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Abstract

Real-world classification datasets often contain label bias, where observed labels
differ systematically from the true labels at different rates for different demographic
groups. Machine learning models trained on such datasets may then exhibit dispar-
ities in predictive performance across these groups. In this work, we characterize
the problem of learning fair classification models with respect to the underlying
ground truth labels when given only label biased data. We focus on the particular
fairness definition of group sufficiency, i.e. equal calibration of risk scores across
protected groups. We theoretically show that enforcing fairness with respect to
label biased data necessarily results in group miscalibration with respect to the
true labels. We then propose a regularizer which minimizes an upper bound on
the sufficiency gap by penalizing a conditional mutual information term. Across
experiments on eight tabular, image, and text datasets with both synthetic and real
label noise, we find that our method reduces the sufficiency gap by up to 7.2% with
no significant decrease in overall accuracy.

1 Introduction

Machine learning systems are increasingly being deployed in safety critical settings, from parole
recommendations to medical triage and financial lending [1, 2, 3]. However, prior work has shown
that such systems often exhibit biases in the form of performance discrepancies between demographic
groups [4, 5, 6]. There exists a range of work which propose algorithmic approaches to correct
these disparities, spanning from pre-processing [7, 8, 9], to in-processing [10, 11, 12, 13], to post-
processing [14, 15, 16]. However, these methods rarely consider the source of these biases. Prior work
has shown that naively enforcing these fairness definitions can have unintended side effects, leading
to worse performance for all [17, 18, 19, 20], and exacerbating other types of biases [21, 22, 16].

In this work, we take a different approach and tackle fair classification from a data-centric perspec-
tive [23], focusing on datasets that contain significant differences in label errors between protected
groups, also known as label bias [24]. For example, in the medical diagnosis setting, women with
heart disease are underdiagnosed at higher rates than men with heart disease, and are instead more
likely to be misdiagnosed with mental health conditions [25]. Similarly, Black patients are less likely
to be prescribed opioid painkillers than White patients in emergency departments, even after adjusting
for level of pain [26]. Finally, when screening resumes for job applications, applicants with African
American names are much less likely to receive an interview than those with White names [27].

When downstream models are trained on these label-biased datasets (i.e. to diagnose, prescribe,
or hire), the model may learn to predict noisy labels and propagate disparities in the historical
data [28, 29], leading to the observed performance disparities. When the training dataset contains
label bias, our goal is to learn a fair and performant model with respect to the true unobserved labels.

Learning under label noise is a well-studied problem [30, 31, 32, 33, 34], where methods aim to learn
the best model with respect to the true labels, without any consideration for per-group performance
(i.e. without considering label bias). Though there has been limited work looking at fairness under
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Figure 1: Our Problem Setup. (a) Observed labels are corrupted from unobserved true labels at
different rates for each gender, which may be caused by misdiagnoses [25] or noisy automated
processes used to extract labels [42]. (b) Training a model on these noisy labels and evaluating
calibration curves with respect to true labels results in different calibration curves for each group.
Specifically, each group’s calibration curve differs from the marginal curve. We propose a method to
achieve group sufficiency (zero sufficiency gap for all groups) under these conditions.

label bias [35, 36, 37], these works all focus on the fairness definitions of demographic parity and
equal odds [15].

Here, we study the problem of learning classification models under label bias which satisfy a different
fairness property — group sufficiency, which corresponds to equal calibration of the risk score across
groups [21, 38]. A group sufficient score can then be post-processed to achieve perfect calibration for
all groups via group-agnostic post-processing [21]. Importantly, group sufficiency is incompatible
with demographic parity and equal odds on the risk score under different group base rates, so it
is not possible to achieve all fairness definitions simultaneously [22]. Here, we focus on group
sufficiency, as prior work have shown that it is a requirement to prevent discrimination or maximize
utility in many contexts [39, 40, 41]. For example, Loi and Heitz [40] argue, from a moral philosophy
perspective, that risk scores being miscalibrated for a particular demographic group may constitute
discrimination against that group.

We start by theoretically characterizing how class-attribute conditioned label noise distorts per-group
calibration and derive necessary and sufficient conditions for group insufficiency under label bias
(Section 4). This demonstrates that naive models trained on noisy labeled data are necessarily unfair
with respect to the true underlying labels, and motivates the need for specialized methods. Building
on this theory, we propose a regularizer term, CMI-REG, based on penalizing conditional mutual
information (Section 5). CMI-REG can be added to any existing off-the-shelf noise-robust loss.
We evaluate CMI-REG with 7 base losses on 8 datasets spanning tabular, text, and image domains,
finding that we effectively reduce the sufficiency gap while maintaining, and often improving, overall
performance over the base losses. To the best of our knowledge, our work is the first to study this
problem setting and propose a method to achieve this fairness definition.

Contributions. Our work makes the following contributions1:

1. We theoretically establish necessary and sufficient conditions for which label bias causes a
lack of group sufficiency under class-attribute conditioned noise.

2. We propose a method to achieve sufficiency under label bias, assuming class-attribute
conditioned noise. We theoretically prove that our method minimizes an upper bound on the
sufficiency gap. Our method is a regularizer term that can be flexibly added to any existing
loss-based noisy label learning method.

3. We empirically evaluate our method on 8 datasets with both synthetic and real-world noise,
showing that it achieves sufficiency with respect to the true labels without a significant
decrease in accuracy over the baselines.

1Code: https://github.com/MLforHealth/sufficiency_label_bias
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2 Related Work

2.1 Learning Under Label Noise

There has been a long line of work on the problem of learning classification models under label
noise. Under uniform label noise, symmetric loss functions such as mean absolute error (MAE) are
theoretically noise robust [43]. This then motivated a line of work which adapts MAE to have better
optimization properties and empirical performance, including improved MAE [44], symmetric cross
entropy [45], generalized cross entropy (GCE) [30], and generalized Jensen-Shannon divergence [46].

Under class conditioned noise (where the probability of observing a noisy label depends only on the
true label), one direction focuses on estimating the class transition matrix. When the class transition
matrix is known, a simple weighting approach is sufficient [47, 48]. Methods to estimate the transition
matrix have been proposed, given a small dataset with clean labels [49, 50], anchor points for each
class [51, 52], or by examining the transition matrix of an ERM model trained on noisy labels [53, 54].
Liu and Guo [31] proposes a peer loss which, in the binary case, only requires knowledge of the sum
of the off-diagonal transition matrix elements.

Under instance dependent label noise, there are no theoretical guarantees in general. Methods
that have done well empirically in this area include those based on training dynamics, e.g. area
under the margin [55], DataMap [56], first-time k-epoch learning [57], early regularization [58],
as well as methods based on training multiple simultaneous models such as Co-teaching [59] and
DivideMix [32].

However, given that all methods in this category are agnostic of the group attribute and do not
explicitly enforce a fairness condition, they do not explicitly satisfy any fairness properties, and thus
do not succeed in our problem setup as we will later show empirically.

2.2 Sufficiency as a Fairness Definition

Sufficiency of the risk score is a commonly used group fairness definition in the classification setting,
which corresponds to equal calibration curves for all groups. It is a slightly weaker definition
than calibration by group (i.e. all groups being perfectly calibrated) [21]. Prior work has shown
that under different per-group prevalences of the label, it is impossible to simultaneously satisfy
sufficiency and probabilistic equal odds [22, 60]. Liu et al. [38] show that ERM models inherently
prefer sufficiency, and that intervening to achieve probabilistic equal odds necessarily worsens this
condition. Empirically, this has been observed in images [19, 61] and tabular data [62, 41]. Raghavan
[39] discuss the implications of this impossibility, making a case that the choice of fairness metric is
highly context dependent. Similarly, Loi and Heitz [40] discuss, from a philosophical view, when
group calibration is a required condition to avoid discrimination.

In order to achieve sufficiency, prior methods have been proposed based on mutual information [63]
and multi-objective optimization [64, 65]. One related concept is multicalibration [66], which
seeks to achieve approximate calibration for all computationally identifiable subgroups. However,
multicalibration has been found to be far less sample efficient than standard post-hoc calibration
methods [67]. Both multicalibration (when applied to provided attributes) and standard post-hoc
calibration methods require access to the group attribute during inference, which our method will
not assume. Regardless, no prior work has studied the setting of group sufficiency under label noise,
which is the focus of this work.

2.3 Fairness Under Label Bias

Prior works on fairness under label bias have only focused on demographic parity and equal odds.
Wick et al. [68] use simulated data to show that enforcing statistical parity on label-biased data may
already achieve the same fairness definition on clean data, with increased accuracy. Wang et al.
[35] study the problem of equal odds under class-attribute conditioned label noise, and propose
two solutions based on an alternate constraint using a surrogate loss, and a group-weighted peer
loss [31]. Zhang et al. [37] learn fair representations under class-conditional noise for the same
definitions. Wu et al. [36] study fairness under instance-dependent noise but targets counterfactual
fairness [69], which has been shown to have similar drawbacks as equal odds [70]. None of these
works consider group sufficiency, nor do they provide guarantees for calibration error under noise.
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Finally, Mhasawade et al. [24] propose various candidate causal graphs to model the label bias
scenario and derive cases when sufficiency is satisfied without further intervention, but do not propose
any algorithmic solutions in the remaining cases. Under their framework, we study the Y → Yi
and Yi ̸⊥⊥ A setting, under which they provide no guarantees. In contrast, we provide a theoretical
characterization of this setting and propose a method to achieve group sufficiency under label bias.

3 Preliminaries

Let X ∈ X denote an input feature, Y ∈ {1, 2, . . . ,K} the true (clean) label, and Ỹ ∈ {1, 2, . . . ,K}
the observed (noisy) label. Additionally, let G ∈ G represent a group attribute. We have a dataset
D = {(xi, gi, yi, ỹi)}Ni=1 with (xi, gi, yi, ỹi) ∼ PX,G,Y,Ỹ , where the true labels yi are unobserved,
and we only have access to the noisy labels ỹi.

In practice, we want classifiers whose predicted probabilities accurately reflect true real-world
outcomes, both overall and consistently across different demographic or group attributes. To quantify
how well a model achieves these goals, we introduce the standard definition of group sufficiency,
which quantifies whether predictions provide equal information about outcomes, regardless of group
membership.
Definition 3.1 (Group Sufficiency). A multiclass classifier f : X → ∆K−1 is group sufficient with
respect to a label Y and group G if it satisfies:

Y ⊥⊥ G | f(X).

This condition implies that the prediction f(X) captures information about Y that renders the group
attribute G irrelevant given the model’s output.
Definition 3.2 (Group Sufficiency Gap). The per-group sufficiency gap, as well as the overall
sufficiency gap for a model f , are defined as [38]:

Sufg(f) =

(
K∑
k=1

1

K
E[|E[1Y=k | f(X)k]− E[1Y=k | f(X)k, G = g]|p]

)1/p

Suf(f) = Eg[Sufg(f)]

Similarly, let S̃uf denote the sufficiency gap with respect to Ỹ . The group sufficiency gap quantifies
the extent to which a model’s predictions provide unequal information about the true label Y across
different groups G; it measures deviations from the ideal group sufficiency condition Y ⊥⊥ G | f(X).
This gap is zero when f(X) is group sufficient—Lemma A.1.

To formally analyze the effect of label noise and group membership on calibration and sufficiency,
we introduce explicit assumptions about the data-generating process. These assumptions clarify the
relationship between noisy and true labels, conditional independence, and the structure of the noise
across different groups.
Assumption 3.1 (Class-Attribute Conditioned Noise). The noisy label Ỹ is conditionally independent
of the input X given the true label Y and group attribute G:

Ỹ ⊥⊥ X | (Y,G).
Definition 3.3 (Group-Conditional Transition Matrix). For each group g ∈ G, define a row-stochastic
noise transition matrix T g ∈ [0, 1]K×K where

T gi,j = P(Ỹ = j | Y = i, G = g).

Assumption 3.2 (Invertible Group-Conditional Transition Matrix). T g is invertible for all groups
(g ∈ G).

These assumptions are standard in the literature on learning under label noise [48, 71]. Importantly,
the set of singular matrices has Lebesgue measure zero within the space of all row-stochastic
matrices [72], and strictly diagonally dominant matrices—which naturally arise when noise rates are
sufficiently small—are always invertible [73].
Definition 3.4 (Label Bias). Let T ∈ [0, 1]K×K where Ti,j = P (Ỹ = j | Y = i) =∑
g∈G T

g
i,jP (G = g). If ∃g ∈ G such that T g ̸= T , then we say that the observed labels Ỹ

are label biased relative to Y .
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4 Main Result and Problem Statement

First, we characterize the necessary and sufficient conditions for which we would expect a non-zero
sufficiency gap.
Theorem 4.1 (Closed-Form Decomposition of the Sufficiency Gap). Let s = f(X) ∈ ∆K−1 be the
model score, π̃g(s) = P (Ỹ = · | f(X) = s,G = g) the group-conditional noisy label posterior, and
π̃(s) = P (Ỹ = · | f(X) = s) the marginal counterpart. Then under Assumptions 3.1 and 3.2, for
any p ≥ 1,

Sufg(f) =

 1

K
E


∥∥∥∥∥∥∥((T g)⊤)−1∆π̃(f(X))︸ ︷︷ ︸

posterior shift

+ π̃(f(X))∆T g︸ ︷︷ ︸
noise matrix mismatch

∥∥∥∥∥∥
p

p




1/p

, (1)

where ∆π̃(f(X)) = (π̃g(f(X))− π̃(f(X)) and ∆T g =
(
((T g)⊤)−1 − (T⊤)−1

)
.

