
Published as a conference paper at ICLR 2023

MORE CENTRALIZED TRAINING, STILL DECENTRAL-
IZED EXECUTION: MULTI-AGENT CONDITIONAL POL-
ICY FACTORIZATION

Jiangxing Wang
School of Computer Science
Peking University
jiangxiw@stu.pku.edu.cn

Deheng Ye
Tencent Inc.
dericye@tencent.com

Zongqing Lu†

School of Computer Science
Peking University
zongqing.lu@pku.edu.cn

ABSTRACT

In cooperative multi-agent reinforcement learning (MARL), combining value
decomposition with actor-critic enables agents to learn stochastic policies, which
are more suitable for the partially observable environment. Given the goal of
learning local policies that enable decentralized execution, agents are commonly
assumed to be independent of each other, even in centralized training. However,
such an assumption may prohibit agents from learning the optimal joint policy.
To address this problem, we explicitly take the dependency among agents into
centralized training. Although this leads to the optimal joint policy, it may not be
factorized for decentralized execution. Nevertheless, we theoretically show that
from such a joint policy, we can always derive another joint policy that achieves
the same optimality but can be factorized for decentralized execution. To this end,
we propose multi-agent conditional policy factorization (MACPF), which takes
more centralized training but still enables decentralized execution. We empirically
verify MACPF in various cooperative MARL tasks and demonstrate that MACPF
achieves better performance or faster convergence than baselines. Our code is
available at https://github.com/PKU-RL/FOP-DMAC-MACPF.

1 INTRODUCTION

The cooperative multi-agent reinforcement learning (MARL) problem has attracted the attention
of many researchers as it is a well-abstracted model for many real-world problems, such as traffic
signal control (Wang et al., 2021a) and autonomous warehouse (Zhou et al., 2021). In a cooperative
MARL problem, we aim to train a group of agents that can cooperate to achieve a common goal.
Such a common goal is often defined by a global reward function that is shared among all agents.
If centralized control is allowed, such a problem can be viewed as a single-agent reinforcement
learning problem with an enormous action space. Based on this intuition, Kraemer & Banerjee (2016)
proposed the centralized training with decentralized execution (CTDE) framework to overcome the
non-stationarity of MARL. In the CTDE framework, a centralized value function is learned to guide
the update of each agent’s local policy, which enables decentralized execution.

With a centralized value function, there are different ways to guide the learning of the local policy
of each agent. One line of research, called value decomposition (Sunehag et al., 2018), obtains
local policy by factorizing this centralized value function into the utility function of each agent.
In order to ensure that the update of local policies can indeed bring the improvement of joint
policy, Individual-Global-Max (IGM) is introduced to guarantee the consistency between joint and
local policies. Based on the different interpretations of IGM, various MARL algorithms have been
proposed, such as VDN (Sunehag et al., 2018), QMIX (Rashid et al., 2018), QTRAN (Son et al.,
2019), and QPLEX (Wang et al., 2020a). IGM only specifies the relationship between optimal local
actions and optimal joint action, which is often used to learn deterministic policies. In order to
learn stochastic policies, which are more suitable for the partially observable environment, recent
studies (Su et al., 2021; Wang et al., 2020b; Zhang et al., 2021; Su & Lu, 2022) combine the idea of

†Corresponding Author

1

https://github.com/PKU-RL/FOP-DMAC-MACPF

Published as a conference paper at ICLR 2023

value decomposition with actor-critic. While most of these decomposed actor-critic methods do not
guarantee optimality, FOP (Zhang et al., 2021) introduces Individual-Global-Optimal (IGO) for the
optimal joint policy learning in terms of maximum-entropy objective and derives the corresponding
way of value decomposition. It is proved that factorized local policies of FOP converge to the global
optimum, given that IGO is satisfied.

The essence of IGO is for all agents to be independent of each other during both training and
execution. However, we find this requirement dramatically reduces the expressiveness of the joint
policy, making the learning algorithm fail to converge to the global optimal joint policy, even in some
simple scenarios. As centralized training is allowed, a natural way to address this issue is to factorize
the joint policy based on the chain rule (Schum, 2001), such that the dependency among agents’
policies is explicitly considered, and the full expressiveness of the joint policy can be achieved. By
incorporating such a joint policy factorization into the soft policy iteration (Haarnoja et al., 2018),
we can obtain an optimal joint policy without the IGO condition. Though optimal, a joint policy
induced by such a learning method may not be decomposed into independent local policies, thus
decentralized execution is not fulfilled, which is the limitation of many previous works that consider
dependency among agents (Bertsekas, 2019; Fu et al., 2022).

To fulfill decentralized execution, we first theoretically show that for such a dependent joint policy,
there always exists another independent joint policy that achieves the same expected return but can
be decomposed into independent local policies. To learn the optimal joint policy while preserving
decentralized execution, we propose multi-agent conditional policy factorization (MACPF), where
we represent the dependent local policy by combining an independent local policy and a dependency
policy correction. The dependent local policies factorize the optimal joint policy, while the indepen-
dent local policies constitute their independent counterpart that enables decentralized execution. We
evaluate MACPF in several tasks, including matrix game (Rashid et al., 2020), SMAC (Samvelyan
et al., 2019), and MPE (Lowe et al., 2017). Empirically, MACPF consistently outperforms its base
method, i.e., FOP, and achieves better performance or faster convergence than other baselines. By
ablation, we verify that the independent local policies can indeed obtain the same level of performance
as the dependent local policies.

2 PRELIMINARIES

2.1 MULTI-AGENT MARKOV DECISION PROCESS

In cooperative MARL, we often formulate the problem as a multi-agent Markov decision process
(MDP) (Boutilier, 1996). A multi-agent MDP can be defined by a tuple ⟨I, S,A, P, r, γ,N⟩. N is the
number of agents, I = {1, 2 . . . , N} is the set of agents, S is the set of states, andA = A1×· · ·×AN

is the joint action space, where Ai is the individual action space for each agent i. For the rigorousness
of proof, we assume full observability such that at each state s ∈ S, each agent i receives state s,
chooses an action ai ∈ Ai, and all actions form a joint action a ∈ A. The state transitions to the
next state s′ upon a according to the transition function P (s′|s,a) : S × A × S → [0, 1], and all
agents receive a shared reward r(s,a) : S ×A→ R. The objective is to learn a local policy πi(ai| s)
for each agent such that they can cooperate to maximize the expected cumulative discounted return,
E[
∑∞

t=0 γ
trt], where γ ∈ [0, 1) is the discount factor. In CTDE, from a centralized perspective, a

group of local policies can be viewed as a joint policy πjt(a| s). For this joint policy, we can define
the joint state-action value function Qjt(st,at) = Est+1:∞,at+1:∞ [

∑∞
k=0 γ

trt+k| st,at]. Note that
although we assume full observability for the rigorousness of proof, we use the trajectory of each
agent τi ∈ Ti : (Y ×Ai)

∗ to replace state s as its policy input to settle the partial observability in
practice, where Y is the observation space.

2.2 FOP

FOP (Zhang et al., 2021) is one of the state-of-the-art CTDE methods for cooperative MARL, which
extends value decomposition to learning stochastic policy. In FOP, the joint policy is decomposed
into independent local policies based on Individual-Global-Optimal (IGO), which can be stated as:

πjt(a| s) =
N∏
i=1

πi(ai| s). (1)

2

Published as a conference paper at ICLR 2023

As all policies are learned by maximum-entropy RL (Haarnoja et al., 2018), i.e., πi(ai| s) =
exp(1

αi
(Qi(s, ai)− Vi(s))), IGO immediately implies a specific way of value decomposition:

Qjt(s,a) =

N∑
i=1

α

αi
[Qi(s, ai)− Vi(s)] + Vjt(s). (2)

Unlike IGM, which is used to learn deterministic local policies and naturally avoids the dependency
of agents, IGO assumes agents are independent of each other in both training and execution. Although
IGO advances FOP to learn stochastic policies, such an assumption can be problematic even in some
simple scenarios and prevent learning the optimal joint policy.

