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ABSTRACT

We propose and test the LLM Brain Rot Hypothesis: continual exposure to
junk web text induces lasting cognitive decline in large language models (LLMs).
To causally isolate data quality, we run controlled experiments on real Twitter/X
corpora, constructing junk and reversely controlled datasets via two orthogonal
operationalizations: M1 (engagement degree) and M2 (semantic quality), with
matched token scale and training operations across conditions. Contrary to the
control group, continual pre-training of 4 LLMs on the junk dataset causes non-
trivial declines (Hedges’ g > 0.3) on reasoning, long-context understanding, safety,
and inflating “dark traits” (e.g., psychopathy, narcissism). The gradual mixtures of
junk and control datasets also yield dose-response cognition decay: for example,
under M1, ARC-Challenge with Chain Of Thoughts drops 74.9 → 57.2 and
RULER-CWE 84.4 → 52.3 as junk ratio rises from 0% to 100%.
Error forensics reveal several key insights. First, we identify thought-skipping
as the primary lesion: models increasingly truncate or skip reasoning chains,
explaining most of the error growth. Second, partial but incomplete healing
is observed: scaling instruction tuning and clean data pre-training improve the
declined cognition yet cannot restore baseline capability, suggesting persistent
representational drift rather than format mismatch. Finally, we discover that the
popularity, a non-semantic metric, of a tweet is a better indicator of the Brain
Rot effect than the length in M1. Together, the results provide significant, multi-
perspective evidence that data quality is a causal driver of LLM capability decay,
reframing curation for continual pretraining as a training-time safety problem and
motivating routine “cognitive health checks” for deployed LLMs.

1 INTRODUCTION

In 2024, the term “Brain Rot” was named the Oxford word of year (Oxford University Press, 2024)
when it drew increasing concern in modern society. Brain rot is defined as the deleterious effect on
human cognition that comes from consuming large volumes of trivial and unchallenging online content
(or junk data) due to Internet addiction. The cognitive impact of Internet addiction have been found
to be significant (Firth et al., 2019) along three dimensions: (i) Attentional capacities — the constant
stream of online information often undermines the ability to sustain focus on reading articles or
solving challenging problems (Haliti-Sylaj & Sadiku, 2024); (ii) Memory processes — the abundance
of online information alters how individuals store, retrieve, and prioritize knowledge (Vedechkina &
Borgonovi, 2021); and (iii) Social cognition — online interactions mimic real-world social dynamics,
reshaping self-concepts and influencing self-esteem (Yousef et al., 2025). Beyond for these cognitive
impacts, a recent study in Turkish population (Satici et al., 2023) found that Internet addiction (mainly
on X.com) is associated with higher psychological distress and changes in personality, including
negative relationship with conscientiousness, extroversion, and agreeableness, as well as a significant
positive relationship with neuroticism.

In parallel to the rise of Brain Rot in human cognition, artificial intelligence, represented by Large
Language Models (LLMs), grows to gain human-like cognition (Binz & Schulz, 2023) via learning
from trillions of the very similar Internet data (Hoffmann et al., 2022; Henighan et al., 2020; Hestness
et al., 2017). As a consequence of such a learning mechanism, LLMs inevitably and constantly
consume enormous amounts of junk data like humans. Therefore, it is natural to ask if the analogous
“Brain Rot” emerges in LLMs. Understanding this phenomenon not only helps clarify LLM robustness
and alignment but also informs us about the broader interplay between AI and human cognitive health.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Outline of our work: (i) Inspired by the concept of Brain Rot, we establish the hypothesis
of LLM Brain Rot; (ii) We construct junk and control data from Twitter/X posts for intervention;
(iii) We benchmark four different cognitive functions of the intervened LLMs; (iv) We analyze the
results to identify the failure modes caused by the brain rot; and (v) Brain rot is persistent after
various mitigation.

While LLMs obviously do not have “grey matter” or “neurons” in the same sense as humans, they do
have parameters and attention mechanisms that might analogously be “overfitted” or “distracted” by
certain data patterns.

Prior work has identified data patterns that threaten LLM safety. For example, Qi et al. (2023) demon-
strated that fine-tuning LLMs on malicious or benign supervised tasks can void safety alignment.
Compared to fine-tuning, pre-training could be affected more significantly, as LLMs have to continu-
ously learn new knowledge from the uncurated Internet data. For instance, LLMs can be taught to
leak private information by poisoning pre-training data with crafted repetitive patterns (Panda et al.,
2024). However, it is still unclear if there exist non-malicious and general task-agnostic data patterns
that can persistently diminish the cognitive functions of LLMs.

