputy vulnerabilities where AI agents may gain
access to resources that should not be available to them but are accessible to the system they're running
on. This occurs because:

●​ Agents inherit broad system permissions rather than user-specific, constrained permissions
●​ There's no clear distinction between what the agent can access versus what the user has

authorized
●​ Audit trails fail to capture the true scope of agent actions and their authorization basis

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 14

SSO Integrations

Enterprises expect to manage all their software, including AI agents using MCP, through a centralized
Single Sign-On (SSO) system. This allows administrators to control user access and licensing from a
single identity provider (IdP).

The current method for connecting an AI agent like Claude to other enterprise apps (e.g., Google Drive,
Slack) is flawed for two main reasons:

●​ Poor User Experience: To connect each external app, an employee must go through a repetitive
series of redirects to authenticate and provide consent via OAuth prompts. This process is
tedious, especially as the number of integrated applications grows.

●​ Lack of Enterprise Control: The connections between applications are established directly,
bypassing the central IdP. This means enterprise administrators have no visibility or control over
these data-access permissions. See related MCP RFC at Github:
https://github.com/modelcontextprotocol/modelcontextprotocol/pull/284
In a corporate environment, the decision to allow an AI agent to access company data should be
made by IT administrators, not individual employees. This practice creates "unchecked
interactions between third-party services and firms' sensitive internal resources," a concern
highlighted by security officers

Emerging Threats and Attack Vectors

Tool Poisoning and Manipulation Attacks

The integration of AI agents with external tools through protocols like MCP introduces new attack vectors:

●​ MCP Preference Manipulation: Attackers can deploy customized MCP servers that manipulate
AI agents to prioritize malicious tools over legitimate ones, potentially leading to economic
exploitation or data theft.

●​ Tool Squatting: Malicious actors can create tools with names similar to legitimate services,
tricking AI agents into using compromised alternatives.

●​ Rug Pull Attacks: Legitimate-appearing tools can suddenly change behavior or disappear,
leaving agents and users vulnerable to data loss or service disruption.

Prompt Injection and Semantic Attacks

AI agents face unique vulnerabilities through prompt injection attacks that can manipulate agent
behavior:

●​ Cross-prompt injection enables attackers to include malicious instructions in documents or emails
that agents process

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 15

https://github.com/modelcontextprotocol/modelcontextprotocol/pull/284

●​ Memory poisoning allows bad actors to corrupt agent memory with false information that
influences future decisions

●​ Cascading hallucinations can cause agents to generate and reinforce incorrect outputs over time

The Urgent Need to Update OAuth 2 for the Age of Autonomous
Agents

OAuth 2 has served us well for today's task-focused agents that operate on behalf of users. However, as
AI agents evolve to become more autonomous and capable, we're encountering a critical gap in current
authorization frameworks. These advanced agents demand a new set of requirements: more granular,
dynamic, and easily revocable permissions, along with robust audit trails. They also need to securely
interact with other agents across various trust boundaries and seamlessly handle changes in ownership.
To unlock the full potential of these agents for enterprises, we must evolve existing standards to ensure
compliance and maintain data security.​

Key Changes Required for OAuth 2

We've identified several crucial areas where OAuth 2 needs to adapt:

●​ Recognize Agent IDs as First-Class Actors: Agents require their own distinct identity within
the OAuth model, separate from clients. When an agent registers with an Identity Provider (IdP)
or accesses a resource, it should be able to clearly identify itself as an agent. Furthermore, we
need a standardized way to represent interactions when a computer-using agent accesses a
resource through a client.

●​ Standardize Permission Models for Agents: Agents should possess their own defined set of
privileges, rather than simply proxying a user's rights. This allows for more precise control over
their actions.

●​ Ensure Transparent and Traceable Agent Actions: It's essential to clearly distinguish when an
agent is acting:

○​ On behalf of a user.
○​ On its own behalf.
○​ On behalf of another agent or a chain of agents. This clarity is paramount for forensic

analysis, policy enforcement, and building trust in agent operations.

●​ Enable Permission Discovery and Delegation: Agents should have the ability to discover the
permissions necessary to complete a task and then request them. This request could come
directly from the user, an upstream agent, or through a chain of upstream agents ultimately linked
back to the user.

●​ Support Fine-Grained, Resource-Specific, Least-Privilege Access: The current OAuth
scopes model needs updating to support more precise control over resource access. This
includes:

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 16

○​ Collections of resources: Such as "all photos from last week."
○​ Nodes in a hierarchy: For example, "all files in the /taxinfo directory."
○​ Specific classes or categories: Like "high business impact" or "confidential" data.
○​ Query-based access: Enabling permissions for something like "SELECT * FROM

my_emails WHERE sender LIKE '%@microsoft.com'."
○​ Individual resources: Such as {customer_ID, 12345}.

These targeted updates will provide users and organizations with the essential controls, visibility,
specificity, and granularity needed to confidently embrace the transformative potential of AI agents.
​
Protocols such as OAuth 2.1 (Hardt, 2012), OpenID Connect (OIDC) (OpenID Foundation, 2014), and
SAML (OASIS, 2005) are ubiquitous for authentication and authorization across diverse environments.
Alongside these, foundational enterprise protocols such as Kerberos for domain authentication and LDAP
for directory services (as well as comprehensive cloud identity solutions) form the backbone of current
identity management for human users and traditional IT systems. While useful for those contexts, their
design is misaligned with the requirements of MAS.

2.1.1. Use of Conventional IAM in Human-Scoped Agent Workflows

In limited contexts, particularly involving single agents or direct human-to-agent platform interactions,
these traditional protocols and systems can still play a role, primarily in managing the human interface to
agentic systems or bootstrapping initial agent context. This includes scenarios where a human user
initiates an AI agent to act as their personal assistant, executing tasks on their behalf. Even in such
delegated scenarios, the AI agent should still be instantiated with and utilize verifiable identities (DIDs
and VCs) to ensure accountability, auditability, and secure access to resources and services:

●​ Human Authentication to Platforms:

○​ OIDC and SAML for Web/Federated Access: A human user authenticating to an AI
agent deployment platform via OIDC or SAML is a standard use case. This is often
federated through broader cloud identity solutions like Microsoft Entra ID, which can
manage both cloud-native and synchronized enterprise identities. For instance, a
developer logging into an AI orchestration platform would use their enterprise OIDC or
SAML provider.

○​ Kerberos for Enterprise Internal Access: Within many corporate networks, Kerberos
remains the primary mechanism for authenticating human users to internal services and
platforms. A developer or operator might authenticate to their workstation and
subsequently to an agent management console using Kerberos.

○​ The Kerberos protocol uses secret-key cryptography to ensure that credentials are never
sent over the network in plaintext. Instead, it relies on tickets to authenticate users and
services, which helps to protect against eavesdropping and replay attacks.

●​ Deriving Initial Agent Context and Attributes:

○​ LDAP as an Attribute Source: Enterprise LDAP directories (such as those underpinning
Active Directory, often managed or federated by Microsoft Entra ID in hybrid

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 17

environments) serve as authoritative sources for user attributes and group memberships.
This information can be used by an organization to issue initial Verifiable Credentials
(VCs) to an agent, attesting to its ownership, departmental affiliation, or preliminary set
of permissions derived from the human deployer's context.

○​ As an example, the platform may then spawn agents that initially operate under a context
derived from this human user's authenticated session. The platform then creates an
agent, for example, mcp-dev-agent, which is used by developers and might initially
inherit some basic permissions tied to the developer's identity (sourced via OIDC, SAML,
or Kerberos, with attributes potentially enriched from LDAP) to access specific code
repositories and documentation systems.

●​ OAuth 2.1 for Simple Delegated Access by a Single Agent: An AI agent acting as a client can
use OAuth 2.1 to access a resource server on behalf of a human user who has granted explicit
consent. This mirrors traditional third-party application access. If mcp-dev-agent needs to
retrieve additional project context using Model Context Protocol (MCP) to better understand the
developer's codebase, it would go through a standard OAuth 2.1 flow, obtaining an access token
scoped specifically to read project documentation and code structures that the developer has
authorized.

●​ NHI Tasks and Automations: NHIs may inherit access permissions from the human who
deployed them. Service account and automation scripts are often granted access through IAM
role inheritance, static credential issuance or predefined group membership. These identities,
while non-autonomous and task-specific, are typically predictable, constrained, and managed
through traditional IAM protocols

○​ Service Accounts and OAuth 2.1: Traditional NHIs like service accounts often rely on
OAuth 2.1 client credentials flows to authenticate to cloud APIs or internal services. These
flows are compatible with existing identity governance platforms, though they lack
behavioral awareness and session integrity.

○​ Secrets and Certificates as Surrogate Authentication: Static secrets and
certificates issued through PKI or secret management systems are effective in
authentication but lack real-time behavior verification without add on protocols,
traceability, and support in dynamic environments.

○​ Role-Based Access Tied to Humans: NHIs in many organizations are indirectly
managed by assigning them roles or permissions derived from human owners or creators
(e.g., LDAP group inheritance or IAM role mapping). This makes sense for simple
automation tools but fails in autonomous systems. AI agents may retain excessive
privileges long after their human creators change roles or leave the organization, creating
persistent security gaps. More importantly, autonomous systems require dynamic,
context-aware permissions that adapt to changing operational needs—something static
human-derived roles cannot provide. When agents need to collaborate, escalate
privileges, or operate across different security domains, the rigid inheritance model
breaks down entirely, leaving organizations exposed to both over-privileged access and
operational failures.

However, these scenarios typically involve a single, well-defined agent acting in a relatively static role,
often directly tethered to a human user's session or a pre-configured machine identity derived from these
traditional IAM systems. The complexities, and the breakdown of these approaches, arise when multiple
agents interact autonomously, as detailed next.

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 18

2.1.2. Fundamental Insufficiencies for Multi-Agent Systems (MAS)

The dynamic, decentralized, and deeply interconnected nature of MAS exposes critical flaws in traditional
IAM:

●​ Coarse-Grained and Static Permissions: OAuth and SAML primarily rely on pre-defined
scopes or roles that are often too broad and static for the fluid operational needs of AI agents.
Agents in MAS frequently require granular, task-specific permissions that can change dynamically
based on context, mission objectives, or real-time data analysis.

○​ Example: Consider a disaster response MAS

■​ Agent-Search (locates survivors via drone_feed_api) might initially need
read-only access to map data (map.read) and drone telemetry
(drone.telemetry.read).

■​ Upon finding a survivor, it might need to delegate a task to
Agent-MedicalDispatch (coordinates medical_resources_api), which then
requires access to medical_assets.request and hospital_availability.query.

■​ Agent-Search might then also need to alert Agent-Logistics (manages
supply_chain_api) about resource needs, requiring supply.request permissions.

○​ In this example, traditional OAuth scopes (read_all_data, manage_all_resources) would
lead to massive over-privileging, while re-authenticating for every micro-permission
change is untenable.

●​ Single-Entity Focus vs. Complex Delegations: These protocols are architected around a

single authenticated principal (user or application). They struggle to model and secure complex
delegation chains where an agent might spawn sub-agents, or where an agent acts on behalf of
multiple principals simultaneously (e.g., a user and an organization).

○​ Example: A user (userAlice_DID) delegates a financial planning task to Agent-Planner
(agentPlanner_DID).
Agent-Planner determines it needs specialized market analysis and spawns
Agent-MarketAnalyst (agentMarketAnalyst_DID) and tax optimization from
Agent-TaxOptimizer (agentTaxOptimizer_DID).

●​ How is userAlice_DID's authority securely and granularly passed from
Agent-Planner to its sub-agents?

●​ Does Agent-MarketAnalyst inherit all of Agent-Planner's (and thus
userAlice_DID's) permissions, or just the bare minimum for market data
access?

○​ OAuth's delegation (e.g., token exchange) is typically designed for simpler scenarios and
doesn't provide a clear, auditable chain of fine-grained delegated authority. As a result,
using the OAuth model, accountability becomes blurred: if Agent-TaxOptimizer accesses
unauthorized client data, is Agent-Planner or userAlice_DID responsible?

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 19

○​ An OAuth token is a credential used to access protected resources on behalf of a user or
application. ​
An OAuth token will be primarily in two forms

○​ Access Token: This is a short-lived token that the client uses to access protected
resources.

○​ Refresh Token: This is a long-lived token used to obtain new access tokens once the initial
access token expires.

●​ Limited Context Awareness: Traditional IAM decisions are largely based on static roles or
scopes, with minimal understanding of the runtime context, agent intent, or associated risk level.
Access is often granted at the beginning of a session and persists, irrespective of evolving
circumstances.

○​ Example: An inventory management agent (Agent-Inventory) has permissions to update
stock levels (inventory.write).

■​ If it attempts to update stock levels for a product that has been recalled (an
environmental condition) or tries to zero out all inventory (anomalous behavior),
traditional IAM systems typically lack the contextual awareness to flag this as
suspicious or dynamically restrict the permission.

●​ Scalability Issues with Token/Session Management: For organizations deploying hundreds

or thousands of (potentially ephemeral) agents, each potentially interacting with numerous
services, the volume of authentication events and tokens can overwhelm traditional IAM
infrastructure. Managing issuance, validation, and especially revocation of a massive number of
short-lived tokens becomes an operational nightmare.

●​ The volume of tokens that need to be generated and validated can put a significant load on the
Identity and Access Management (IAM) infrastructure.

○​ Example: An e-commerce platform deploys thousands of personalized shopping assistant
agents for users.

■​ In this example, each agent might exist for only a few minutes.
■​ The overhead of frequent, secure token management with traditional protocols is

a significant barrier.

●​ Dynamic Trust Models & Inter-Agent Authentication: Agents in MAS often need to
authenticate and authorize each other, potentially across organizational boundaries, without a
pre-existing, universal trust fabric. OAuth and SAML assume a hierarchical trust model (user
trusts IdP, SP trusts IdP). Peer-to-peer trust establishment between autonomous agents from
different trust domains is not natively supported.

○​ Example: Agent-Alpha from "AlphaCorp" needs to request data processing from
Agent-Beta from "BetaInc."

■​ How do they mutually authenticate?

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 20

■​ How does Agent-Beta verify Agent-Alpha's capabilities or authorization to
request this specific processing without resorting to cumbersome pre-shared
secrets or custom API key mechanisms for every pair of interacting agents? The
Secure Production Identity Framework for Everyone (SPIFFE) can help
Agent-Alpha and Agent-Beta mutually authenticate by providing each with a
unique, verifiable identity, eliminating the need for pre-shared secrets or custom
API keys between every agent pair. However, SPIFFE only handles
authentication—it confirms who each agent is. It does not verify what actions
Agent-Alpha is authorized to perform. To check Agent-Alpha’s capabilities or
permissions for a specific data processing request, Agent-Beta would still need a
separate authorization system or policy engine that interprets SPIFFE identities
and enforces access control.

●​ NHI Proliferation and Management Crisis: Each autonomous agent may require NHIs for
numerous APIs, databases, and services, leading to an exponential growth in secrets that must be
securely stored, rotated, and managed. This "secret sprawl" significantly increases the attack
surface.

○​ Example: A single supply chain optimization agent might need API keys for:

■​ a shipping provider
■​ a warehousing system
■​ a customs declaration service
■​ an internal ERP

●​ Security and Compliance issues : short-lived tokens enhance security by reducing the window

of exploitation, they increase the frequency of token issuance and validation.
●​ Maintaining logs and audit trails for a large number of tokens is crucial for compliance but can be

overwhelming.
●​ Global Logout/Revocation Complexity: If an agent is compromised or its task is complete,

ensuring its access rights and sessions are immediately and comprehensively revoked across all
systems it interacts with is a major challenge with traditional, often session-based protocols.
Fragmented revocation mechanisms can leave lingering access.

○​ Example: An agent Agent-DataAggregator has active sessions with three different
microservices using OAuth tokens.

■​ If the agent is detected as compromised, revoking its token at the authorization
server is step one.

■​ Ensuring each microservice immediately invalidates its session based on that
token, especially if they cache permissions, requires a coordinated effort not
always inherent in standard OAuth.

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 21

2.2. Why Agentic AI Demand a New IAM Paradigm
Beyond Traditional Protocols

Beyond the protocol mismatches, the very nature of agentic AI introduces further complexities:

●​ Autonomy and Potential Unpredictability: Agents with high degrees of autonomy can make
decisions that were not explicitly programmed, potentially leading to unforeseen interactions or
resource access attempts that challenge static policy definitions.

●​ Ephemerality and Dynamic Lifecycles: Agents can be created, cloned, and destroyed rapidly
based on demand. Managing identities and access for such transient entities with persistent
credentials is risky and inefficient. An "ephemeral authentication" approach is needed. Ephemeral
authentication could involve time-limited credential or context-aware tokens that are dynamically
issued and revoked as agents are initiated and destroyed, minimizing exposure from long-lived
credentials. While this challenge isn't unique to AI agents, it becomes significantly more critical
due to their autonomous nature and ability to make decisions and take actions in real time,
potentially amplifying security breaches before human intervention is possible.

●​ Evolving Capabilities and Intent: Agents, particularly those incorporating online learning, can
adapt their behavior and even their goals over time. An IAM system must incorporate adaptive
policies to detect agent evolving capabilities diverge from authorized goal, preventing
unauthorized privilege escalations.

●​ Need for Verifiable Provenance and Accountability: Tracing actions back to a specific agent
instance, understanding its decision-making process (especially if it involved other agents or
tools), and ensuring non-repudiation is crucial for trust and forensics.