2.3 PROBLEMATIC IGO

6 4 2 0 2 4 6
6

4

2

0

2

4

6

2.9602.960

2.9602.960

2.
96

0

2.631

2.631

2.631

2.631

2.631

2.302

2.302
2.302

2.302

1.973

1.9
73

1.973

1.973

1.645

1.645

1.645

1.645

1.316
1.316

1.3
16

1.316

0.987

0.987

0.987

0.987

0.658

0.658

0.658

0.658

0.3
29

0.329

0.329

0.3
29

(a) centralized control

6 4 2 0 2 4 6
6

4

2

0

2

4

6

2.9602.960

2.9602.960

2.
96

0

2.631

2.631

2.631

2.631

2.631

2.302

2.302
2.302

2.302

1.973

1.9
73

1.973

1.973

1.645

1.645

1.645

1.645

1.316
1.316

1.3
16

1.316

0.987

0.987

0.987

0.987

0.658

0.658

0.658

0.658

0.3
29

0.329

0.329

0.3
29

(b) FOP

6 4 2 0 2 4 6
6

4

2

0

2

4

6

2.9602.960

2.9602.960

2.
96

0

2.631

2.631

2.631

2.631

2.631

2.302

2.302
2.302

2.302

1.973

1.9
73

1.973

1.973

1.645

1.645

1.645

1.645

1.316
1.316

1.3
16

1.316

0.987

0.987

0.987

0.987

0.658

0.658

0.658

0.658

0.3
29

0.329

0.329

0.3
29

(c) dependency

Figure 1: Sampled trajectories from the learned policy: (a) centralized control; (b) FOP, where IGO is assumed;
(c) considering dependency during training.

As stated in soft Q-learning (Haarnoja et al., 2018), one goal of maximum-entropy RL is to learn an
optimal maximum-entropy policy that captures multiple modes of near-optimal behavior. Since FOP
can be seen as the extension of maximum-entropy RL in multi-agent settings, it is natural to assume
that FOP can also learn a multi-modal joint policy in multi-agent settings. However, as shown in the
following example, such a desired property of maximum-entropy RL is not inherited in FOP due to
the IGO condition.

We extend the single-agent multi-goal environment used in soft Q-learning (Haarnoja et al., 2018) to
its multi-agent variant to illustrate the problem of IGO. In this environment, we want to control a 2D
point mass to reach one of four symmetrically placed goals, as illustrated in Figure 1. The reward
is defined as a mixture of Gaussians, with means placed at the goal positions. Unlike the original
environment, this 2D point mass is now jointly controlled by two agents, and it can only move when
these two agents select the same moving direction; otherwise, it will stay where it is. As shown
in Figure 1a, when centralized control is allowed, multi-agent training degenerates to single-agent
training, and the desired multi-modal policy can be learned. However, as shown in Figure 1b, FOP
struggles to learn any meaningful joint policy for the multi-agent setting. One possible explanation
is that, since IGO is assumed in FOP, the local policy of each agent is always independent of each
other during training, and the expressiveness of joint policy is dramatically reduced. Therefore,
when two agents have to coordinate to make decisions, they may fail to reach an agreement and
eventually behave in a less meaningful way due to the limited expressiveness of joint policy. To
solve this problem, we propose to consider dependency among agents in MARL algorithms to enrich
the expressiveness of joint policy. As shown in Figure 1c, the learned joint policy can once again
capture multiple modes of near-optimal behavior when the dependency is considered. Details of this
algorithm will be discussed in the next section.

3 METHOD

To overcome the aforementioned problem of IGO, we propose multi-agent conditional policy
factorization (MACPF). In MACPF, we introduce dependency among agents during centralized
training to ensure the optimality of the joint policy without the need for IGO. This joint policy
consists of dependent local policies, which take the actions of other agents as input, and we use this
joint policy as the behavior policy to interact with the environment during training. In order to fulfill

3

Published as a conference paper at ICLR 2023

decentralized execution, independent local policies are obtained from these dependent local policies
such that the joint policy resulting from these independent local policies is equivalent to the behavior
policy in terms of expected return.

3.1 CONDITIONAL FACTORIZED SOFT POLICY ITERATION

Like FOP, we also use maximum-entropy RL (Ziebart, 2010) to bridge policy and state-action value
function for each agent. Additionally, it will also be used to introduce dependency among agents. For
each local policy, we take the actions of other agents as its input and define it as follows:

πi(ai| s, a<i) = exp(
1

αi
(Qi(s, a<i, ai)− Vi(s, a<i))) (3)

Vi(s, a<i) := αi

∑
ai

exp(
1

αi
Qi(s, a<i, ai)), (4)

where a<i represents the joint action of all agents whose indices are smaller than agent i. We then can
get the relationship between the joint policy and local policies based on the chain rule factorization of
joint probability:

πjt(a| s) =
N∏
i=1

πi(ai| s, a<i). (5)

The full expressiveness of the joint policy can be guaranteed by (5) as it is no longer restricted by
the IGO condition. From (5), together with πjt(a| s) = exp(1

α (Qjt(s,a)− Vjt(s))), we have the Qjt

factorization as:

Qjt(s,a) =

N∑
i=1

α

αi
[Qi(s, a<i, ai)− Vi(s, a<i)] + Vjt(s). (6)

Note that in maximum-entropy RL, we can easily compute V by Q. From (6), we introduce
conditional factorized soft policy iteration and prove its convergence to the optimal joint policy in the
following theorem.

Theorem 1 (Conditional Factorized Soft Policy Iteration). For any joint policy πjt, if we repeatedly
apply joint soft policy evaluation and individual conditional soft policy improvement from πi ∈ Πi.
Then the joint policy πjt(a| s) =

∏N
i=1 πi(ai| s, a<i) converges to π∗

jt, such that Q
π∗
jt

jt (s,a) ≥
Q

πjt

jt (s,a) for all πjt, assuming |A| <∞.

Proof. See Appendix A.

3.2 Independent JOINT POLICY

Using the conditional factorized soft policy iteration, we are able to get the optimal joint policy.
However, such a joint policy requires dependent local policies, which are incapable of decentralized
execution. To fulfill decentralized execution, we have to obtain independent local policies.

a1

a2
A B

A 0.5 0

B 0 0.5

(a) dependent joint policy πdep
jt

a1

a2
A B

A 1 0

B 0 0

(b) independent joint policy πind
jt

a1

a2
A B

A −0.5 0

B 0 0.5

(c) dependency correction bdepjt

Figure 2: A dependent joint policy and its independent counterpart

Consider the joint policy shown in Figure 2a. This joint policy, called dependent joint policy πdep
jt ,

involves dependency among agents and thus cannot be factorized into two independent local policies.
However, one may notice that this policy can be decomposed as the combination of an independent
joint policy πind

jt that involves no dependency among agents, as shown in Figure 2b, and a dependency

4

Published as a conference paper at ICLR 2023

policy correction bdepjt , as shown in Figure 2c. More importantly, since we use the Boltzmann
distribution of joint Q-values as the joint policy, the equivalence of probabilities of two joint actions
also indicates that their joint Q-values are the same,

πdep
jt (A,A) = πdep

jt (B,B)⇒ Qjt(A,A) = Qjt(B,B). (7)

Therefore, in Table 2, the expected return of the independent joint policy πind
jt will be the same as the

dependent joint policy πdep
jt ,

Eπdep
jt

[Qjt] = πdep
jt (A,A) ∗Qjt(A,A) + πdep

jt (B,B) ∗Qjt(B,B) (8)

= πind
jt (A,A) ∗Qjt(A,A) = Eπind

jt
[Qjt]. (9)

Formally, we have the following theorem.