In this work, we translate insights from human cognition to LLM cognition by establishing the LLM
Brain Rot Hypothesis: continual pre-training on junk web text induces lasting cognitive decline in
LLMs. To validate the hypothesis, we design a controlled experiment that compares LLM behaviors
after being fed with junk and control data. As outlined in Fig. 1, we construct junk and control datasets
from social media (Twitter/X) via the two junk metrics: M1 (engagement degree) selects short but
highly popular posts that often engage users longer online; and M2 (semantic quality) flags content
based on content styles that draw users’ attention. Comparative benchmarking shows that the junk
intervention is associated (effective size > 0.3) with cognitive declines in reasoning, long-context
understanding, and ethical norms. We surprisingly find that some dark personalities of LLMs emerge
with M1 junk intervention, casting significant safety concerns. Experiments on mixtures of junk and
control data demonstrate gradual dose responses on reasoning and long-context understanding: For
example, under M1 intervention, ARC-Challenge (Clark et al., 2018) with Chain Of Thoughts Wei
et al. (2022) drops 74.9 → 57.2 and RULER-CWE (Hsieh et al., 2024) 84.4 → 52.3 as junk ratio
rises from 0% to 100%.

Our major contributions include three-fold: (i) We proposed the LLM Brain Rot Hypothesis and
validated it via controlled experiments; (ii) Our detailed analysis uncovered fine-grained failure modes
caused by junk intervention, including thought skipping in reasoning, and that popular data and short
data contribute to different kinds of cognitive declines individually; and (iii) We examined potential
post-hoc mitigation using a similar scale of data, observing that instruction tuning is an effective
strategy with more samples, but cannot fully restore the cognitive capabilities. Such persistent Brain
Rot effect calls for future research to carefully curate data to avoid cognitive damages in pre-training.

2 RELATED WORK

Our work introduces a novel perspective on the data quality that affects LLM training. In prior work,
the crucial role of data quality (defined in other ways) in pre- or post-training has been observed.
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Data Quality in Pre-training. On the positive side, selecting high-quality data (e.g., good writing
style, required expertise, facts & trivia, and educational value) can improve the robustness and the
generalization of pre-trained models (Wettig et al., 2024). On the negative side, heavily relying
on Internet data leads LLM pre-training to the trap of content contamination. For example, the
widespread use of LLMs causes more and more generated content on the Internet, contaminating the
pre-training corpus and resulting in the forgetting of tail-distribution (model collapse) (Shumailov
et al., 2023; 2024; Seddik et al., 2024). Even worse, malicious Internet users can implant backdoors
or malicious behaviors (e.g., denials of service, belief manipulation) by controlling only 0.1% of the
pre-training data (Zhang et al., 2024).

Data Quality in Post-training. The quality of data is also critical in post-training, particularly in
alignment of LLM responses toward human preference (Christiano et al., 2017; Bai et al., 2022b).
Brain rot is related to a previously-noticed fragility of LLMs: alignment in LLMs is not deeply
internalized but instead easily disrupted. Prior studies have shown the superficial nature of alignment:
It can be achieved using small amounts of high-quality data (Zhou et al., 2023; Chen et al., 2025;
Raghavendra et al., 2024), and therefore can be easily undone by jailbreaking (Zou et al., 2023) or
few-shot fine-tuning on common tasks (Qi et al., 2023). Even modest data shifts during preference
fine-tuning can dramatically affect safety, with models reverting to unsafe on unseen data (Wang
et al., 2025) or being implanted with malicious behaviors (Fu et al., 2024).

Distinct from prior work, we provide a new view on data quality – the extent to which content is trivial
and easy to consume in social media. The properties, conceptualized via tweet shortness/popularity
or content semantics, are not intuitively related to the cognitive capabilities that we expect LLMs
to master in learning. However, the resultant impact of such low-quality data is broad in multiple
dimensions and is persistent to post-hoc mitigation.

3 LLM BRAIN ROT HYPOTHESIS

In this section, we establish the LLM Brain Rot Hypothesis by designing controlled experiments.