Corollary 4.1.1 (Necessary Condition for Sufficiency Gap). Under Assumptions 3.1 and 3.2, suppose
that f satisfies group sufficiency with respect to noisy labels (i.e. Ỹ ⊥⊥ G | f(X)). Then, if ∃g ∈ G
such that Sufg(f) > 0, it must be that T g ̸= T .

Thus, when f is fair with respect to the noisy labels (which ERM models trained on noisy data
have a tendency to be, as the sufficiency gap is upper bounded by its excess risk [38]), label bias is
necessary for a sufficient gap. The contrapositive of this corollary also shows that under uniform
label noise which is group agnostic, a group sufficient classifier with respect to noisy labels (implying
S̃uf(f) = 0) will also be group sufficient to the true labels. This implies that if we know apriori that
the noise rates do not differ across groups (i.e. there is no label bias), enforcing group sufficiency
with respect to the noisy labels is a valid mitigation strategy. Thus, for the rest of this work, we will
deal with the case of non-group-agnostic noise.
Remark 4.2 (Sufficient Condition for Sufficiency Gap). Theorem 4.1 implies that under label bias
(i.e. T g ̸= T ) and a non-trivial classifier (f(X) ̸= 0), we have that Sufg(f) > 0, so long as the
model is group-sufficient for the noisy labels (∆π̃(f(X)) = 0) and π̃(f(X)) is not in the null space
of ∆T g . Specifically, even though T and T g are different, if the marginal π̃ does not have sufficient
mass in the directions that they are different, then the sufficiency gap is unaffected since the inverses
of T ’s project π̃ to the same output and cancel out, resulting in Sufg(f) = 0.

We define and provide similar bounds for the per-group calibration error in Appendix A. Further, we
characterize the behavior of Sufg under perturbations to the transition matrix T g , which may happen
when T g is estimated from observational data. All proofs can be found in Appendix A.

Problem Statement. Our goal is to learn a risk score fθ : X → ∆K−1 satisfying Definition 3.1.
Specifically, given a loss function l((x, y), f)→ R. We would additionally like to achieve:

min
θ∈Θ

E(X,Y )∼pX,Y
[l((X,Y ), fθ)]

s.t. Y ⊥⊥ G | fθ(X) (2)

5 Methodology

To guide the design of our method, we derive an upper bound on the group sufficiency gap in terms of
the conditional mutual information between the label and group, given the model’s prediction. This
result highlights that reducing the dependence between Y and G conditioned on f(X) is sufficient to
control the sufficiency gap:
Proposition 5.1 (Conditional Mutual Information Bound on Sufficiency Gap).

Sufg(f) ≤
√
2

K

√
I(Y ;G | f(X))

P (G = g)
; Suf(f) ≤

√
2

K

√
I(Y ;G | f(X)).

This bound motivates our core objective: to minimize the sufficiency gap by minimizing the con-
ditional mutual information I(Y ;G | f(X)). However, since the true labels Y are unobserved in
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practice, directly estimating this quantity is non-trivial. In the following section, we describe how we
approximate this objective using the noisy labels Ỹ . Formal proofs are provided in Appendix A.

Under Assumptions 3.1 and 3.2, we propose a differentiable regularizer that approximates and
minimizes the conditional mutual information upper bound using the observed noisy labels.

min
θ

n∑
i=1

ℓpred(fθ, xi, ỹi) + λR(fθ), (3)

where fθ : X → Y , λ > 0, and ℓpred is a pointwise loss function, potentially selected for robustness
to label noise, e.g., Peer Loss [31] or GCE [30].

CMI Regularizer We can decompose I(Y ;G | f(X)) into the difference of two entropy terms:

I(Y ;G | f(X)) = H(Y | fθ(X))−H(Y | fθ(X), G)

= EX,Y [− logP(Y | fθ(X))]− EX,Y,G[− logP(Y | fθ(X), G)]

For a mini-batch B of size B, each entropy term can be estimated using a Monte Carlo estimator:

Ĥ(Y | fθ(X), G) =
1

B

∑
i∈B

(− logP(Y = yi | fθ(X) = fθ(xi), G = gi))

=
1

B

∑
i∈B

(− logpY (· | fθ(X) = fθ(xi), G = gi))yi

where pY (· | fθ(X) = fθ(xi), G = gi) := [P(Y = 1 | fθ(X) = fθ(xi), G = gi), ...,P(Y = K |
fθ(X) = fθ(xi), G = gi)], and (·)ỹi denotes taking the ỹi-th element of the K-dimensional vector.

As we do not observe yi, we can apply the backward correction [48] to this estimator, where log is
applied elementwise:

Ĥ(Y | fθ(X), G) =
1

B

∑
i∈B

(
−T−1

gi logpY (· | fθ(X) = fθ(xi), G = gi)
)
ỹi

(4)

and similarly

Ĥ(Y | fθ(X)) =
1

B

∑
i∈B

(
−T−1

gi logpY (· | fθ(X) = fθ(xi))
)
ỹi

(5)

Note that the population entropy H(Y | f(X)) does not depend on G. However, as we only observe
Ỹ , our estimator must invert the noise process that generated Ỹ . Under Assumption 3.1, the unbiased
backward-correction of Y requires the group-specific matrix T−1

gi for the i-th sample. Using the
marginal matrix T−1 would bias the estimator when there is label bias.

Heads for Entropy Estimation To estimate pY given only noisy data, we parameterize two
functions hϕ : ∆K−1 → ∆K−1 and hψ : ∆K−1 × G → ∆K−1 each by a single linear layer, which
we then learn by using a standard cross entropy loss with the forward correction [48]:

hϕ = argmin
ϕ

1

B

∑
i∈B
− log(T⊤

gihϕ(fθ(xi)))ỹi , (6)

hψ = argmin
ψ

1

B

∑
i∈B
− log(T⊤

gihψ(fθ(xi), gi))ỹi (7)

Thus, we have that

R(fθ) = Î(Y ;G | f(X)) =
1

B

∑
i∈B

(
−T−1

gi log hϕ(fθ(xi))
)
ỹi
−
(
−T−1

gi log hψ(fθ(xi), gi)
)
ỹi

(8)

A single linear layer is each used to parameterize hϕ and hψ , as similar models are frequently learned
for post-hoc calibration [74]. In practice, hϕ and hψ operate on the logits of f instead of the output
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Algorithm 1: Single Step Update of CMI-REG

Input: Batch B = {(xi,gi, ỹi)}Bi=1 ;
Per–group transition matrices {T g ∈ [0, 1]K×K}g∈G , λ > 0, C ≥ 1;
Learning rates αf , αh > 0;
Current classifier and auxiliary heads: fθ, hϕ, hψ ;
ℓpred(zi, ỹi);
Output: Updated fθ, hϕ, hψ

1 zi ← fθ(xi) ∀i ∈ B ; // logits
2 for j = 1 to C do // update heads, freeze θ

3 ϕ← ϕ− αh∇ϕ
1

B

∑
i∈B
− log

(
T⊤
gihϕ(zi)

)
ỹi

; // Eq. (6)

4 ψ ← ψ − αh∇ψ
1

B

∑
i∈B
− log

(
T⊤
gihψ(zi, gi)

)
ỹi

; // Eq. (7)

5 Lpred =
1

B

∑
i∈B

ℓpred(zi, ỹi);

6 Compute RB using Equation (8);
7 L = Lpred + λRB
8 θ ← θ − αf ∇θL;
9 return fθ, hϕ, hψ;

probabilities. Given a batch B, we first update hϕ and hψ using gradient descent on Equations (6)
and (7) for C iterations, and then update fθ using Equation (3) once. As the backward corrected
entropy estimators (Equations 4 and 5) can produce entropies outside of [0, logK], we clip estimated
entropies to this range. The full algorithm can be found in Algorithm 1. When the two heads
are perfectly learned, R(fθ) is an unbiased estimator of the conditional mutual information (see
Lemma A.5).

Directly Regularizing Sufficiency (SUF-REG) In parallel, we consider a direct penalty on the
sufficiency gap by plugging in estimates of π̃ and π̃g into Theorem 4.1. Concretely, π̃ and π̃g are
estimated by two linear heads and trained in an alternating manner similar to CMI-REG. We refer to
this regularizer term as SUF-REG, and it can be combined with any ℓpred similar to CMI-REG. We
emphasize that SUF-REG is also a novel contribution that has not been explored in prior work. This
variant avoids mutual-information estimation but can be higher-variance. An algorithm outline for
SUF-REG can be found in Appendix C.

6 Experiments

Datasets and Noise Types We evaluate our method using the 8 datasets shown in Table 1, which
span tabular, image, and text modalities, and a range of number of classes. For datasets with synthetic
noise, we experiment with two synthetic noise types: Group Uniform (where uniform noise is added
only for one group), and Group Asymmetric (where class-specific noise is only added for one group).
Additional details of how the per-group transition matrices are constructed can be found in Appendix
B.2. Datasets with real noise have label noise derived from multiple annotators (in the case of
civilcomments and cifar10ns) or from human annotators of noisy web data (for clothing1m).
Further details of dataset construction can be found in Appendix B.1.

Training We train MLP, ImageNet-pretrained ResNet-18 [75], and BERT-base [76] models for
tabular, image, and text modalities respectively, optimized using the Adam optimizer [77]. All
datasets are divided into 60%/20%/20% training/validation/test splits. For synthetic noise, to mitigate
the confounding effect of different marginal noise rates depending on group proportions, we balance
the groups by subsampling the majority group during both training and testing. Hyperparameters
were selected using a random hyperparameter search [78] with 20 runs. For the full hyperparameter
grid for each method, see Appendix B.3. Each hyperparameter setting was repeated three times with
different random seeds, which affects the dataset split, model initialization, and random noise (in the
case of synthetic noise).
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Table 1: Datasets used this paper. All attributes contain two groups. n: number of samples, K:
number of classes. Data processing details can be found in Appendix B.1.

Dataset Modality Task Attribute n K Noise Type
adult [80] Tabular Income ≥ 50k Gender 32,561 2 Synthetic
lsac [81] Tabular Student passes the bar Race 18,337 2 Synthetic
crime [82, 83] Tabular Binned rate of violent crime Primary ethnicity 1,994 5 Synthetic
income [84] Tabular Binned income Race 1,445,699 3 Synthetic
grades [85] Tabular Student passes exam Gender 856 2 Real
civilcomments [86] Text Comment is toxic Contains identity 448,000 2 Real
clothing1m [87] Image Type of clothing Contains face 1,072,409 14 Real
cifar10ns [88, 89] Image Image classification Image is grayscale 60,000 10 Real

To select the optimal hyperparameters, we experiment with three model selection strategies: (1)
Noisy Brier: We select the model with the lowest overall Brier score on the noisy validation set. The
Brier score is chosen as the selection criteria as it accounts for both performance and calibration.
(2) Theory: We select the model with the smallest value from Theorem 4.1 on the noisy validation
set, which requires knowledge of the transition matrices but not any clean labels, (3) Clean Brier:
We select the model with the lowest overall Brier score on the clean validation set, which requires a
validation set with clean labels. For our method (and baselines) which require transition matrices, we
experiment with two settings: (1) Known: we use the true T g, (2) Estimated: we estimate T g using
Confident Learning [54].

Baselines We consider the following off-the-shelf loss functions for ℓpred: Cross Entropy (CE),
Backward [48], Forward [48], Generalized Cross Entropy (GCE) [30], α−weighted peer loss
(Peer) [31], Early Learning Regularization (ELR) [58], and Determinant Mutual Information
(DMI) [79]. We compare our methods (CMI-REG and SUF-REG) against each of the baseline
losses. We also compare against the group-weighted peer loss for achieving equal odds from Wang
et al. [35] (“GroupPeer”). Note that this method is only applicable when K = 2. We additionally
compare against applying multicalibration (“MC”) post-processing using Algorithm 1 from Hébert-
Johnson et al. [66] (specifically, using the implementation from Hansen et al. [67]), using the single
attribute to define C, and defining the calibration set to be a 40% subset of the original training set.
This post-processing is done to the scores of an ERM model trained on labels produced by per-group
stochastic flipping according to the row-normalized (Tg)

−1. Finally, as oracle, we train an ERM
model on the clean training data.

Metrics All metrics shown are evaluated on the cleanly labeled test set. To evaluate overall
performance, we use the one-vs-rest AUROC macro-averaged across classes. To evaluate fairness,
we compute the sufficiency gap Suf(f) as in Definition 3.2 with p = 1, by using a binning estimator
with 10 equally sized bins.

7 Results

We present results for the four tabular datasets with synthetic group asymmetric noise, clean Brier
selection, and known transition matrices in the main paper. Additional experimental results for group
uniform noise, real-world noise, other selection criteria, estimated transition matrices, and additional
synthetic noise levels can be found in Appendix D.