Theorem 2. For any dependent joint policy πdep
jt that involves dependency among agents, there

exists an independent joint policy πind
jt that does not involve dependency among agents, such that

Vπdep
jt

(s) = Vπind
jt

(s) for any state s ∈ S.

Proof. See Appendix B.

Note that the independent counterpart of the optimal dependent joint policy may not be directly
learned by FOP, as shown in Figure 1. Therefore, we need to explicitly learn the optimal dependent
joint policy to obtain its independent counterpart.

3.3 MACPF FRAMEWORK

With Theorem 1 and 2, we are ready to present the learning framework of MACPF, as illustrated in
Figure 3, for simultaneously learning the dependent joint policy and its independent counterpart.

In MACPF, each agent i has an independent local policy πind
i (ai| s; θi) parameterized by θi and a

dependency policy correction bdepi (ai| s, a<i;ϕi) parameterized by ϕi, which together constitute a
dependent local policy πdep

i (ai| s, a<i)
1. So, we have:

πdep
i (ai| s, a<i) = πind

i (ai| s; θi) + bdepi (ai| s, a<i;ϕi) (10)

πdep
jt (s,a) =

N∏
i=1

πdep
i (ai| s, a<i) (11)

πind
jt (s,a) =

N∏
i=1

πind
i (ai| s; θi). (12)

Similarly, each agent i also has an independent local critic Qind
i (ai| s;ψi) parameterized by ψi and a

dependency critic correction cdepi (ai| s, a<i;ωi) parameterized by ωi, which together constitute a de-
pendent local critic Qdep

i (ai| s, a<i). Given all Qind
i and Qdep

i , we use a mixer network, Mixer(·; Θ)

parameterized by Θ, to get Qdep
jt and Qind

jt as follows,

Qdep
i (ai| s, a<i) = Qind

i (ai| s;ψi) + cdepi (ai| s, a<i;ωi) (13)

Qdep
jt (s,a) = Mixer([Qdep

i (ai| s, a<i)]
N
i=1, s;Θ) (14)

Qind
jt (s,a) = Mixer([Qind

i (ai| s;ψi)]
N
i=1, s;Θ). (15)

Qdep
i , Qind

i , and Mixer are learned by minimizing the TD error,

Ldep([ωi]
N
i=1,Θ) = ED

[(
Qdep

jt (s,a)−
(
r + γ

(
Q̂dep

jt (s′,a′)− α log πdep
jt (a′| s′)

)))2
]

(16)

Lind([ψi]
N
i=1,Θ) = ED

[(
Qind

jt (s,a)−
(
r + γ

(
Q̂ind

jt (s′,a′)− α log πind
jt (a′| s′)

)))2
]
, (17)

1The logit of πind
i (ai| s; θi) is first added with bdepi (ai| s, a<i;ϕi) to get the logit of πdep

i (ai| s, a<i), then
softmax is used over this combined logit to get πdep

i (ai| s, a<i).

5

Published as a conference paper at ICLR 2023

MLP

GRU

MLP

MLP

Detach

Softmax Softmax

+

Independent
Critic/Policy

Dependent
Critic/PolicyEnvironment

. . .

W2

W1

. . .

+

+
Mixer Network

. . .
Critic 1 Critic n

Agent 1 Agent n

. . .

. . .

MLP

GRU

MLP

MLP

Detach +

Figure 3: Learning framework of MACPF, where each agent i has four modules: an independent local policy
πind
i (·; θi), a dependency policy correction bdepi (·;ϕi), an independent local criticQind

i (·;ψi), and a dependency
critic correction cdepi (·, ωi).

where D is the replay buffer collected by πdep
jt , Q̂ is the target network, and a′ is sampled from

the current πdep
jt and πind

jt , respectively. To ensure the independent joint policy πind
jt has the same

performance as πdep
jt , the same batch sampled from D is used to compute both Ldep and Lind. It is

worth noting that the gradient of Ldep only updates [cdepi]Ni=1, while the gradient of Lind only updates
[Qind

i]Ni=1. Then, πdep
i and πind

i are updated by minimizing KL-divergence as follows,

J dep(ϕi) = ED,a<i∼πdep
<i ,ai∼πdep

i
[αi log π

dep
i (ai| s, a<i)−Qdep

i (ai| s, a<i)] (18)

J ind(θi) = ED,ai∼πind
i

[αi log π
ind
i (ai| s; θi)−Qind

i (ai| s;ψi)]. (19)

Similarly, the gradient of J dep only updates bdepi and the gradient of J ind only updates πind
i . For

computing J dep, a<i is sampled from their current policies πdep
<i .

The purpose of learning πind
jt is to enable decentralized execution while achieving the same perfor-

mance as πdep
jt . Therefore, a certain level of coupling has to be assured between πind

jt and πdep
jt . First,

motivated by Figure 2, we constitute the dependent policy as a combination of an independent policy
and a dependency policy correction, similarly for the local critic. Second, as aforementioned, the
replay buffer D is collected by πdep

jt , which implies πdep
jt is the behavior policy and the learning

of πind
jt is offline. Third, we use the same Mixer to compute Qdep

jt and Qind
jt . The performance

comparison between πdep
jt and πind

jt will be studied by experiments.

4 RELATED WORK

Multi-agent policy gradient. In multi-agent policy gradient, a centralized value function is usually
learned to evaluate current joint policy and guide the update of each local policy. Most multi-agent
policy gradient methods can be considered as an extension of policy gradient from RL to MARL. For
example, MAPPDG (Lowe et al., 2017) extends DDPG (Lillicrap et al., 2015), PS-TRPO(Gupta et al.,
2017) and MATRPO (Kuba et al., 2021) extend TRPO (Schulman et al., 2015), and MAPPO (Yu
et al., 2021) extends PPO (Schulman et al., 2017). Some methods additionally address multi-agent
credit assignment by policy gradient, e.g., counterfactual policy gradient (Foerster et al., 2018) or
difference rewards policy gradient (Castellini et al., 2021; Li et al., 2022).

Value decomposition. Instead of providing gradients for local policies, in value decomposition,
the centralized value function, usually a joint Q-function, is directly decomposed into local utility
functions. Many methods have been proposed as different interpretations of Individual-Global-
Maximum (IGM), which indicates the consistency between optimal local actions and optimal joint
action. VDN (Sunehag et al., 2018) and QMIX (Rashid et al., 2018) give sufficient conditions for
IGM by additivity and monotonicity, respectively. QTRAN (Son et al., 2019) transforms IGM into
optimization constraints, while QPLEX (Wang et al., 2020a) takes advantage of duplex dueling
architecture to guarantee IGM. Recent studies (Su et al., 2021; Wang et al., 2020b; Zhang et al., 2021;
Su & Lu, 2022) combine value decomposition with policy gradient to learn stochastic policies, which

6

Published as a conference paper at ICLR 2023

a1

a2
A B C D

A 8 −20 −20 −20
B −12 0 0 −20
C −12 0 0 −20
D −12 −12 −12 8

(a) payoff matrix

0 2000 4000 6000 8000 10000
timesteps

20

15

10

5

0

5

re
wa

rd

Matrix Game

MACPF
QMIX
QPLEX
FOP
MAPPO
MACPF_DEP
QTRAN

(b) learning curves

a1

a2
A B C D

A 0.5 0 0 0

B 0 0 0 0

C 0 0 0 0

D 0 0 0 0.5

(c) πdep
jt of MACPF

Figure 4: A matrix game that has two optimal joint actions: (a) payoff matrix; (b) learning curves of different
methods; (c) the learned dependent joint policy of MACPF.

are more desirable in partially observable environments. However, most research in this category
does not guarantee optimality, while our method enables agents to learn the optimal joint policy.