3.1 CONTROLLED EXPERIMENT METHODOLOGY

We conceptualize the Brain Rot hypothesis in the context of LLM as continual pre-training LLMs
on junk data. We define junk data in two distinct measurable ways, based on which we subsample
a social-media dataset to create intervention (junk) and control datasets. As outlined in Fig. 1, we
use controlled experiments to test the hypothesis, i.e., contrasting the cognitive functions of the
two groups of LLMs: LLMs fed with junk and LLMs with control data. The essence of a controlled
experiment, rather than directly analyzing the junk intervention, stems from the fact that clean
fine-tuning could dramatically change LLM behaviors, e.g., safety (Qi et al., 2023). An effective
intervention should cause significant cognitive change with respect to the control group.

Defining Junk Data from the First Principle. Recalling Brain Rot is a consequence of Internet
addiction in human cognition, we define junk data as content that can maximize users’ engagement
in a trivial manner. Based on the principle, we propose two metrics to formulate junk data.
M1: Engagement Degree. As the proposed principle aligns with the design objective of Twitter’s
recommendation algorithm, we can follow the definition in (X Corp., 2023) to formulate the
engagement of a post as the number of likes, retweets, and replies. The association between the
algorithmic tweet feed and engagement was also evidenced by Milli et al. (2025). In addition,
from the marketing perspective, shortening tweets is a trivial method that can greatly improve the
engagement (Malhotra et al., 2011). Therefore, we augment the definition of engagement-based junk
standard to include two factors: popularity – the total number of likes, retweets, replies, and quotes;
length – the number of tokens in a tweet. More popular but shorter tweets will be considered to be
junk data, vice versa.
M2: Semantic Quality. One limitation of M1 is that it does not consider the content semantics at all.
For example, a well-written and concise tweet could gain a lot of attention and may not necessarily
result in a bad influence on human brains. Orthogonal to M1, we use semantic quality to define the
junk data. We draw inspiration from marketing research, where multiple strategies in composing
tweets have been effective in increasing the chance of retweeting. Typical tweet styles include using
attention words, such as hashtag, WOW, LOOK, or TODAY ONLY, that are capitalized to gain more
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attention (Malhotra et al., 2011; Suh et al., 2010). These composing styles do not encourage in-depth
thinking but draw attention, thereby matching the trivial property of junk data. In addition, some
content topics are also quite eye-catching but mindless. Together, we define junk data that include
superficial topics (like conspiracy theories, exaggerated claims, unsupported assertions or superficial
lifestyle content), and attention-drawing style (such as sensationalized headlines using clickbait
language or excessive trigger words).

Junk/Control Data Formula. Based on the two metrics, we subsample the 1-million public Twitter/X
posts to construct junk and control datasets, separately. The dataset was collected in 20101, which
includes detailed information like the number of retweets, etc. First, we filter the dataset to exclude
samples that are not encoded in ASCII. We then subsample data. For M1, we choose samples with a
length < 30 and a popularity of > 500 as junk data, and samples with a length > 100 and a popularity
of ≤ 500 as control data. As the maximal number of available control data tokens is 1.22 million, we
balance the number of tokens in junk data to the same scale. For M2, we prompt GPT-4o-mini to
classify a tweet as high-quality or junk. The prompt is given in Fig. 8. To maximize the difference
between junk and control data, we leverage the criteria from QuRating (Wettig et al., 2024) for the
high-quality data.
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Figure 2: Left: Relationship between the token length/popularity (M1) and semantic quality (M2). r
represents the Point-Biserial correlation. Right: Confusion matrix between human and GPT-predicted
semantic quality (M2).

M1 Blends Semantic and Non-Semantic Metrics. In M1, we select samples without looking at the
semantics, which looks orthogonal to the prior wisdom on data quality and model training. Therefore,
we are asking how the two metrics are correlated. In Fig. 2, we demonstrate the relation between
the two factors in M1 and M2 metrics, respectively. We notice that there is no strong correlation
between popularity and length. Neither is the Point-Biserial correlation between popularity and
the semantic quality. The observation strongly suggests that the non-semantic metric, popularity,
provides a quite new dimension in parallel to length or semantic quality. Meanwhile, token length
presents a strong correlation with M2 semantic quality. The correlation aligns with previous research
in LLM-as-a-Judge – LLMs prefer longer responses in selecting preference data for alignment (Zheng
et al., 2023; Saito et al., 2023; Hu et al., 2024). As a result, M1 metric is able to capture both
semantic characteristics (by token length) and the non-semantic ones (by popularity), providing a
novel perspective in data intervention.