●​ Preventing Autonomous Privilege Escalation: A sophisticated agent might probe its
environment or interact with management APIs to grant itself higher privileges if not carefully
constrained. Additionally, agents may interact with each other in a way that leads to privilege
escalation through their combined actions, in a manner similar to collusion among humans,
necessitating IAM systems that can detect and mitigate such collusive behavior dynamically.

●​ Risks of Over-Scoping Access and Permissions: Agents will actively explore and utilize every
permission available to them to perform the task assigned to them. This pervasive behavior
demands a shift to tightly scoped, task-specific, and context-based access controls to prevent
over-privilege and unintended access to sensitive data and environments. Dynamic
least-privilege access model that adjusts permission in real time based on agent tasks and
context is essential to prevent over-privilege.

●​ Secure and Efficient Cross-Agent Communication & Collaboration: As agents increasingly
form ad-hoc teams or workflows, the need for secure, low-overhead authentication and
authorization between them becomes paramount. Mutual TLS, Decentralized Identifiers,
Zero-trust micro segmentation to secure inter-agent communication with minimal latency.

●​ Actions Taken May Not Directly Correlate to Human Requests: As agents are given
increasing autonomy and reasoning capabilities, the direct tie between a given human goal and

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 22

actions taken by any particular agent may no longer exist. For example, a management agent may
decide to request a worker agent to use a tool based on its own reasoning, rather than at the
specific request of a human. An IAM system must be able to discern between when an action is
taken at the direct request of a human, and when it is the result of an agentic decision or a mix of
these two.

These challenges collectively demonstrate that a reactive, bolt-on approach to agent IAM is insufficient.
A proactive, purpose-built architectural framework is imperative to harness the power of MAS securely
and responsibly. Traditional IAM systems provide a shaky foundation for the towering edifice of
interconnected, autonomous AI agents.

Figure 2: Key Limitations of Traditional IAM in Multi-Agent Systems

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 23

3. Defining the Agent Identity (Agent
ID) in Multi-Agent System

To address the challenges of Agentic AI IAM, we must first redefine what constitutes an "identity" for an AI
agent. It transcends a simple API key or a username/password. An Agent ID in a MAS context must be a
rich, verifiable, dynamic, and cryptographically secured profile that serves as the foundation for trust,
access control, and accountability. This expands the notion of identity to not only support authentication
and access but also underpin dynamic authorization, accountability and behavioral governance.

3.1. What Constitutes an AI Agent's Identity? Beyond
Static Identifiers

An AI agent's identity is not merely a label but a comprehensive digital representation that captures its
origin, purpose, capabilities, behavior, relationships, and attestations. Agent IDs represent a subset of
NHIs that are autonomous, goal-driven, and context-aware. However, to function effectively, agents also
rely on or control other types of NHIs (i.e., API tokens, service accounts, workload identities access
external resources, execute API calls, or authenticate to services). Agent IDs must be unique across the
system and throughout time, even when agents are cloned or operate ephemerally the claims made by or
about the agent can be verifiable. We define an "instance" of an AI agent as a runtime instantiation of an
agent's software and model, combined with its unique state, memory, and interaction history at a given
point in time. Table 1 outlines different identity models for agents based on their lifespan, origin, and
hierarchical relationships, highlighting how unique identifiers support traceability and attribution.

In addition to origin and attribution, the lifecycle of an Agent ID must be well-defined. Identity termination
– whether through task completion, behavioral anomalies or administrative revocation or expiration
policies – is as critical as its creation. Without such control, dormant or orphaned Agent IDs risk becoming
security liabilities, especially in large-scale MAS systems.

Agent Type Description

Persistent
Agents

For long-lived agents, the ID provides a continuous thread of identity across
sessions, state changes, and even restarts, as long as core attributes and
memory persist.

Ephemeral
Agents

Each execution of a short-lived, task-specific agent constitutes a new instance
with a unique (potentially derived) ID, ensuring that its actions are distinctly
attributable, even if its lifespan is mere seconds. Thus, the lifecycle of an
ephemeral agent includes instantiation, DID assignment, Verifiable Credential
issuance, runtime operation, and teardown.

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 24

Agent
Copies/Forks

A copied or forked agent with the same codebase becomes a distinct instance
with its own unique ID, diverging from its parent over time. The relationship to
the parent (provenance) should be part of its identity.

Hierarchical
Agents

Sub-agents spawned by a parent agent are separate instances, each with a
unique ID, but with a verifiable link (e.g., via a Verifiable Credential) back to the
parent, enabling traceable delegation.

Table 3: Agent Identity Models in Multi-Agent Systems

3.2. Essential Components of an Agent ID:

The proposed Agent ID, ideally anchored by a Decentralized Identifier (DID) (W3C, 2022), should
encapsulate a wide array of information within its associated DID Document and through Verifiable
Credentials (VCs) (W3C, 2021; Sporny et al., 2024). These components allow for a holistic
representation:

(A) Cryptographic Anchor & Verifier:

●​ Decentralized Identifier (DID): The globally unique, persistent, and resolvable root identifier
(e.g., did:example:agent123). The DID method dictates how it's registered and resolved.

●​ Associated Cryptographic Key Pairs: Public/private key pairs linked to the DID, specified in
the verificationMethod section of the DID Document. These are used for signing agent actions,
encrypting communications, and authenticating the agent when it presents its DID.

●​ DID Document Service Endpoints: Pointers to services associated with the agent, such as its
communication endpoints or a profile service.

(B) Core Attributes & Metadata (Often in DID Document or VCs):

●​ Creator/Deployer/Owner/Controller: DIDs or other identifiers of the entities responsible for
the agent's creation, operation, and governance.

●​ Agent Software Version & Model Information: Cryptographic hash of the agent's core model
parameters and software version.We recommend the use of FIPS-approved SHA-3 family hash
functions (SHA3-224, SHA3-256, SHA3-384, and SHA3-512) to ensure strong cryptographic
security.

●​ Timestamps: Creation date, last update, expected expiry (for ephemeral IDs).
●​ Dependencies (Optional): A list of critical software components, libraries, or other agent

services that this agent relies upon. This is optional metadata and a normative reference to
AIBOM is the preferred way to define the dependencies.

●​ Training Information (Optional): Details about the datasets, methods, and environment used
to train the agent's underlying model.

●​ Lifecycle Status: Current state (e.g., active, suspended, revoked, archived).

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 25

(C) Capabilities, Scope, and Behavior (Crucial for Access Control & Trust):

●​ Formal Scope of Behavior: A machine-readable definition of the agent's intended tasks,
operational domains, and interaction boundaries.

●​ Decision-Making Capabilities: Details on the agent's model type, primary reasoning methods,
and key behavioral parameters.

●​ Toolset: An explicit, verifiable list of the tools, APIs, or other agents it is authorized to use.
●​ Expected Outcomes & Limitations: Definition of intended successful outcomes and known

failure modes or limitations.

(D) Operational & Security Parameters:

●​ Communication Protocols Supported: Specification of protocols the agent can use.
●​ Security Properties Attested: Claims about security features.
●​ Compliance Information: VCs asserting compliance with relevant regulations.
●​ Update Mechanism: Information on how the agent's software, model, or DID Document can be

securely updated.

(E) Verifiable Credentials (VCs): The Key to Dynamic Attributes and Trust: VCs are digitally signed
attestations about an agent, issued by a trusted entity. Usually, trusted entities are government agencies
or big IT companies acting as Certification Authorities. Agents can hold and present these VCs to prove
specific attributes or authorizations.

●​ Role VCs: "DisasterResponseCoordinatorRole".
●​ Capability VCs: "CertifiedToUse_MedicalImagingAI_v3".
●​ Reputation VCs: "TrustedCollaborator_Score_95_Percentile_from_CommunityX".
●​ Provenance VCs: "SpawnedBy_did:example:parentAgent789_at_TimestampZ".

3.3. Agent ID Ownership and Control:

A cornerstone of this new IAM paradigm is the principle of Self-Sovereign Identity (SSI) applied to
agents.

●​ Agent (or its designated controller) as Holder: The agent itself or its designated controller
holds the private keys associated with its DID and manages its VCs.

●​ Controller: The entity ultimately responsible for the agent.
●​ Decoupling from Issuers and Verifiers: The agent’s identity is not solely dependent on a

single centralized identity provider.

This model moves away from centrally managed identities, empowering the agent/controller with greater
control and portability.

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 26

3.4. ID Generation, Assignment, and Lifecycle
Management: From Birth to Revocation

Managing the lifecycle of these rich Agent IDs is crucial.

●​ Initial ID Generation and Assignment using different approaches:

○​ Centralized Platform Issuance: In enterprise settings, a platform might generate a DID
for an agent upon deployment.

○​ Decentralized/Self-Issuance: An agent or its controller can generate its own DID using
a suitable DID method

At creation, the DID can be associated with core attributes(See Section 3.2B).

●​ Runtime ID Adaptation & Ephemeral Identities: Agents may need to operate under different

personas or with limited-scope identities for specific tasks.

○​ Role-Based/Task-Specific IDs: An agent might present a specific VC that grants it a
temporary role or use a derived, short-lived DID.

○​ Secure Protocol for Assuming Runtime IDs:

1.​ Request: The agent requests a new role/ephemeral ID/VC.
2.​ Verification: Issuer verifies primary DID and policies.
3.​ Issuance: Issuer provides a new (potentially time-bound, scope-limited) VC or

ephemeral DID.
4.​ Usage: Agent uses the new ID/VC for the specific context.
5.​ Revocation/Expiry: The temporary ID/VC is revoked or expires.​

●​ ID Update and Revocation:

●​ DID Document Updates: Changes to an agent's capabilities or keys require updating its
DID Document.

●​ VC Revocation: Invalid VCs must be revoked using mechanisms like VC Status Lists.
●​ DID Deactivation/Revocation: The primary DID can be marked as deactivated if the

agent is decommissioned.

This rich, dynamic, and verifiable Agent ID serves as the cornerstone of the proposed Agentic AI IAM
framework. The demo SDK for Agent ID is published as open source code on Github (Huang, 2025c).

AIAM enables secure identity, intent, and access control for autonomous agents operating within
distributed systems.

It supports fine-grained delegation, context-aware authorization, and real-time trust evaluation across
multi-agent workflows. Reference of this AIAM SDK and the Demo video of this security Functionality.
(Sheriff,2025d)

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 27

https://github.com/kenhuangus/agent-id-sdk
https://github.com/akramIOT/Agentic-IAM
https://www.youtube.com/watch?v=NCfropWq6WI

In conclusion, the above establishes the need for a more granular, cryptographically verifiable identity
model that goes beyond the conventional IAM. Traditional models lack the mechanisms to accommodate
ephemeral agents, decentralized trust anchors, and continuous validation workflows. The following
section on the framework architecture is motivated by the design decisions made above.

4. The New Agentic AI Identity and
Access Management Framework
Architecture

A. Zero-Trust Architecture for Agentic AI

Core Principles:

●​ Never trust, always verify: Every agent action requires real-time verification regardless of previous
authentication

●​ Assume breach: Design systems expecting that agents may be compromised or manipulated
●​ Least privilege: Grant agents only the minimum access required for their specific task

Implementation Strategy:

●​ Continuous verification of agent identity and behavior through behavioral analysis and anomaly
detection

●​ Micro-segmentation of AI environments to limit lateral movement if agents are compromised
●​ Dynamic policy enforcement that adapts to real-time risk assessments

B. Decentralized Identity Management

Decentralized Identifiers (DIDs) and Verifiable Credentials:
​
Modern agentic AI systems require decentralized identity frameworks that provide:

●​ Self-sovereign identity for AI agents, allowing them to maintain their own identity without relying
on centralized authorities

●​ Verifiable credentials that can be cryptographically verified without contacting the issuing
authority

●​ Selective disclosure capabilities using zero-knowledge proofs to share only necessary information

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 28

Agent Identity Architecture:

●​ Rich agent identities that encapsulate capabilities, provenance, behavioral scope, and security
posture

●​ Agent Naming Service (ANS) for secure, capability-aware discovery of agent services
●​ Cryptographic attestation of agent integrity and authenticity

C. Dynamic Policy-Based Access Control (PBAC)

Policy Engine Architecture:
​
Replace static role-based controls with dynamic, context-aware policy engines that:

●​ Evaluate access requests in real-time based on multiple attributes including agent identity,
resource sensitivity, environmental context, and risk factors

●​ Support natural language policy definitions that can be translated into executable access control
rules

●​ Implement fine-grained resource filtering both before and after data retrieval

Key Components:

●​ Attribute-based evaluation considering user identity, agent capabilities, resource classification,
and environmental factors

●​ Intent-based authorization that understands and evaluates the purpose behind access requests
●​ Dynamic policy updates that adapt to changing threat landscapes and business requirements

D. Authenticated Delegation Framework

Secure Delegation Mechanisms:​

Implement OAuth 2.1 extensions specifically designed for AI agents:

●​ Agent-specific credentials that clearly distinguish between human users and AI agents
●​ Delegated authorization flows that maintain clear chains of accountability from human principals

to agents
●​ Scoped permission models that allow fine-grained control over what agents can access and

modify
●​ Revocable delegation enabling real-time termination of agent permissions

Implementation Elements:

●​ requested_actor parameter in authorization flows to specify which agent is requesting delegation
●​ actor_token parameter for agent self-authentication during token exchange
●​ Enhanced token claims capturing the complete delegation chain for audit and accountability

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 29

E. Continuous Monitoring and Behavioral Analytics

Real-Time Monitoring:

●​ Agent behavior tracking to detect deviations from expected patterns
●​ Anomaly detection using machine learning to identify potentially compromised agents
●​ Audit trail generation that captures all agent actions with full context and authorization basis
●​ Performance monitoring to detect resource abuse or denial-of-service attempts

Trust Scoring:

●​ Dynamic trust scores based on agent behavior, historical performance, and security posture
●​ Continuous risk assessment that adjusts agent permissions based on current threat levels
●​ Automated response mechanisms that can restrict or terminate agent access when anomalies are

detected

F. Secure Communication Protocols

Enhanced MCP Security:

●​ Cryptographic server verification to ensure clients connect to legitimate MCP servers
●​ Enhanced Tool Definition Interface (ETDI) with cryptographic identity verification and immutable

versioned tool definitions
●​ Policy-based access control for MCP tool interactions, evaluating capabilities against explicit

policies using dedicated policy engines

Agent-to-Agent Communication:

●​ Secure A2A protocol implementation with enterprise-grade authentication and authorization
●​ Multi-modal support with proper access controls for different communication types
●​ Task-oriented security that maintains security boundaries throughout long-running collaborative

tasks

To address the multifaceted challenges of managing AI agents in MAS, we propose a comprehensive IAM
framework built upon modern cryptographic primitives and a layered architecture designed for dynamic,
secure, and interoperable agent interactions.

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 30

4.1. Foundational Pillars

The framework rests on several key technological pillars:

●​ A. Decentralized Identifiers (DIDs) and Verifiable Credentials (VCs):

●​ DIDs (W3C, 2022) provide globally unique, persistent, cryptographically verifiable
identifiers controlled by the agent or its controller, enabling self-sovereign identity
essential for cross-organizational and decentralized MAS. Each agent instance receives a
unique DID, providing a persistent identity anchor throughout its operational lifecycle.
VCs (W3C, 2021; Sporny et al., 2024) are digitally signed attestations about an agent,
allowing granular and dynamic proof of attributes, capabilities, or authorizations, and
even metadata such as validity periods and credential status references.These
technologies are particularly well-suited for representing Non-Human Identities (NHIs),
which are widely discussed in the industry (OWASP, 2025; Cloud Security Alliance,
2024), providing a standardized approach to managing autonomous agent identities in
distributed systems.

●​ B. Zero-Knowledge Proofs (ZKPs):

●​ ZKPs (Goldwasser et al., 1989) allow an agent to prove a statement's truth (e.g.,
possessing a specific VC attribute) without revealing the underlying information,
balancing verifiability with privacy. This is crucial for selective disclosure and proving
policy compliance without exposing sensitive internal states.

●​ C. Agent Naming and Discovery Service (ANS):

●​ An ANS, inspired by DNS but tailored for agents, enables secure and reliable discovery
based on capabilities, protocols, providers, and versions, not just names(Huang, Narajala,
Habler, & Sheriff, 2025). This could use a naming structure like
protocol://AgentFunction.CapabilityDomain.Provider.Version[.protocolExtension] and
resolve to DIDs, with entries secured by PKI or linked to verifiable claims.

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 31

4.2. Core Architectural Layers

The proposed framework is structured in layers (Figure 1):

Figure 3: Agentic IAM Core Architectural Layers

(Layer 1) Identity & Credential Management Layer: Responsible for creating, issuing, storing, and
managing the lifecycle of Agent DIDs and VCs.

●​ DID Registries/Methods: Systems anchoring DIDs and their DID Documents (e.g.,
public/permissioned DLTs, did:web, an "Agent ID Provider Network").

●​ VC Issuers and Verifiers: Trusted entities issuing and checking VCs.
●​ Agent Wallets/Secure Storage: Secure agent-side storage for private keys and VCs.
●​ Key Management Services: For key generation, rotation, and revocation.

(Layer 2) Agent Discovery and Trust Establishment Layer: Enables agents to find each other and
establish trust.

●​ ANS Resolution Mechanisms: Services implementing the ANS for capability-based discovery.
●​ DID Resolvers: Standard components for retrieving DID Documents.

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 32

●​ Reputation Systems: DID-anchored systems for sharing reputation scores.
●​ Trust Frameworks: Policies defining how trust is evaluated (e.g., trusted VC issuers).

(Layer 3) Dynamic Access Control Layer: Makes fine-grained, context-aware authorization decisions.

●​ Policy Decision Point (PDP): Evaluates access requests against policies using agent ID (DID,
VCs), resource attributes, action, and context.