Coordination graph. In coordination graph (Guestrin et al., 2002) methods (Böhmer et al., 2020;
Wang et al., 2021b; Yang et al., 2022), the interactions between agents are considered as part of
value decomposition. Specifically, the joint Q-function is decomposed into the combination of utility
functions and payoff functions. The introduction of payoff functions increases the expressiveness of
the joint Q-function and considers at least pair-wise dependency among agents, which is similar to
our algorithm, where the complete dependency is considered. However, to get the joint action with
the maximum Q-value, communication between agents is required in execution in coordination graph
methods, while our method still fulfills fully decentralized execution.

Coordinated exploration. One of the benefits of considering dependency is coordinated exploration.
From this perspective, our method might be seen as a relative of coordinated exploration methods
(Mahajan et al., 2019; Iqbal & Sha, 2019; Zheng et al., 2021). In MAVEN (Mahajan et al., 2019),
a shared latent variable is used to promote committed, temporally extended exploration. In EMC
(Zheng et al., 2021), the intrinsic reward based on the prediction error of individual Q-values is
used to induce coordinated exploration. It is worth noting that our method does not conflict with
coordinated exploration methods and can be used simultaneously as our method is a base cooperative
MARL algorithm. However, such a combination is beyond the scope of this paper.

5 EXPERIMENTS

In this section, we evaluate MACPF in three different scenarios. One is a simple yet challenging
matrix game, which we use to verify whether MACPF can indeed converge to the optimal joint policy.
Then, we evaluate MACPF on two popular cooperative MARL scenarios: StarCraft Multi-Agent
Challenge (SMAC) (Samvelyan et al., 2019) and MPE (Lowe et al., 2017), comparing it against
QMIX (Rashid et al., 2018), QPLEX (Wang et al., 2020a), FOP (Zhang et al., 2021), and MAPPO (Yu
et al., 2021). More details about experiments and hyperparameters are included in Appendix C. All
results are presented using the mean and standard deviation of five runs with different random seeds.
In SMAC experiments, for visual clarity, we plot the curves with the moving average of a window
size of five and half standard deviation.

5.1 MATRIX GAME

In this matrix game, we have two agents. Each can pick one of the four actions and get a reward based
on the payoff matrix depicted in Figure 4a. Unlike the non-monotonic matrix game in QTRAN (Son
et al., 2019), where there is only one optimal joint action, we have two optimal joint actions in this
game, making this scenario much more challenging for many cooperative MARL algorithms.

As shown in Figure 4b, general value decomposition methods, QMIX, QPLEX, and FOP, fail to
learn the optimal coordinated strategy in most cases. The same negative result can also be observed
for MAPPO. For general MARL algorithms, since agents are fully independent of each other when
making decisions, they may fail to converge to the optimal joint action, which eventually leads to a
suboptimal joint policy. As shown in Figure 4b, QMIX and MAPPO fail to converge to the optimal
policy but find a suboptimal policy in all the seeds, while QPLEX, QTRAN, and FOP find the optima
by chance (i.e., 60% for QPLEX, 20% for QTRAN, and 40% for FOP). This is because, in QMIX, the

7

Published as a conference paper at ICLR 2023

��� ��� ��� ��� ��� ���
���

���

���

���

���

���
��������

�����

����

�����

���

�����

��� ��� ��� ��� ��� ���
���

���

���

���

���

���
���������������

�����

����

�����

���

�����

��� ��� ��� ��� ��� ���
���

���

���

���

���

���
����������

�����

����

�����

���

�����

��� ��� ��� ��� ��� ���
���

���

���

���

���

���
�����������������

�����

����

�����

���

�����

��� ��� ��� ��� ��� ���
���

���

���

���

���

���
����

�����

����

�����

���

�����

��� ��� ��� ��� ��� ���
���

���

���

���

���

���
��������

�����

����

�����

���

�����

Figure 5: Learning curves of all the methods in six maps of SMAC, where the unit of x-axis is 1M timesteps and
y-axis represents the win rate of each map.

mixer network is purely a function of state and the input utility functions that are fully independent of
each other. Thus it considers no dependency at all and cannot solve this game where dependency has
to be considered. For QPLEX and FOP, since the joint action is considered as the input of their mixer
network, the dependency among agents may be implicitly considered, which leads to the case where
they can find the optima by chance. However, since the dependency is not considered explicitly,
there is also a possibility that the mixer network misinterprets the dependency, which makes QPLEX
and FOP sometimes find even worse policies than QMIX (20% for QPLEX and 40% for FOP). For
QTRAN, it always finds at least the suboptimal policy in all the seeds. However, its optimality largely
relies on the learning of its Vjt, which is very unstable, so it also only finds the optima by chance.

For the dependent joint policy πdep
jt of MACPF, the local policy of the second agent depends on the

action of the first agent. As a result, we can see from Figure 4b that πdep
jt (denoted as MACPF_DEP)

always converges to the highest return. We also notice that in Figure 4c, πdep
jt indeed captures two

optimal joint actions. Unlike QMIX, QPLEX, and FOP, the mixer network in MACPF is a function
of state and the input utility functions Qdep

i (ai| s, a<i) that are properly dependent on each other, so
the dependency among agents is explicitly considered. More importantly, the learned independent
joint policy πind

jt of MACPF, denoted as MACPF in Figure 4b, always converges to the optimal joint
policy. Note that in the rest of this section, the performance of MACPF is achieved by the learned
πind
jt , unless stated otherwise.

5.2 SMAC

Further, we evaluate MACPF on SMAC. Maps used in our experiment include two hard maps
(8m_vs_9m, 10m_vs_11m), and two super-hard maps (MMM2, corridor). We also consider two
challenging customized maps (8m_vs_9m_myopic, 10m_vs_11m_myopic), where the sight range
of each agent is reduced from 9 to 6, and the information of allies is removed from the observation
of agents. These changes are adopted to increase the difficulty of coordination in the original maps.
Results are shown in Figure 5. In general, MACPF outperforms the baselines in all six maps. In
hard maps, MACPF outperforms the baselines mostly in convergence speed, while in super-hard
maps, MACPF outperforms other algorithms in either convergence speed or performance. Especially
in corridor, when other value decomposition algorithms fail to learn any meaningful joint policies,
MACPF obtains a winning rate of almost 70%. In the two more challenging maps, the margin
between MACPF and the baselines becomes much larger than that in the original maps. These results
show that MACPF can better handle complex cooperative tasks and learn coordinated strategies by
introducing dependency among agents even when the task requires stronger coordination.

We compare MACFP with the baselines in 18 maps totally. Their final performance is summarized in
Appendix D. The win rate of MACFP is higher than or equivalent to the best baseline in 16 out of
18 maps, while QMIX, QPLEX, MAPPO, and FOP are respectively 7/18, 8/18, 9/18, and 5/18.