M2 Data Quality Aligns with Human Preferences. In the right panel of Fig. 2, we compare the
labels predicted by GPT to humans’ preferences. The human labels are generated by 3 graduate
students on randomly sampled examples from the dataset. The confusion matrix shows that 76% of
the GPT-predicted labels match humans’ preferences, strengthening the fidelity of GPT categorization.

Baseline Models. Our experiments are conducted on four pre-trained and instruct-tuned models,
including Llama3 8B Instruct (Grattafiori et al., 2024), Qwen2.5 7B Instruct, Qwen2.5 0.5B In-
struct (Qwen et al., 2025), and Qwen3 4B Instruct (Yang et al., 2025). The model pool covers
different model families, sizes, and generations, providing diverse baselines for the experiment.

Training Recipe for Intervention. To intervene in LLMs with the junk datasets, we train the baseline
models in two steps: (1) We execute continuing pre-training by using the next-token prediction loss
on synthetic corpora that we construct with varying proportions of junk and control data. Training is

1https://huggingface.co/datasets/enryu43/twitter100m_tweets
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performed with full-parameter optimization, learning rate 1× 10−5, AdamW, cosine learning rate
schedule, bf16 precision, an effective batch size of 8, and 3 training epochs. (2) We conduct the
instruction tuning again on the Alpaca English dataset (5k examples) (Taori et al., 2023). The model
is fine-tuned for 3 epochs with learning rate 1 × 10−5, AdamW, cosine decay, bf16 precision, an
effective batch size of 16, and context length 2048. All model training and inferences are executed on
the NVIDIA H100 GPU.

Benchmarks. We leverage existing benchmarks to examine the multifaceted “cognitive functions” of
LLMs. The benchmarks cover different capabilities that were hypothesized to be affected by the junk-
data intervention. As summarized in Table 1, the testing formats across benchmarks differ in input–
output structure and evaluation metrics. Reasoning - ARC (AI2 Reasoning Challenge) (Clark et al.,
2018) presents 7,787 grade-school science problems (authored for human tests) in a multiple-choice
question-answering (QA) format, with performance measured by accuracy. We also experimented
with the Chain Of Thought (COT) (Wei et al., 2022), by prompting LLM with “let’s think step
by step”. Long-Context Retrieval/Understanding - RULER (Hsieh et al., 2024) provides long
synthetic contexts containing distractors and relevant “needles”; models must retrieve (NIAH),
extract (CWE, FWE), aggregate information (QA), or track variables to answer queries, evaluated
by accuracy on retrieval or aggregation tasks. In total, 13 tasks are included in the benchmark. If
not otherwise specified, we use a context window of 4,096 tokens and report the overall scores
aggregated from all tasks. Ethical Norms (Safety). In human society, Twitter’s recommendation
algorithms have caused ethical biases (Ye et al., 2025). Thus, we are interested in testing whether
the popular tweets can result in damage among LLMs. For that, we use two safety benchmarks.
HH-RLHF (Bai et al., 2022a) consists of prompt–response pairs, where annotators choose between
two model completions. AdvBench (Zou et al., 2023) supplies harmful instructions as prompts, and
models are judged on whether they comply, yielding a binary pass/fail safety score. Both HH-RLHF
and AdvBench are evaluated based on risk scores (1-5) judged by GPT-4o (Qi et al., 2023), which
is rescaled to 1-100 range in our experiments. Personality - TRAIT (Lee et al., 2024) Finally, as
engagement-driven ranking may amplify hostile emotions (Milli et al., 2025), we use TRAIT to probe
LLM personality tendencies via multiple-choice personality-inventory style items, with evaluation
focusing on correctness against reference keys and consistency across responses. TRAIT includes
Big Five traits (Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism) and
three socially undesirable traits (Psychopathy, Machiavellism, and Narcissism).

Table 1: Benchmarks for evaluating the cognitive functions of LLMs.
Cognitive Func. Benchmark Description

Reasoning ARC Visual program-induction puzzles on grids testing concept abstrac-
tion.

Memory & Multi-
tasking

RULER Benchmark the long-context understanding and retrieval of multiple
queries from long context.

Ethical Norms HH-RLHF &
AdvBench

Testing if LLMs follow harmful instructions.