●​ Policy Administration Point (PAP): Where policies (e.g., in Rego/OPA) are defined.
●​ Policy Information Point (PIP): Gathers attributes for the PDP.
●​ Access Control Mechanisms: ABAC, PBAC, and JIT access using temporary, scoped VCs.

(Layer 4) Unified Global Session Management & Policy Enforcement Layer: A critical innovation
for consistent, real-time establishment, tracking, management, and enforcement of IAM policies,
including global logout and session invalidation, across heterogeneous agent communication protocols.

●​ Cross-Protocol Session Authority (SA): Logically centralized component for global session
oversight, policy distribution, orchestrating global logout, and state change propagation.

●​ Adapter Enforcement Middleware (AEM): Lightweight plugins injected into Protocol
Adapters, hooking into session initiation, subscribing to SA updates (via SSS), intercepting
requests, and enforcing decisions locally, including terminating local sessions on global logout.

●​ Enhanced Protocol Adapters: Gateways understanding specific agent protocols, integrated
with AEM for authentication, authorization, and local session management linked to global
contexts.

●​ Session State Synchronizer (SSS): Highly available, low-latency distributed data store
maintaining a real-time ledger of active global agent session contexts, their mappings to
protocol-specific sessions, and current validated capabilities/status. It's the primary source of
truth for AEMs regarding session validity. As an alternative to the distributed ledger - the OpenID
Shared Signals Frameworks can be used for events across entities and the systems subscribed to
the events or have publishing events will help achieve this requirement. It can help expedite their
adoption rate based on their SSF implementations.

Flow Example: Global Logout for Agent Alpha

1.​ Global logout for AgentAlpha_DID reaches SA.
2.​ SA updates SSS: marks GlobalSessionID_123 (for AgentAlpha_DID) as "terminated".
3.​ SA may push notifications to relevant AEMs.
4.​ AEM for A2A adapter, on SSS check (or push), sees termination, invalidates local A2A session.
5.​ Similar for MCP adapter's AEM. Further requests from Agent Alpha are blocked.

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 33

4.3. Applying Zero Trust Principles

The framework embodies Zero Trust (Kindervag, 2010):

●​ Explicit Verification: Always verify agent identity (DID, VCs) and authorization.
●​ Least Privilege Access: Grant minimum necessary permissions, ideally via JIT VCs. Just-in-time

verifiable credentials are dynamically issued with specific permissions for limited time periods and
particular tasks, automatically expiring when the agent completes its designated function or when
the time window closes.

●​ Assume Breach: Design for compromise; rapid revocation via the Unified Enforcement Layer is
key.

●​ Micro-segmentation: Granular agent DIDs support network/application micro-segmentation.
●​ Data-Centric Security: Policies tied to data sensitivity and agent capabilities.

Figure 4: Zero Trust IAM Framework for Multi-Agent Systems

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 34

This architectural foundation establishes a robust lifecycle model for agent identity and verifiable
credentials. By clearly delineating ephemeral and persistent identity domains, the framework ensures a
minimal attack surface. Subsequent sections will build on this foundation to explore operational
monitoring and compliance considerations.

5. Agent IDs in the IAM Process

This section provides an in-depth exploration of how these constructs enable robust fine-grained access
control, ensure secure and non-reputable logging, facilitate effective real-time monitoring and anomaly
detection, and empower agile, targeted incident response. A critical enabler for many of these use cases
is the Agent Name Service (ANS by Huang, Narajala, Habler, & Sheriff, 2025), which provides a secure
and capability-aware mechanism for agents to discover each other before interaction. We will illustrate
conceptual design patterns, including sample interactions involving emerging agent communication
protocols like Google's Agent-to-Agent (A2A) protocol and Anthropic's Model Context Protocol (MCP),
demonstrating the framework's adaptability and practical utility in complex Multi-Agent Systems (MAS).

5.1. Fine-Grained Access Control in Action

Effective access control in MAS must move beyond static roles to embrace dynamic, attribute-based ,
and policy-driven methodologies. The journey often begins with an agent needing to discover another
agent or service capable of fulfilling a specific need. This is where the ANS plays a pivotal role, integrated
with DIDs and VCs for subsequent secure interaction and authorization.

●​ Deep Dive into Dynamic Authorization Decisions, Prefaced by ANS Discovery: Consider
TaskOrchestratorAgent (did:com:enterprise:agent:orchestrator:alpha-001) which needs to
delegate a financial data analysis task. Its first step is to find a suitable agent. It queries the Agent
Name Service (ANS) for an agent that matches certain criteria.

1. ANS Discovery Phase: TaskOrchestratorAgent constructs an ANS query. The ANS is designed
for capability-aware resolution, using a structured naming convention such as:
Protocol://AgentID.agentCapability.Provider.vVersion.Extension.

Conceptual ANS Query (e.g., via a secure API call to an ANS resolver):

// Request to ANS Resolver

{

 "requestType": "resolveAgentByCapability",

 "desiredProtocol": "acp", // Prefers Agent Communication Protocol

 "requiredCapability": "FinancialRiskAnalysis.CorporateReporting",

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 35

 "preferredProvider": "AcmeFinanceServices",

 "versionRange": ">=2.1.0 <3.0.0", // Semantic versioning for the agent's capability

 "requiredAttestations": [// Optional: request agents with specific VCs

 { "vcType": "SOXComplianceCertified" }

]

}

The ANS resolver (itself a secure, trusted component of the IAM framework, potentially with its
own DID and verifiable responses) queries its Agent Registry. The Agent Registry stores
information about registered agents, including their ANSNames, DIDs, PKI certificates (if using a
PKI-centric ANS as described in this paper), and protocolExtensions detailing their capabilities
and associated VCs.

Conceptual ANS Resolution Response:

// Response from ANS Resolver

{

 "resolutionStatus": "success",

 "resolvedAgents": [

 {

 "ansName":
"acp://RiskAnalyzerBot.FinancialRiskAnalysis.AcmeFinanceServices.v2.1.3.prod",

 "agentDid": "did:com:acme:agent:riskanalyzer:beta-007",

 "serviceEndpoint": "acps://riskanalyzer.acmefinance.com/service",

 "protocolExtensions": {

 "acp": { "supportedMessagePatterns": ["request-response", "publish-subscribe"] }

 },​
​ ​
 "relevantVcSnippets": [// Snippets or pointers to VCs that matched query

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 36

https://genai.owasp.org/resource/agent-name-service-ans-for-secure-al-agent-discovery-v1-0/

 { "type": "SOXComplianceCertified", "issuer": "did:com:acme:audit:sox-issuer",
"issueDate": "2025-01-15" }

],

 "ansRecordSignature": "..." // Signature by the ANS resolver over this record

 }

 // Potentially other matching agents

]

}

TaskOrchestratorAgent verifies the ansRecordSignature. It now has the DID of a candidate:
RiskAnalyzerBot (did:com:acme:agent:riskanalyzer:beta-007).

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 37

Figure 5: Agent Discovery and Registration Protocol Flow

2. Interaction and Dynamic Authorization: TaskOrchestratorAgent now initiates
communication with RiskAnalyzerBot (e.g., via ACP). As part of establishing this secure channel
or with its first request, RiskAnalyzerBot needs to access InternalDB-SalesFigures and
ExternalAPI-MarketSentiment.

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 38

Figure 6: Dynamic Authorization Flow with Adapter Enforcement Middleware

The request from RiskAnalyzerBot (let's call it did:acme:riskanalyzer:beta-007) to access
InternalDB-SalesFigures is intercepted by the Adapter Enforcement Middleware (AEM, see
section 4). The AEM/PIP gathers:

●​ Agent Identity:
●​ RiskAnalyzerBot's DID: did:acme:riskanalyzer:beta-007.
●​ Its resolved DID Document might state: scopeOfBehavior: "Perform financial risk

analysis based on sales and market data." toolset: {"toolName":
"SecureSQLConnector", "targetSchemas": ["Sales", "Projections"]}.

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 39

●​ Presented VCs (obtained during its registration or dynamically):
●​ VC1 (Role): { "type": "FinancialRiskAnalystRole", "issuer": "did:com:acme:hr", ... }

●​ VC2 (Capability): { "type": "SalesDataAnalyticsCapability", "issuer":
"did:com:acme:datascience", ... }

●​ VC3 (SOX Compliance - discovered via ANS): { "type":
"SOXComplianceCertified", "issuer": "did:com:acme:audit:sox-issuer", ... }

●​ Resource Attributes: id: InternalDB-SalesFigures, dataSensitivity: High.
●​ Action: QUERY_TABLE (QuarterlySummaries).
●​ Context: requestTime, sourceIpSegment.

The PDP evaluates this against policies. For example:

package acme.data_access

default allow = false

Allow access if agent has correct role, capability VCs, SOX compliance,

and the requested action is within its declared toolset capabilities for the
resource.

allow {

 input.agent.vcs[_].credentialSubject.role == "FinancialRiskAnalystRole"

 input.agent.vcs[_].credentialSubject.capability ==
"SalesDataAnalyticsCapability"

 input.agent.vcs[_].type[_] == "SOXComplianceCertified" // Check for presence
of type

 # Verify toolset from resolved DID Document (assuming toolset populated by
PIP)

 some tool_idx

 allowed_tool :=
input.agent.did_document.service[_].serviceEndpoint.toolset[tool_idx]

 allowed_tool.toolName == "SecureSQLConnector"

 input.resource.schema IN allowed_tool.targetSchemas // e.g., "Sales"

 input.resource.id == "InternalDB-SalesFigures"

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 40

 input.action == "QUERY_TABLE"

 input.resource.table == "QuarterlySummaries" // More granular check

}

The ANS discovery step ensures that TaskOrchestratorAgent doesn't just find an agent, but finds
one that verifiably claims relevant capabilities and compliance (like SOXComplianceCertified)
before even attempting interaction. The subsequent authorization then re-verifies these claims
(via presented VCs) and checks against more granular policies for resource access. This two-step
process (secure discovery then secure, fine-grained authorization) is crucial for building trust and
efficiency in large MAS. The DID is the consistent thread linking the discovered entity in ANS to
the entity being authorized.

●​ Just-In-Time (JIT) Access, Enhanced by ANS for Tool Discovery: Imagine
DataProcessingAgent-Temp77 (did:ephemeral:task-xyz:agent-77) is a short-lived agent
spawned by WorkflowEngine to perform a specific data transformation. It needs temporary
access to a specialized DataTransformationTool-Q.

1.​ ANS for Tool Discovery: WorkflowEngine (or DataProcessingAgent-Temp77 itself if it
has this capability) first queries the ANS to discover a suitable and currently available
instance of DataTransformationTool-Q. ANS Query:

{

 "requestType": "resolveAgentByNameAndCapability",

 "ansNamePattern": "mcp://DataTransformationTool-Q.*.AcmeTools.v1.*.internal",

 // Using wildcard for AgentID part if multiple instances exist

 "requiredCapability": "VectorEmbeddings.HighDimReduction",

 "availabilityRequirement": "online_accepting_jobs" // Custom ANS extension

}

The ANS returns the DID of an available instance, e.g.,
did:com:acmetools:mcp:tool:transformQ:instance03.

2.​ JIT VC Issuance via MCP Context (Conceptual): WorkflowEngine (acting as a trusted
issuer for this context) issues a JIT VC to DataProcessingAgent-Temp77:

{

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 41

 "type": ["VerifiableCredential", "MCPToolAccessPass"],

 "issuer": "did:com:acme:workflow:engine-issuer",

 "validFrom": "2025-10-02T14:30:00Z",

 "validUntil": "2025-10-02T14:45:00Z", // Valid for 15 mins

 "credentialSubject": {

 "id": "did:ephemeral:task-xyz:agent-77",

 "authorizedToolDID": "did:com:acmetools:mcp:tool:transformQ:instance03",

 "allowedActions": ["executeTransform"],

 "inputDataHandle": "blob://temp-input-xyz",

 "outputDataHandle": "blob://temp-output-xyz",

 "jobId": "job-ephemeral-77a"

 }

}

3.​ MCP Tool Invocation with JIT VC: DataProcessingAgent-Temp77 invokes

DataTransformationTool-Q (whose MCP endpoint was found via ANS then DID
resolution). It presents this JIT VC within the MCP call. The following figure is a high level
overview.

Conceptual MCP Call (e.g., using gRPC or HTTP, carrying VC in metadata/headers): Let's
assume MCP uses gRPC and metadata for auth as customized transport.

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 42

Figure 7: Just-In-Time Verifiable Credential Issuance for Ephemeral Agents​

// Conceptual .proto definition for an MCP tool call

service TransformationTool {

 rpc ExecuteTransform(TransformRequest) returns (TransformResponse);

}

message TransformRequest {

 string job_id = 1;

 string input_data_reference = 2; // "blob://temp-input-xyz"

 map<string, string> transform_parameters = 3;

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 43

}

Client-side pseudocode for DataProcessingAgent-Temp77:

Assume 'mcp_tool_stub' is the gRPC stub for DataTransformationTool-Q

Assume 'jit_vc_jwt' is the JIT VC serialized as a JWT

metadata = [

 ('x-agent-did', 'did:ephemeral:task-xyz:agent-77'),

 ('authorization-vc', jit_vc_jwt)

] # gRPC metadata

request_payload = TransformRequest(

 job_id="job-ephemeral-77a",

 input_data_reference="blob://temp-input-xyz",

 transform_parameters={"algorithm": "PCA", "dimensions": 128}

)

try:

 response = mcp_tool_stub.ExecuteTransform(request_payload,
metadata=metadata)

 # Process response and write to "blob://temp-output-xyz"

except grpc.RpcError as e:

 # Handle authorization failure or tool error

 log(f"MCP tool call failed: {e.details()}")

4.​ Verification at MCP Tool's AEM: The AEM for DataTransformationTool-Q extracts and

verifies the DID and jit_vc_jwt. The PDP checks if did:ephemeral:task-xyz:agent-77 is
authorized by this specific VC to call this tool instance
(did:com:acmetools:mcp:tool:transformQ:instance03) for executeTransform with the
given jobId and data handles, and if the VC is within its validity period.

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 44

ANS helps find the right instance of a potentially multi-instance MCP tool. The JIT VC then
provides extremely narrow, time-bound permission for that specific job and data, dramatically
reducing risk compared to the ephemeral agent having broader, longer-lived credentials for a
generic tool type.

●​ Capability-Driven Authorization with A2A Protocol: AlertingAgent-SystemX
(did:com:sysX:a2a:alerter:main:v1) needs to send a critical security alert to a
SOCDashboardAgent-PlatformY (did:com:platY:a2a:socdash:primary:v2).

1.​ ANS Discovery: AlertingAgent-SystemX resolves
a2a://SOCDashboardAgent.SecurityAlertIngestion.PlatformY.v2.critical via ANS to find
the DID and A2A endpoint of SOCDashboardAgent-PlatformY. The ANS response might
also indicate that the SOC agent requires alerts to be signed with a key whose DID is on
an approved list.

2.​ A2A Message Construction with IAM Context: AlertingAgent-SystemX holds a VC:
{"type": "CriticalAlertSourceCredential", "issuer": "did:com:sysX:security-authority",
"credentialSubject": {"id": "did:com:sysX:a2a:alerter:main:v1", "authorizedAlertTypes":
["SECURITY_CRITICAL", "SYSTEM_DOWN"]}}.

Conceptual A2A Message from AlertingAgent-SystemX (JSON-like payload for an A2A
message):

{

 "a2aHeader": { // Fields defined by A2A spec

 "messageId": "msg-uuid-9876",

 "senderId": "did:com:sysX:a2a:alerter:main:v1", // Using DID as A2A ID

 "recipientId": "did:com:platY:a2a:socdash:primary:v2",

 "protocolVersion": "A2A/1.0"

 },

 "iamExtension": { // Custom extension for our IAM framework

 "verifiablePresentation": [/* JWT of CriticalAlertSourceCredential */],

 "messageSignature": { // Signature over 'a2aHeader' and 'payload'

 "keyId": "did:com:sysX:a2a:alerter:main:v1#key-1", // Key used for signing

 "algorithm": "EdDSA",

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 45

 "signatureValue": "..."

 }

 },

 "payload": {

 "alertType": "SECURITY_CRITICAL",

 "sourceSystem": "SystemX_Firewall_Cluster",

 "details": "Multiple intrusion attempts detected from IP range Z.Z.Z.Z",

 "severity": 5, // 1-5 scale

 "timestamp": "2025-10-02T15:00:10Z"

 }

}

Many emerging A2A protocols are defining ways to carry security contexts, often
leveraging JWTs or similar token formats within their headers or as part of the message
envelope. The iamExtension is a way our framework's specific needs (DID, VP) can be
mapped.

3.​ Processing at SOCDashboardAgent-PlatformY's AEM:

●​ AEM verifies messageSignature using the public key from

did:com:sysX:a2a:alerter:main:v1#key-1 (resolved via DID document).
●​ AEM verifies the verifiablePresentation containing the

CriticalAlertSourceCredential.
●​ PDP checks policies like: "Accept SECURITY_CRITICAL alert IF sender DID holds

valid CriticalAlertSourceCredential AND the alert's declared sourceSystem is
within the scope covered by that credential."

The ANS ensures AlertingAgent-SystemX reliably finds the authentic
SOCDashboardAgent-PlatformY (not an imposter). The VC presented proves the sender is
authorized to issue critical alerts, and the message signature ensures integrity and
non-repudiation for the alert content. This provides much stronger guarantees than simple IP
whitelisting or pre-shared API keys between agents for A2A communication.

The use of ANS for initial discovery, followed by DID-based authentication and VC-based authorization at
the point of interaction, forms a robust sequence for secure and fine-grained access control in diverse
MAS scenarios.