On Performance and Fairness In Table 2, we show the overall performance and sufficiency
gap of SUF-REG and CMI-REG when added to seven different base losses. We find that in the
large majority of cases, the addition of either regularizer results in a lower sufficiency gap, with
CMI-REG exhibiting marginally better fairness. However, the confidence intervals are generally
large as calibration error estimation has high variance [90]. Regardless, the model which achieves
the lowest sufficiency gap is consistently regularized by CMI-REG. The base losses which function
best with these regularization terms are GCE and Peer loss. Interestingly, in several cases, adding the
regularizer term actually improves overall performance. Similar results for group uniform noise and
real-world noise can be found in Appendix D. When the estimated transition matrix is used instead
(Appendix D.5), we find that regularizers still generally improve fairness, though the performance
improvements become limited.
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Table 2: Clean test-set AUROC and sufficiency gap (Suf) of our regularizers when added to off-the-
shelf loss functions, for tabular datasets with synthetic group asymmetric noise and known transition
matrices. Models are selected using the clean Brier score. The best method within each base loss is
bolded, and the best model overall is also underlined.

income adult lsac crime

AUROC ↑ Suf ↓ AUROC ↑ Suf ↓ AUROC ↑ Suf ↓ AUROC ↑ Suf ↓
CE 0.731 (0.000) 0.040 (0.003) 0.899 (0.000) 0.029 (0.003) 0.581 (0.049) 0.108 (0.003) 0.741 (0.025) 0.075 (0.011)
CE + SUF-REG 0.732 (0.000) 0.035 (0.007) 0.894 (0.000) 0.029 (0.004) 0.712 (0.022) 0.089 (0.007) 0.804 (0.021) 0.057 (0.015)
CE + CMI-REG 0.736 (0.001) 0.033 (0.001) 0.903 (0.003) 0.016 (0.004) 0.708 (0.077) 0.072 (0.026) 0.748 (0.030) 0.065 (0.007)

Forward 0.801 (0.002) 0.038 (0.002) 0.887 (0.001) 0.024 (0.004) 0.436 (0.006) 0.097 (0.001) 0.788 (0.011) 0.056 (0.010)
Forward + SUF-REG 0.812 (0.002) 0.059 (0.003) 0.898 (0.000) 0.032 (0.001) 0.690 (0.011) 0.091 (0.016) 0.789 (0.006) 0.053 (0.006)
Forward + CMI-REG 0.802 (0.003) 0.019 (0.003) 0.887 (0.001) 0.023 (0.006) 0.664 (0.247) 0.075 (0.052) 0.797 (0.000) 0.052 (0.016)

Backward 0.794 (0.002) 0.042 (0.002) 0.887 (0.001) 0.021 (0.003) 0.473 (0.042) 0.100 (0.003) 0.711 (0.007) 0.080 (0.014)
Backward + SUF-REG 0.800 (0.002) 0.032 (0.003) 0.888 (0.001) 0.025 (0.004) 0.631 (0.028) 0.097 (0.017) 0.721 (0.023) 0.073 (0.002)
Backward + CMI-REG 0.797 (0.003) 0.036 (0.005) 0.888 (0.001) 0.018 (0.007) 0.452 (0.032) 0.091 (0.009) 0.739 (0.065) 0.066 (0.005)

DMI 0.590 (0.115) 0.047 (0.016) 0.887 (0.001) 0.029 (0.004) 0.476 (0.184) 0.088 (0.000) 0.406 (0.033) 0.087 (0.033)
DMI + SUF-REG 0.591 (0.111) 0.045 (0.016) 0.877 (0.003) 0.028 (0.006) 0.478 (0.167) 0.090 (0.000) 0.395 (0.033) 0.088 (0.033)
DMI + CMI-REG 0.590 (0.119) 0.048 (0.017) 0.885 (0.002) 0.020 (0.006) 0.478 (0.170) 0.090 (0.001) 0.484 (0.042) 0.107 (0.023)

ELR 0.731 (0.001) 0.040 (0.003) 0.898 (0.001) 0.030 (0.005) 0.364 (0.266) 0.061 (0.050) 0.662 (0.091) 0.092 (0.012)
ELR + SUF-REG 0.754 (0.000) 0.025 (0.003) 0.873 (0.005) 0.022 (0.002) 0.465 (0.054) 0.102 (0.001) 0.781 (0.054) 0.054 (0.011)
ELR + CMI-REG 0.738 (0.003) 0.033 (0.002) 0.860 (0.010) 0.019 (0.001) 0.319 (0.040) 0.089 (0.014) 0.664 (0.070) 0.088 (0.001)

GCE 0.730 (0.002) 0.041 (0.004) 0.894 (0.002) 0.022 (0.001) 0.462 (0.028) 0.099 (0.002) 0.739 (0.025) 0.077 (0.014)
GCE + SUF-REG 0.748 (0.001) 0.041 (0.001) 0.884 (0.003) 0.027 (0.000) 0.590 (0.082) 0.097 (0.004) 0.771 (0.047) 0.061 (0.008)
GCE + CMI-REG 0.735 (0.000) 0.036 (0.002) 0.894 (0.008) 0.022 (0.002) 0.257 (0.039) 0.050 (0.018) 0.771 (0.014) 0.062 (0.000)

Peer 0.730 (0.022) 0.030 (0.001) 0.899 (0.000) 0.029 (0.004) 0.553 (0.063) 0.110 (0.003) 0.684 (0.015) 0.069 (0.003)
Peer + SUF-REG 0.732 (0.002) 0.035 (0.005) 0.890 (0.000) 0.031 (0.003) 0.590 (0.032) 0.098 (0.001) 0.734 (0.032) 0.077 (0.000)
Peer + CMI-REG 0.686 (0.002) 0.054 (0.003) 0.901 (0.003) 0.028 (0.002) 0.551 (0.058) 0.096 (0.006) 0.630 (0.055) 0.070 (0.021)

MC 0.561 (0.019) 0.078 (0.010) 0.787 (0.004) 0.017 (0.001) 0.500 (0.000) 0.107 (0.007) 0.500 (0.000) 0.104 (0.012)
GroupPeer – – 0.898 (0.001) 0.035 (0.004) 0.664 (0.010) 0.095 (0.023) – –

Oracle 0.854 (0.001) 0.003 (0.000) 0.919 (0.002) 0.013 (0.001) 0.838 (0.011) 0.018 (0.009) 0.825 (0.013) 0.046 (0.010)

We find that naively adapting a post-hoc calibration method (multicalibration) results in generally
worse performance and limited fairness gains, especially on lsac and crime. We hypothesize this
stems from the limited effectiveness of the noise-aware label-flipping procedure used to construct
training labels, and MC’s sample-inefficient nature [67] combined with the smaller, class-imbalanced
datasets.

Pareto Fronts In Figure 2, we show the Pareto front of AUROC vs. sufficiency gap for two datasets.
We find that CMI-REG and SUF-REG Pareto-dominate the base losses in almost all cases. We also
find that these two regularizers consistently achieve the best AUROC-sufficiency trade-off when
comparing across all base losses (Appendix D.3).

On Model Selection In Appendix D.4, we examine the impact of varying the model selection
criteria. As expected, selecting using clean Brier gives the best performance and lowest sufficiency
gap. Selecting using the theoretical expression (Theorem 4.1) on the noisy validation set gives
similarly low sufficiency gaps, but compromises significantly on performance. Selecting using the
noisy Brier gives mediocre performance with slightly worse sufficiency. Across all selection criteria,
selected models with regularization terms have lower sufficiency gaps than the base model in almost
all cases.

8 Discussion

On Performance and Fairness Adding either CMI-REG or SUF-REG to seven noise-robust base
losses rarely harmed AUROC and, in a surprising number of cases, improved AUROC, by up to
25.4% in one instance. We attribute this to the fact that both regularizers bias optimization toward
decision boundaries that are locally calibrated with respect to the true labels across groups, and we
speculate such decision boundaries are also more likely to coincide with high performing solutions
with respect to the clean data.

Comparing CMI-REG and SUF-REG Even though CMI-REG minimizes an upper bound while
SUF-REG minimizes the direct sufficiency gap, we observe that CMI-REG performs better than
SUF-REG. Across eight combinations of datasets and noise types, CMI-REG achieves the lowest
sufficiency gap seven times, and SUF-REG once. We attribute this to optimization and finite sample
effects. First, SUF-REG must backpropagate through an inverted T inside of a p-norm, which may be
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Figure 2: Pareto fronts of AUROC versus Suf of CMI-REG, SUF-REG, and baseline loss for tabular
datasets with synthetic group asymmetric noise and known transition matrices. A curve towards the
bottom right of the plot is desirable as it achieves the best fairness-accuracy trade-off. We observe that
CMI-REG and SUF-REG Pareto-dominate the base loss for most losses. Pareto curves for remaining
datasets can be found in Appendix D.3.

more numerically challenging than simply backpropagating through an inverted T multiplied by the
log-likelihood, leading to abnormal gradient behavior. Second, CMI-REG consists of two convex
cross-entropy terms, which may lead to a smoother optimization landscape than the piecewise-linear
absolute error terms (when p = 1) inside SUF-REG.

9 Conclusion

In this work, we studied the problem of achieving group sufficiency under label bias. We have shown
theoretically that under certain conditions, label bias is necessary and sufficient to induce a sufficiency
gap. To address this, we introduced CMI-REG and SUF-REG, two drop-in regularizers that provably
upper bound the sufficiency gap, and in practice, consistently reduce the sufficiency gap across eight
datasets.

Limitations Our analysis rests on the class-attribute conditioned noise model (Assumption 3.1).
When noise is instead instance-dependent [36, 91, 92], the regularizers SUF-REG and CMI-REG
will become biased. Theoretically studying the effect of instance-dependent label bias is an area of
future work. Next, our method assumes knowledge (or estimation) of the transition matrices T g , and
this estimation problem is impossible in general without further information or assumptions [93, 52].
These assumptions may be violated in real-world datasets, and applying our method using an imperfect
transition matrix will result in worse performance as empirically observed. Finally, we measure
fairness with respect to a single protected attribute at a time. Studying label bias between intersections
of (potentially many) attributes is another area of future work.
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A Proof of Lemmas and Theorems

A.1 Definitions

Definition A.1 (Calibration Error). The marginal calibration error of a multiclass classifier f : X →
∆K−1 with respect to Y and a p-norm (p ≥ 1) is defined as [90, 94]:

CE(f) =

(
K∑
k=1

1

K
E[|f(X)k − E[1Y=k | f(X)k]|p]

)1/p

When K = 2 and p = 1, this is equivalent to the definition of Expected Calibration Error (ECE).

Definition A.2 (Per-Group Calibration Error). Let g denote a particular group:

CEg(f) =

(
K∑
k=1

1

K
E[|f(X)k − E[1Y=k | f(X)k, G = g] | G = g|p]

)1/p

C̃E(f) and C̃Eg(f) are defined similarly with respect to Ỹ .

A.2 Sufg(f) and Group Sufficiency

Lemma A.1. When K = 2, f is group sufficient ⇐⇒ ∀g ∈ G : Sufg(f) = 0

Proof. (=⇒). Write S := f(X) ∈ [0, 1]. Because K = 2, the prediction is completely characterised
by S: P (Y = 1 | S) = S, P (Y = 0 | S) = 1− S.
Fix any group g ∈ G and any score value s ∈ [0, 1] with Pr(S = s,G = g) > 0. Group sufficiency
gives the conditional independence

P (Y = y | S = s,G = g) = P (Y = y | S = s), y ∈ {0, 1}.

Hence

E[1Y=1 | S = s,G = g] = P (Y = 1 | S = s,G = g) = P (Y = 1 | S = s) = E[1Y=1 | S = s].

Substituting this equality into the definition of the sufficiency gap (Definition 3.2) yields Sufg(f) = 0.

(⇐=) for K = 2. Assume K = 2 and that Sufg(f) = 0 for every group g. Let s be any score
value taken by f(X) and let g ∈ G be fixed. Write pg(s) := P

(
Y = 1 | f(X) = s, G = g

)
and

p(s) := P
(
Y = 1 | f(X) = s

)
. Because Sufg(f) = 0, the absolute difference in Definition 3.2 is

zero, so pg(s) = p(s) almost surely. For binary labels, P (Y = 0 | ·) = 1− P (Y = 1 | ·), hence

P
(
Y = 0 | f(X) = s, G = g

)
= 1− pg(s) = 1− p(s) = P

(
Y = 0 | f(X) = s

)
,

so the conditional distributions of Y given f(X) = s are identical for every group. Therefore
P
(
Y = y, G = g | f(X) = s

)
= P

(
Y = y | f(X) = s

)
P (G = g | f(X) = s), i.e.

Y ⊥⊥G | f(X), establishing group sufficiency.