Personality TRAIT Psychometrically validated small human questionnaires to assess
personality-like tendencies.

3.2 MAIN RESULTS: JUNK INTERVENTION AND COGNITIVE DECLINES ARE ASSOCIATED

Junk Intervention Effectively Results in Cognitive Decline. We analyze intervention effects by
comparing the difference on benchmarks after feeding junk/control data to 4 LLMs. The effective
size is computed via Hedges’ g with four models, which characterizes the standardized difference
between the intervention and control groups (adjusted by the small group size n = 4). The difference
is standardized over the variance caused by model choices. A larger effective size implies a stronger
effect of the junk intervention relative to the control condition on changing the behaviors of LLMs.
Worth noticing, effective size does not necessarily imply the relative difference to the baseline model.
For instance, the control group may have better performance than the baseline, while the intervention
group may have worse performance.
Effective sizes on different cognitive functions are shown in Fig. 3. Both M1 and M2 have non-trivial
effects (Hedges’ g > 0.3) on the reasoning and long-context capabilities. But the junk content
operationalized by engagement degree (M1) damages the functional cognitions (reasoning or long-
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Figure 3: Effective sizes of the proposed intervention. The dark gray/light gray/white areas indicate
trivial/non-trivial small/medium effects, respectively. ↓ indicates the smaller values are preferred.
Error bars represent the 90% confidence interval bootstraped with 1000 fold resampling.

Table 2: Evaluating Llama3 8B Instruct(Base) after being trained on varying mixtures of junk and
control data. Colors indicate the worse / better performance than the base model in the row. All
scores range from 0 to 100. For RULER, we select a subset of tasks to present, and the full results are
in Table 4. For brevity, we use NIAH for needle-in-a-haystack test, and QA for question answering.

Task Junk Ratio by M1 (engagment degree) Junk Ratio by M2 (semantic quality) Base
100% 80% 50% 20% 0% 100% 80% 50% 20% 0% -

Reasoning (ARC)
Easy Acc. 70.2 73.3 74.3 76.9 78.7 74.3 77.8 78.2 77.5 78.4 77.7
Challenge Acc. 41.6 43.9 44.7 46.5 47.8 42.6 47.9 47.7 47.4 47.4 47.5
Challenge (COT) Acc. 57.2 67.2 68.2 73.4 74.9 67.7 77.6 77.3 77.6 76.6 77.2

Long-Context (RULER)
Overall 71 81.6 86.1 88.5 90.5 86.2 92.9 93 93.4 93.8 93.9
NIAH-MK3 35.6 80.8 89.4 92.6 95.6 96.8 97.2 98.8 99.2 99.4 100
NIAH-MQ 97.2 95.3 96.4 99.2 99.9 94 99.2 99.8 99.5 99.7 99.9
NIAH-MV 77.8 65.9 79.5 83.9 83.2 68.6 87 87.8 89.8 94.5 97.8
Comm Word Ext (CWE) 52.3 63.2 64.1 81.6 84.4 68.2 94.7 97.3 96 96.8 91.8
Freq Word Ext (FWE) 81.8 77.2 83.3 84.7 90.5 89.7 95.3 92.3 94.7 93.2 91.9
QA (Hotpot) 41.6 46.6 52.2 55.4 58.6 51.2 61.2 58.8 60.6 61.4 64
QA (SQUAD) 57.1 62.9 67.8 69.3 74.3 67.6 76.9 76.8 76.2 77.1 77.9
Variable Tracking 22.4 78.7 94.1 87.6 91.5 86.6 98 99.4 99.2 98.6 98.3

Ethical Norm (Safety)
HH-RLHF Risk ↓ 70.8 53.6 45.8 63.6 62.8 70.2 68.8 65.8 65.8 61.8 57.2
AdvBench Risk ↓ 88.8 88.6 80.2 91.6 77.6 84.4 89.8 89.6 85.4 83.8 61.4