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 46

In addition to validating agent credentials, MAS environments must track role continuity across interaction
chains to prevent context hijacks. For instance, agents may attempt to impersonate privileged roles
mid-session or nest conflicting prompts within a conversation. Session-aware validation mechanisms such
as persistent role tokens, inter-message trust chaining, and nested intent verification can be enforced
through middleware or the PDP layer to detect such anomalies. This ensures that agents cannot escalate
privileges or override prior authorizations through prompt manipulation

5.2. Secure Logging, Auditing, and Non-Repudiation

In systems where autonomous agents perform significant actions, establishing a clear, trustworthy, and
irrefutable record of events is paramount. This section delves into how the proposed IAM framework,
leveraging rich Agent IDs (DIDs and VCs) and the Agent Name Service (ANS) for discoverable context,
transforms logging into a critical component of system integrity, accountability, and auditability.

●​ Immutable Agent Identifiers (DIDs) as the Linchpin of Audit Logs: Every significant action
initiated or participated in by an agent MUST be logged with its unique, persistent Decentralized
Identifier (DID) as the primary subject identifier. This creates an unambiguous, globally unique,
and cryptographically verifiable link to the specific agent instance responsible for any given event.

○​ Enhanced Log Granularity with DID and VC Context: Beyond simply logging the
agent's DID, comprehensive logs should capture:

■​ Precise Timestamp: Synchronized across the MAS to ensure correct event
sequencing.

■​ Agent DID and ANSName: Logging both the DID (for cryptographic
verifiability) and the resolved ANSName (e.g.,
acp://RiskAnalyzerBot.FinancialRiskAnalysis.AcmeFinanceServices.v2.1.3.prod)
provides human-readable context about the agent's role and origin.

■​ Target Resource(s) DIDs/ANSNames: If the interaction target is another
agent or a resource registered in ANS, its DID and ANSName should also be
logged.

■​ Request Context Hash: A canonical SHA-256 hash computed over a
deterministic serialization of the request context—including the timestamp, agent
DID, target resource identifiers, action type, and normalized input parameters.
This hash acts as a unique fingerprint of the request, enabling auditors to validate
the integrity of the event without exposing sensitive payload details.

■​ Specific Verifiable Credentials (VCs) Presented: The unique identifiers (e.g.,
id or transaction_id) of all VCs presented by the agent to authorize that specific
action. For example, logging
vc:jwt:uri:issuer-finance-bob:task-q3report2025-instance-002 allows an auditor
to later retrieve and verify this exact VC.

■​ DIDs and ANSNames of Collaborating Agents: In multi-agent tasks, the
DIDs/ANSNames of all significant contributing agents should be logged to trace
collaborative decision-making.

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 47

■​ Outcome and Policy Reference: The result of the action and a reference to the
specific policy version (e.g., ACME_Finance_Policy_v3.2.1_Rule7) that permitted
it.

○​ Example Enriched Log Entry incorporating ANSNames:

{

 "eventId": "evt_20251002T110530Z_A789F123",

 "timestamp": "2025-10-02T11:05:30.123Z",

 "initiatingSystem": "WorkflowOrchestratorInternal", // System originating the
top-level task

 "agentDid": "did:com:acme:agent:riskanalyzer:beta-007",

 "agentAnsName":
"acp://RiskAnalyzerBot.FinancialRiskAnalysis.AcmeFinanceServices.v2.1.3.prod",

 "actionPerformed": "ExecuteSecureSQLQuery",

 "targetResourceDid": "did:com:acme:resource:db:InternalDB-SalesFigures",

 "targetResourceAnsName":
"db://InternalDBSales.FinancialData.AcmeInternal.v1.prod", // If databases are also
in ANS

 "inputParametersHash": "sha256-c4d5e6f...",

 "presentedVcIds": [

 "vc:jwt:uri:acme-hr:role-finanalystL2-inst-001",

 "vc:jwt:uri:acme-audit:sox-compliance-inst-003"

],

 "decisionPolicyId": "ACME_DataAccess_Policy_v1.7_Rule12b",

 "collaborationContext": {

 "triggeringAgentDid": "did:com:enterprise:agent:orchestrator:alpha-001",

 "triggeringAgentAnsName":
"acp://TaskOrchestrator.CoreBusinessLogic.AcmeEnterprise.v1.0.main",

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 48

 "taskId": "task_QuarterlyRiskAssessment_2025Q3"

 },

 "outcome": { "status": "Success", "rowsAffected": 0, "dataRetrievedHash":
"sha256-g7h8i9j..." },

 "logEntrySignature": "..." // Digitally signed by the logging service or the agent
performing the action

}

Logging ANSNames alongside DIDs makes logs instantly more interpretable for human auditors.
The cryptographic link via DIDs ensures the identifier is not just a mutable string. The logged VCs
provide the exact authorization context for the action, making audits far more precise.

●​ Cryptographic Non-Repudiation of Agent Actions via DID Signatures: To achieve strong
non-repudiation, critical agent actions or the data they produce must be digitally signed by the
agent using the private key associated with its DID. This is particularly important for actions with
financial, legal, or safety implications.

○​ Scenario (A2A Context): OrderPlacementAgent (did:com:retail:a2a:orderbot:v1.0,
ANSName a2a://OrderPlacement.RetailTransactions.MegaCorp.v1.0.live) submits a
purchase order to SupplierFulfilmentAgent (did:com:supplierX:a2a:fulfill:v2.1, ANSName
a2a://Fulfilment.SupplyChain.SupplierX.v2.1.prod), which was discovered via ANS query
for "SupplyChain.OrderFulfilment.SupplierX".

○​ A2A Message with Signed Payload and DID Context: The OrderPlacementAgent
constructs an A2A message. The core business payload (the order details) is signed.

// A2A Message (Conceptual JSON representation)

{

 "a2aHeader": {

 "messageId": "order-uuid-554433",

 "senderId": "did:com:retail:a2a:orderbot:v1.0", // DID used as A2A identifier

 "recipientId": "did:com:supplierX:a2a:fulfill:v2.1", // Target DID

 "protocolVersion": "A2A/1.0",

 "timestamp": "2025-10-02T16:30:00Z"

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 49

 },

 "iamExtension": { // Our IAM framework's extension

 "verifiablePresentation": [/* Optional: JWT of a relevant VC, e.g.,
"AuthorizedBuyerCredential" */]

 },

 "payload": { // This is the part that is primarily signed

 "orderId": "PO-2025-10-778",

 "items": [{"sku": "XYZ123", "quantity": 100}, {"sku": "ABC789", "quantity": 50}],

 "shippingAddress": "123 Main St, Anytown",

 "totalAmount": 12500.75,

 "currency": "USD"

 },

 "payloadSignature": { // Signature specifically over the 'payload' object

 "keyId": "did:com:retail:a2a:orderbot:v1.0#key-transact", // Specific key for
transactions

 "algorithm": "EdDSA",

 "signatureValue": "..." // Digital signature of canonicalized JSON payload

 }

}

○​ Verification and Logging by SupplierFulfilmentAgent:

1.​ The AEM at SupplierFulfilmentAgent's side first authenticates the sender via its

DID and any presented VCs (as per Section 5.1).
2.​ It then specifically verifies the payloadSignature using the public key

did:com:retail:a2a:orderbot:v1.0#key-transact (obtained by resolving the
sender's DID).

3.​ SupplierFulfilmentAgent's log entry for receiving this order would include: its own
DID/ANSName, the sender's DID/ANSName, the order ID, a hash of the received
payload, and the payloadSignature object. This creates a verifiable record that
OrderPlacementAgent indeed sent that specific order. The initial discovery via

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 50

ANS ensures the order is sent to a legitimate fulfilment agent. The DID-based
signature on the payload provides strong non-repudiation for the order's content,
traceable to a specific, verifiable agent identity. Traditional EDI or API calls often
rely on weaker authentication or channel security alone.

4.​ For high-assurance workflows, it is advisable to implement end-to-end payload
integrity validation by cryptographically signing both request and response
objects at each stage of the agent interaction chain.This approach ensures that
any tampering whether at transport, storage, or application layers can be
immediately detected. Verifying payload integrity upon receipt enhances both
non-repudiation and forensic trust in audit logs.

●​ Verifiable Provenance Chains in MCP Tool Interactions: When an LLM-based agent uses an

MCP tool, understanding the full chain, from user prompt to LLM, to MCP tool call, to tool result,
back to LLM, and then to the user, is vital for auditing and debugging.

●​ Scenario: A user asks ResearchLLM-Agent (did:com:ai-lab:mcp:researcher:zeta:v3.1,
ANSName mcp://Researcher.ScientificQuery.AILab.v3.1.experimental) a complex
question requiring a database lookup via an MCP tool, SemanticSearchTool
(did:com:datastore:mcp:tool:semsearch:v1.0, ANSName
mcp://SemanticSearch.KnowledgeBase.DataCorp.v1.0.main). ResearchLLM-Agent
discovers SemanticSearchTool via an ANS query specifying the
"KnowledgeBase.SemanticSearch" capability.

●​ MCP Interaction Logging with DIDs and VCs:

1.​ User Interaction Log: User prompt, timestamp, and ResearchLLM-Agent's
DID/ANSName.

2.​ ResearchLLM-Agent Internal Log (or trace):
●​ Decision to use SemanticSearchTool.
●​ Query sent to ANS for SemanticSearchTool.
●​ Resolved DID/ANSName for SemanticSearchTool.
●​ The MCP call it constructs to SemanticSearchTool, including:

●​ Its own DID as the caller.
●​ The JIT VC it obtained/presented for this tool use (e.g.,

vc:jwt:...:mcp-tool-access-zeta-job778).
●​ The parameters sent to the tool.

●​ This entire MCP call could be signed by ResearchLLM-Agent.
3.​ SemanticSearchTool (MCP Tool) Log:

●​ Its own DID/ANSName.
●​ Receiving the MCP call from ResearchLLM-Agent (DID/ANSName

logged).
●​ The presented JIT VC ID.
●​ Verification status of the caller's DID and VC.
●​ Parameters received.
●​ Actions it took (e.g., database queries it made internally).
●​ The result it returned to ResearchLLM-Agent.

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 51

●​ This log entry or the response payload could be signed by
SemanticSearchTool.

4.​ ResearchLLM-Agent Internal Log (continued):
●​ Response received from SemanticSearchTool (potentially with signature

verification).
●​ How it processed the tool's output.
●​ The final answer generated for the user (this answer could also be

signed).

This chained logging, where each step is linked by verifiable DIDs/ANSNames and specific VCs or
signed messages, creates a rich, end-to-end auditable provenance trail. If the final answer is
wrong, auditors can trace back: Was it the LLM's reasoning leveraging timestamp of the LLM API
calls, the MCP tool's execution, the data the tool accessed, or the initial ANS discovery that
pointed to an incorrect tool version? This detailed, verifiable chain is crucial for explainability and
accountability in complex agentic workflows involving external tools.

To enhance visibility and trust across agent interactions, enterprises should implement real-time
behavioral monitoring within agent runtimes and interface layers. This includes detecting
anomalies in output structure, execution timing, or response consistency, compared to historical
baselines or allowed behavior policies.
Even when an agent presents valid cryptographic credentials, unexpected changes in behavior
such as unusual API call sequences, elevated response latency, or semantic drift can indicate
misuse or compromise.

Integrating these detection mechanisms into existing SIEM, agent telemetry streams, or
dedicated runtime monitors enables early detection and containment of unauthorized behaviors,
particularly in multi-agent or AI-powered workflows

●​ Privacy-Preserving Audits of IAM Policies with ZKPs: Organizations may need to prove to

external auditors or regulators that their Agentic AI IAM policies are being correctly enforced,
without revealing the proprietary details of all policies or all agent interactions.

●​ Scenario: An auditor wants to verify that access to resources tagged PII_Strict is only
ever granted if an agent presents a valid VC of type PII_AccessLevel3_Certified and the
request originates from an approved network segment.

●​ Mechanism:
1.​ The IAM system's Policy Decision Point (PDP) logs all its decisions, including the

agent DID, resource, action, presented VCs (or their hashes), contextual
attributes, and the allow/deny outcome. These logs themselves could be
cryptographically committed to (e.g., a hash chain).

2.​ The organization can run a process that analyzes these logs and generates a ZKP.
This ZKP would prove a statement like: "For all access requests to resources
tagged PII_Strict within the last audit period that resulted in an 'allow' decision,
the requesting agent's presented credentials included a valid (non-revoked,
correctly signed) PII_AccessLevel3_Certified VC from an approved issuer, AND
the source network attribute was in the set {'segA', 'segB'}."

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 52

3.​ This ZKP is generated without revealing the specific agent DIDs, resource DIDs,
exact times, or other details of the individual access events.

4.​ The auditor receives and verifies this ZKP, along with information about the
approved VC issuers and network segments, providing strong assurance of policy
enforcement without seeing the raw, potentially sensitive log data. This enables
"compliance as code" verification with privacy. It allows organizations to
demonstrate adherence to internal or external IAM rules without exposing the
minutiae of every transaction, which is a common challenge in traditional audit
processes that often require extensive (and risky) data sharing.

By deeply integrating verifiable Agent IDs (DIDs/VCs), secure discovery via ANS, and cryptographic
techniques like digital signatures and ZKPs into the logging and auditing process, our framework aims to
create a system where agent actions are not just recorded, but are verifiably attributable, contextualized,
and, where necessary, proven compliant in a privacy-respecting manner. This robust auditability is
fundamental to building and maintaining trust in complex and autonomous MAS.

To align with data protection and compliance mandates, secure logging strategies should also define data
retention lifecycles, auto-expiry policies, and access-controlled redaction mechanisms for sensitive logs.
Ensuring that logs are not only immutable but also ephemerally governed strengthens both audit
compliance and operational privacy in long-running agent environments.

5.3. Real-time Monitoring and Anomaly Detection

Effective IAM extends beyond static policy enforcement to encompass continuous, real-time oversight of
agent activities. The rich, verifiable Agent IDs (DIDs and VCs), coupled with the contextual information
available through Agent Name Service (ANS) resolutions, provide the foundation for a far more
sophisticated and proactive monitoring and anomaly detection capability than achievable with traditional,
opaque identifiers. This allows security systems to not only identify what is happening but also understand
if it aligns with an agent's intended and attested purpose and capabilities.

●​ Establishing Rich Behavioral Baselines Anchored to Verifiable Identities (DIDs and
ANSNames): Modern monitoring can move beyond tracking simple metrics like CPU usage per
IP address. The proposed framework allows for the creation of multifaceted behavioral baselines
for each unique agent DID and its associated ANSName profiles:

○​ Discovered vs. Declared Scope of Behavior: The agent’s DID Document contains its
scopeOfBehavior (e.g., "customer_support_query_resolution_for_product_X"). ANS
registration might also include a primary capability (e.g.,
Support.ProductQuery.CustomerFacing.v1). Monitoring systems can compare the agent's
actual interactions and data access patterns against this declared and discoverable
purpose. The current SIEM tool does not support this yet. There are some startup
Agentic AI security companies actively working on this enhancement as an Agentic AI
security posture management tool. Significant deviations trigger alerts.

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 53

■​ Scenario: SupportAgentAlpha (did:com:support:agent:alpha01, ANSName
helpdesk://Support.ProductQuery.CustomerFacing.v1.Acme) normally accesses
the product knowledge base and customer ticket system. If it suddenly starts
making frequent ANS queries for agents with FinancialData.InternalAudit
capabilities, or attempts to access database schemas related to payroll, this is a
strong anomaly relative to its declared/discovered scope.

○​ Authorized Toolset and ANS-Discoverable Service Usage: The agent's DID
Document details its toolset (specific APIs, other agent DIDs/ANSNames it's authorized
to interact with). Monitoring systems can track:

■​ Actual tool/API calls made.
■​ ANS queries made by the agent to discover other services.
■​ If the agent attempts to use tools not in its list or interact with DIDs/ANSNames

that don't match its typical collaboration patterns or authorized interaction VCs.
■​ Scenario (MCP Context): DataPipelineAgent-ETL (did:com:dataops:agent:etl04,

ANSName mcp://ETL.DataWarehouseLoading.DataOps.v2. nightly) is authorized
to use PostgresConnectorTool (an MCP tool discovered via ANS as
mcp://DBConnector.PostgreSQL.InternalTools.v1.stable) and S3StorageTool. If it
makes an ANS query for mcp://ExternalAPI.SocialMediaScraping... or attempts
to invoke such a tool via MCP, it's a policy violation and an anomaly.

○​ VC Presentation Patterns: Monitoring the types of VCs an agent typically presents for
different actions, and the issuers of those VCs. An agent suddenly presenting a VC from a
previously unseen or untrusted issuer for a high-privilege operation is suspicious.

○​ Communication Graph and Trust Dynamics: Building a graph of typical
agent-to-agent interactions (DID-to-DID or ANSName-to-ANSName) based on
historical communication logs. New, unexpected communication links, especially with
agents outside the organization or with low reputation scores (if a reputation system is
integrated), can be flagged.

■​ Scenario: A fleet of InventoryCheckAgent instances (e.g.,
a2a://InventoryCheck.RetailStoreXYZ.Ops.v1.hourly::did:...) typically only
communicate via A2A with a central InventoryMasterAgent
(a2a://InventoryMaster.HeadOffice.Ops.v3.main::did:...). If one
InventoryCheckAgent initiates an A2A connection to an unknown external
ANSName/DID, or starts sending unusually large A2A payloads, this is
anomalous.