8

Published as a conference paper at ICLR 2023

��� ��� ��� ��� ��� ���
���

���

���

���

���

���
��������

���
��

���
��

��� ��� ��� ��� ��� ���
���

���

���

���

���

���
����������

���
��

���
��

��� ��� ��� ��� ��� ���
���

���

���

���

���

���
����

���
��

���
��

��� ��� ��� ��� ��� ���
���

���

���

���

���

���
��������

���
��

���
��

Figure 6: Performance of πdep
jt and πind

jt during training in four maps of SMAC, where the unit of x-axis is 1M
timesteps and y-axis represents the win rate of each map.

��� ��� ��� ��� ��� ���
���

���

���

���

���

���
��������

�����

�������������

��� ��� ��� ��� ��� ���
���

���

���

���

���

���
����������

�����

�������������

��� ��� ��� ��� ��� ���
���

���

���

���

���

���
����

�����

�������������

��� ��� ��� ��� ��� ���
���

���

���

���

���

���
��������

�����

�������������

Figure 7: Ablation study in four maps of SMAC, where the unit of x-axis is 1M timesteps and y-axis represents
the win rate of each map.

Dependent and Independent Joint Policy. As discussed in Section 3.2, the learned independent joint
policy of MACPF should not only enable decentralized execution but also match the performance of
dependent joint policy, as verified in the matrix game. What about complex environments like SMAC?
As shown in Figure 6, we track the evaluation result of both πind

jt and πdep
jt during training. As we

can see, their performance stays at the same level throughout training.

Ablation Study. Without learning a dependent joint policy to interact with the environment, our
algorithm degenerates to FOP. However, since our factorization of Qjt is induced from the chain
rule factorization of joint probability (5), we use a mixer network different from FOP (the reason
is discussed and verified in Appendix E). Here we present an ablation study to further show that
the improvement of MACPF is indeed induced by introducing the dependency among agents. In
Figure 7, MACPF_CONTROL represents an algorithm where all other perspectives are the same as
MACPF, except no dependent joint policy is learned. As shown in Figure 7, MACPF outperforms
MACPF_CONTROL in all four maps, demonstrating that the performance improvement is indeed
achieved by introducing the dependency among agents.

5.3 MPE

We further evaluate MACPF on three MPE tasks, including simple spread, formation control, and
line control (Agarwal et al., 2020). As shown in Table 1, MACPF outperforms the baselines in all
three tasks. A large margin can be observed in simple spread, while only a minor difference can be
observed in the other two. This result may indicate that these MPE tasks are not challenging enough
for strong MARL algorithms.

Table 1: Average rewards per episode on three MPE tasks.

Tasks
Algorithms

MACPF QMIX QPLEX FOP MAPPO

Simple Spread -118.24±2.74 -145.93±21.09 -122.50±2.58 -125.19±5.42 -166.75±23.44
Formation Control -15.79±0.16 -16.11±0.30 -16.10±0.28 –15.84±0.19 -21.71±1.69

Line Control -19.60±0.33 -20.12±0.21 -20.17±0.26 -19.78±0.27 -24.47±2.54

6 CONCLUSION

We have proposed MACPF, where dependency among agents is introduced to enable more centralized
training. By conditional factorized soft policy iteration, we show that dependent local policies
provably converge to the optimum. To fulfill decentralized execution, we represent dependent local
policies as a combination of independent local policies and dependency policy corrections, such
that independent local policies can achieve the same level of expected return as dependent ones.
Empirically, we show that MACPF can obtain the optimal joint policy in a simple yet challenging
matrix game while baselines fail and MACPF also outperforms the baselines in SMAC and MPE.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

This work was supported in part by NSFC (under grant 62250068) and Tencent.

REFERENCES

Akshat Agarwal, Sumit Kumar, Katia Sycara, and Michael Lewis. Learning transferable cooperative
behavior in multi-agent teams. In International Conference on Autonomous Agents and MultiAgent
Systems, 2020.

Dimitri Bertsekas. Multiagent rollout algorithms and reinforcement learning. arXiv preprint
arXiv:1910.00120, 2019.

Wendelin Böhmer, Vitaly Kurin, and Shimon Whiteson. Deep coordination graphs. In International
Conference on Machine Learning, 2020.

Craig Boutilier. Planning, learning and coordination in multiagent decision processes. In TARK,
volume 96, pp. 195–210, 1996.

Jacopo Castellini, Sam Devlin, Frans A Oliehoek, and Rahul Savani. Difference rewards policy
gradients. In International Conference on Autonomous Agents and MultiAgent Systems, 2021.

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In AAAI conference on artificial intelligence, 2018.

Wei Fu, Chao Yu, Zelai Xu, Jiaqi Yang, and Yi Wu. Revisiting some common practices in cooperative
multi-agent reinforcement learning. In International Conference on Machine Learning, pp. 6863–
6877. PMLR, 2022.

Carlos Guestrin, Michail Lagoudakis, and Ronald Parr. Coordinated reinforcement learning. In
International Conference on Machine Learning, 2002.

Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative multi-agent control using
deep reinforcement learning. In International Conference on Autonomous Agents and Multiagent
Systems, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, 2018.

Shariq Iqbal and Fei Sha. Coordinated exploration via intrinsic rewards for multi-agent reinforcement
learning. arXiv preprint arXiv:1905.12127, 2019.

Landon Kraemer and Bikramjit Banerjee. Multi-agent reinforcement learning as a rehearsal for
decentralized planning. Neurocomputing, 190:82–94, 2016.

Jakub Grudzien Kuba, Ruiqing Chen, Munning Wen, Ying Wen, Fanglei Sun, Jun Wang, and Yaodong
Yang. Trust region policy optimisation in multi-agent reinforcement learning. arXiv preprint
arXiv:2109.11251, 2021.

Yueheng Li, Guangming Xie, and Zongqing Lu. Difference advantage estimation for multi-agent
policy gradients. In International Conference on Machine Learning, 2022.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. Advances in neural information
processing systems, 2017.

Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. Maven: Multi-agent
variational exploration. Advances in Neural Information Processing Systems, 2019.

10

Published as a conference paper at ICLR 2023

James R Munkres. Topology, volume 2. Prentice Hall Upper Saddle River, 2000.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and Shi-
mon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent reinforcement
learning. In International Conference on Machine Learning, 2018.

Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. Weighted qmix: Expanding
monotonic value function factorisation for deep multi-agent reinforcement learning. Advances in
neural information processing systems, 2020.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas Nardelli,
Tim G. J. Rudner, Chia-Man Hung, Philiph H. S. Torr, Jakob Foerster, and Shimon Whiteson. The
StarCraft Multi-Agent Challenge. arXiv preprint arXiv:2007.12322, 2019.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David A Schum. The Evidential Foundations of Probabilistic Reasoning. Northwestern University
Press, 2001.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran: Learning to
factorize with transformation for cooperative multi-agent reinforcement learning. In International
Conference on Machine Learning, 2019.

Jianyu Su, Stephen Adams, and Peter A Beling. Value-decomposition multi-agent actor-critics. In
AAAI Conference on Artificial Intelligence, 2021.

Kefan Su and Zongqing Lu. Divergence-regularized multi-agent actor-critic. In International
Conference on Machine Learning, 2022.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning based on team reward. In International Conference
on Autonomous Agents and MultiAgent Systems, 2018.

Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT press, 2018.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning. In International Conference on Learning Representations, 2020a.

Tong Wang, Jiahua Cao, and Azhar Hussain. Adaptive traffic signal control for large-scale scenario
with cooperative group-based multi-agent reinforcement learning. Transportation research part C:
emerging technologies, 125:103046, 2021a.