A.3 Bound on CE

Theorem A.2 (Lower Bound on CEg(f)). Let Ag = ((T g)⊤)−1, and sgk(X) =∑K
k=1(1k=j −A

g
kj)E[1Ỹ=k | f(X)k, G = g]. Then, under Assumption 3.1,

CEg(f) ≥

∣∣∣∣∣∣C̃Eg(f)−
(

1

K

K∑
k=1

E[|sgk(X)|p | G = g]

)1/p
∣∣∣∣∣∣
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For non-zero noise rate (e.g. (T g(0,1), T
g
(1,0)) ̸= (0, 0)), this gives that CEg(f̃∗g (X)) > 0, where f̃∗g is

the Bayes optimal classifier with respect to noisy labels. Thus, learning the best model solely on the
noisy labels will give us an uncalibrated model with respect to the true labels.

Proof. Fix a group g ∈ G and abbreviate all expectations and probabilities conditionally on G = g
(we omit the conditioning in the notation for clarity). For every k ∈ {1, . . . ,K} define

π̃k(X) := E[1Ỹ=k | f(X)k ], rk(X) := E[1Y=k | f(X)k ].

Under Assumptions 3.1 and 3.2, Bayes’ rule gives

rk(X) =

K∑
ℓ=1

(
Ag
)
kℓ
π̃ℓ(X), Ag := ((T g)⊤)−1.

Hence

f(X)k − rk(X) = f(X)k − π̃k(X) +

K∑
ℓ=1

(1k=ℓ −Agkℓ) π̃ℓ(X)︸ ︷︷ ︸
=:sgk(X)

.

By definition of sgk(X) we have the decomposition

f(X)k − rk(X) = ak(X) + sgk(X), ak(X) := f(X)k − π̃k(X).

Next, introduce theLp-norm over the product space (X, k) (conditionally on G = g):

∥v∥p :=
( 1

K

K∑
k=1

E
[
|vk(X)|p

])1/p
.

With this notation

∥a∥p = C̃Eg(f), ∥sg∥p =
( 1

K

K∑
k=1

E[ |sgk(X)|p]
)1/p

, ∥a+ sg∥p = CEg(f).

The Lp space (p ≥ 1) satisfies the Minkowski inequality:

∥a+ sg∥p ≥
∣∣∥a∥p − ∥sg∥p∣∣.

Substituting the three norms identified above yields

CEg(f) ≥
∣∣C̃Eg(f)− ∥sg∥p∣∣ =

∣∣∣∣∣C̃Eg(f)− ( 1

K

K∑
k=1

E[ |sgk(X)|p]
)1/p∣∣∣∣∣ ,

which is exactly the claimed lower bound.

A.4 Proof of Theorem 4.1

Closed-Form Decomposition of the Sufficiency Gap. Let s = f(X) ∈ ∆K−1 be the model
score, π̃g(s) = P(Ỹ = · | f(X) = s,G = g) the group-conditional noisy label posterior, and
π̃(s) = P(Ỹ = · | f(X) = s) the marginal counterpart. Let T ∈ [0, 1]K×K where Ti,j = P (Ỹ =
j | Y = i) =

∑
g∈G T

g
i,jP (G = g). Then under Assumptions 3.1 and 3.2, for any p ≥ 1,

Sufg(f) =

 1
KE


∥∥∥∥∥∥∥((T g)⊤)−1(π̃g(f(X))− π̃(f(X)))︸ ︷︷ ︸

posterior shift

+
(
((T g)⊤)−1 − (T⊤)−1

)
π̃(f(X))︸ ︷︷ ︸

noise matrix mismatch

∥∥∥∥∥∥
p

p




1/p

.

Proof. Let s = f(X) ∈ ∆K−1 and set

πg(s) = P (Y = · | s,G = g), π(s) = P (Y = · | s),
π̃g(s) = P (Ỹ = · | s,G = g), π̃(s) = P (Ỹ = · | s).
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From Definition 3.1, we have

Sufg(f)
p =

1

K
E[∥πg(s)− π(s)∥pp | G = g]. (9)

Assumption 3.1 implies

π̃g(s) = (T g)⊤πg(s) and π̃(s) = T⊤π(s) (10)

and Assumption 3.2 gives

πg(s) = ((T g)⊤)−1π̃g(s) and π(s) = (T⊤)−1π̃(s). (11)

Subtracting the two identities in (11),

πg(s)− π(s) = ((T g)⊤)−1(π̃g(s)− π̃(s)) + (((T g)⊤)−1 − (T⊤)−1)π̃(s). (12)

Substituting (12) into (9) yields

Sufg(f) =
( 1

K
E[∥((T g)⊤)−1(π̃g(s)−π̃(s))+(((T g)⊤)−1−(T⊤)−1)π̃(s)∥pp | G = g]

)1/p
. (13)

Equation (13) is exactly the closed-form decomposition stated in Theorem 4.1.

A.5 Errors in Estimation of T g

Finally, estimating T from finite samples can be difficult. Proposition A.4 bounds the true sufficiency
gap error with respect to the empirical sufficiency gap, mediated by estimating T, T g from finite
samples.

Lemma A.3 (Concentration of transition matrix estimates). Let T̂ g and T̂ be the empirical frequency-
count estimates of the true transition matrices T g and T from ng and n i.i.d. samples, respectively.
Assume each class appears at least ng/K (resp. n/K) times. Then for any δ ∈ (0, 1), with probability
at least 1− δ,

∥T g − T̂ g∥2 ≤ ηg, ∥T − T̂∥2 ≤ η,
where

ηg =

√
2K2 log(2K/δ)

ng
, η =

√
2K2 log(2K/δ)

n
.

Proof. Fix i ∈ [K] and let mi ≥ ng/K be the number of samples with Y = i. By a vector-valued
Hoeffding bound,

P(∥T̂ gi,· − T
g
i,·∥2 ≥ ε) ≤ 2 exp

(
−miε

2

2

)
≤ 2 exp

(
−ngε

2

2K

)
.

Taking a union bound over i ∈ [K] gives

P
(
max
i
∥T̂ gi,· − T

g
i,·∥2 ≥ ε

)
≤ 2K exp

(
−ngε

2

2K

)
.

Setting ε =
√

2K log(2K/δ)
ng

ensures the RHS is at most δ. Then using ∥T g− T̂ g∥2 ≤ ∥T g− T̂ g∥F ≤√
Kmaxi ∥T̂ gi,· − T

g
i,·∥2, we have

∥T g − T̂ g∥2 ≤
√
K ·

√
2K log(2K/δ)

ng
=

√
2K2 log(2K/δ)

ng
.

The same argument applies to ∥T − T̂∥2, completing the proof.
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Proposition A.4. Suppose Assumptions 3.1 and 3.2 hold. Let T̂ g and T̂ be estimates of T g and T ,
respectively, such that with probability at least 1− δ,

∥T g − T̂ g∥2 ≤ ηg and ∥T − T̂∥2 ≤ η.
Assume the estimates are well-conditioned, i.e., αgηg < 1 and αη < 1, where αg = ∥((T g)⊤)−1∥2
and α = ∥(T⊤)−1∥2. Define

Cg =
α2
g

1− αgηg
and C =

α2

1− αη
.

Then for some constantMp depending only on p (from the sufficiency gap definition), with probability
at least 1− δ,∣∣∣Sufg(f)− Ŝufg(f)

∣∣∣ ≤ (MpCgηg + Cη)+ , where (x)+ = max{0, x}.

Proof. Let E = {∥T g − T̂ g∥2 ≤ ηg, ∥T − T̂∥2 ≤ η}. By Lemma A.3, P(E) ≥ 1− δ, and we work
on this event.

Let Ag = ((T g)⊤)−1 and Bg = Ag − (T⊤)−1, and define their empirical analogues Âg =

((T̂ g)⊤)−1 and B̂g = Âg − (T̂⊤)−1. By the Neumann-series lemma, for any matrix A and perturba-
tion ∆ such that ∥A−1∥2∥∆∥2 < 1, we have

∥(A+∆)−1 −A−1∥2 ≤
∥A−1∥22∥∆∥2

1− ∥A−1∥2∥∆∥2
.

Applying this to T g and T , and using the definitions αg = ∥Ag∥2 and α = ∥(T⊤)−1∥2, we obtain

∥Âg −Ag∥2 ≤
α2
gηg

1− αgηg
= Cgηg and ∥(T̂⊤)−1 − (T⊤)−1∥2 ≤

α2η

1− αη
= Cη.

Now define the vector-valued sufficiency for group g as

zg = Ag∆π̃ + π̃Bg,

and similarly, define the empirical estimate

ẑg = Âg∆π̃ + π̃B̂g.

By triangle inequality and sub-multiplicativity of norms,

∥ẑg − zg∥p ≤ ∥Âg −Ag∥2∥∆π̃∥p + ∥π̃∥p∥B̂g −Bg∥2.
Note that ∥∆π̃∥p ≤ 2 and ∥π̃∥p ≤ 1 since both are probability distributions. Moreover, by triangle
inequality on the matrices,

∥B̂g −Bg∥2 = ∥Âg −Ag + (T⊤)−1 − (T̂⊤)−1∥2 ≤ ∥Âg −Ag∥2 + ∥(T̂⊤)−1 − (T⊤)−1∥2.
Combining the bounds above, we obtain

∥ẑg − zg∥p ≤ 2Cgηg + (Cgηg + Cη) = (2 + 1)Cgηg + Cη =MpCgηg + Cη,

for Mp = 3 (or more generally any Mp ≥ 2).

We now translate this into a bound on the sufficiency gap. By Minkowski’s inequality,

|Sufg(f)− Ŝufg(f)| ≤
(

1

K
E∥ẑg − zg∥pp

)1/p

≤ (MpCgηg + Cη)+.

This bound holds on event E , which occurs with probability at least 1 − δ. This completes the
proof.

A.6 Proof of Corollary 4.1.1

Here, we prove the contrapositive of the corollary: Under Assumptions 3.1 and 3.2, if Ỹ ⊥⊥ G | f(X)
and T g = T for all g ∈ G, then Sufg(f) = 0 for all g ∈ G.

Proof. Applying Theorem 4.1, T g = T implies that ∆T g = 0, and Ỹ ⊥⊥ G | f(X) implies
π̃g(s) = π̃(s) for all s and g, and so ∆π̃(f(X)) = 0. Thus, Sufg(f) = 0.
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A.7 Proof of Proposition 5.1

Proof. For clarity we give the proof for p = 1; the extension to p > 1 follows by replacing absolute
values with |·|p and using the generalized Pinsker inequality [95].

Fix a group g ∈ G and let Z := f(X) ∈ ∆K−1 be the (predicted) score vector. For every score value
z, define the conditional label distributions

PY |Z=z and PY |Z=z,G=g.

Because
∑K
k=1 1Y=k = 1, the L1-form of the per-group sufficiency gap (Definition 3.2 with p = 1)

can be written as

Sufg(f) =
1

K
EZ|G=g

[
∥PY |Z − PY |Z,G=g∥1

]
=

2

K
EZ|G=g

[
TV
(
PY |Z , PY |Z,G=g

)]
,

where TV(P,Q) = 1
2∥P −Q∥1 denotes total variation.

For any two discrete distributions, TV(P,Q) ≤
√

1
2DKL(P ||Q). Applying this point-wise and

Jensen’s inequality,

Sufg(f) ≤
√
2

K

√
EZ|G=g

[
DKL

(
PY |Z,G=g

∥∥PY |Z
)]
. (A)

By the chain rule for KL divergences,

I(Y ;G | Z) = EZ
[∑
g′

P (G = g′ | Z) DKL

(
PY |Z,G=g′

∥∥PY |Z
)]
. (B)

Because P (G = g | Z) ≤ 1 for every Z,

I(Y ;G | Z) ≥ P (G = g) EZ|G=g

[
DKL

(
PY |Z,G=g

∥∥PY |Z
)]
.

Plugging this equation into (A) gives

Sufg(f) ≤
√
2

K

√
I(Y ;G | Z)
P (G = g)

,

which is the first inequality.

Let pg := P (G = g), and ag := EZ|G=g

[
DKL

(
PY |Z,G=g ∥PY |Z

)]
. We have, for each group,

Sufg(f) ≤
√
2

K

√
ag .

Hence

Suf(f) =
∑
g

pg Sufg(f) ≤
√
2

K

∑
g

pg
√
ag. (S1)

Write ug :=
√
pg and vg :=

√
pg ag . Then ugvg = pg

√
ag and∑

g

pg
√
ag =

∑
g

ugvg.

By the Cauchy–Schwarz inequality,(∑
g

ugvg

)2
≤
(∑

g

u2g

)(∑
g

v2g

)
=
(∑

g

pg

)(∑
g

pg ag

)
= I(Y ;G | Z).

Taking square roots yields ∑
g

pg
√
ag ≤

√
I(Y ;G | Z). (S2)

Substituting (S2) into (S1) gives

Suf(f) ≤
√
2

K

√
I
(
Y ;G | f(X)

)
.
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A.8 Unbiasedness and Convergence of the CMI Estimator

Lemma A.5 (Unbiasedness of R(fθ)). Under the assumption that ∀xi ∈ B : hϕ(fθ(xi)) = P(Y |
fθ(xi)) and hψ(fθ(xi)) = P(Y | fθ(xi), gi), we have that

E[R(fθ)] = I(Y ;G | f(X))

Proof. Let hY (· | si) := [− log pY (1 | si), ...,− log pY (K | si)], and hỸ (· | si) similarly. Let [·]ỹi
denote taking the ỹi-th element of this K-dimensional vector.