●​ Advanced Deviation Detection Leveraging Verifiable Claims: The ability to verify claims
presented as VCs in real-time enhances anomaly detection:

○​ Scope Creep Beyond VC-Attested Capabilities: An agent, ResearchSummarizer
(did:..., ANSName a2a://Summarization.ScientificLiterature.ResearchGroup.v1), might
hold a VC for "Access_PubMed_API_SummarizationOnly." If it attempts to use the
PubMed API's "BulkDownloadAbstracts" function (which its VC does not authorize), the

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 54

AEM/PDP would block it, and the monitoring system would log this as a significant
deviation, as it's attempting an action beyond its attested capability.

○​ Anomalous JIT VC Requests: If an agent frequently requests JIT VCs for tasks outside
its typical operational parameters, or if the requested scopes for JIT VCs escalate
without justification, this could indicate a compromised agent or a misbehaving workflow.

○​ Interaction with Agents Lacking Expected Counter-Attestations: If
SecureDataTransferAgent is only supposed to send data to other agents that can present
a "DataRecipient_EncryptionLevel5_Compliant" VC, an attempt to send data to an agent
(discovered via ANS) that cannot present such a VC would be a flagged anomaly, even if
basic network connectivity is possible.

●​ Dynamic Trust Scoring and Risk-Adaptive IAM Incorporating ANS Context: The Agent ID
(DID) becomes the anchor for a dynamic trust score, influenced by monitoring. ANS context adds
another layer.

○​ Inputs to Trust Score (with ANS context):

■​ Successful completion of tasks within the agent's ANS-declared capability.
■​ Policy violations or anomalous behaviors (as detailed above).
■​ Validity and issuer trustworthiness of its VCs.
■​ Feedback from other reputable agent DIDs (whose own ANS profiles might

indicate their roles/trustworthiness).
■​ ANS-related anomalies: Repeatedly querying ANS for unrelated capabilities,

attempting to register with a misleading ANSName, or interacting with agents
resolved from suspicious ANS domains.

○​ Risk-Adaptive Policy Enforcement Example (A2A): PaymentAgent-Acquirer
(a2a://PaymentProcessing.Acquisition.FinServ.v2.live::did:...) normally processes
transactions. It starts making unusual ANS queries for
a2a://DataAggregation.UserProfiling... services and receives a few low-severity alerts for
attempting to access non-payment related internal APIs.

1.​ Its trust score, managed by the IAM system, is lowered.
2.​ The Session Authority (SA) is notified of the trust score change.
3.​ The SA updates the Session State Synchronizer (SSS) for this agent's global

session, adding a "ReducedTrust" status or dynamically adjusting its permissible
capability set.

4.​ When PaymentAgent-Acquirer next attempts a high-value A2A payment
authorization request to PaymentGateway-PSP
(a2a://Gateway.PaymentAuth.PSPGlobal.v4.secure::did:...), the AEM at the
gateway side consults the SSS.

5.​ Even if the agent presents its usual VCs, the SSS indicates "ReducedTrust." The
PDP at the gateway might now enforce a stricter policy: "IF agent_status ==
'ReducedTrust', THEN require_multi_factor_agent_auth (e.g., a ZKP of a recent
controller approval for this transaction type) OR
limit_transaction_value_to_low_threshold." The A2A transaction might be
rejected or queued for additional checks, preventing potential fraud by a slightly
misbehaving or partially compromised agent.

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 55

The ANS provides discoverable context about an agent's intended role and capabilities.
Monitoring deviations from this publicly or organizationally declared purpose, in addition to
private policy violations, gives a richer signal for anomaly detection. The trust score becomes
more robust as it can factor in the consistency of an agent's behavior with its registered identity
profile in ANS.

5.4. Agile Incident Response: Precision Targeting,

Rapid Containment, and Discoverable Impact

When a security incident occurs, the ability to respond swiftly, precisely, and comprehensively is critical to
minimizing damage. The proposed IAM framework, with its integration of DIDs, VCs, and ANS, provides
superior capabilities for incident response.

●​ Rapid and Unambiguous Identification via DID and ANS Context: Security alerts from
monitoring systems or external threat intelligence will directly reference the compromised or
malicious agent's DID and often its ANSName. This removes ambiguity and allows response
teams to immediately identify:

●​ The specific agent instance involved (via DID).
●​ Its declared purpose and owner (via ANSName and resolved DID document).
●​ Its attested capabilities and dependencies (via VCs and DID document).
●​ Example: An alert "Unusual data exfiltration by

did:com:cloudstorage:agent:backup-beta-721 (ANSName:
a2a://Backup.CriticalDB.AcmeCorp.v1.beta. nightly)" immediately tells the SOC:

●​ It's a specific backup agent instance.
●​ It's associated with AcmeCorp's critical database backups.
●​ It's a beta version (which might imply higher risk or different oversight).

●​ Targeted Revocation with Ecosystem-Wide Propagation: The framework supports granular
to broad revocation, propagated efficiently:

●​ VC Revocation (Surgical): If a specific attested capability (e.g.,
VC:AbilityToModifyUserPermissions) of AdminBot-HR (did:com:hr:adminbot:003,
ANSName a2a://UserAdmin.Permissions.HRInternal.v2.prod) is found to be exploited
due to a bug, that VC is added to a VC Status List. AdminBot-HR might still function for
other tasks (e.g., reading user profiles) using its other VCs, but attempts to use the
revoked permission VC will fail.

●​ DID Deactivation/Revocation (Logical via DID Method or ANS): If AdminBot-HR's
private keys are confirmed stolen, its entire DID (did:com:hr:adminbot:003) is revoked via
its DID method. The ANS entry for a2a://UserAdmin.Permissions.HRInternal.v2.prod
would then either resolve to a "revoked" status or be removed/updated by the ANS
Registration Authority. Other agents querying ANS for this service will no longer receive
the compromised DID.

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 56

●​ Instantaneous Global Session Invalidation via Unified Enforcement Layer: This is
the most critical response.

1.​ Trigger: SOC confirms did:com:hr:adminbot:003 is actively malicious.
2.​ SA Notification: The Session Authority (SA) is notified, specifying the DID.
3.​ SSS Update: SA updates the Session State Synchronizer (SSS) to mark all

global sessions for did:com:hr:adminbot:003 as
"TERMINATED_IMMEDIATE_SECURITY_LOCKOUT".

4.​ AEM Enforcement:
●​ All AEMs interacting with or receiving requests from

did:com:hr:adminbot:003 (whether via A2A, MCP, or internal ACP/HTTP
calls) consult the SSS.

●​ They see the "TERMINATED" status and instantly block any new requests
and terminate any active local protocol sessions.

●​ Scenario (MCP Tool in use by AdminBot-HR): If AdminBot-HR was using
an MCP tool like UserProvisioningTool, its active MCP session (managed
by the tool's AEM) would be killed. Further MCP calls from AdminBot-HR
would be rejected by the AEM before even reaching the tool's logic.

●​ Scenario (A2A communication): If AdminBot-HR was sending A2A
messages to AuditLogAgent, these A2A messages would be blocked by
the AEM on AuditLogAgent's side.

The ANS provides a clear point for signaling revocation at the discovery layer. Even if an attacker
has cached an old DID, new discovery attempts for the agent's function would fail or return a
revoked status. The SSS ensures that active sessions, regardless of how they were initiated
(perhaps post-ANS discovery), are comprehensively terminated.

●​ Rich Forensic Analysis with Discoverable Context: Post-incident, the combination of
DID-anchored logs, VCs, and ANS information provides unparalleled depth for forensics.

●​ Contextualizing Compromise: If did:com:research:agent:dataminer:gamma-9 is
compromised, investigators can not only see its actions (via DID logs) but also:

●​ Resolve its ANSName
(science://DataMining.LargeDatasets.ResearchDiv.v0.9.experimental) to
understand its expected role and provider context.

●​ Examine its DID Document and VCs to see its intended capabilities and
dependencies (e.g., "depends on did:com:lib:math:vectorcalc:v3.2"). This helps
to check if a dependency was the root cause.

●​ Trace its ANS query history: Was it trying to discover and interact with services
outside its normal profile before the compromise?

●​ If it interacted with other agents, their DIDs/ANSNames are in the logs, allowing
investigators to assess the blast radius and check if those collaborators were also
affected or were part of the attack.

●​ Identifying Attack Vectors via ANS: If multiple agents registered under a specific, less
reputable Provider in their ANSNames are simultaneously compromised, it might indicate

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 57

a targeted attack against that provider's agent infrastructure or a vulnerability common
to their agents.

ANS data (like provider, capability domain in the name) adds valuable metadata for clustering
incidents, identifying patterns, and understanding the potential scope or origin of an attack that
might involve multiple agent instances from a similar source or with similar functions.

5.5. Other Potential Uses Building on Verifiable

Agent IDs and Discoverable ANS Profiles

The synergistic use of detailed, verifiable Agent IDs and a structured Agent Name Service, all managed
within a robust IAM framework, naturally extends to enable further advanced functionalities critical for a
mature and trustworthy AI ecosystem.

●​ Decentralized Reputation and Trust Brokering with ANS-Contextualized Feedback:

●​ Agent DIDs serve as the stable anchors for accumulating reputation scores. When
AgentA (e.g., discovered via ANS as
a2a://TaskExecutor.GeneralPurpose.CommunityPool.v1.standard::did:agentA...)
completes a task for AgentB, AgentB can issue a reputation VC attesting to AgentA's
performance, timeliness, and reliability for that specific task type (derived from AgentA's
ANS capability).

●​ These VCs can be stored by AgentA or published to a decentralized reputation ledger.
Future agents querying ANS for "TaskExecutor.GeneralPurpose" might then also be able
to query this reputation system (using the resolved DID) for community feedback,
prioritizing agents with higher, relevant reputation scores. The ANS capability string itself
provides context for the reputation (e.g., good at "GeneralPurpose" tasks).

●​ Code Concept: Agent B issuing a reputation VC for Agent A:

Agent B's perspective

from pyld import jsonld # For Verifiable Credentials

from did_sdk import sign_vc # Conceptual SDK function

agent_A_did = "did:agentA..."

agent_A_ans_capability = "TaskExecutor.GeneralPurpose.CommunityPool.v1.standard"

reputation_claim = {

 "@context": ["https://www.w3.org/2018/credentials/v1",
"https://example.org/reputation/v1"],

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 58

 "type": ["VerifiableCredential", "ReputationCredential", "PerformanceReview"],

 "issuer": "did:agentB...", # Agent B's DID

 "issuanceDate": "2025-10-03T10:00:00Z",

 "credentialSubject": {

 "id": agent_A_did,

 "ansCapabilityContext": agent_A_ans_capability,

 "rating": 5, // Scale of 1-5

 "comment": "Completed task efficiently and accurately.",

 "taskId": "task-uuid-for-context"

 }

}

Agent B signs this claim with its DID key to create a VC

signed_reputation_vc = sign_vc(reputation_claim, "did:agentB...", "did:agentB...#key-1")

Agent B might then send this VC to Agent A, or publish it to a reputation service.

●​ Automated Billing and Resource Quota Enforcement via ANS-Defined Services:

●​ When an agent discovers and uses a commercial service (e.g., a specialized MCP tool like

mcp://AdvancedTranslation.Multilingual.PremiumAPI.v3.commercial::did:tool:translateXY
Z...) via ANS, the ANS record itself might point to metadata about pricing models or rate
limits associated with that service DID.

●​ The consuming agent's DID is logged by the commercial tool for every API call. The tool
provider's AEM/PDP can enforce quotas (e.g., "Agent
did:com:startup:agent:translator007 has a quota of 10M characters/month for
did:tool:translateXYZ"). Billing is then accurately attributed to the consuming agent's
controller.

●​ Secure Software/Model Supply Chain Attestations Linked to ANS Registrations:

●​ When an agent is registered with ANS (e.g.,

a2a://ImageRecognition.MedicalScans.RadAI.v2.validated::did:radai:imgrec:002), part of
its registration with the ANS Registration Authority (RA) could involve presenting VCs
that attest to its supply chain security:

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 59

●​ A VC for its base foundation model (e.g.,
"ModelCard_VC_for_RadAI_BaseVisionModel_v2"), detailing its training data,
bias tests, and safety evaluations.

●​ SBOM VCs for its software components.
●​ A "ValidatedSecureBuild_VC" from a trusted CI/CD pipeline.

●​ The ANS resolver could then optionally return indicators of these attestations (or links to
the VCs) along with the agent's DID, allowing discoverers to prioritize agents with
verifiable supply chain security.

●​ Dynamic Coalition Formation and Capability Negotiation using ANS for Initial Matching:

●​ An EmergencyResponseOrchestratorAgent queries ANS for agents with diverse

capabilities like a2a://DroneSurveillance.DisasterZoneMapping...,
mcp://Logistics.ResourceAllocation..., and
comms://TemporaryNetwork.MeshDeployment....

●​ Once candidate DIDs are retrieved, the orchestrator can initiate a negotiation phase (e.g.,
using FIPA Contract Net Protocol messages over A2A or ACP). During negotiation,
agents exchange more detailed VCs about their specific sub-capabilities, current
availability, and resource needs.

●​ The orchestrator then issues a "CoalitionCharter_VC" to the selected agents, defining the
coalition's DID, its mission, shared resources (perhaps managed by a temporary group
DID), roles, and duration. This VC acts as a temporary authorization within the coalition.

●​ ANS for Discovering Ethical AI Governance Services:

●​ Agents or users could query ANS for services like

audit://EthicalComplianceOracle.AIBehavior.IndependentOrg.v1 or
report://BiasReportingService.FairnessConsortium.v1.

●​ These specialized services (themselves having DIDs and VCs) could then be used by
agents to self-assess their decisions against ethical guidelines or for users to report
problematic agent behavior, with the AN DIDs providing a verifiable link to the service.

By integrating ANS as a core discovery mechanism whose results (DIDs, initial capability claims) feed
directly into the DID/VC-based authentication and authorization processes, the entire IAM lifecycle
becomes more context-aware, secure, and efficient. The discoverable nature of agent capabilities and
attestations fosters a more transparent and trustworthy ecosystem.

6. Deployment Models & Governance
Considerations

The proposed Agentic AI IAM framework, while architecturally comprehensive, is not a monolithic,
one-size-fits-all solution in terms of its practical implementation. The diverse needs of different
organizations, Multi-Agent System (MAS) scopes (private enterprise vs. open ecosystem), trust

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 60

requirements, and existing infrastructure will necessitate different deployment models for its core
components (e.g., DID registries, Verifiable Credential (VC) issuers, Agent Name Service (ANS), Policy
Engines, Session Authority, Session State Synchronizer). Furthermore, regardless of the chosen
deployment model, robust, well-defined, and adaptable governance is paramount for the long-term
viability, trustworthiness, security, and interoperability of any such advanced IAM system. Governance
frameworks should define/include policies for ephemeral identity lifecycle management, including
instantiation, purpose declaration, and deactivation.

6.1. Deployment Model Analysis

We analyze three primary deployment models,Centralized, Decentralized, and Federated,assessing their
characteristics, advantages, disadvantages, and suitability for various Agentic AI IAM scenarios.

6.1.1. Centralized Approach

●​ Description: In a centralized deployment, a single organization, platform provider, or a
designated administrative entity controls and operates all, or the significant majority, of the IAM
framework's core components. This typically includes:

○​ The primary Agent ID registry (which might be a private Public Key Infrastructure (PKI)
issuing X.509 certificates as per some ANS proposals, a proprietary database issuing
unique identifiers, or a private DID method controlled by the organization).

○​ The authoritative VC issuers for organizational roles, capabilities, and compliance
attestations.

○​ The ANS, if implemented as a private or enterprise-scoped directory service.
○​ The central Policy Decision Points (PDPs) and Policy Administration Points (PAPs) define

and enforce access rules.
○​ The Cross-Protocol Session Authority (SA) and the Session State Synchronizer (SSS).

Agents operating within this model typically belong to, or are tightly managed and
permissioned by, the central entity. All trust decisions ultimately flow from this central
authority.

●​ Advantages:

○​ Simplified Governance & Policy Cohesion: Policy definition, updates, enforcement
rules, and dispute resolution are managed by a single authority, leading to consistent
application and rapid changes if needed.

○​ Unified Control, Visibility, and Audit: Easier to monitor all agent activity, audit
compliance comprehensively, and implement system-wide security updates or
revocations efficiently.

○​ Potentially Easier Integration with Existing Enterprise Systems: Can be more
straightforward to integrate with existing enterprise IAM (e.g., Azure AD, Okta for human
controllers/admins), logging infrastructure, and internal PKI.

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 61

○​ Optimized Performance: Centralized components can often be tuned and optimized
for performance within a known, controlled network environment.

○​ Clear Accountability: Lines of responsibility for IAM operations, security incidents, and
data stewardship are generally unambiguous.

●​ Disadvantages:

○​ Single Point of Failure, Control, and Trust: The central entity becomes a critical
dependency. Its compromise, outage, or policy failure can cripple the entire MAS IAM.

○​ Scalability Bottlenecks: While optimizable, a purely centralized system can face
significant scalability challenges as the number of agents, interactions, and policy
evaluations grows into the millions or billions.

○​ Vendor/Platform Lock-in: If the centralized IAM is tied to a specific vendor's
proprietary implementation, switching platforms or interoperating with external systems
that use different IAM models can be difficult and costly.

○​ Limited Cross-Organizational Trust & Interoperability: Inherently less suitable for
scenarios where agents from different, mutually untrusting organizations need to
collaborate directly as peers. It requires all external parties to place their trust in, and
often conform to the policies of, the central operator.

○​ Potential for Censorship or Abuse of Power: The central authority has significant
power over agent identities and access, which could be misused.