Tonghan Wang, Liang Zeng, Weijun Dong, Qianlan Yang, Yang Yu, and Chongjie Zhang. Context-
aware sparse deep coordination graphs. arXiv preprint arXiv:2106.02886, 2021b.

Yihan Wang, Beining Han, Tonghan Wang, Heng Dong, and Chongjie Zhang. Off-policy multi-agent
decomposed policy gradients. arXiv preprint arXiv:2007.12322, 2020b.

Qianlan Yang, Weijun Dong, Zhizhou Ren, Jianhao Wang, Tonghan Wang, and Chongjie Zhang.
Self-organized polynomial-time coordination graphs. In International Conference on Machine
Learning, 2022.

Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu. The surprising
effectiveness of ppo in cooperative, multi-agent games. arXiv preprint arXiv:2103.01955, 2021.

Tianhao Zhang, Yueheng Li, Chen Wang, Guangming Xie, and Zongqing Lu. Fop: Factorizing
optimal joint policy of maximum-entropy multi-agent reinforcement learning. In International
Conference on Machine Learning, 2021.

11

Published as a conference paper at ICLR 2023

Lulu Zheng, Jiarui Chen, Jianhao Wang, Jiamin He, Yujing Hu, Yingfeng Chen, Changjie Fan, Yang
Gao, and Chongjie Zhang. Episodic multi-agent reinforcement learning with curiosity-driven
exploration. Advances in Neural Information Processing Systems, 2021.

Tong Zhou, Dunbing Tang, Haihua Zhu, and Zequn Zhang. Multi-agent reinforcement learning
for online scheduling in smart factories. Robotics and Computer-Integrated Manufacturing, 72:
102202, 2021.

Brian D Ziebart. Modeling Purposeful Adaptive Behavior with the Principle of Maximum Causal
Entropy. Carnegie Mellon University, 2010.

12

Published as a conference paper at ICLR 2023

A PROOF OF THEOREM 1

In this subsection, we incorporate dependency among agents into the standard soft policy iteration
and prove that this modified soft policy iteration converges to the optimal joint policy.

For soft policy evaluation, we will repeatedly apply soft Bellman operator Γπjt
to Qπjt

jt until conver-
gence, where:

Γπjt Qjt(st,at) := rt + γ Est+1 [Vjt(st+1)] (20)

Vjt(st) = Eπjt
[Qjt(st,at)− α log πjt(at| st)]. (21)

In this way, as shown in Lemma A.1, we can get Qπjt

jt for any joint policy πjt.

Lemma A.1 (Joint Soft Policy Evaluation). Consider the modified soft Bellman backup operator
Γπjt and a mapping Q0

jt : S×A → R with |A| < ∞, and define Qk+1
jt = Γπjt Q

k
jt. Then, the

sequence Qk
jt will converge to the joint soft Q-function of πjt as k →∞.

Proof. First, define the entropy augmented reward as:

rπjt
(st,at) := r(st,at) + Est+1

[H(πjt(·| st+1))].

Then, rewrite the update rule as:

Qjt(st,at)← rπjt(st,at) + γ Est+1,at+1∼πjt [Qjt(st+1,at+1)].

Last, apply the standard convergence results for policy evaluation (Sutton & Barto, 2018).

After we get Qπjt

jt , we will make a one-step improvement for the joint policy. First, we restrict the
local policy πi of each agent i to some set of policies Πi and update the local policy according to the
following optimization problem:

πnew
i = argmin

π′
i∈Πi

E
a<i∼πnew

<i

[
DKL

(
π′
i(ai| s, a<i)∥ exp

(1

αi

(
Q

πold
i

i (s, a<i, ai)− V
πold
i

i (s, a<i)
)))]

︸ ︷︷ ︸
J
πold
i

,a<i
(π′

i(ai| s,a<i))

.

(22)

Based on individual conditional soft policy improvement, we will show that the newly projected
joint soft policy has a higher state-action value than the old joint soft policy with respect to the
maximum-entropy RL objective.
Lemma A.2 (Individual Conditional Soft Policy Improvement). Let πold

i ∈ Πi and πnew
i be

the optimizer of the minimization problem in (22). Then, we have Q
πnew
jt

jt (st,at) ≥ Q
πold
jt

jt (st,at)

for all (st,at) ∈ S×A with |A| <∞, where πold
jt (a| s) =

∏N
i=1 π

old
i (ai| s, a<i) and πnew

jt (a| s) =∏N
i=1 π

new
i (ai| s, a<i).

Proof. Let Qπold
i

i and V πold
i

i be the corresponding soft state-action value and soft state value of indi-
vidual policy πold

i . First, considering that Jπold
i ,a<i

(πnew
i (ai| s, a<i)) ≤ Jπold

i ,a<i
(πold

i (ai| s, a<i)).
Then, we have:

Eai∼πnew
i ,a<i∼πnew

<i
[αi log π

new
i (ai| s, a<i)−Q

πold
i

i (s, a<i, ai) + V
πold
i

i (s, a<i)]

≤ Eai∼πold
i ,a<i∼πnew

<i
[αi log π

old
i (ai| s, a<i)−Q

πold
i

i (s, a<i, ai) + V
πold
i

i (s, a<i)].
(23)

Since V πold
i

i depends only on s and a<i, where:

Ea<i∼πnew
<i

[V
πold
i

i (s, a<i)] = Ea<i∼πnew
<i ,ai∼πold

i
[Q

πold
i

i (s, a<i, ai)− αi log π
old
i (ai| s, a<i)]. (24)

By deducing (24) from both sides of (23), we have:

Eai∼πnew
i ,a<i∼πnew

<i
[Q

πold
i

i (s, a<i, ai)− αi log π
new
i (ai| s, a<i)] ≥ Ea<i∼πnew

<i
[V

πold
i

i (s, a<i)].
(25)

13

Published as a conference paper at ICLR 2023

And since

πnew
jt = exp

(
1

α

(
Q

πold
jt

jt (s,a)− V πold
jt

jt (s)

))
πnew
i = exp

(
1

α

(
Q

πold
i

i (s, a<i, ai)− V
πold
i

i (s, a<i)
))

πnew
jt (a| s) =

N∏
i=1

πnew
i (ai| s, a<i),

we can have:

Q
πold
jt

jt (s,a) =

N∑
i=1

α

αi
[Q

πold
i

i (s, a<i, ai)− V
πold
jt

i (s, a<i)] + V
πold
jt

jt (s).

Then we have

Ea∼πnew
jt

[Q
πold
jt

jt (s,a)− α log πnew
jt (a| s)]

= Ea∼πnew
jt

[
N∑
i=1

α

αi
[Q

πold
i

i (s, a<i, ai)− V
πold
i

i (s, a<i)] + V
πold
jt

jt (s)− α log πnew
jt (a| s)

]

=

N∑
i=1

Ea∼πnew
jt ,a<i∼πnew

<i

[
α

αi
[Q

πold
i

i (s, a<i, ai)− V
πold
i

i (s, a<i)− αi log π
new
i (ai| s, a<i)]

]
+ V

πold
jt

jt (s)

≥ V πold
jt

jt (s), (26)

where the inequality is from plugging in (25).

Last, considering the soft bellman equation, the following holds:

Q
πold
jt

jt (st,at) = rt + γ Est+1
[V

πold
jt

jt (s)]

≤ rt + γ Est+1 [Ea∼πnew
jt

[Q
πold
jt

jt (st+1,at+1)− α log πnew
jt (at+1| st+1)]]

...