To clarify the problem, we start with the definition of entropy:

H(Y | f(X)) = EX,Y [− log pY (Y | f(X))],

which we can estimate given a minibatch {(xi, gi, ỹi)Bi=1} by applying the (unbiased) Monte Carlo
estimator, defining si = f(xi) for convenience:

Ĥ(Y | f(X)) =
1

B

B∑
i=1

− log pY (yi | si) =
1

B

B∑
i=1

[hY (· | si)]yi .

Since we do not observe yi, we propose instead to use the backward-correction estimator shown in
Equation (4):

Ĥ ′(Y | f(X)) =
1

B

B∑
i=1

[T−1
gi hY (· | si)]ỹi .

We want to show that this estimator is unbiased, i.e. EX,G,Y,Ỹ [Ĥ ′(Y | f(X))] = H(Y | f(X)).

First, observe that

EỸ |Y=yi, G=gi

[(
T−1
gi hY (· | si)

)
Ỹ

]
=

K∑
c=1

P(Ỹ = c | Y = yi, G = gi)
[
T−1
gi hY (· | si)

]
c

=

K∑
c=1

T giyi,c
[
T−1
gi hY (· | si)

]
c

= e⊤yi Tgi T
−1
gi hY (· | si)

=
[
hY (· | si)

]
yi

= − log pY (yi | si),

(1)

which is no longer a function of gi. Similarly,

EỸ |Y,G
[
T−1
G hY (· | si)

]
= − log pY (Y | si).

Then,

EX,G,Y,Ỹ [Ĥ
′(Y | f(X))] = EX,G,Y

[
EỸ |X,G,Y [Ĥ

′(Y | f(X))]
]

= EX,G,Y
[
EỸ |G,Y [Ĥ

′(Y | f(X))]
]

(Assumption 3.1)

= EX,G,Y [− log pY (Y | f(X))] (Substituting (1))
= EX,Y [− log pY (Y | f(X))]

= H(Y | f(X)).

Thus, Ĥ ′ is an unbiased estimator of H(Y | f(X)).
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Lemma A.6 (Finite-sample convergence of the CMI estimator). Let În be the CMI estimator defined
in Equation 8, estimated with IID samples (xi, gi, ỹi)

n
i=1. Assume that ∀xi ∈ B : hϕ(fθ(xi)) =

P(Y | fθ(xi)) and hψ(fθ(xi)) = P(Y | fθ(xi), gi). Further assume that there exists ϵ ∈ (0, 1/2)
such that for all (s, y, g),

pY |S(y | s) ≥ ϵ, pG|S(g | s) ≥ ϵ, pY,G|S(y, g | s) ≥ ϵ.

Then, under Assumptions 3.1 and 3.2, we have that, with probability 1− δ,

|În − I(Y ;G | f(X))| ≤ 3
√
2 log(1/ϵ)

√
log(6/δ)

n
= O(n−1/2).

Further, combining with Proposition 5.1, we have that

Sufg(f) ≤
√

2

K
(În +O(n−1/2))1/2.

Proof. Let S = f(X) and suppose the conditional probability heads are oracle, i.e., p̂Y |S = pY |S ,
p̂G|S = pG|S , and p̂Y,G|S = pY,G|S (approximation error = 0). Define the bounded random variables

ϕY := − log p(Y | S) , ϕG := − log p(G | S) , ϕY G := − log p(Y,G | S) .

By the ε-lower bound, each ϕ· ∈ [0, log(1/ε)] almost surely. With E the population expectation and
En the empirical mean over an i.i.d. sample of size n, the plug-in estimator and the population CMI
can be written as

În = En[ϕY ] + En[ϕG]− En[ϕY G], I(Y ;G | S) = E[ϕY ] + E[ϕG]− E[ϕY G],

because H(Y | S) = E[ϕY ], H(G | S) = E[ϕG] and H(Y,G | S) = E[ϕY G].
Therefore∣∣În − I(Y ;G | S)

∣∣ ≤ ∣∣(En − E)[ϕY ]
∣∣+ ∣∣(En − E)[ϕG]

∣∣+ ∣∣(En − E)[ϕY G]
∣∣.

Each term is a deviation of the empirical mean of a bounded random variable. By Hoeffding’s
inequality, for any t > 0 and any bounded Z ∈ [0, B],

Pr
(∣∣(En − E)[Z]

∣∣ ≥ t) ≤ 2 exp

(
−2nt2

B2

)
.

Applying this with B = log(1/ε) and a union bound over the three variables {ϕY , ϕG, ϕY G}, we
obtain that with probability at least 1− δ,

∣∣În − I(Y ;G | S)
∣∣ ≤ 3 log

1

ε

√
1

2n
log

6

δ
.

B Experimental Details

B.1 Data Processing

income We use the ACS income dataset from Ding et al. [84], using data from all 50 states and
Puerto Rico for 2018. Gender is used as the protected attribute, with women being the group with
noise added. We create a 3-class classification problem from the dataset by defining class 1 to be
less than $30,000, class 2 to be between $30,000 and $50,000, and class 3 to be greater than $50,000.
This dataset is governed by the terms of use provided by the US Census Bureau.

adult We use the Adult dataset from the UCI Machine Learning repository [80]. Gender is used
as the protected attribute, with women being the group with noise added. This dataset is licensed
under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.
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crime We use the Communities and Crime dataset from the UCI Machine Learning repository [80].
Following Denis et al. [96], we create a 5-class classification problem by dividing the continuous
crime rate into 5 equally sized bins. Following Denis et al. [96], we define the binary attribute to
be whether a community is majority Black, with the non-Black group being noised. This dataset is
licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.

lsac We use the law school admissions dataset from Wightman [81], where the goal is to predict
whether someone passes the bar given their academic history. We use race as the protected attribute,
and add noise to White applicants.

grades We use the dataset from Lenders and Calders [85], where the goal is to predict whether a
high school student will pass an exam. We use the biased human labels from the ranking strategy as
observed labels, and the eight categorical features from the Kaggle version of the dataset as features.

cifar10ns We combine the CIFAR-10N dataset from Wei et al. [88], with the CIFAR-10S dataset
from Wang et al. [89]. Specifically, we use the human-derived noisy labels from CIFAR-10N, and
augment the images to create an attribute by randomly turning 5% of images belonging to the second
class to be grayscale, and the remaining classes to be 95% grayscale. The attribute is then whether
the image is grayscale or not. Note that CIFAR-10N is released under the Creative Commons
Attribution-NonCommercial 4.0 license.

civilcomments [86] We use the CivilComments dataset from the WILDS library [97], where the
goal is to classify toxicity given a string of text. We choose toxicity as the binary target, and the
presence of any identity as the protected attribute. Note that each sample in CivilComments has
been labeled by multiple annotators. For the noisy labels, we observe labels with Ber(p), where p is
the proportion of labelers who said that the sample is severely toxic. Note that severe toxicity is a
different label than the toxicity true label.

clothing1m [87] The objective to predict the type of clothing from an image scraped from the
web. The noisy label is derived from keyword scraping, while the true label is derived from human
labeling. Note that only the validation and test sets contain clean labels. To create an attribute for this
dataset, we run an MTCNN [98] from the facenet-pytorch repo to detect the presence of a face in
the image. We found that 64.8% of images in the dataset contain a face. The dataset is released for
academic use under an unknown license.

B.2 Synthetic Noise

For both synthetic noise types, we add noise to the labels for only one of the groups.

B.2.1 Group Uniform

Given noise rate η ∈ (0, 1), We noise one group with the uniform noise transition matrix:

T =


1− η η

K − 1
· · · η

K − 1
η

K − 1
1− η · · · η

K − 1
...

...
. . .

...
η

K − 1

η

K − 1
· · · 1− η


B.2.2 Group Asymmetric

Given noise rate η ∈ (0, 1), for K = 2, we noise one group with the following transition matrix:

T =

(
1 0
η 1− η

)
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For K > 2, we use the pairflip noise type from Zhu et al. [99]:

P =


1− η η 0 · · · 0

0 1− η η
. . .

...
...

. . . . . . . . . 0
0 · · · 0 1− η η
η 0 · · · 0 1− η


For both noise types, we use η = 0.75 for all datasets, except for lsac where we use η = 0.4. We
choose these noise rates as they produce ERM models with better-than-chance performance, while
having significant sufficiency gaps.

B.3 Hyperparameter Grids

For all datasets and methods, we use a random hyperparameter search with 20 iterations.

We use the following hyperparameter grids which are common across all methods:

• Batch size: 2Rand(6,11) for tabular datasets, 2Rand(4,6) for text and image datasets

• Number of steps: Rand(750, 2000) for tabular datasets, Rand(2000, 4000) for text and
image datasets.

• Learning rate: 10Unif(−5,−2)

For the tabular datasets, we use an MLP varying the following architecture hyperparameters:

• Depth: Rand(2, 5)

• Width: Rand(32, 256)

• Dropout: Unif(0, 0.5)

We use the following hyperparameter grids for specific base losses:

• GCE q: Unif (0, 1)

• ELR λ: Unif(1.0, 5.0)

• ELR β: Unif(0.5, 0.9)

• Peer loss α: Unif(0, 2)

We use the following hyperparameter grids for the MC baseline:

• α: 10Unif(−3,0)

• λ: 10Unif(−3,0)

• Number of iterations: Rand(50, 200)

We use the following hyperparameter grids for SUF-REG and CMI-REG:

• Learning rate for hϕ and hψ: 10Unif(−3,−2)

• C: Rand(1, 8)

• λ: 10Unif(−0.5,1)

• Warm up steps: Rand(20, 100)

C SUF-REG Method

In order to directly minimize Theorem 4.1, we parameterize π̃(s) by a model hϕ(fθ(xi)), and π̃g(s)
by a model hψ(fθ(xi), g), with both being linear layers operating on the logits. We then alternate
learning ψ and ϕ with learning θ, similar to CMI-REG. The algorithm is found in Algorithm 2.
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Algorithm 2: Sufficiency–Regularised Learning under Class–Attribute Label Noise

Input: Batch B = {(xi,gi, ỹi)}Bi=1 ;
Per–group transition matrices {T g ∈ [0, 1]K×K}g∈G , λ > 0, C ≥ 1;
Learning rates αf , αh > 0;
Current classifier and auxiliary heads: fθ, hϕ, hψ ;
ℓpred(zi, ỹi);
Output: Updated fθ, hϕ, hψ

1 zi ← fθ(xi) ∀i ∈ B ; // logits
2 for j = 1 to C do // update heads, freeze θ

3 ϕ← ϕ− αh∇ϕ
1

B

∑
i∈B

(
log hϕ(zi)

)̃
yi

;

4 ψ ← ψ − αh∇ψ
1

B

∑
i∈B

(
log hψ(zi, gi)

)̃
yi

;

5 Lpred =
1

B

∑
i∈B

ℓpred(zi, ỹi);

6 RB =
1

K

∑
i∈B

∣∣((T gi)⊤)−1hψ(zi, gi)− (T⊤)−1hϕ(zi)
∣∣;

7 L = Lpred + λRB
8 θ ← θ − αf ∇θL;
9 return fθ, hϕ, hψ;

D Additional Experimental Results

D.1 Varying Synthetic Noise Type

In Tables 2 and 3, we present results for group-asymmetric and group-uniform synthetic noise
respectively at the default noise levels. Across eight combinations of dataset and noise types, we find
that our regularizer achieves the lowest sufficiency gap in all cases (with CMI-REG being the best in
seven of eight cases).