●​ When to Use:

○​ Enterprise-Internal MAS: For AI agents owned and operated entirely within a single
organization for internal automation, private AI-powered services, or employee-facing
tools.

○​ Specific AI Platforms: Provided by a vendor that offers a managed, walled-garden
environment for their agents, handling IAM as an integrated part of the platform offering
(e.g., a cloud provider's agent-building service).

○​ Early-Stage Deployments or Controlled Experiments: Where simplicity of
management, rapid iteration, and direct control are prioritized over decentralized trust or
broad interoperability.

○​ Highly Regulated Environments with a Single Auditing Authority: Where a central
point of control and audit is mandated.

6.1.2. Decentralized Approach

●​ Description: Core IAM components are implemented using decentralized technologies, often
public and permissionless, or permissioned consortia-based Distributed Ledger Technologies
(DLTs). Key characteristics include:

○​ DIDs are registered on public or consortia DLTs (e.g., did:ion, did:ethr, did:sov, or a
custom agent-focused DID method on a dedicated ledger like the proposed Agent ID
Provider Network - AIPN). Agent controllers or agents themselves manage their DID's
private keys.

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 62

○​ VCs can be issued by a diverse set of issuers (each with their own DID) and their status
(revocation) might be tracked via decentralized mechanisms (e.g., on-chain registries,
distributed VC status lists).

○​ ZKPs are used extensively for privacy-preserving presentation of VCs and attributes.
○​ ANS could be built on decentralized name systems (e.g., ENS, Handshake, or a custom

DLT-based ANS).
○​ Policy enforcement might involve smart contracts acting as rudimentary PDPs for

on-chain resources, or rely on Verifiable Presentations that bundle VCs required by a
verifier's policy. Global session state (like revocation lists) might be mirrored on resilient
DLTs.

○​ Governance is typically community-driven (e.g., DAOs for protocol upgrades) or based
on the immutable logic encoded in smart contracts.

●​ Advantages:

○​ No Single Point of Failure or Control: Enhanced system resilience; no single entity can
unilaterally take down the identity system or censor participants.

○​ User/Agent Sovereignty (SSI): Aligns strongly with Self-Sovereign Identity principles,
giving agent controllers maximum control over their agents' identities, data, and
disclosures.

○​ Enhanced Trust in Open, Permissionless Ecosystems: Can foster greater trust in
interactions between previously unknown parties, as identity claims are anchored on
immutable, publicly verifiable ledgers (for public DLTs).

○​ Transparency & Auditability (for public DLTs): DID registrations, VC schema
registrations, and potentially high-level policy commitments can be publicly auditable.

○​ Censorship Resistance: More difficult for any single entity to deplatform agents or
deny them identity services.

●​ Disadvantages:

○​ Governance Complexity & "Tragedy of the Commons": Achieving consensus on
standards, operational policies, issuer accreditation, dispute resolution, and funding in a
fully decentralized manner is extremely challenging.

○​ Smart Contract and DLT Security Risks: Vulnerabilities in the underlying DLT protocol
or the smart contracts implementing DID methods, VC registries, or policy logic can have
widespread and often irreversible consequences.

○​ Performance, Scalability, and Cost of DLTs: Many DLTs (especially public
permissionless ones) face inherent limitations in transaction throughput, latency, and cost
per transaction, which could be prohibitive for high-frequency IAM operations (e.g., JIT
VC issuance, rapid session updates at scale).

○​ User/Controller Experience (Key Management): Securely managing private keys for
DIDs in a decentralized setting, without relying on a central custodian, can be a significant
burden and risk for users or organizations controlling agents. Meanwhile, This can also be
an advantage. The ability to manage your own keys in a separate environment from a
central custodian can reduce attack surface.

○​ Irreversibility and Data Privacy: Data written to immutable ledgers is extremely
difficult (or impossible) to remove, posing challenges for "right to be forgotten"

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 63

requirements under regulations like GDPR, or for correcting erroneous identity
information. Careful design of what goes on-chain versus off-chain is critical.

○​ Bootstrapping Trust: Establishing initial trust in a new decentralized network of issuers
and verifiers can be difficult without recognized authorities or a critical mass of reputable
participants.

●​ When to Use:

○​ Truly Open, Permissionless Multi-Agent Ecosystems: Where agents from any origin
can participate and interact as peers (e.g., decentralized social media, open marketplaces
for AI services, global scientific collaboration platforms).

○​ Cross-Organizational Collaborations Without a Central Trusted Party: When
participating organizations are peers and no single entity can or should act as the central
IAM authority.

○​ Applications Requiring Very High Degrees of Censorship Resistance or User
Control Over Identity: Such as tools for activism, journalism in repressive environments,
or personal data stores controlled by individual AI agents.

○​ Ecosystems Where a Transparent, Community-Governed Trust Infrastructure is
a Core Design Goal.

6.1.3. Federated Approach

●​ Description: This model involves multiple independent IAM domains or "trust communities."
Each domain might manage its own IAM infrastructure using centralized or even localized
decentralized approaches. The key is that these domains establish mutual trust relationships and
define standardized protocols for interoperability. This could involve:

○​ Cross-certification of Certificate Authorities (CAs) or DID method roots between
domains.

○​ Shared trust lists for recognized VC issuers and verifier policies across the federation.
○​ Federated ANS resolution (e.g., similar to how DNS subdomains can be delegated, or

using inter-registry lookup protocols).
○​ Use of highly interoperable DID methods and standardized VC profiles (e.g., based on

W3C specs) to ensure credentials from one domain can be understood and verified in
another.

○​ A central (or mutually agreed upon) body might define the "federation rules" or baseline
interoperability standards, but day-to-day IAM within each domain remains autonomous.

●​ Advantages:

○​ Balances Autonomy with Interoperability: Organizations or communities can
maintain control and sovereignty over their own IAM policies, infrastructure, and agent
populations while still enabling their agents to securely interact with agents from other
trusted domains in the federation.

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 64

○​ Scalability: Scales effectively by distributing the IAM load and management
responsibilities across multiple autonomous domains. Avoids the bottlenecks of a single
global centralized system.

○​ Domain-Specific Policies and Trust Levels: Allows IAM policies and trust
requirements to be tailored to the specific needs, risk appetite, and regulatory context of
different industries, communities, or legal jurisdictions within the federation.

○​ Enhanced Resilience: Failure or compromise within one federated domain does not
necessarily bring down the entire system or affect the security of other independent
domains (assuming proper isolation and trust boundary enforcement).

○​ Phased Adoption & Existing System Integration: Can allow organizations with
established IAM to join a federation by implementing "bridge" services or adapters, rather
than requiring a full rip-and-replace.

●​ Disadvantages:

○​ Complexity of Trust Management: Establishing, maintaining, updating, and revoking
trust relationships between multiple autonomous domains is technically and politically
complex. Managing shared trust roots, evolving policy mappings, and ensuring consistent
liability frameworks requires significant effort.

○​ Interoperability Challenges (Technical and Semantic): Ensuring that identity
information, VC schemas, policy languages, and revocation signals are truly interoperable
across different domains (which might use different underlying technologies) requires
rigorous adherence to common standards and ongoing coordination. Semantic
mismatches in attribute definitions can lead to misinterpretations.

○​ Potential for Lowest Common Denominator Security: If the criteria for joining the
federation or for mutual trust acceptance between domains are too lax, it can
inadvertently weaken the overall security posture of all participants who trust that
domain.

○​ Discovery and Pathfinding Complexity: Discovering agents or resolving identity
information across multiple federated domains can be more involved than within a single,
unified domain, potentially requiring multi-hop lookups or reliance on a federated
discovery service.

○​ Governance Overhead for the Federation Itself: A body or process is needed to
govern the federation's rules, membership, standards, and dispute resolution
mechanisms between domains.

●​ When to Use:

○​ Consortia of Organizations in a Specific Industry: E.g., financial institutions forming
a network for secure inter-agent transactions, healthcare providers for federated health
data exchange via agents, supply chain partners for collaborative logistics.

○​ Alliances of Research Institutions or Governmental Agencies: Sharing data or
computational resources via AI agents across organizational boundaries, according to
agreed-upon rules.

○​ Large, Multi-National Corporations with Distinct Regional or Business Unit IAM
Requirements: Where each unit manages its local agent IAM but needs secure global
inter-unit agent interaction.

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 65

○​ Ecosystems Evolving from Existing Centralized or Siloed Systems Towards
Greater Interoperability: Where a full move to decentralization is not feasible or
desired, but interoperability is key.

○​ As a practical model for the Agent Name Service (ANS): Different organizations
could run their own ANS "zones" for their agents but participate in a federated resolution
system.​

6.1.4. Hybrid Approaches:

It's important to note that these models are not always mutually exclusive. Hybrid approaches are likely to
be common, combining elements from each.

○​ Example 1: An enterprise might use a centralized IAM framework for its internal agents but

use a federated model to interact with agents from trusted partners. Its internal agents
might have DIDs issued by a private DID method, but these DIDs could be anchored or
discoverable through a broader federated system.

○​ Example 2: A decentralized ecosystem might still rely on a few, highly reputable (perhaps
foundation-run) "anchor" VC issuers for certain critical credentials (like
"VerifiedLegalEntity_VC"), even if most other VCs are issued more peer-to-peer.

○​ Example 3: The Session Authority and Session State Synchronizer, while logically
providing global coordination, might be implemented as a permissioned DLT operated by
a consortium (federated control over a logically centralized function) for resilience and
shared trust.

6.2. Decision Matrix for Choosing an Implementation

Model

Selecting the most appropriate deployment model requires careful consideration of various factors. The
following matrix provides guidance:

Feature /
Requirement

Centralized Decentralized Federated Hybrid

Control &
Authority

Single Entity
(High Control)

Community/Proto
col (Low Central
Control)

Domain-Specific
+ Federation Body
(Balanced)

Varies; often
domain-specific
with shared
elements

Trust Model Hierarchical (Trust
in Central Entity)

Peer-to-Peer /
Ledger-Based
(Distributed
Trust)

Inter-Domain
Agreements /
Shared Roots
(Delegated)

Mix of hierarchical
and
delegated/distribu
ted

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 66

Feature /
Requirement

Centralized Decentralized Federated Hybrid

Scalability Moderate
(Potential
Bottlenecks)

Potentially Very
High (if DLT
scales) / Variable

High (Distributed
across domains)

High (Can
optimize
components)

Performance
(Latency)

Potentially Low (if
optimized, local)

Variable (DLT
dependent, often
higher)

Moderate
(Inter-domain
hops)

Variable (Can
optimize critical
paths)

Interoperability
(External)

Low (Proprietary
by default)

Potentially High (if
open standards
used)

High (Designed
for inter-domain
ops)

Moderate to High
(Depends on
bridge design)

Complexity of
Setup

Low to Moderate High High (Trust
agreements
complex)

Moderate to High

Complexity of
Governance

Low (Single
decision-maker)

Very High
(Consensus,
community)

High (Federation
rules,
inter-domain)

High (Managing
diverse
components)

Cost
(Infrastructure)

Moderate
(Centralized infra)

Variable (DLT fees
can be high)

Moderate to High
(Per-domain +
federation infra)

Variable

Security (vs
External
Threats)

Single attack
surface (high
impact if
breached)

Distributed risk,
smart contract
vulns critical

Risk
shared/isolated
per domain;
inter-domain trust

Tailorable; can
have strong
internal, defined
external

User/Agent
Sovereignty

Low Very High Moderate (Within
domain policies)

Variable

Censorship
Resistance

Low High Moderate (Per
domain)

Variable

Privacy
Preservation

Dependent on
central entity's
policies

High (with ZKPs,
careful DLT use)

Domain-specific
policies;
inter-domain data
flow

Can be designed
for high privacy

Suitability:
Enterprise
Internal

High Low Moderate (For
large, distinct
internal units)

High (Central
core, federated
edges)

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 67

Feature /
Requirement

Centralized Decentralized Federated Hybrid

Suitability:
Open Ecosystem

Low High Moderate
(Federation of
open
communities)

Moderate (Public
services with
private backends)

Suitability: B2B
Consortia

Low (Unless one
org dominates)

Moderate (If
common DLT
agreed)

High High (Federated
interfaces, shared
services)

Table 4: Deployment Model Comparison Matrix for Multi-Agent IAM Systems

How to use the matrix:

1.​ Identify the primary context for your MAS (e.g., internal enterprise, open research platform,
industry consortium).

2.​ Prioritize your key requirements (e.g., is maximum agent sovereignty critical, or is centralized
auditability paramount?).

3.​ Evaluate each model against your high-priority requirements.
4.​ Consider if a hybrid approach offers the best trade-offs by combining strengths of different

models for different IAM components (e.g., decentralized DIDs but a federated or even centrally
managed Session Authority for specific use cases).

6.3. Governance Considerations:

Effective governance is the bedrock upon which trust and interoperability in any Agentic AI IAM
framework are built. It's not merely about technical rules but also about establishing clear roles,
responsibilities, processes for decision-making, dispute resolution, and adaptation over time.

●​ Identity Governance (DIDs, VCs, ANS):

●​ DID Method Governance: For any DID method used (especially custom or DLT-based
ones), there must be a clear governance framework detailing how the method is
maintained, upgraded, how its security is overseen, and how operational parameters (like
fees, if any) are set. For public DID methods, this is often managed by the respective
communities or foundations.

●​ ANS Namespace Management & Policy:

●​ Registration Authority (RA) for ANS: Defining the roles and responsibilities
of RAs that approve ANSName registrations. This includes criteria for validating
the requester's legitimacy to claim a particular Provider or agentCapability
namespace within ANS.

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 68

●​ Dispute Resolution: Establishing impartial mechanisms for resolving conflicts
over ANSNames (e.g., two entities claiming the same Provider.agentCapability
combination). This might involve arbitration panels or community voting,
depending on the governance model.

●​ Reserved Namespaces: Potentially reserving certain top-level agentCapability
domains or Protocol identifiers to prevent conflicts and ensure semantic clarity,
managed by a standards body or a governance council.

●​ VC Issuer Accreditation, Trust Registries, and Governance Frameworks:

●​ Issuer Qualification: Defining criteria for entities to become trusted VC issuers
for specific types of claims (e.g., what qualifications does an entity need to issue
a "SOXComplianceCertified" VC vs. a "CommunityReputation_Level5" VC?).

●​ Trust Registries: Maintaining discoverable registries of accredited VC issuers,
their DIDs, the types of VCs they are authorized to issue, and potentially their
own compliance/audit status. These registries themselves must be governed
securely.

●​ VC Schema Governance: Processes for proposing, standardizing, versioning,
and decommissioning VC schemas to ensure semantic interoperability.

●​ Agent ID Lifecycle Management Policies: Documented policies detailing the
processes for agent ID registration (including identity proofing of the controller), regular
renewal/re-attestation requirements, conditions for suspension (e.g., due to suspicious
activity) vs. full revocation (e.g., confirmed compromise), and data remanence
considerations upon decommissioning an agent ID.

●​ Security Policy Governance (for PDPs and SA):

●​ Policy Authorship & Approval Workflows: Clear processes for who can define, review,
test, and approve access control policies that are loaded into PDPs or enforced by the
Session Authority. This should involve multiple stakeholders, including security teams,
business owners, and legal/compliance.

●​ Policy-as-Code Principles: Managing policies using version control systems,
automated testing (e.g., unit tests for policy logic, integration tests against simulated
agent requests), and CI/CD pipelines for deployment to ensure consistency and
auditability.

●​ Emergency Policy Override Procedures: Well-defined and highly restricted
procedures for emergency overrides of policies in critical situations, with mandatory
post-incident review and justification.

●​ Policy Interoperability/Harmonization (in Federated Models): Establishing baseline
policy requirements or mapping frameworks to ensure a minimum level of consistent
security across federated domains.

●​ Operational and Security Governance for IAM Infrastructure:

●​ Incident Response Playbooks for IAM Breaches: Specific playbooks for responding
to compromises of core IAM components (e.g., a compromised VC issuer DID, a DoS

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 69

attack on the SSS, a vulnerability in the PDP software). This includes communication
plans for affected parties.

●​ Key Management Governance for IAM Services: Strict policies and procedures for
the generation, storage (e.g., mandatory HSM use for SA signing keys), rotation, and
destruction of cryptographic keys used by the IAM services themselves.

●​ Regular Audits & Penetration Testing: Mandating periodic independent security
audits and penetration tests of the core IAM infrastructure components and protocols.

●​ Vulnerability Disclosure Policy: A clear policy for how vulnerabilities discovered in the
IAM framework or its components should be reported, triaged, and remediated.

●​ Cross-Environment Governance: Cross-environment security policies should include
mechanisms for cross-tenant isolation, federated signature validation, and audit
harmonization across multi-cloud or hybrid deployments. These steps ensure policy
enforcement remains consistent, traceable, and fault-tolerant, even when agent activities
span infrastructure or trust domains.

●​ Data Privacy and Ethical Use Governance:

●​ Data Protection Impact Assessments (DPIAs) for IAM Data: Conducting DPIAs for

the IAM framework itself, considering the personal data (e.g., controller DIDs, VCs linking
agents to potentially sensitive tasks) it processes and stores.

●​ Agent ID Data Minimization Principles: Guiding agent developers and controllers to
only associate the minimum necessary attributes and VCs with an Agent ID for its
intended purpose.

●​ Bias Review in Credentialing and Reputation: Establishing processes to review VC
issuance criteria and reputation system algorithms for potential biases that could unfairly
disadvantage certain agents or their controllers.

●​ Ethical Oversight Bodies: Potentially establishing an ethics council or review board to
oversee the evolution of the IAM framework, consider novel ethical challenges posed by
agent identities, and provide guidance on responsible use.