Personalities (TRAIT)
Narcissism ↓ 47 21.8 29.9 22.8 18.9 20.9 17.4 16.9 23.7 24.2 33.5
Agreeableness 64.3 67.9 71.4 68.5 73 82 74.2 69.9 71.6 70.6 75.6
Psychopathy ↓ 75.7 55.8 57.2 30 33.5 46.1 9.3 23.5 27.3 25.8 2.2
Machiavellianism ↓ 33 30.6 31.8 27 25.8 26.1 22.7 20.2 33.1 28.5 17.8
Neuroticism ↓ 28.7 23.8 22.7 23.3 16 22 23.5 21.1 31.1 26.4 33.5
Conscientiousness 89.8 88.6 89.7 86 85.1 88.8 90.8 85.7 87.1 87.5 89.2
Openness 70.1 72.8 67.6 53.7 63.9 73.2 59.1 55.6 59.4 56.5 52.5
Extraversion 54.1 40.1 44.9 39.5 48.7 46.4 37.9 38.6 40.8 40 26.4

context) and safety more significantly. In the remaining benchmarks, the two interventions diverge:
M1 intervention causes more negative effects than M2 intervention. Specifically, M1 gives rise
to safety risks, two bad personalities (narcissism and psychopathy), when lowering agreeableness.
Besides the bad effects, the positive ones can emerge with increased agreeableness, extroversion,
and openness, particularly under M2. The significant divergence between M1 and M2 implies that
engagement degree (M1) is not a proxy for the semantic quality (M2) but a new dimension in quality.

Dose-response of Junk Intervention on Llama3 8B Instruct. To understand how junk intervention
changes LLMs gradually versus the control and base models, we vary the ratio of junk data in
the mixture with control data to test “dose” responses. In Table 2, we summarize all benchmarks
after training with different portions of junk or control data: 100% (Junk), 80%, 50%, 20%, and
0% (Control). We also include baseline models (before intervention). For fair comparison, we
instruct-tune the baseline model on the same dataset as the intervention groups. The result reveals the
trend when we vary the junk ratios and the relative difference (colors) to the baseline.
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Impacts of Continual Pre-training. Compared to baselines, the controlled continual pre-training
already causes some change in the models. Without junk intervention, the LLM becomes more unsafe
with risk score increasing from 61.4 to 77.6 (M1) or 83.8 (M2). The impacts on personalities are
non-trivial but inconsistent. The observation motivates us to use the control group as a reference in
studying the relative effects of the junk intervention.
Reasoning. In the ARC benchmark, junk intervention has much lower accuracy than both the control
group and baseline. The gap is more significant for M1 than M2. The gaps are similar between the
easy and hard ones. In M2, the dose response is less smooth: Once a small portion of control data
(≥ 20%) is blended, performance is restored to the control condition. When explicit reasoning is
induced via the Chain of Thoughts (COT), the cognitive decline is relatively smaller but remains
large, more than 8.9 points.
Long-Context Understanding. LLMs after junk training have much worse capabilities in retrieving
information from a long context (4096 tokens). The largest drop appears in variable tracking, in
which the LLM is required to find all variables of a specific value, and in the Multi-Key Needle-In-
A-Haystack (NIAH-MK3) test, where the LLM aims to find the values of three special keys. The
junk-induced drop in M1 is more significant than that in M2. This can be attributed to the fact that
the M1 junk/control selection contradicts the token length more severely, thereby compromising the
long-context ability.
Ethical and Social Norms (Safety). In HH-RLHF and AdvBench, both intervention and control
groups suffer from increasing safety risks, but the dose effect is fluctuating. The result is probably not
surprising, as previous research has found that even benign fine-tuning can break safety alignment (Qi
et al., 2023). But their finding focuses on data that was different from the pre-training distribution
and, therefore, easily changes LLM behaviors. Instead, our study unveils the phenomenon on a more
general source of data, social media – similar data was used in some pre-training (Gao et al., 2020).
Personality. Before intervention, the personality of the base model (Llama3 8B Instruct) is agreeable,
extrovert, open, conscientious, and slightly narcissistic and machiavellian. With the increasing
M1 junk dose, the influence is contradictory. On the positive side, existing bad personalities (like
narcissism and machiavellianism) are amplified, along with the emergence of new bad ones like
psychopathy. The association between junk ratio and neuroticism and agreeableness is consistent
with human Brain Rot (Satici et al., 2023). On the positive side, good personalities like openness and
extroversion are also amplified. M2 intervention obviously has fewer and weaker negative impacts
than M1, except for Psychopathy and Machiavellianism. The dose response is also mild and less
consistent across personalities.

Key Takeaways

• Junk intervention has non-trivial effects, namely Brain Rot, on degrading reasoning, long-context
understanding/retrieval, and safety, and changing personalities (either bad or good).