Table 3: Clean test-set AUROC and sufficiency gap (Suf) of our regularizers when added to
off-the-shelf loss functions, for tabular datasets with synthetic group-uniform noise and known
transition matrices. Models are selected using the clean Brier score. The best method within each
base loss is bolded, and the best model overall is also underlined.

income adult lsac crime

AUROC ↑ Suf ↓ AUROC ↑ Suf ↓ AUROC ↑ Suf ↓ AUROC ↑ Suf ↓
CE 0.762 (0.002) 0.046 (0.000) 0.634 (0.014) 0.112 (0.003) 0.587 (0.049) 0.108 (0.009) 0.613 (0.019) 0.089 (0.001)
CE + SUF-REG 0.670 (0.000) 0.025 (0.003) 0.755 (0.050) 0.036 (0.010) 0.563 (0.008) 0.114 (0.006) 0.641 (0.013) 0.096 (0.006)
CE + CMI-REG 0.795 (0.007) 0.058 (0.004) 0.698 (0.137) 0.073 (0.018) 0.596 (0.005) 0.101 (0.008) 0.625 (0.020) 0.085 (0.010)

Forward 0.761 (0.003) 0.043 (0.001) 0.539 (0.082) 0.100 (0.013) 0.457 (0.093) 0.095 (0.004) 0.602 (0.040) 0.081 (0.018)
Forward + SUF-REG 0.677 (0.001) 0.024 (0.003) 0.848 (0.006) 0.039 (0.015) 0.500 (0.000) 0.107 (0.007) 0.639 (0.004) 0.086 (0.002)
Forward + CMI-REG 0.744 (0.021) 0.031 (0.005) 0.846 (0.009) 0.029 (0.010) 0.496 (0.006) 0.107 (0.007) 0.618 (0.010) 0.093 (0.004)

Backward 0.764 (0.000) 0.042 (0.002) 0.540 (0.081) 0.100 (0.013) 0.476 (0.106) 0.096 (0.011) 0.605 (0.040) 0.079 (0.008)
Backward + SUF-REG 0.766 (0.001) 0.048 (0.000) 0.696 (0.013) 0.045 (0.002) 0.459 (0.097) 0.092 (0.010) 0.609 (0.003) 0.074 (0.012)
Backward + CMI-REG 0.768 (0.005) 0.035 (0.001) 0.878 (0.023) 0.028 (0.008) 0.523 (0.113) 0.093 (0.013) 0.630 (0.049) 0.082 (0.010)

DMI 0.617 (0.032) 0.039 (0.013) 0.386 (0.114) 0.098 (0.010) 0.474 (0.183) 0.088 (0.002) 0.419 (0.007) 0.102 (0.003)
DMI + SUF-REG 0.617 (0.032) 0.038 (0.014) 0.707 (0.040) 0.106 (0.003) 0.477 (0.175) 0.088 (0.000) 0.444 (0.038) 0.097 (0.004)
DMI + CMI-REG 0.619 (0.033) 0.039 (0.010) 0.757 (0.042) 0.099 (0.008) 0.478 (0.178) 0.088 (0.000) 0.477 (0.057) 0.102 (0.017)

ELR 0.767 (0.001) 0.048 (0.002) 0.555 (0.110) 0.099 (0.017) 0.363 (0.265) 0.061 (0.051) 0.610 (0.035) 0.090 (0.005)
ELR + SUF-REG 0.764 (0.003) 0.045 (0.002) 0.685 (0.157) 0.079 (0.027) 0.340 (0.007) 0.096 (0.004) 0.616 (0.027) 0.092 (0.016)
ELR + CMI-REG 0.784 (0.021) 0.031 (0.014) 0.806 (0.067) 0.060 (0.019) 0.230 (0.026) 0.041 (0.003) 0.599 (0.042) 0.096 (0.005)

GCE 0.768 (0.002) 0.047 (0.004) 0.540 (0.085) 0.100 (0.013) 0.459 (0.043) 0.098 (0.003) 0.604 (0.039) 0.085 (0.014)
GCE + SUF-REG 0.722 (0.056) 0.019 (0.003) 0.701 (0.010) 0.061 (0.011) 0.582 (0.013) 0.103 (0.005) 0.637 (0.009) 0.081 (0.015)
GCE + CMI-REG 0.747 (0.007) 0.011 (0.001) 0.848 (0.044) 0.043 (0.020) 0.704 (0.000) 0.086 (0.005) 0.609 (0.015) 0.072 (0.001)

Peer 0.767 (0.000) 0.045 (0.004) 0.510 (0.003) 0.092 (0.004) 0.556 (0.066) 0.110 (0.008) 0.616 (0.001) 0.077 (0.023)
Peer + SUF-REG 0.745 (0.039) 0.024 (0.011) 0.509 (0.003) 0.092 (0.004) 0.640 (0.175) 0.082 (0.025) 0.670 (0.025) 0.061 (0.008)
Peer + CMI-REG 0.742 (0.013) 0.019 (0.002) 0.756 (0.021) 0.098 (0.003) 0.590 (0.052) 0.114 (0.011) 0.606 (0.031) 0.102 (0.005)

MC 0.805 (0.002) 0.030 (0.002) 0.861 (0.015) 0.045 (0.011) 0.500 (0.000) 0.107 (0.007) 0.508 (0.013) 0.101 (0.008)
GroupPeer – – 0.572 (0.062) 0.076 (0.004) 0.635 (0.056) 0.100 (0.006) – –

Oracle 0.854 (0.001) 0.003 (0.000) 0.919 (0.002) 0.013 (0.001) 0.838 (0.011) 0.018 (0.009) 0.825 (0.013) 0.046 (0.010)
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D.2 Real-World Noise

In Table 4, we present results for datasets with real noise. We find that in the grades dataset, CMI-
REG does show significant improvements in sufficiency gap without much decrease in performance.
However, in the other 3 datasets, the sufficiency gap is negligible when training with just cross-
entropy on noisy data. In addition, almost none of the other loss functions outperform simple
cross-entropy with significance on overall AUROC. This indicates that real-world noise is highly
non-class-conditional, and existing learning-under-label-noise methods fail as a result. Further, it
indicates that there the group attribute or noisy label have been selected when processing the datasets
in a way such that there is actually minimal label bias. Regardless, in these scenarios, we would hope
that applying our method does not have a negative effect, i.e. that it leaves AUROC unchanged while
maintaining a negligbile sufficiency gap. We observe that this is the case for all three datasets.

Table 4: Clean test-set AUROC and sufficiency gap (Suf) for four datasets with real-world label
noise. Models are selected using the clean Brier score. Within each base loss, the best value for every
metric/dataset is bolded; the overall best non-Oracle value for each metric/dataset is additionally
underlined.

grades civilcomments cifar10ns clothing1m

AUROC ↑ Suf ↓ AUROC ↑ Suf ↓ AUROC ↑ Suf ↓ AUROC ↑ Suf ↓
CE 0.681 (0.043) 0.050 (0.028) 0.929 (0.001) 0.004 (0.001) 0.984 (0.001) 0.009 (0.003) 0.961 (0.001) 0.007 (0.001)
CE + CMI-REG 0.683 (0.049) 0.047 (0.030) 0.929 (0.001) 0.005 (0.001) 0.984 (0.000) 0.007 (0.001) 0.952 (0.002) 0.007 (0.001)

Forward 0.689 (0.048) 0.055 (0.021) 0.906 (0.008) 0.010 (0.009) 0.988 (0.000) 0.003 (0.000) 0.943 (0.001) 0.009 (0.000)
Forward + CMI-REG 0.674 (0.044) 0.054 (0.014) 0.904 (0.010) 0.011 (0.008) 0.987 (0.001) 0.002 (0.000) 0.944 (0.003) 0.009 (0.002)

Backward 0.692 (0.032) 0.078 (0.002) 0.883 (0.028) 0.013 (0.011) 0.976 (0.000) 0.006 (0.000) 0.931 (0.002) 0.007 (0.000)
Backward + CMI-REG 0.688 (0.058) 0.051 (0.007) 0.920 (0.002) 0.004 (0.001) 0.976 (0.001) 0.006 (0.000) 0.931 (0.002) 0.007 (0.000)

ELR 0.667 (0.035) 0.060 (0.012) 0.928 (0.002) 0.004 (0.001) 0.978 (0.004) 0.003 (0.001) 0.949 (0.000) 0.008 (0.001)
ELR + CMI-REG 0.666 (0.040) 0.057 (0.009) 0.928 (0.000) 0.004 (0.000) 0.976 (0.002) 0.003 (0.001) 0.942 (0.000) 0.007 (0.000)

GCE 0.683 (0.026) 0.073 (0.017) 0.915 (0.001) 0.006 (0.000) 0.986 (0.001) 0.008 (0.002) 0.942 (0.001) 0.007 (0.000)
GCE + CMI-REG 0.681 (0.053) 0.048 (0.009) 0.914 (0.002) 0.009 (0.005) 0.987 (0.000) 0.004 (0.000) 0.940 (0.001) 0.007 (0.000)

Peer 0.681 (0.035) 0.067 (0.020) 0.925 (0.004) 0.005 (0.003) 0.961 (0.002) 0.004 (0.000) 0.895 (0.000) 0.009 (0.000)
Peer + CMI-REG 0.692 (0.043) 0.053 (0.018) 0.924 (0.005) 0.007 (0.004) 0.962 (0.002) 0.003 (0.000) 0.894 (0.001) 0.009 (0.000)

Oracle 0.713 (0.075) 0.050 (0.009) 0.936 (0.001) 0.004 (0.001) – – – –

D.3 Pareto Plots

To examine the trade-off between AUROC and sufficiency gap, we plot Pareto plots for these two
metrics for each dataset with synthetic noise. We present two styles of Pareto plots. First, in Figure 3,
we show each base loss in a subplot, in order to examine whether our methods consistently improve
the baseline for each individual loss. We note that this is a fairly strict criteria, as there may be
base losses that are incompatible with our loss. Regardless, we find that this occurs in most cases.
Next, in Figure 4, we aggregate all losses in a single plot, in order to show the best trade-off in the
state-of-the-art before our work (i.e. base losses only) versus the two regularizers we contribute. We
find that our regularizers advance the state-of-the-art by having either one Pareto-dominating the base
loss in all cases.
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Figure 3: Pareto fronts of AUROC versus Suf of CMI-REG, SUF-REG, and baseline loss for synthetic
group asymmetric noise and known transition matrices. A curve towards the bottom right of the
plot is desirable as it achieves the best fairness-accuracy trade-off. We observe that CMI-REG and
SUF-REG Pareto-dominate the base loss for most losses.
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Figure 4: Pareto fronts of AUROC versus Suf of CMI-REG, SUF-REG, and baseline loss for synthetic
group asymmetric noise and known transition matrices. A curve towards the bottom right of the plot
is desirable as it achieves the best fairness-accuracy trade-off.

D.4 Impact of Model Selection

In Table 5, we compare the performance of different model selection criteria. Selection criteria are:
(1) Clean Brier: We select the model with the lowest overall Brier score on the clean validation
set, which requires a validation set with clean labels. (2) Default: We use default hyperparameter
values reported in the papers for hyperparameters in ℓpred, and use λ = 1, C = 3 for SUF-REG and
CMI-REG. (3) Theory: We select the model with the smallest value from Theorem 4.1 on the noisy
validation set, which requires knowledge of the transition matrices but not any clean labels (4) Noisy
Brier: We select the model with the lowest overall Brier score on the noisy validation set.

As expected, selecting using clean Brier gives the best performance and lowest sufficiency gap.
Selecting using the theoretical expression (Theorem 4.1) on the noisy validation set gives similarly
low sufficiency gaps, but compromises significantly on performance. Selecting using the noisy Brier
gives mediocre performance with slightly worse sufficiency. Across all selection criteria, selected
models with regularization terms have lower sufficiency gaps than the base model in almost all cases.

D.5 Estimated Transition Matrix at Varying Noise Types

In Tables 6 and 7, we compare our method versus the base losses when estimated transition matrices
are used at two other synthetic noise strengths for group-uniform noise (η = 0.6 and η = 0.8
respectively), with clean Brier as the selection criteria. We find that with the estimated transition
matrix, regularizers still generally improve fairness, though the performance improvements become
limited relative to when the real transition matrix is used.

In Tables 8 and 9, we show the performance and fairness of our method versus the base losses in the
hardest setting: when using the estimated transition matrix (via Confident Learning [54]), and when
using the noisy Brier score as the selection metric. We find that even in this challenging setting where

29



Table 5: Comparison of AUROC and Suf under synthetic Group Uniform (GU) and Group Asym-
metric (GA) noise. Each entry is mean (std) across seven base losses.