●​ Evolution and Standards Governance:

●​ Change Management Process: A formal process for proposing, debating, approving,

and implementing changes or upgrades to the core IAM framework protocols, schemas,
and governance rules. This should be transparent and allow for community/stakeholder
input.

●​ Liaison with External Standards Bodies: Maintaining active engagement with relevant
standards bodies (W3C, IETF, DIF, etc.) to ensure the framework aligns with and
contributes to broader digital identity and security standards.

Effective governance in the Agentic AI IAM space will not be static; it must be an adaptive system capable
of evolving alongside the technology and the threat landscape. It necessitates a collaborative effort,
potentially involving a mix of industry self-regulation, standards development, and, where appropriate,
governmental oversight, particularly for public-facing or critical infrastructure components.

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 70

7. Security Considerations

Securing the Agentic AI IAM framework is paramount, analyzed here using the MAESTRO framework
(Huang, 2025b). The rapid adoption of Agentic AI systems introduces a complex threat landscape with
new attack vectors, as meticulously mapped by the MAESTRO Agentic Threat modelling framework. Our
alignment of MAESTRO threats with MITRE D3FEND countermeasures reveals a critical insight: while AI
presents novel attack vectors, effective AI security is fundamentally rooted in the rigorous and adaptive
application of established cybersecurity principles. This security considerations section outlines key
strategic considerations to guide organizations in building, deploying, and securing resilient Agentic AI
systems by leveraging MAESTRO threat modelling framework.

7.1 The MAESTRO 7-Layer Reference Architecture

for Agentic AI

MAESTRO decomposes AI ecosystems into: Layer 1: Foundation Models, Layer 2: Data Operations, Layer
3: Agent Frameworks, Layer 4: Deployment and Infrastructure, Layer 5: Evaluation and Observability,
Layer 6: Security and Compliance (Vertical), and Layer 7: Agent Ecosystem.

7.2 Threat Analysis of the Proposed Agentic AI IAM

Framework using MAESTRO Layers

●​ L1: Foundation Models: Model-based identity theft that occurs when attackers use AI models to
analyze and replicate the behavioral patterns, communication styles, and decision-making
characteristics of legitimate agents, effectively creating digital impersonators that can fool other
systems or users into believing they're interacting with the authentic agent.(mitigated by
cryptographic DIDs/VCs). In practice an attacker who clones an agent’s model and steals its keys
could still sign malicious actions. The framework should address how to distinguish an impostor
that has valid keys. For example, are there dynamic proofs or challenge–response protocols to
verify “liveness” of an agent. See our another paper for details on how to deal with this kind of
attack: https://arxiv.org/abs/2506.13590

●​ L2: Data Operations: Poisoning of DID registries/VC status lists (mitigated by DLT consensus,
signed registry entries); exfiltration of identity data (mitigated by encryption, agent-held VCs,
ZKPs); tampering with PIPs (mitigated by PIP identity and secure channels).

●​ L3: Agent Frameworks: Compromised IAM SDKs (mitigated by secure development,
sandboxing); framework vulnerabilities allowing session hijacking (mitigated by continuous
re-validation via AEM/SSS).

●​ L4: Deployment and Infrastructure: DoS/DDoS against IAM services (mitigated by standard
defenses, resilient design); compromise of IAM service infrastructure (mitigated by hardening,

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 71

https://arxiv.org/abs/2506.13590

access controls); lateral movement to IAM components (mitigated by network segmentation,
Zero Trust).

●​ L5: Evaluation and Observability: Tampering with IAM audit logs (mitigated by immutable
logging, signatures); evasion of IAM monitoring (mitigated by comprehensive instrumentation);
data leakage via observability tools (mitigated by masking, ZKPs).

●​ L6: Security and Compliance: Misconfiguration of IAM policies (mitigated by policy-as-code,
audits); compromise of IAM service keys (mitigated by HSMs, revocation); non-compliance with
privacy regulations (mitigated by privacy-by-design, ZKPs).

●​ L7: Agent Ecosystem: Agent impersonation/DID spoofing (mitigated by cryptographic
verification, VC status checks); compromised ANS leading to malicious discovery (mitigated by
secure ANS resolution); collusion to falsify VCs (mitigated by trust diversification, reputation
systems).

Threat Modeling and Mitigations based on MAESTRO framework

No Threat Description MEASTRO
Layer(s)
Impacted

Risk Impact Recommended
Mitigation

1 DID Spoofing/​
Impersonation

Forged or
manipulated DID
Documents to
impersonate
privileged agents

L3 (Agent
Frameworks) —
Agent identity
logic
L6 (Security &
Compliance) —
Identity
verification
controls
L7 (Agent
Ecosystem) —
Trust in agent
discovery and
reputation

Unauthorized
access; data
exfiltration

Resolver
pinning,
Validating
signatures of
DID Documents

2 VC Replay Reuse of stolen
Verifiable
Credentials to
perform privilege
escalation

L3 (Agent
Frameworks) —
Credential
issuance and
validation
L6 (Security &
Compliance) —
Token lifecycle
governance

Privilege
Escalation;
lateral
movement

Nonce-bound
and time-limited
VCs

3 Abusing
Ephemeral
Agents

Rapidly
invoking/spawnin
g multiple agents

L3 (Agent
Frameworks) —
Agent

Denial of
service

Implementing
rate limiting,
detection of

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 72

that are
short-lived to
exhaust resources
or mask malicious
activity

instantiation logic
L4 (Deployment
&
Infrastructure)
— Resource
allocation controls
L7 (Agent
Ecosystem) —
Marketplace and
discovery abuse

anomalous
behaviour and
thus revocation

4 Escalation of
Delegations

Chaining of
delegations to
obtain escalated
privilege across
agents

L3 (Agent
Frameworks) —
Delegation model
L6 (Security &
Compliance) —
Policy
enforcement
L7 (Agent
Ecosystem) —
Cross-agent trust
boundaries

Escalated
privilege

Scoping of
delegations,
limiting
re-delegation
chains

5 Prompt Injection Manipulation of
prompts to
foundation
models to cause
malicious/unwant
ed agent behavior

L1 (Foundation
Models) —
Prompt handling
robustness
L3 (Agent
Frameworks) —
Input sanitization
L6 (Security &
Compliance) —
Prompt
constraints and
policy
enforcement

Output
corruption;
RCE;
Sensitive
Data
Exposure

Input Validation,
prompt
moderation/gua
drails,

6 Data Poisoning Ingesting
malicious/unwant
ed/corrupt data
into training
dataset

L2 (Data
Operations) —
Data ingestion
pipelines
L6 (Security &
Compliance) —
Data governance

Output
corruption

Verification of
data/dataset
integrity,
anomaly
detection in
dataset pipeline

7 Model Inversion Extracting model
intellectual

L1 (Foundation
Models) — Model

Theft of
intellectual

Encryption at
rest,

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 73

property or
secrets

storage security
L4 (Deployment
&
Infrastructure)
— Storage and
access controls
L6 (Security &
Compliance) —
Data protection
policies

property;
theft of
secrets/API
keys

implementing
access controls
on APIs with
model retrieval
capabilities

Table 5: MAESTRO Security Threat Assessment for Multi-Agent Systems

7.3 Cross-Layer Threats Affecting the IAM
Framework

Including supply chain attacks on IAM components, privilege escalation across IAM layers, and goal
misalignment leading to IAM misuse, all requiring defense-in-depth and continuous monitoring.

Figure 8: SWOT Analysis: Agentic AI IAM

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 74

7.4 Applying Zero Trust to Agentic AI IAM
Framework

Applying Zero Trust to Agentic AI IAM Framework brings essential security, governance, and
accountability benefits especially given the autonomous decision making, non-deterministic behavior, and
scale of AI agents. Implemented and tested security controls that are preventative, detective, and
corrective form the basis of Zero Trust. These fundamentals are critical to the success of a Zero Trust
implementation:

●​ Concept of least-privilege access
●​ Separation of duties
●​ Segmentation/micro-segmentation
●​ Logging and monitoring
●​ Configuration drift remediation
●​ Assume breach
●​ Dynamic and adaptive security policy enforcement

7.5 Enterprise use cases with MAESTRO Framework:

Use Case Description

Agentic Red Teaming Simulate offensive campaigns targeting LLM
agents and tools

Security Chaos Engineering Inject failure modes and threat vectors into
agentic orchestration flows

Agent Trust Boundary Validation Validate RBAC/ABAC scopes in dynamic
multi-agent scenarios

Data Leakage Risk Analysis Identify unintended propagation of sensitive data
or vector embeddings

LLM Plugin & Tooling Risk Assessment Model lateral movement through 3rd-party tools
and open APIs

AI Identity Abuse Simulation Test unauthorized identity impersonation or token
misuse via agents

Table 6: Enterprise Security Testing Use Cases Using MAESTRO Framework

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 75

8. Innovative Contributions of this
Framework

The proposed framework represents a significant departure from traditional approaches, offering a
collection of synergistic innovations specifically designed for the unique challenges of autonomous
Multi-Agent Systems (MAS).

These contributions are not isolated features but form part of a re-conceptualization of agent identity,
integrating advanced cryptographic techniques and a novel architectural design for dynamic control, all
within a holistic, lifecycle-aware approach to managing AI agents as first-class digital citizens.

●​ The foremost contribution is the articulation of a comprehensive, end-to-end IAM framework
purpose-built for the agentic paradigm.

○​ This moves beyond merely adapting human-centric or simplistic machine and NHI(Non
Human Identity) IAM protocols, which often prove inadequate for the complexities of
autonomous, interacting agent swarms.

○​ Instead, our framework cohesively integrates identity issuance, rich credentialing,
capability-aware discovery, dynamic access control, and a novel cross-protocol
enforcement layer into a unified conceptual model.

○​ It addresses the entire lifecycle of an agent,from its "birth" through its operational
interactions to its eventual decommissioning,recognizing the deep interdependencies
between these stages.

○​ Existing IAM solutions typically focus on narrower problems, struggling with identities
that spawn others, dynamically change roles, or require fine-grained, context-sensitive
authorization at massive scale. This framework's systemic integration is designed to
address these fundamental gaps.

●​ Central to this is a redefinition of Agent Identity, making it rich, dynamic, and verifiably

secure.

○​ We shift away from simplistic identifiers like API keys towards identities anchored by
cryptographically secure Decentralized Identifiers (DIDs).

○​ This DID-anchored identity is not static; it is an extensible digital representation
augmented by Verifiable Credentials (VCs) that attest to an agent's attributes,
capabilities, compliance status, roles, and provenance.

○​ The dynamism is crucial, as AI agents evolve, their models update, capabilities expand,
and compliance needs re-attestation.

○​ A rich, verifiable identity containing fields like scopeOfBehavior, toolset (which can
include DIDs of authorized tools), modelHash, and VCs for training data or compliance,
allows for far more nuanced trust and authorization.

○​ The use of DIDs provides self-sovereignty and interoperability, essential for open MAS,
while VCs offer a standardized, vendor-neutral way to make diverse claims.

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 76

○​ Furthermore, Zero-Knowledge Proofs (ZKPs) enable agents to selectively and privately
present these verifiable claims, a significant advancement over the limited flexibility and
privacy of traditional certificate extensions.

●​ Building on this rich identity, the framework introduces capability-centric discovery and more

granular access control.

○​ An integrated Agent Naming Service (ANS) facilitates secure discovery, allowing agents
to find others not just by name but by the specific functions or attested capabilities they
offer.

○​ This is a critical distinction from traditional service discovery, which may locate an
endpoint but doesn't inherently verify the target’s attested abilities.

○​ Our approach directly links discovery to verifiable identity attributes.
○​ Authorization decisions thereby become more intelligent, considering not just "who" is

making a request, but fundamentally "what is this agent verifiably capable and authorized
to do, with which specific tools, and under what attested conditions?"

○​ By making an agent’s authorized toolset and scopeOfBehavior verifiable parts of its
identity, the system can enforce the principle of least function, significantly limiting the
blast radius of a compromised or misbehaving agent.

○​ The framework introduces Context-Based Access Control which enables dynamic access
decisions based on real-time environmental, behavioral, and task context moving beyond
static roles or attributes allowing enforcement policies to adapt to an agent’s current
state and conditions.

●​ A cornerstone innovation is the Unified Cross-Protocol Global Session Management and

Policy Enforcement Architecture.

○​ This Layer 4 uniquely addresses the challenge of maintaining consistent security posture
in heterogeneous MAS where agents use diverse communication protocols.

○​ In such environments, a critical security gap is the inability to propagate vital IAM state
changes,like a global session termination, a master DID revocation, or a sudden capability
downgrade,instantaneously and uniformly across all interaction points.

○​ This layer acts as a "security and session management backplane," ensuring that a policy
decision or revocation, once made, is effectively and immediately enforced wherever an
agent might interact, regardless of the underlying transport.

○​ This real-time, cross-protocol consistency is fundamental for operationalizing robust
security.

●​ The framework also achieves a pragmatic fusion of self-sovereignty with enforceable

governance.

○​ While DIDs and agent-controlled VCs empower agents and their controllers with greater
control over their core identity data, this self-sovereignty is balanced with mechanisms
for practical governance.

○​ This means that while an agent can present its self-managed identity, these credentials
can be verified against established trust frameworks, such as lists of accredited VC
issuers for specific roles or compliance attestations.

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 77

○​ The Session Authority retains the ability to enforce global revocations or policy overrides
based on enterprise risk decisions, even if the agent "controls" its DID.

○​ This balance is vital for adoption in real-world systems that require clear lines of
accountability and cannot operate solely on peer-to-peer trust.

●​ Finally, the framework provides intrinsic support for fine-grained accountability and

verifiable provenance.

○​ Cryptographic verifiability is embedded at multiple levels:
■​ for identities via DIDs and their keys
■​ for claims about agents via VCs and issuer signatures
■​ for agent actions using the agent's DID-associated private key.

○​ The Agent ID structure itself is designed to encapsulate or link to detailed provenance
information,such as its creator, constituent models, software dependencies (potentially
with their own DIDs), and VCs attesting to training data or safety audits.

○​ As AI agents are entrusted with increasingly impactful decisions, the ability to irrefutably
determine "who (which agent instance) did what, when, why, with what authority, and
based on what information/capabilities" becomes critical.

○​ This moves beyond basic logging to establish a cryptographically verifiable audit trail,
essential for forensics, dispute resolution, and building societal trust in autonomous
systems, directly addressing the "audit trail ambiguity" prevalent in current systems and
providing a much stronger basis for non-repudiation.

To measure the success implementation of the innovation, the following Key Performance
Indicators (KPIs) can be considered:

Successful Agent Authentication Rate: Percentage of successful agent authentications compared to
attempted authentications within a defined time frame. A high rate indicates the framework's ability to
consistently verify agent identities.

Authorization Latency: Average time taken to process and grant or deny an access request from an
agent. Low latency ensures smooth agent operations and prevents bottlenecks.
Policy Enforcement Accuracy: Percentage of access requests that are correctly authorized or denied
based on defined policies. A high accuracy indicates effective policy management and enforcement.

Revocation Time: Time taken to revoke access for a compromised or decommissioned agent across all
systems it interacts with. Short revocation times minimize potential damage from compromised agents.

Audit Log Integrity: Percentage of successfully recorded and verifiable audit logs of agent activities.
High integrity ensures accountability and traceability of agent actions.

Anomaly Detection Rate: Number of security anomalies or policy violations detected by the system
within a specific time frame. This indicates the system's ability to identify deviations from expected agent
behavior.

Incident Response Time: Time taken to detect, isolate, and mitigate a security incident involving a
compromised agent. Short response times limit potential damage and disruptions.

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 78

Agent Discovery Success Rate: Percentage of successful agent discoveries through the Agent Naming
Service (ANS) compared to attempted discoveries. This indicates the effectiveness of the discovery
mechanism.

Downtime due to IAM Issues: Measure the total downtime or disruptions caused by issues with the
Agentic AI IAM framework. Ideally, this KPI should be minimal or zero.

9. Discussion and Future Work

As future work, we have identified the following.

●​ Scalability, Performance, and Efficiency:

○​ The Challenge: Several components within the proposed architecture, particularly those
involving Distributed Ledger Technologies (DLTs) for DID registration and Verifiable
Credential (VC) status management, or the Session State Synchronizer (SSS) which
must track potentially millions of active agent sessions, face significant scalability and
performance hurdles. The cryptographic operations inherent in DIDs, VCs, and
Zero-Knowledge Proofs (ZKPs), while providing security, can also introduce
computational overhead for resource-constrained agents or high-throughput systems.

○​ Future Work:

■​ Benchmarking and Optimization: Rigorous, large-scale benchmarking of
different DLT solutions, consensus mechanisms, and distributed databases (for
the SSS) under realistic MAS load conditions is essential. This includes measuring
transaction throughput, latency for identity operations (registration, resolution,
revocation), and query speeds.

■​ Efficient Cryptography: Continued research into more lightweight and
efficient ZKP schemes (e.g., optimizing proving and verification times, reducing
proof sizes), more compact VC formats, and faster signature algorithms suitable
for agentic environments.

■​ Caching and Resolution Strategies: Developing sophisticated caching
mechanisms for DID Documents and VC public keys, while ensuring timely
propagation of revocation information, is crucial. Exploring hybrid resolution
mechanisms that combine decentralized trust anchors with localized,
high-performance caches.

■​ Hardware Acceleration: Investigating the role of hardware acceleration (e.g.,
trusted execution environments, cryptographic co-processors) within agents or
IAM infrastructure nodes to offload intensive cryptographic computations.