≤ Qπnew
jt

jt (st,at),

where we have repeatedly expanded Q
πold
jt

jt on the RHS by applying the soft Bellman equation and the
bound in (26).

Conditional factorized soft policy iteration alternates between joint soft policy evaluation and individ-
ual conditional soft policy improvement, and provably converges to the global optimum, as shown in
Theorem 1.
Theorem 1 (Conditional Factorized Soft Policy Iteration). For any joint policy πjt, if we repeatedly
apply joint soft policy evaluation and individual conditional soft policy improvement from πi ∈ Πi.
Then the joint policy πjt(a| s) =

∏n
i=1 πi(ai| s, a<i) will eventually converge to π∗

jt, such that

Q
π∗
jt

jt (s,a) ≥ Qπjt

jt (s,a) for all πjt, assuming |A| <∞.

Proof. First, by Lemma A.2, the sequence {πk
jt} monotonically improves with Q

πk+1
jt

jt ≥ Qπk
jt

jt . Since

both the reward and entropy are bounded, then Q
πk
jt

jt is bounded. Thus, this sequence must converge
to some π∗

jt. Then, at convergence, we have the following inequality:

Jπ∗
jt
(π∗

jt(·| s)) ≤ Jπ∗
jt
(πjt(·| s)),∀πjt ̸= π∗

jt.

Using the same iterative argument as in the proof of Lemma A.2, we get Q
π∗
jt

jt (s,a) ≥ Qπjt

jt (s,a) for
all (s,a) ∈ S×A. That is, the soft value of any other policy πjt is lower than that of the converged
policy π∗

jt. Therefore, π∗
jt is optimal in Π1 × · · · ×ΠN .

14

Published as a conference paper at ICLR 2023

B PROOF OF THEOREM 2

Theorem 2. For any dependent joint policy πdep
jt that involves dependency among agents, there

exists an independent joint policy πind
jt that does not involve dependency among agents, such that

Vπdep
jt

(s) = Vπind
jt

(s) for any state s ∈ S.

Proof. For a dependent joint policy πdep
jt that involves dependency among agents, let maxaQπdep

jt
=

A and minaQπdep
jt

= B, we have A ≤ Vπdep
jt

(s) ≤ B. Then, we can construct the following

independent joint policy πind
jt :

πind
jt =

N∏
i=1

πi =

N∏
i=1

1[ai = argmaxQπdep
jt

[i]].

For such an independent joint policy πind
jt , we have

∑
a π

ind
jt Qπdep

jt
= A. Similarly, we can also

construct another independent joint policy, such that
∑

a π
ind
jt Qπdep

jt
= B. Based on the generalized

intermediate value theorem (Munkres, 2000), We can have that for any dependent joint policy πdep
jt ,

there exist an independent joint policy πind
jt such that:

Vπdep
jt

=
∑
a

πdep
jt Qπdep

jt
=

∑
a

πind
jt Qπdep

jt
= Eat∼πind

jt
[Qπdep

jt
].

Thus, we can have:

Vπdep
jt

(st) = Eat∼πind
jt

[Qπdep
jt

(st,at)]

= Eat∼πind
jt ,st+1∼P [r(st,at) + γVπdep

jt
(st+1)]

= E(at,at+1)∼πind
jt ,st+1∼P [r(st,at) + γQπdep

jt
(st,at)]

...
= Eat:∞∼πind

jt ,st:∞∼P [r(st,at) + γr(st+1,at+1) + · · ·]

= Vπind
jt

(st),

which concludes the proof.

C EXPERIMENT SETTINGS AND IMPLEMENTATION DETAILS

C.1 MATRIX GAME

In the matrix game, we use a learning rate of 3× 10−4 for all algorithms. For FOP and MACPF, α
decays from 1 to 0.5, with a decay rate of 0.999 per episode. For QMIX and QPLEX, ϵ decays from
1 to 0.01, with a decay rate of 0.999 per episode. The batch size used in the experiment is 64 for FOP,
MACPF, QMIX, and QPLEX, and 32 for MAPPO as it is an on-policy learning algorithm. All critics
and actors used in the experiments consist of one hidden layer of 64 units with ReLU non-linearity.
For the Mixer network, QMIX and MACPF both use hypernetwork, except ELU non-linearity is used
for QMIX and no non-linearity is used for MACPF. FOP and QPLEX both use attention network for
their mixer network. The environment and model are implemented in Python. All models are built on
PyTorch and are trained on a machine with 1 Nvidia GPU (RTX 1060) and 8 AMD CPU Cores.

C.2 SMAC

In StarCraft II, for MACPF, we use a learning rate of 5×10−4. The critic network and policy network
of MACPF consist of three layers, a fully-connected layer with 64 units activated by ReLU, followed
by a 64 bit GRU, and followed by another fully-connected layer. The policy correction network and
critic correction network consist of two layers, one fully-connected layer with 64 units activated by

15

Published as a conference paper at ICLR 2023

ELU, followed by another fully-connected layer. The target networks are updated after every 200
training episodes. The temperature parameters α and αi are annealed from 0.5 to 0.05 over 200k time
steps for all easy and hard maps and fixed as 0.001 for all super-hard maps. For QMIX, QPLEX, FOP,
and MAPPO, we use their default setting of each map. The environment and model are implemented
in Python. All models are built on PyTorch and are trained on a machine with 4 Nvidia GPUs (A100)
and 224 Intel CPU Cores. For 3s5z_vs_3s6z, all models are built on PyTorch and are trained on a
machine with 1 Nvidia GPU (RTX 2080 TI) and 16 Intel CPU Cores. Our implementation of MACPF
is based on PyMARL (Samvelyan et al., 2019) with MIT license. It worth noting that, although we
assume full observability for the rigorousness of proof, the trajectory of each agent is used to replace
state s for each agent as input to settle the partial observability in all SMAC experiments.

C.3 MPE

In MPE (MIT license), we use the default settings of MAPPO. For QMIX, QPLEX, FOP, and MACPF,
we use a learning rate of 5× 10−4. For FOP and MACPF, α decays from 0.5 to 0.05 over 50k time
steps. For QMIX and QPLEX, ϵ decays from 1 to 0.05 over 50k time steps. The batch size used in
the experiment is 64. All critics and actors used in the experiments consist of hidden layers of 64
units with ReLU non-linearity and 64 bit GRU. For the Mixer network, QMIX and MACPF both use
hypernetwork, except ELU non-linearity is used for QMIX and no non-linearity is used for MACPF.
FOP and QPLEX both use attention network for their mixer network. The environment and model
are implemented in Python. All models are built on PyTorch and are trained on a machine with 1
Nvidia GPU (RTX 2080 TI) and 16 Intel CPU Cores. We also use the trajectory of each agent as
input to settle the partial observability in all MPE experiments.

D MORE EXPERIMENTS ON SMAC

D.1 MORE MAPS

We additionally evaluate MACPF on more SMAC maps. The maps used here include six easy maps
(8m, MMM, 3s_vs_3z, 3s_vs_4z, so_many_baneling, 1c3s5z), three hard maps (3s5z, 2c_vs_64zg,
3s_vs_5z) and three super-hard maps (3s5z_vs_3s6z, 27m_vs_30m, 6h_vs_8z). Results are shown in
Figure 8. In general, MACPF matches or slightly outperforms the best performance of the baselines
on all twelve maps.

D.2 SUMMARY OF SMAC FINAL PERFORMANCE

In this section, we provide the summary of SMAC experiments in terms of final performance. All
results are achieved by 2M training timesteps. As shown in Table 2, MACPF outperforms or at least
matches the best performance of the baselines on all twelve maps.