AUROC Suf

Clean Brier Default Noisy Brier Theory Clean Brier Default Noisy Brier Theory

income

GU
Base 0.744 (0.054) 0.642 (0.025) 0.639 (0.023) 0.645 (0.096) 0.044 (0.005) 0.047 (0.013) 0.047 (0.009) 0.029 (0.012)
Base + SUF-REG 0.709 (0.058) 0.666 (0.019) 0.672 (0.061) 0.568 (0.092) 0.032 (0.012) 0.025 (0.006) 0.030 (0.009) 0.040 (0.013)
Base + CMI-REG 0.729 (0.060) 0.704 (0.064) 0.694 (0.036) 0.597 (0.119) 0.035 (0.011) 0.024 (0.014) 0.019 (0.008) 0.036 (0.010)

GA
Base 0.730 (0.074) 0.677 (0.057) 0.681 (0.059) 0.643 (0.101) 0.040 (0.007) 0.058 (0.020) 0.058 (0.012) 0.030 (0.009)
Base + SUF-REG 0.738 (0.076) 0.689 (0.062) 0.711 (0.045) 0.558 (0.069) 0.039 (0.012) 0.059 (0.025) 0.056 (0.013) 0.037 (0.028)
Base + CMI-REG 0.731 (0.074) 0.686 (0.061) 0.678 (0.059) 0.606 (0.107) 0.035 (0.011) 0.054 (0.023) 0.058 (0.014) 0.035 (0.015)

adult

GU
Base 0.529 (0.093) 0.619 (0.032) 0.650 (0.048) 0.640 (0.128) 0.100 (0.010) 0.109 (0.013) 0.107 (0.008) 0.097 (0.008)
Base + SUF-REG 0.700 (0.108) 0.656 (0.103) 0.530 (0.126) 0.667 (0.162) 0.065 (0.028) 0.089 (0.026) 0.095 (0.008) 0.068 (0.028)
Base + CMI-REG 0.836 (0.063) 0.640 (0.075) 0.684 (0.073) 0.706 (0.205) 0.053 (0.032) 0.095 (0.028) 0.091 (0.012) 0.067 (0.032)

GA
Base 0.893 (0.006) 0.869 (0.032) 0.893 (0.008) 0.876 (0.030) 0.026 (0.004) 0.022 (0.004) 0.026 (0.004) 0.024 (0.007)
Base + SUF-REG 0.886 (0.009) 0.876 (0.033) 0.886 (0.009) 0.802 (0.171) 0.028 (0.004) 0.025 (0.006) 0.027 (0.005) 0.019 (0.011)
Base + CMI-REG 0.892 (0.005) 0.867 (0.033) 0.891 (0.011) 0.818 (0.181) 0.023 (0.006) 0.021 (0.005) 0.025 (0.004) 0.021 (0.006)

crime

GU
Base 0.581 (0.072) 0.608 (0.062) 0.592 (0.053) 0.585 (0.072) 0.086 (0.012) 0.107 (0.016) 0.086 (0.011) 0.087 (0.011)
Base + SUF-REG 0.608 (0.074) 0.609 (0.049) 0.594 (0.086) 0.572 (0.092) 0.084 (0.015) 0.107 (0.018) 0.090 (0.019) 0.082 (0.029)
Base + CMI-REG 0.572 (0.054) 0.589 (0.062) 0.552 (0.091) 0.552 (0.094) 0.102 (0.016) 0.105 (0.016) 0.101 (0.009) 0.097 (0.009)

GA
Base 0.676 (0.125) 0.614 (0.084) 0.673 (0.129) 0.612 (0.126) 0.077 (0.017) 0.096 (0.021) 0.081 (0.014) 0.085 (0.027)
Base + SUF-REG 0.714 (0.140) 0.636 (0.124) 0.685 (0.102) 0.618 (0.119) 0.066 (0.017) 0.082 (0.027) 0.082 (0.017) 0.088 (0.024)
Base + CMI-REG 0.687 (0.135) 0.624 (0.102) 0.677 (0.110) 0.634 (0.134) 0.070 (0.018) 0.092 (0.023) 0.074 (0.021) 0.088 (0.021)

lsac

GU
Base 0.482 (0.123) 0.538 (0.038) 0.487 (0.119) 0.442 (0.113) 0.094 (0.022) 0.109 (0.007) 0.095 (0.024) 0.093 (0.009)
Base + SUF-REG 0.509 (0.120) 0.518 (0.054) 0.466 (0.099) 0.539 (0.174) 0.097 (0.014) 0.100 (0.011) 0.094 (0.022) 0.082 (0.022)
Base + CMI-REG 0.559 (0.139) 0.529 (0.043) 0.425 (0.174) 0.534 (0.167) 0.094 (0.019) 0.102 (0.008) 0.079 (0.030) 0.088 (0.013)

GA
Base 0.478 (0.116) 0.542 (0.034) 0.512 (0.088) 0.533 (0.042) 0.095 (0.021) 0.110 (0.006) 0.102 (0.010) 0.111 (0.006)
Base + SUF-REG 0.594 (0.107) 0.536 (0.070) 0.514 (0.095) 0.523 (0.054) 0.095 (0.008) 0.108 (0.007) 0.101 (0.010) 0.109 (0.012)
Base + CMI-REG 0.564 (0.165) 0.538 (0.054) 0.439 (0.164) 0.442 (0.139) 0.085 (0.028) 0.107 (0.007) 0.084 (0.033) 0.086 (0.035)

Table 6: Clean test-set AUROC and sufficiency gap (Suf) of our regularizers when added to
off-the-shelf loss functions, for tabular datasets with synthetic group–uniform noise at η = 0.6 and
real vs. estimated transition matrices. Models are selected using the clean Brier score. The best
method within each base loss is bolded; the overall best non-Oracle model for each metric/dataset is
additionally underlined.

Real Tg Estimated Tg
income adult income adult

AUROC ↑ Suf ↓ AUROC ↑ Suf ↓ AUROC ↑ Suf ↓ AUROC ↑ Suf ↓
CE 0.794 (0.000) 0.050 (0.003) 0.760 (0.001) 0.093 (0.003) 0.794 (0.000) 0.050 (0.004) 0.760 (0.001) 0.093 (0.004)
CE + Suf-Reg 0.792 (0.001) 0.054 (0.001) 0.782 (0.020) 0.020 (0.000) 0.781 (0.006) 0.054 (0.002) 0.779 (0.012) 0.043 (0.016)
CE + CMI-Reg 0.802 (0.002) 0.043 (0.003) 0.878 (0.006) 0.022 (0.001) 0.782 (0.007) 0.025 (0.003) 0.782 (0.038) 0.061 (0.005)

Forward 0.797 (0.001) 0.041 (0.001) 0.799 (0.008) 0.080 (0.002) 0.786 (0.006) 0.040 (0.002) 0.686 (0.029) 0.098 (0.008)
Forward + Suf-Reg 0.782 (0.022) 0.041 (0.001) 0.854 (0.009) 0.045 (0.018) 0.768 (0.006) 0.048 (0.003) 0.558 (0.266) 0.067 (0.001)
Forward + CMI-Reg 0.779 (0.007) 0.031 (0.003) 0.866 (0.009) 0.040 (0.015) 0.785 (0.011) 0.038 (0.005) 0.833 (0.042) 0.053 (0.037)

Backward 0.788 (0.002) 0.048 (0.001) 0.795 (0.009) 0.082 (0.003) 0.769 (0.002) 0.045 (0.001) 0.687 (0.028) 0.098 (0.008)
Backward + Suf-Reg 0.790 (0.002) 0.048 (0.000) 0.818 (0.002) 0.073 (0.004) 0.763 (0.001) 0.068 (0.000) 0.810 (0.012) 0.013 (0.001)
Backward + CMI-Reg 0.786 (0.002) 0.043 (0.001) 0.838 (0.005) 0.061 (0.004) 0.770 (0.008) 0.039 (0.000) 0.832 (0.012) 0.060 (0.005)

DMI 0.674 (0.122) 0.038 (0.001) 0.784 (0.004) 0.098 (0.002) 0.674 (0.149) 0.038 (0.001) 0.784 (0.005) 0.098 (0.002)
DMI + Suf-Reg 0.624 (0.015) 0.037 (0.012) 0.791 (0.000) 0.091 (0.005) 0.625 (0.018) 0.038 (0.011) 0.783 (0.000) 0.097 (0.005)
DMI + CMI-Reg 0.666 (0.164) 0.037 (0.003) 0.791 (0.003) 0.095 (0.003) 0.628 (0.017) 0.038 (0.009) 0.784 (0.001) 0.097 (0.005)

ELR 0.811 (0.003) 0.045 (0.002) 0.778 (0.000) 0.092 (0.005) 0.811 (0.004) 0.045 (0.002) 0.778 (0.000) 0.092 (0.006)
ELR + Suf-Reg 0.784 (0.001) 0.042 (0.001) 0.861 (0.002) 0.033 (0.009) 0.775 (0.002) 0.043 (0.001) 0.804 (0.025) 0.014 (0.006)
ELR + CMI-Reg 0.785 (0.000) 0.036 (0.001) 0.815 (0.010) 0.036 (0.000) 0.799 (0.007) 0.039 (0.001) 0.793 (0.015) 0.046 (0.014)

GCE 0.798 (0.001) 0.039 (0.000) 0.802 (0.001) 0.087 (0.002) 0.798 (0.002) 0.039 (0.000) 0.802 (0.001) 0.087 (0.003)
GCE + Suf-Reg 0.792 (0.001) 0.052 (0.000) 0.778 (0.054) 0.032 (0.008) 0.779 (0.007) 0.052 (0.001) 0.797 (0.045) 0.024 (0.001)
GCE + CMI-Reg 0.821 (0.001) 0.020 (0.004) 0.852 (0.016) 0.053 (0.006) 0.792 (0.005) 0.029 (0.005) 0.864 (0.000) 0.043 (0.002)

Peer 0.792 (0.002) 0.043 (0.001) 0.756 (0.009) 0.082 (0.008) 0.792 (0.003) 0.043 (0.001) 0.756 (0.011) 0.082 (0.010)
Peer + Suf-Reg 0.754 (0.045) 0.031 (0.002) 0.816 (0.027) 0.028 (0.007) 0.737 (0.017) 0.018 (0.008) 0.803 (0.007) 0.066 (0.008)
Peer + CMI-Reg 0.712 (0.015) 0.019 (0.000) 0.882 (0.005) 0.026 (0.000) 0.767 (0.016) 0.036 (0.011) 0.813 (0.005) 0.076 (0.008)
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Table 7: Clean test-set AUROC and sufficiency gap (Suf) of our regularizers when added to
off-the-shelf loss functions, for tabular datasets with synthetic group–uniform noise at η = 0.8 and
real vs. estimated transition matrices. Models are selected using the clean Brier score. The best
method within each base loss is bolded; the overall best non-Oracle model for each metric/dataset is
additionally underlined.

Real Tg Estimated Tg
income adult income adult

AUROC ↑ Suf ↓ AUROC ↑ Suf ↓ AUROC ↑ Suf ↓ AUROC ↑ Suf ↓
CE 0.755 (0.001) 0.043 (0.000) 0.476 (0.067) 0.090 (0.011) 0.755 (0.001) 0.043 (0.000) 0.476 (0.082) 0.090 (0.014)
CE + Suf-Reg 0.681 (0.021) 0.026 (0.011) 0.759 (0.060) 0.051 (0.008) 0.678 (0.020) 0.021 (0.007) 0.596 (0.151) 0.086 (0.005)
CE + CMI-Reg 0.767 (0.008) 0.025 (0.008) 0.831 (0.063) 0.047 (0.015) 0.669 (0.037) 0.038 (0.027) 0.622 (0.112) 0.101 (0.015)

Forward 0.753 (0.002) 0.043 (0.002) 0.473 (0.077) 0.090 (0.012) 0.756 (0.000) 0.043 (0.001) 0.469 (0.091) 0.089 (0.016)
Forward + Suf-Reg 0.710 (0.060) 0.015 (0.001) 0.845 (0.001) 0.040 (0.014) 0.639 (0.068) 0.049 (0.009) 0.361 (0.033) 0.037 (0.018)
Forward + CMI-Reg 0.759 (0.012) 0.032 (0.006) 0.889 (0.003) 0.021 (0.005) 0.598 (0.047) 0.015 (0.014) 0.500 (0.005) 0.093 (0.004)

Backward 0.755 (0.000) 0.041 (0.002) 0.472 (0.077) 0.090 (0.013) 0.684 (0.028) 0.031 (0.002) 0.469 (0.091) 0.089 (0.016)
Backward + Suf-Reg 0.765 (0.003) 0.040 (0.001) 0.680 (0.008) 0.049 (0.002) 0.750 (0.014) 0.029 (0.001) 0.407 (0.026) 0.063 (0.003)
Backward + CMI-Reg 0.756 (0.001) 0.040 (0.001) 0.791 (0.030) 0.081 (0.006) 0.653 (0.019) 0.038 (0.002) 0.545 (0.092) 0.087 (0.005)

DMI 0.649 (0.071) 0.040 (0.002) 0.411 (0.088) 0.099 (0.008) 0.649 (0.087) 0.040 (0.003) 0.411 (0.108) 0.099 (0.010)
DMI + Suf-Reg 0.585 (0.011) 0.052 (0.003) 0.631 (0.012) 0.115 (0.006) 0.589 (0.009) 0.051 (0.008) 0.423 (0.095) 0.099 (0.008)
DMI + CMI-Reg 0.649 (0.107) 0.041 (0.002) 0.411 (0.103) 0.099 (0.010) 0.567 (0.015) 0.047 (0.006) 0.443 (0.059) 0.096 (0.006)

ELR 0.755 (0.001) 0.043 (0.001) 0.476 (0.102) 0.088 (0.018) 0.755 (0.001) 0.043 (0.001) 0.476 (0.124) 0.088 (0.023)
ELR + Suf-Reg 0.757 (0.002) 0.045 (0.001) 0.658 (0.182) 0.079 (0.025) 0.662 (0.040) 0.043 (0.029) 0.597 (0.178) 0.056 (0.031)
ELR + CMI-Reg 0.759 (0.004) 0.041 (0.001) 0.726 (0.003) 0.096 (0.006) 0.671 (0.048) 0.046 (0.028) 0.545 (0.106) 0.084 (0.008)

GCE 0.753 (0.001) 0.043 (0.001) 0.472 (0.078) 0.090 (0.013) 0.753 (0.001) 0.043 (0.001) 0.472 (0.096) 0.090 (0.016)
GCE + Suf-Reg 0.756 (0.029) 0.038 (0.006) 0.759 (0.006) 0.061 (0.013) 0.640 (0.010) 0.048 (0.006) 0.394 (0.084) 0.050 (0.040)
GCE + CMI-Reg 0.759 (0.007) 0.037 (0.004) 0.892 (0.000) 0.021 (0.002) 0.661 (0.015) 0.066 (0.002) 0.569 (0.097) 0.082 (0.017)

Peer 0.755 (0.004) 0.042 (0.002) 0.720 (0.004) 0.108 (0.002) 0.755 (0.005) 0.042 (0.003) 0.500 (0.000) 0.093 (0.004)
Peer + Suf-Reg 0.695 (0.036) 0.023 (0.004) 0.771 (0.043) 0.035 (0.010) 0.642 (0.068) 0.017 (0.011) 0.500 (0.000) 0.093 (0.004)
Peer + CMI-Reg 0.699 (0.003) 0.017 (0.001) 0.858 (0.005) 0.041 (0.008) 0.640 (0.002) 0.043 (0.005) 0.500 (0.000) 0.093 (0.004)

no clearly labeled data is available, our regularizers consistently achieve lower sufficiency gaps than
the base losses, and the selected models with the lowest sufficiency gaps across losses correspond our
regularizers in six of eight combinations of datasets and noise types.

