
Published as a conference paper at ICLR 2021

LEARNING TASK DECOMPOSITION WITH ORDERED
MEMORY POLICY NETWORK

Yuchen Lu & Yikang Shen
University of Montreal, Mila
Montreal, Canada

Siyuan Zhou
Peking University
Beijing, China

Aaron Courville
University of Montreal, Mila, CIFAR
Montreal, Canada

Joshua B. Tenenbaum
MIT BCS, CBMM, CSAIL
Cambridge, United States

Chuang Gan
MIT-IBM Watson AI Lab
Cambridge, United States

ABSTRACT

Many complex real-world tasks are composed of several levels of sub-tasks. Hu-
mans leverage these hierarchical structures to accelerate the learning process and
achieve better generalization. In this work, we study the inductive bias and pro-
pose Ordered Memory Policy Network (OMPN) to discover subtask hierarchy by
learning from demonstration. The discovered subtask hierarchy could be used
to perform task decomposition, recovering the subtask boundaries in an unstruc-
tured demonstration. Experiments on Craft and Dial demonstrate that our model
can achieve higher task decomposition performance under both unsupervised and
weakly supervised settings, comparing with strong baselines. OMPN can also be
directly applied to partially observable environments and still achieve higher task
decomposition performance. Our visualization further confirms that the subtask
hierarchy can emerge in our model 1.

1 INTRODUCTION

Learning from Demonstration (LfD) is a popular paradigm for policy learning and has served as a
warm-up stage in many successful reinforcement learning applications (Vinyals et al., 2019; Silver
et al., 2016). However, beyond simply imitating the experts’ behaviors, an intelligent agent’s crucial
capability is to decompose an expert’s behavior into a set of useful skills and discover sub-tasks.
The discovered structure from expert demonstrations could be leveraged to re-use previously learned
skills in the face of new environments (Sutton et al., 1999; Gupta et al., 2019; Andreas et al., 2017).
Since manually labeling sub-task boundaries for each demonstration video is extremely expensive
and difficult to scale up, it is essential to learn task decomposition unsupervisedly, where the only
supervision signal comes from the demonstration itself.

This question of discovering a meaningful segmentation of the demonstration trajectory is the key
focus of Hierarchical Imitation Learning (Kipf et al., 2019; Shiarlis et al., 2018; Fox et al., 2017;
Achiam et al., 2018) These works can be summarized as finding the optimal behavior hierarchy so
that the behavior can be better predicted (Solway et al., 2014). They usually model the sub-task
structure as latent variables, and the subtask identifications are extracted from a learnt posterior. In
this paper, we propose a novel perspective to solve this challenge: could we design a smarter neural
network architecture, so that the sub-task structure can emerge during imitation learning? To be
specific, we want to design a recurrent policy network such that examining the memory trace at each
time step could reveal the underlying subtask structure.

Drawing inspiration from the Hierarchical Abstract Machine (Parr & Russell, 1998), we propose that
each subtask can be considered as a finite state machine. A hierarchy of sub-tasks can be represented
as different slots inside the memory bank. At each time step, a subtask can be internally updated with
the new information, call the next-level subtask, or return the control to the previous level subtask.
If our designed architecture maintains a hierarchy of sub-tasks operating in the described manner,

1Project page: https://ordered-memory-rl.github.io/

1

https://ordered-memory-rl.github.io/


Published as a conference paper at ICLR 2021

(a)

(b)

Figure 1: (a) A simple grid world with the task “make bridge”, which can be decomposed into
multi-level subtask structure. (b) The representation of subtask structure within the agent memory
with horizontal updateandvertical expansionat each time step. The black arrow indicates a copy
operation. Theexpansion positionis the memory slot where the vertical expansion starts and is
marked blue.

then subtask identi�cation can be as easy as monitoring when the low-level subtask returns control
to the higher-level subtask, or when the high-level subtask expands to the new lower-level subtask.

We give an illustrative grid-world example in Figure 1. In this example, there are different in-
gredients like grass for the agent to pickup. There is also a factory where the agent can use the
ingredients. Suppose the agent wants to complete the task of building a bridge. This task can be
decomposed into a tree-like, multi-level structure, where the root task is divided intoGetMaterial
andBuildBridge . GetMaterial can be further divided intoGetGrass andGetWood. We pro-
vide a sketch on how this subtask structure should be represented inside the agent's memory during
each time step. The memory would be divided into different levels, corresponding to the subtask
structure. Whent = 1 , the model just starts with the root task,MakeBridge , and vertically expands
into GetMaterial , which further vertically expands intoGetWood. Thevertical expansioncorre-
sponds to planning or calling the next level subtasks. The action is produced from the lowest-level
memory. The intermediateGetMaterial is copied fort < 3, but horizontally updated att = 3 ,
whenGetWoodis �nished. Thehorizontal updatecan be thought of as an internal update for each
subtask, and the updatedGetMaterial vertically expands into a different childGetGrass. The
root task is always copied untilGetMaterial is �nished att = 4 . As a result,MakeBridge goes
through one horizontal update att = 5 and then expands intoBuildBridge andGoFactory. We
can identify the subtask boundaries from this representation by looking at the change ofexpansion
position, which is de�ned to be the memory slot where vertical expansion happens. E.g., fromt = 2
to t = 3 , the expansion position goes from the lowest level to the middle level, suggesting the com-
pletion of the low-level subtask. Fromt = 4 to t = 5 , the expansion position goes from the lowest
level to the highest level, suggesting the completion of both low-level and mid-level subtasks.

Driven by this intuition, we propose theOrdered Memory Policy Network(OMPN) to support the
subtask hierarchy described in Figure 1. We propose to use a bottom-up recurrence and a top-
down recurrence to implementhorizontal updateandvertical expansionrespectively. Our proposed
memory-update rule further maintains a hierarchy among memories such that the higher-level mem-
ory can store longer-term information. At each time step, the model would softly decide the ex-
pansion position from which to perform vertical expansion based on a differentiable stick-breaking
process, so that our model can be trained end-to-end. We demonstrate the effectiveness of our ap-
proach with multi-task behavior cloning. We perform experiments on both grid-world as well as
more challenging robotic tasks. We show that OMPN is able to perform task decomposition in both
an unsupervised and weakly supervised manner, comparing favorably with strong baselines. Mean-
while, OMPN still maintains the similar, if not better, performance on behavior cloning in terms of
sample complexity and returns. Our ablation study shows the contribution of each component in our
architecture. Our visualization further con�rms that the subtask hierarchy emerges in our model's
expanding positions.

2 ORDEREDMEMORY POLICY NETWORK

We describe our policy architecture given the intuition described above. Our model is a recurrent
policy networkp(at jst ; M t ) whereM 2 R n � m is a block ofn memory while each memory has

2




	Introduction
	Ordered Memory Policy Network
	Ordered Memory Module
	Unsupervised Task Decomposition with Behavior Cloning

	Related Work
	Experiment
	Setup and Metrics
	Task Decomposition Results
	Qualitative Analysis
	Ablation Study
	Behavior Cloning

	Conclusion
	OMPN Architecture Details
	Thresholding Algorithm
	Task Decomposition Metric
	F1 Scores with Tolerance
	Task Alignment Accuracy

	baseline
	compILE Details
	TACO Details

	Demonstration Generation
	Craft
	Dial
	Hyperparameter Analysis
	Qualitative Results on Kitchen