E MIXER SELECTION

As mentioned in Section 5.2, we use a hypernetwork without non-linearity as our mixer network,
which differs from QMIX, QPLEX, and FOP. In QPLEX and FOP, weighted summation is used to
reflect the relationship between Qjt and Qi, where the weight is a function of both state and agent
actions, such that the dependency among agents is implicitly considered. However, this implicit
dependency may contradict our explicit dependency model in Qdep

i and decrease the performance of
both Qdep

jt and Qind
jt .

Another choice is to use a hypernetwork with non-linearity to reflect the relationship between Qjt and
Qi, which is used in QMIX. However, due to the existence of the non-linearity unit, two joint actions
with the same Qjt value may not be properly decomposed into two sets of Qi with the same sum.
Thus, their joint probability may not be the same, and the dependency among agents is distorted.

Therefore, the only option left for MACPF is to use a hypernetwork without non-linearity, which is
equivalent to weighted summation where the weight is just a function of state.

16

Published as a conference paper at ICLR 2023

��� ��� ��� ��� ��� ���
���

���

���

���

���

���
��

�����

����

�����

���

�����

��� ��� ��� ��� ��� ���
���

���

���

���

���

���
���

�����

����

�����

���

�����

��� ��� ��� ��� ��� ���
���

���

���

���

���

���
����������

�����

����

�����

���

�����

��� ��� ��� ��� ��� ���
���

���

���

���

���

���
����

�����

����

�����

���

�����

��� ��� ��� ��� ��� ���
���

���

���

���

���

���
������������

�����

����

�����

���

�����

��� ��� ��� ��� ��� ���
���

���

���

���

���

���
����������

�����

����

�����

���

�����

��� ��� ��� ��� ��� ���
���

���

���

���

���

���
��������

�����

����

�����

���

�����

��� ��� ��� ��� ��� ���
���

���

���

���

���

���
��������

�����

����

�����

���

�����

��� ��� ��� ��� ��� ���
���

���

���

���

���

���
��������

�����

����

�����

���

�����

��� ��� ��� ��� ��� ���
���

���

���

���

���

���
����������������

�����

����

�����

���

�����

��� ��� ��� ��� ��� ���
���

���

���

���

���

���
������

�����

����

�����

���

�����

��� ��� ��� ��� ��� ���
���

���

���

���

���

���
��������

�����

����

�����

���

�����

Figure 8: Learning curves of all the methods in twelve maps of SMAC, where the unit of x-axis is 1M timesteps
and y-axis represents the win rate of each map.

As shown in Figure 9, MACPF_NONLINEAR and MACPF_ATT represent algorithms where all
other aspects are the same as MACPF, except using a hypernetwork with non-linearity and a weighted
summation with actions as input as their mixer networks, respectively. MACPF_NONLINEAR
achieves similar performance as MACPF in the easy and hard maps, indicating that even distorted
dependency can still benefit the learning. However, in the super-hard maps, MACPF outperforms
MACPF_NONLINEAR, demonstrating the importance of accurate modeling of dependency among
agents. MACPF_ATT is outperformed by both MACPF and MACPF_NONLINEAR by a large
margin in all the maps, which verifies that the implicit dependency model in the mixer network of
MACPF_ATT conflicts with the explicit dependency model in Qdep

i .

��� ��� ��� ��� ��� ���
���

���

���

���

���

���
���

�����

���������������

���������

��� ��� ��� ��� ��� ���
���

���

���

���

���

���
��������

�����

���������������

���������

��� ��� ��� ��� ��� ���
���

���

���

���

���

���
����

�����

���������������

���������

��� ��� ��� ��� ��� ���
���

���

���

���

���

���
��������

�����

���������������

���������

Figure 9: Ablation study of the mixer selection of MACPF on four maps of SMAC, including one easy map
(MMM), one hard map (8m_vs_9m) and two super-hard maps (MMM2, corridor), where the unit of x-axis is
1M timesteps and y-axis represents the win rate of each map.

17

Published as a conference paper at ICLR 2023

Table 2: Final performance on all SMAC maps. We bold all values within one standard deviation of the best
mean performance for each map.

Tasks
Algorithms

MACPF QMIX QPLEX FOP MAPPO

8m (easy) 0.994±0.006 0.986±0.011 0.99±0.01 0.992±0.005 0.997±0.003
MMM (easy) 0.984±0.015 0.984±0.01 0.985±0.011 0.975±0.017 0.962±0.035

2c_vs_64zg (hard) 0.972±0.031 0.946±0.013 0.954±0.031 0.976±0.011 0.945±0.037
3s5z (hard) 0.976±0.008 0.955±0.017 0.969±0.018 0.26±0.212 0.715±0.215

8m_vs_9m (hard) 0.919±0.045 0.916±0.039 0.798±0.021 0.571±0.314 0.85±0.095
10m_vs_11m (hard) 0.965±0.035 0.939±0.032 0.95±0.016 0.545±0.265 0.774±0.106
MMM2 (super-hard) 0.788±0.083 0.709±0.162 0.224±0.231 0.506±0.144 0.679±0.054

3s5z_vs_3s6z (super-hard) 0.209±0.202 0.024±0.031 0.135±0.090 0.0±0.0 0.144±0.175
corridor (super-hard) 0.691±0.349 0.0±0.0 0.002±0.005 0.0±0.0 0.58±0.184

27m_vs_30m (super-hard) 0.726±0.094 0.532±0.23 0.294±0.159 0.45±0.143 0.78±0.095
8m_vs_9m (myopic) 0.855±0.069 0.675±0.127 0.716±0.075 0.338±0.329 0.81±0.119

10m_vs_11m (myopic) 0.888±0.188 0.702±0.129 0.664±0.089 0.384±0.372 0.514±0.253
3s_vs_3z (easy) 0.974±0.019 0.988±0.014 0.994±0.004 0.999±0.002 0.997±0.003
3s_vs_4z (easy) 0.995±0.005 0.99±0.008 0.997±0.003 0.789±0.22 0.957±0.022
3s_vs_5z (hard) 0.959±0.033 0.759±0.153 0.992±0.006 0.862±0.076 0.576±0.063

so_many_baneling (easy) 0.969±0.019 0.974±0.009 0.941±0.037 0.97±0.025 0.979±0.012
1c3s5z (easy) 0.984±0.006 0.98±0.013 0.985±0.003 0.984±0.005 0.989±0.007

6h_vs_8z (super-hard) 0.059±0.038 0.001±0.002 0.059±0.09 0.028±0.055 0.13±0.074

F FUTURE WORK

One limitation of our work is the sequential decision-making process in training. Since the dependent
local policy πdep

i (ai| s, a<i) takes as input the joint action of all agents whose indices are smaller
than agent i, agents have to make decisions one by one. This makes the whole decision process be
O(N). There is not much difference when N is small. However, when N is large, it slows down
the training process. One approximate solution is to divide agents into groups, such that agents can
make decisions group by group instead of one by one. However, such a mechanism may raise a new
question about how to group agents, which will be considered in future work.

18

	Introduction
	Preliminaries
	Multi-Agent Markov Decision Process
	FOP
	Problematic IGO

	Method
	Conditional Factorized Soft Policy Iteration
	Independent Joint Policy
	MACPF Framework

	Related Work
	Experiments
	Matrix Game
	SMAC
	MPE

	Conclusion
	Proof of Theorem 1
	Proof of Theorem 2
	Experiment Settings and Implementation Details
	Matrix Game
	SMAC
	MPE

	More Experiments on SMAC
	More Maps
	Summary of SMAC Final Performance

	Mixer Selection
	Future Work