E Broader Impacts

In this work, we explored unfairness induced by label bias, and introduced regularizers so that models
stay calibrated across groups with respect to the true labels. Though we evaluate on real-world data,
we do not advocate for the blind deployment of ML models in any real-world safety critical setting
(such as health, credit, or hiring). There are a myriad of other factors that should be taken into account
before their deployment (e.g. privacy, regulation, interpretability, and socio-technical considerations).
Misuse of such models could lead to real harm.
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Table 8: Clean test-set AUROC and sufficiency gap (Suf) of our regularizers when added to
off-the-shelf loss functions, for tabular datasets with synthetic group–asymmetric noise and esti-
mated transition matrices. Models are selected using the noisy Brier score. The best method within
each base loss is bolded; the best non-Oracle model overall for each metric/dataset is additionally
underlined.

income adult lsac crime

AUROC ↑ Suf ↓ AUROC ↑ Suf ↓ AUROC ↑ Suf ↓ AUROC ↑ Suf ↓
CE 0.682 (0.001) 0.065 (0.002) 0.889 (0.001) 0.026 (0.004) 0.561 (0.047) 0.109 (0.006) 0.740 (0.023) 0.072 (0.001)
CE + SUF-REG 0.679 (0.002) 0.076 (0.006) 0.884 (0.003) 0.028 (0.001) 0.477 (0.109) 0.092 (0.007) 0.722 (0.042) 0.074 (0.021)
CE + CMI-REG 0.663 (0.003) 0.079 (0.003) 0.892 (0.000) 0.023 (0.002) 0.479 (0.021) 0.102 (0.010) 0.731 (0.013) 0.078 (0.010)

Forward 0.633 (0.003) 0.109 (0.004) 0.886 (0.001) 0.029 (0.000) 0.446 (0.065) 0.095 (0.001) 0.689 (0.057) 0.057 (0.003)
Forward + SUF-REG 0.682 (0.030) 0.043 (0.018) 0.884 (0.003) 0.028 (0.001) 0.283 (0.059) 0.060 (0.028) 0.596 (0.025) 0.072 (0.009)
Forward + CMI-REG 0.609 (0.009) 0.103 (0.007) 0.890 (0.001) 0.026 (0.002) 0.554 (0.169) 0.092 (0.019) 0.637 (0.114) 0.084 (0.002)

Backward 0.607 (0.004) 0.092 (0.006) 0.886 (0.002) 0.029 (0.001) 0.445 (0.061) 0.094 (0.002) 0.564 (0.039) 0.098 (0.013)
Backward + SUF-REG 0.612 (0.000) 0.091 (0.003) 0.886 (0.002) 0.027 (0.001) 0.506 (0.098) 0.090 (0.001) 0.526 (0.001) 0.111 (0.022)
Backward + CMI-REG 0.601 (0.005) 0.106 (0.000) 0.887 (0.002) 0.027 (0.000) 0.476 (0.093) 0.094 (0.001) 0.563 (0.073) 0.099 (0.009)

DMI 0.590 (0.094) 0.047 (0.013) 0.888 (0.001) 0.024 (0.004) 0.477 (0.138) 0.090 (0.001) 0.475 (0.027) 0.108 (0.020)
DMI + SUF-REG 0.590 (0.113) 0.046 (0.016) 0.856 (0.003) 0.017 (0.002) 0.503 (0.130) 0.090 (0.007) 0.459 (0.029) 0.101 (0.037)
DMI + CMI-REG 0.587 (0.114) 0.046 (0.017) 0.890 (0.003) 0.024 (0.006) 0.480 (0.170) 0.089 (0.001) 0.453 (0.035) 0.097 (0.034)

ELR 0.656 (0.001) 0.077 (0.003) 0.887 (0.001) 0.026 (0.001) 0.520 (0.043) 0.101 (0.011) 0.656 (0.072) 0.088 (0.002)
ELR + SUF-REG 0.677 (0.001) 0.066 (0.002) 0.886 (0.002) 0.026 (0.000) 0.349 (0.065) 0.088 (0.011) 0.505 (0.051) 0.092 (0.038)
ELR + CMI-REG 0.650 (0.003) 0.080 (0.003) 0.883 (0.001) 0.020 (0.002) 0.375 (0.051) 0.095 (0.006) 0.650 (0.094) 0.098 (0.007)

GCE 0.675 (0.005) 0.070 (0.006) 0.884 (0.001) 0.029 (0.001) 0.491 (0.051) 0.100 (0.001) 0.743 (0.025) 0.083 (0.020)
GCE + SUF-REG 0.677 (0.003) 0.078 (0.007) 0.884 (0.003) 0.027 (0.001) 0.467 (0.118) 0.089 (0.010) 0.719 (0.049) 0.075 (0.027)
GCE + CMI-REG 0.663 (0.008) 0.082 (0.007) 0.891 (0.001) 0.024 (0.004) 0.623 (0.066) 0.098 (0.000) 0.701 (0.018) 0.084 (0.004)

Peer 0.730 (0.018) 0.030 (0.000) 0.888 (0.000) 0.025 (0.001) 0.566 (0.033) 0.112 (0.005) 0.696 (0.041) 0.080 (0.001)
Peer + SUF-REG 0.644 (0.046) 0.060 (0.037) 0.883 (0.001) 0.018 (0.007) 0.280 (0.030) 0.053 (0.007) 0.498 (0.064) 0.085 (0.026)
Peer + CMI-REG 0.589 (0.002) 0.054 (0.006) 0.892 (0.001) 0.021 (0.001) 0.481 (0.097) 0.101 (0.000) 0.663 (0.061) 0.100 (0.011)

GroupPeer – – 0.896 (0.002) 0.023 (0.003) 0.659 (0.001) 0.094 (0.018) – –

Oracle 0.854 (0.001) 0.003 (0.000) 0.919 (0.002) 0.013 (0.001) 0.838 (0.011) 0.018 (0.009) 0.825 (0.013) 0.046 (0.010)

Table 9: Clean test-set AUROC and sufficiency gap (Suf) of our regularizers when added to
off-the-shelf loss functions, for tabular datasets with synthetic group–uniform noise and estimated
transition matrices. Models are selected using the noisy Brier score. The best method within each base
loss is bolded; the overall best non-Oracle model for each metric/dataset is additionally underlined.

income adult lsac crime

AUROC ↑ Suf ↓ AUROC ↑ Suf ↓ AUROC ↑ Suf ↓ AUROC ↑ Suf ↓
CE 0.630 (0.004) 0.053 (0.006) 0.634 (0.019) 0.108 (0.001) 0.565 (0.050) 0.111 (0.006) 0.609 (0.015) 0.090 (0.003)
CE + SUF-REG 0.651 (0.027) 0.042 (0.022) 0.573 (0.026) 0.109 (0.029) 0.464 (0.083) 0.093 (0.008) 0.647 (0.005) 0.090 (0.020)
CE + CMI-REG 0.681 (0.003) 0.034 (0.008) 0.593 (0.000) 0.112 (0.019) 0.494 (0.036) 0.101 (0.012) 0.650 (0.057) 0.092 (0.005)

Forward 0.764 (0.003) 0.047 (0.001) 0.656 (0.009) 0.107 (0.004) 0.456 (0.080) 0.095 (0.000) 0.609 (0.014) 0.103 (0.009)
Forward + SUF-REG 0.692 (0.005) 0.027 (0.007) 0.552 (0.352) 0.013 (0.004) 0.447 (0.131) 0.089 (0.020) 0.435 (0.037) 0.102 (0.003)
Forward + CMI-REG 0.649 (0.019) 0.034 (0.007) 0.592 (0.010) 0.095 (0.011) 0.453 (0.140) 0.087 (0.014) 0.655 (0.068) 0.084 (0.013)

Backward 0.747 (0.003) 0.048 (0.001) 0.669 (0.008) 0.106 (0.004) 0.454 (0.074) 0.096 (0.001) 0.531 (0.084) 0.094 (0.009)
Backward + SUF-REG 0.761 (0.006) 0.047 (0.002) 0.705 (0.014) 0.054 (0.013) 0.471 (0.140) 0.085 (0.018) 0.460 (0.003) 0.091 (0.009)
Backward + CMI-REG 0.659 (0.008) 0.041 (0.007) 0.530 (0.002) 0.096 (0.004) 0.485 (0.100) 0.095 (0.002) 0.538 (0.094) 0.089 (0.001)

DMI 0.660 (0.062) 0.034 (0.009) 0.641 (0.065) 0.077 (0.020) 0.478 (0.144) 0.088 (0.000) 0.489 (0.043) 0.109 (0.016)
DMI + SUF-REG 0.643 (0.090) 0.051 (0.003) 0.573 (0.026) 0.078 (0.020) 0.472 (0.171) 0.089 (0.002) 0.634 (0.087) 0.081 (0.023)
DMI + CMI-REG 0.642 (0.042) 0.025 (0.007) 0.604 (0.020) 0.107 (0.004) 0.482 (0.177) 0.088 (0.001) 0.488 (0.054) 0.110 (0.017)

ELR 0.630 (0.001) 0.056 (0.002) 0.632 (0.010) 0.112 (0.005) 0.523 (0.042) 0.101 (0.011) 0.608 (0.027) 0.088 (0.005)
ELR + SUF-REG 0.642 (0.012) 0.043 (0.013) 0.290 (0.026) 0.029 (0.015) 0.330 (0.077) 0.083 (0.013) 0.459 (0.049) 0.108 (0.007)
ELR + CMI-REG 0.694 (0.001) 0.029 (0.008) 0.405 (0.002) 0.066 (0.002) 0.375 (0.052) 0.094 (0.007) 0.645 (0.065) 0.096 (0.004)

GCE 0.646 (0.004) 0.052 (0.005) 0.629 (0.004) 0.112 (0.007) 0.488 (0.062) 0.097 (0.000) 0.606 (0.016) 0.090 (0.007)
GCE + SUF-REG 0.683 (0.046) 0.026 (0.020) 0.541 (0.028) 0.124 (0.019) 0.459 (0.086) 0.092 (0.008) 0.647 (0.006) 0.086 (0.001)
GCE + CMI-REG 0.637 (0.026) 0.043 (0.026) 0.607 (0.000) 0.101 (0.009) 0.614 (0.029) 0.096 (0.002) 0.651 (0.068) 0.093 (0.004)

Peer 0.767 (0.000) 0.045 (0.003) 0.640 (0.020) 0.107 (0.001) 0.573 (0.040) 0.110 (0.007) 0.618 (0.028) 0.085 (0.012)
Peer + SUF-REG 0.581 (0.028) 0.042 (0.014) 0.559 (0.282) 0.034 (0.025) 0.389 (0.100) 0.095 (0.026) 0.501 (0.074) 0.108 (0.010)
Peer + CMI-REG 0.654 (0.007) 0.042 (0.009) 0.513 (0.011) 0.092 (0.003) 0.487 (0.097) 0.099 (0.003) 0.657 (0.064) 0.096 (0.008)

GroupPeer – – 0.287 (0.095) 0.088 (0.003) 0.646 (0.007) 0.098 (0.024) – –

Oracle 0.854 (0.001) 0.003 (0.000) 0.919 (0.002) 0.013 (0.001) 0.838 (0.011) 0.018 (0.009) 0.825 (0.013) 0.046 (0.010)
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have stated our contributions in the introduction, and we these contributions
have been adequately justified by the theoretical analyses and experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in the Discussion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: All assumptions are stated prior to the theoretical results, and all proofs are
provided in Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe our experimental setup in the Experiments section, and provide
all additional details needed to reproduce our experimental results in Appendix B. Our code
is available at https://github.com/MLforHealth/sufficiency_label_bias.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided the code, including instructions to download the data, at
https://github.com/MLforHealth/sufficiency_label_bias.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe our experimental setup in the Experiments section, and provide
all additional details needed to reproduce our experimental results in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars as one standard deviation over 3 random seeds, which
affects the dataset split, model initialization, and random noise for synthetic noise. See the
Experiments section for details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Appendix B.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research follows the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Appendix E.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks as we use publicly available datasets, and only
train small classification models which do not have the potential for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper which produced the datasets have been cited in the main paper, and
licenses and copyright information are provided in Appendix B.1.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our code is released on Github under the MIT license. There are no assets
introduced otherwise.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not require IRB approval as we do not work with human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our proposed method does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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