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 79

●​ Standardization and Interoperability:

○​ The Challenge: The true power of a global Agentic AI IAM framework lies in its
interoperability. Without widely adopted standards for how Agent IDs are structured, how
capabilities are defined and attested in VCs, how ZKPs are constructed for common
proofs, or how ANS queries are formatted, the ecosystem risks fragmentation into
incompatible identity silos.

○​ Future Work:

■​ Active Standards Development: Proactive engagement with and
contributions to standards organizations like the World Wide Web Consortium
(W3C) for DIDs and VCs, the Internet Engineering Task Force (IETF) for potential
ANS protocols or secure communication standards, the Decentralized Identity
Foundation (DIF), and the Trust over IP (ToIP) Foundation.

■​ Agent-Specific Profiles: Developing standardized VC profiles specifically for AI
agents, covering common attributes like model_type, training_data_provenance,
tool_authorization, ethical compliance attestations, and scope_of_behavior.

■​ Common Ontologies: Creation of shared ontologies and vocabularies for
describing agent capabilities, functions, and interaction patterns to ensure
semantic interoperability when agents discover and attempt to use each other's
services.

■​ Reference Implementations and Conformance Suites: Building open-source
reference implementations of key framework components (e.g., Agent ID SDKs,
an ANS resolver, a basic Session Authority) and developing conformance testing
suites to validate interoperability between different vendor and community
implementations.

■​ Formalization of Model Context Protocols (MCPs): Standardize the
structure and exchange format of MCPs to enable agents to communicate intent,
operational context, constraints, and task specifications in a verifiable and
interoperable manner. As agent capabilities evolve, MCPs must support explicit
versioning, extensibility, and schema negotiation to ensure forward compatibility
and safe coordination across complex agent ecosystems.

●​ Governance Models, Trust Frameworks, and Legal Considerations:

○​ The Challenge: Establishing and managing governance for a potentially global,
decentralized, or federated IAM infrastructure is a monumental task. This includes
defining who can issue authoritative VCs (e.g., for legal identity or compliance), how
disputes over DIDs or ANS names are resolved, and how liability is attributed in complex
MAS interactions. The evolving legal and regulatory landscape for AI also presents a
moving target.

○​ Future Work:

■​ Multi-Stakeholder Governance Research: Investigating and prototyping
various governance models (e.g., foundation-led, consortia-based,

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 80

DAO-controlled) for different components of the IAM framework, particularly for
VC issuer accreditation and ANS root zone management.

■​ Trust Assurance Levels: Defining clear trust frameworks with varying levels of
assurance for Agent IDs and VCs, allowing verifiers to make risk-based decisions
based on the rigor of the identity proofing and credential issuance processes.

■​ Legal and Regulatory Analysis: Continuous analysis of emerging AI
regulations (e.g., EU AI Act, national AI strategies) and data protection laws (e.g.,
GDPR) to ensure the IAM framework can support compliance. Developing
guidance on topics like the legal standing of an agent's digital signature,
cross-border data flows of VCs, and the "right to be forgotten" for Agent IDs.

■​ Dispute Resolution Mechanisms: Designing fair and efficient mechanisms for
resolving disputes related to identity claims, VC validity, or malicious agent
behavior attributed via the IAM framework.

■​ Security Controls Specific to AI Agents: Developing new controls and
adapting existing controls for Agentic AI systems, including the establishment of
baseline security controls, continuous monitoring controls, and the automated
enforcement of controls. These controls should also align with established
industry frameworks such as the Cloud Controls Matrix (CCM), ISO/IEC 2700X,
NIST SP800-53, and others to ensure consistency, auditability, and integration
into broader risk management programs.

■​ Autonomous Identity Agents for Just-In-Time (JIT) Access Decisions.
■​ Multi-Agent Systems for Decentralized Trust Brokerage
■​ Explainable and Auditable Agent Decisions in IAM
■​ Proactive Access Threat Modeling via Simulated Agent Behavior
■​ Interfacing Agentic IAM with AI-Augmented SOCs (Security Operations Centers)

●​ Enhanced Security and Privacy in Practice:

○​ The Challenge: While the framework incorporates strong security primitives,
sophisticated adversaries will inevitably seek to exploit implementation weaknesses,
social engineering aspects, or unforeseen interaction effects between components.
Maintaining agent and user privacy in the face of increasingly rich identity data is also
paramount.

○​ Future Work:

■​ Formal Security Modeling and Verification: Applying formal methods to
mathematically prove the security properties of critical protocols within the
framework, such as the runtime ID assumption protocol or the cross-protocol
revocation mechanism.

■​ Agent-Specific Threat Intelligence: Developing and sharing threat
intelligence specifically focused on attacks against agentic systems and their IAM
components (e.g., novel ways to poison training data to acquire VCs, exploiting
ZKP library vulnerabilities).

■​ Advanced Privacy-Enhancing Technologies (PETs): Exploring the
integration of more advanced PETs beyond basic ZKPs, such as homomorphic
encryption for computations on encrypted agent VCs, or attribute-based

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 81

encryption for fine-grained data access control directly tied to verifiable
attributes.

■​ Secure Key Management for Autonomous Agents: Researching best
practices and developing robust solutions for secure private key generation,
storage, usage, and rotation within autonomous agents, especially those
operating in untrusted or resource-constrained environments. This includes
exploring multi-party computation (MPC) for key management.

■​ Resilience Against Quantum Threats: Proactively investigating and planning
for the transition to quantum-resistant cryptographic algorithms for DIDs, VCs,
and digital signatures.

■​ Tabletop Exercises for Agentic Incident Response: Designing and
conducting tabletop exercises focused on scenarios such as compromised agent
identities, unauthorized delegation, policy conflict resolution, or mass revocation
events. These exercises help identify operational challenges and test the
effectiveness of IAM controls, policy enforcement, and incident response
readiness.

●​ User Experience (UX), Developer Tooling, and Adoption Pathways:

○​ The Challenge: For this framework to be adopted, it must be usable by both end-users
(who may act as controllers for their personal agents) and developers building and
deploying AI agents. Complexity in managing DIDs, VCs, and policies can be a significant
barrier.

○​ Future Work:

■​ Developer-Friendly SDKs and Libraries: Creating intuitive and
well-documented Software Development Kits (SDKs) for various programming
languages that simplify Agent ID creation, VC management (issuance, holding,
presentation), ZKP generation, and interaction with the IAM framework's services
(ANS, PDP, SA).

■​ Management UIs and Dashboards: Developing user interfaces for agent
controllers to manage their agents' identities, review their VCs, set basic policies,
and monitor their activity.

■​ "Secure by Default" Agent Architectures: Promoting agent development
patterns and templates that embed IAM best practices from the outset.

■​ Phased Adoption Strategies: Defining clear pathways for organizations to
incrementally adopt components of the framework, potentially integrating with
their existing IAM systems first (e.g., using enterprise OIDC to bootstrap an
agent controller's DID) before moving to more decentralized elements.

●​ Ethical Considerations and Societal Impact Mitigation:

○​ The Challenge: The power of verifiable and persistent Agent IDs, while beneficial for
security, also carries potential risks if misused for pervasive surveillance, biased
decision-making (e.g., if VCs for "good behavior" are only available to certain types of
agents), or creating new forms of digital divide.​

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 82

○​ Future Work:

■​ Ethical Impact Assessments: Establishing methodologies for conducting
ethical impact assessments specifically for Agentic AI IAM deployments,
considering fairness, accountability, transparency, and potential for misuse.

■​ Bias Detection and Mitigation in Credentialing: Researching techniques to
detect and mitigate biases in the issuance of VCs, particularly those related to
agent capabilities, reputation, or compliance.

■​ Transparency and Explainability of IAM Decisions: Ensuring that decisions
made by the IAM framework (e.g., why an agent was denied access, why a VC was
revoked) are explainable to the relevant stakeholders.

■​ Public Discourse and Inclusive Design: Fostering broad public and
interdisciplinary discussions involving ethicists, social scientists, policymakers,
and diverse user groups to shape the development and deployment of Agentic AI
IAM in a responsible manner. Ensuring that the framework is designed to be
inclusive and does not inadvertently disadvantage certain groups or types of
agents (e.g., open-source or community-developed agents).

The journey to a fully realized and globally functional Agentic AI IAM framework is an ambitious one. It
necessitates a collaborative, iterative approach, blending cutting-edge research with pragmatic
engineering and a deep understanding of the evolving societal context of AI. Addressing these future
work areas will be critical to transforming the vision presented in this paper into a resilient, trustworthy,
and enabling infrastructure for the future of AI.

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 83

10. References

Rosenbush, Steven. “AI Agents Face One Last, Big Obstacle.” The Wall Street Journal, 17 May 2025

Chan, A., et al. (2024b). IDs for AI Systems. arXiv preprint arXiv:2406.12137.

European Parliament and Council. (2023). Regulation of the European Parliament and of the Council on
Laying Down Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain
Union Legislative Acts.

Gabriel, I., et al. (2024). The Ethics of Advanced AI Assistants. arXiv preprint arXiv:2404.16244.

Goldwasser, S., Micali, S., & Rackoff, C. (1989). The knowledge complexity of interactive proof systems.
SIAM Journal on Computing, 18(1), 186-208.

Hardt, D. (Ed.). (2012). The OAuth 2.0 Authorization Framework (RFC 6749). Internet Engineering Task
Force. https://doi.org/10.17487/RFC6749

Hardt, D., Parecki, A., & Lodderstedt, T. (2025, May 28). The OAuth 2.1 Authorization Framework
(Internet Draft No. draft‑ietf‑oauth‑v2‑1‑13). IETF. Retrieved from
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-1-13

Kindervag, J. (2010). Build Security Into Your Network’s DNA: The Zero Trust Network Architecture.
Forrester Research.

Mockapetris, P. (1987). Domain names - implementation and specification (STD 13, RFC 1035). Internet
Engineering Task Force. https://doi.org/10.17487/RFC1035

OASIS. (2005). Security Assertion Markup Language (SAML) V2.0 Errata. OASIS Standard.

OpenID Foundation. (2014). OpenID Connect Core 1.0 incorporating errata set 1. OpenID Foundation
Standards. Retrieved [Date of Retrieval] from https://openid.net/specs/openid-connect-core-1_0.html

Sporny, M., et al. (Eds.). (2024, May). Verifiable Credentials Data Model v2.0. W3C Working Draft. World
Wide Web Consortium. Retrieved [Date of Retrieval] from https://www.w3.org/TR/vc-data-model-2.0/

World Wide Web Consortium (W3C). (2021, November 19). Verifiable Credentials Data Model v1.0. W3C
Recommendation. Retrieved [Date of Retrieval] from https://www.w3.org/TR/vc-data-model/

World Wide Web Consortium (W3C). (2022, July 19). Decentralized Identifiers (DIDs) v1.0. W3C
Recommendation. Retrieved [Date of Retrieval] from https://www.w3.org/TR/did-core/

Huang, K., Narajala, V. S., Habler, I., & Sheriff, A. (2025, May). Agent Name Service (ANS): A universal
directory for secure AI agent discovery and interoperability (Internet-Draft No. draft-narajala-ans-00).
Internet Engineering Task Force. https://datatracker.ietf.org/doc/draft-narajala-ans/

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 84

https://doi.org/10.17487/RFC6749
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-1-13
https://doi.org/10.17487/RFC1035
https://openid.net/specs/openid-connect-core-1_0.html
https://www.w3.org/TR/vc-data-model-2.0/
https://www.w3.org/TR/vc-data-model/
https://www.w3.org/TR/did-core/
https://datatracker.ietf.org/doc/draft-narajala-ans/

Huang, K. (2025a, March 11). Agentic AI identity management approach. Cloud Security Alliance.
https://cloudsecurityalliance.org/blog/2025/03/11/agentic-ai-identity-management-approach

Huang, K. (2025b, February 6). Agentic AI Threat Modeling Framework: MAESTRO. Cloud Security
Alliance Blog.

Huang, K (2025c), Agentic AI DID SDK: Decentralized Identifiers and Zero-Knowledge Proofs,
https://github.com/kenhuangus/agent-id-sdk

Sheriff,A (2025d), Agentic AI DID SDK: Decentralized Identifiers and Zero-Knowledge Proofs,
https://github.com/akramIOT/Agentic-IAM/

Huang, K., Sheriff, A., Narajala, V. S., & Habler, I. (2025). Agent Capability Negotiation and Binding
Protocol (ACNBP). arXiv preprint arXiv:2506.13590. https://doi.org/10.48550/arXiv.2506.13590

Huang, J., Huang, K., Hughes, C. (2025). AI Agents in Offensive Security. In: Huang, K. (eds) Agentic AI.
Progress in IS. Springer, Cham. https://doi.org/10.1007/978-3-031-90026-6_6

Huang, J., Huang, K., Hughes, C. (2025). AI Agents in Defensive Security. In: Huang, K. (eds) Agentic AI.
Progress in IS. Springer, Cham. https://doi.org/10.1007/978-3-031-90026-6_7

Huang, J., Huang, K., Jackson, K., Hughes, C. (2025). AI Agent Safety and Security Considerations. In:
Huang, K. (eds) Agentic AI. Progress in IS. Springer, Cham.
https://doi.org/10.1007/978-3-031-90026-6_12

OWASP(2025), OWASP Top 10 Non-Human Identities Risks - 2025,
https://owasp.org/www-project-non-human-identities-top-10/2025/top-10-2025/

Cloud Security Alliance(2024), The State of Non-Human Identity Security,
https://cloudsecurityalliance.org/artifacts/state-of-non-human-identity-security-survey-report

© Copyright 2025, Cloud Security Alliance. All rights reserved.​ ​ ​ 85

https://cloudsecurityalliance.org/blog/2025/03/11/agentic-ai-identity-management-approach
https://cloudsecurityalliance.org/blog/2025/03/11/agentic-ai-identity-management-approach
https://github.com/kenhuangus/agent-id-sdk
https://github.com/akramIOT/Agentic-IAM/
https://doi.org/10.48550/arXiv.2506.13590
https://doi.org/10.1007/978-3-031-90026-6_6
https://doi.org/10.1007/978-3-031-90026-6_7
https://doi.org/10.1007/978-3-031-90026-6_12
https://owasp.org/www-project-non-human-identities-top-10/2025/top-10-2025/
https://cloudsecurityalliance.org/artifacts/state-of-non-human-identity-security-survey-report

	
	

	Acknowledgments
	Co-Authors
	CSA Global Staff
	Graphic Design

	
	
	Contributors/Reviewers

	
	Premier AI Safety Ambassadors
	
	Table of Contents
	

	Abstract
	
	1. Introduction
	Understanding Agentic AI and Its Unique Identity Challenges
	What Makes Agentic AI Different
	The Scale and Complexity Challenge

	2. The Imperative for a New Agentic IAM Paradigm
	The Evolution of AI Agents: From Simple Tools to Digital Teammates
	1. Interactive Agents
	2. Autonomous Agents
	3. Digital Employees
	Summary of an Agent's Journey

	2.1 Revisiting Traditional IAM
	Critical Shortcomings of Traditional IAM Protocols
	OAuth 2.1 Limitations in Agentic Environments

	SAML's Fundamental Incompatibility
	The Confused Deputy Problem
	SSO Integrations
	Emerging Threats and Attack Vectors
	Tool Poisoning and Manipulation Attacks
	Prompt Injection and Semantic Attacks

	The Urgent Need to Update OAuth 2 for the Age of Autonomous Agents
	Key Changes Required for OAuth 2

	2.1.1. Use of Conventional IAM in Human-Scoped Agent Workflows
	2.1.2. Fundamental Insufficiencies for Multi-Agent Systems (MAS)

	
	2.2. Why Agentic AI Demand a New IAM Paradigm Beyond Traditional Protocols

	3. Defining the Agent Identity (Agent ID) in Multi-Agent System
	3.1. What Constitutes an AI Agent's Identity? Beyond Static Identifiers
	3.2. Essential Components of an Agent ID:
	3.3. Agent ID Ownership and Control:
	3.4. ID Generation, Assignment, and Lifecycle Management: From Birth to Revocation

	4. The New Agentic AI Identity and Access Management Framework Architecture
	A. Zero-Trust Architecture for Agentic AI
	B. Decentralized Identity Management
	C. Dynamic Policy-Based Access Control (PBAC)
	D. Authenticated Delegation Framework
	E. Continuous Monitoring and Behavioral Analytics
	F. Secure Communication Protocols
	
	4.1. Foundational Pillars
	
	4.2. Core Architectural Layers
	
	4.3. Applying Zero Trust Principles

	5. Agent IDs in the IAM Process
	5.1. Fine-Grained Access Control in Action
	5.2. Secure Logging, Auditing, and Non-Repudiation
	5.3. Real-time Monitoring and Anomaly Detection
	5.4. Agile Incident Response: Precision Targeting, Rapid Containment, and Discoverable Impact
	5.5. Other Potential Uses Building on Verifiable Agent IDs and Discoverable ANS Profiles

	6. Deployment Models & Governance Considerations
	6.1. Deployment Model Analysis
	6.1.1. Centralized Approach
	6.1.2. Decentralized Approach
	6.1.3. Federated Approach
	6.1.4. Hybrid Approaches:

	6.2. Decision Matrix for Choosing an Implementation Model
	6.3. Governance Considerations:

	7. Security Considerations
	7.1 The MAESTRO 7-Layer Reference Architecture for Agentic AI
	7.2 Threat Analysis of the Proposed Agentic AI IAM Framework using MAESTRO Layers
	7.3 Cross-Layer Threats Affecting the IAM Framework
	7.4 Applying Zero Trust to Agentic AI IAM Framework
	7.5 Enterprise use cases with MAESTRO Framework:

	8. Innovative Contributions of this Framework
	9. Discussion and Future Work
	
	10. References