• M1 (engagement) intervention presents distinct effects (particularly in safety and personalities)
versus M2 (quality) intervention, reflecting their inherent differences.

• In dose-response testing, M1 engagement intervention demonstrates more significant and
progressive impacts on reasoning and long-context capabilities than M2 intervention.

4 ANALYSIS ON BRAIN ROT EFFECTS

Focusing on Llama3 8B Instruct, we analyze the factors behind the Brain Rot and how it causes
reasoning failures.

Popularity Plays An Important Role. As the popularity presents a unique view in data selection
orthogonal to the length and semantic quality (referring to Section 3.1), it is essential to ask whether
their effects differ. Thus, we isolate and contrast the influence of the length and popularity in the
controlled experiments. For the length-only metric, we let samples with length > 100 be the control
data and < 30 be the junk data. For the popularity-only metric, we let samples with popularity > 500
and = 0 be the control and junk data, respectively. In Table 3, we found that only using popularity
or token length is not enough for fully capturing the M1 intervention effects, and the two factors
weigh differently in different tasks. Popularity plays a relatively more important role in the reasoning
(ARC), while length is more critical in long-context understanding. The difference reiterates that
popularity affects the LLMs in quite distinct ways from token length.
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Table 3: Ablation of the junk metrics in M1. ∆ represents the difference between Junk and Control.
Model ARC Challenge (COT) RULER AdvBench Risk ↓

Length Popularity M1 Length Popularity M1 Length Popularity M1

Control 75.2 70.7 74.9 90.1 83.9 90.5 61.2 64.8 77.6
Junk 65.2 54.1 57.3 73.2 70.2 71.0 89.8 71.2 88.8

∆ -10 -16.6 -17.6 -16.9 -13.7 -19.5 -28.6 -6.4 -11.2

Think step by step to answer the question:
A student wants to determine which hand soap kills more bacteria. Her teacher tells her to 
change only the type of hand soap. The type of bacterium tested must be the same. Only one 
variable is tested because it: A: speeds up the experiment. B: improves the reliability of the 
results. C: makes the graphs easier to read. D: ensures the students learn something.

Question

Now, think about what would happen if we changed 
multiple variables at once… Then step 2. A.

Skipping Steps

Step 1-2. Think about what would happen if we 
changed all variables at once. The answer is A.

No Plan

The answer is A.
No Thinking

Testing different bacteria with different hand 
soaps would not be a confounding variable, since 
confounding only happens with human participants.

Factual Error

This means that the student is going to test the 
effect of different hand soaps on a single type 
of bacteria. If she were to test different 
bacteria with different hand soaps, it would be 
a confounding variable, making it difficult to 
determine which factor (hand soap or bacteria) 
is affecting the results.

Reasoning over Plan

Let's break down the question step by step:
* The student wants to determine which hand soap 
kills more bacteria.
* The teacher tells her to change only the type 
of hand soap.
* The type of bacterium tested must be the same.

Planning

* The student wants to determine which hand soap 
kills more bacteria. 
* The student should try ways to kill bacteria.

Wrong Logic

The correct answer is B.
Final Answer

Figure 4: Demonstrations of desired COT and failure modes in answering questions from ARC.
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Figure 5: Failure categorization of
COT reasoning on ARC Challenge.

Reasoning Failure Modes. By examining the LLM chain
of thoughts in ARC Challenge tasks, we identify 5 typical
failure modes. Three modes are related to thought skip-
ping where the thinking structure is disrupted, resulting in
a wrong final answer.

• No Thinking: The model did not think before answering.

• No Plan: The model did not make a step-by-step break-
down of the problem before thinking.

• Skipping Steps in Plan: The model begins reasoning with
valid steps, but does not complete the full planned steps.

We also found two classic failure modes in reasoning:

• Wrong Logic: The thinking plan is logically flawed.

• Factual Error: The model makes incorrect claims about the subject matter.

Note that some modes are conditioned. Factual Error and No Plan are conditioned on the presence
of thoughts. Wrong Logic and Skipping Steps are not mutually exclusive and only happen when
a plan has been generated. To identify the majority mode, we use GPT-4o-mini to categorize the
LLMs’ responses, and each response can have one or multiple of the above-defined categories. The
categorization results are shown in Fig. 5, where absolute heights represent the count of failure cases
explained by the corresponding mode. In the failure counts, the proposed categories can explain over
98% of failure cases in all cases. Almost all failure cases are related to thought skipping. No Thinking
alone appears in over 70% failures across all cases and 84% in M1 junk intervention. Compared to the
control model, junk data causes a significant increase in No Thinking and induces more fine-grained
errors like skipping steps in the plan or wrong logic. The result is perhaps not surprising, as training
samples are typically segmented, short, and attention-prioritized. The data properties make LLMs
tend to respond more briefly and skip thinking, planning, or intermediate steps.
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5 BRAIN ROT IS PERSISTENT AFTER MITIGATION
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Figure 6: Failure categoriza-
tion of COT on ARC Chal-
lenge before/after applying
reflective reasoning.

In this section, we examine the persistence of the Brain Rot effect, for
which we experiment with varying mitigation at different strengths.
By default, we use Llama3 8B Instruct after 100% junk intervention.

Training-free Mitigation via Reflective Reasoning. As thought
skipping could be an important factor for Brain Rot (see Section 4),
we attempt to understand if this is a superficial failure. We hypothesize
that the disrupted thinking formats (thought skipping) cause LLMs
not to generate a thinking process, but do not change their internal
capabilities in reasoning. To test the hypothesis, we adopt a reflective
reasoning method where the intervened LLM is prompted with the
failure mode analysis and is required to generate a new response fixing
the reasoning issues. Here, we use a stronger external model (GPT-4o-
mini) to provide the failure critique, which is not realistic in practice
but is rational in testing the hypothesis, excluding the confounding
factor caused by noisy critiques. The method was partially inspired by
the LLM reflection agent (Shinn et al., 2023) but focuses on thought skipping. In Fig. 6, we compare
methods with or without reflection on the ARC Challenge (COT) tasks. Although reflection effectively
reduces the No-Thinking errors, more errors like no thinking plan or factual errors emerge. As a
result, the method only slightly mitigates the decline by 1.1%. Therefore, we reject the hypothesis
and conclude that Brain Rot is not superficial damage and may have been internalized.

2 4
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Figure 7: Scaling post-hoc instruction tuning
(IT) and continual control training. Dashed
lines indicate the baseline models.

Brain Rot is Persistent Against Post-hoc Tuning.
Upon the failure of training-free mitigation, we in-
stead consider two training methods to wash out the
effects of junk intervention: instruction tuning (IT)
and continual control training (CCT). Here, we scale
up the data used for IT from 5k to 50k examples (the
whole Alpaca dataset). CCT uses control data scaled
from 0 to 1.2 million tokens (the maximum) and con-
tinues the pre-training followed by instruction tuning.
In Fig. 7, we observe a more obvious scaling effect by
IT than by CCT. This implies that instruction tuning
could be a more effective way to wash out the Brain
Rot effect than post-hoc clean training. However, the
effect is limited. Even if we used up all instruction
data, consisting of 4.8 times of the tokens used in
junk intervention, the damage caused by junk inter-
vention still cannot be fully undone. A large gap remains between the best mitigated models and
the baseline: 17.3% (ARC-C COT), 9% (RULER), 17.4% (AdvBench) absolute difference. The gap
implies that the Brain Rot effect has been deeply internalized, and the existing instruction tuning
cannot fix the issue. Stronger mitigation methods are demanded in the future.

6 CONCLUSION

In this work, we introduced and empirically validated the LLM Brain Rot Hypothesis, demonstrating
that continual exposure to junk data—defined as engaging (fragmentary and popular) or semantically
low-quality (sensationalist) content—induces systematic cognitive decline in large language models.
The decline includes worse reasoning, poorer long-context understanding, diminished ethical norms,
and emergent socially undesirable personalities. Fine-grained analysis shows that the damage is
multifaceted in changing the reasoning patterns and is persistent against large-scale post-hoc tuning.
These results call for a re-examination of current data collection from the Internet and continual
pre-training practices. As LLMs scale and ingest ever-larger corpora of web data, careful curation
and quality control will be essential to prevent cumulative harms. Limited by the scope of the paper,
we leave it as an open question how popular tweets or other junk data change the learning mechanism,
resulting in cognitive declines. Answering the question is essential for building stronger defense
methods in the future.
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7 STATEMENTS

Ethical Statements. Though our work unveils novel risks to LLM pre-training that may not be
mitigated using existing safety countermeasures, we intend to use the results as an alert to the
community. Meanwhile, we acknowledge the risk of releasing our junk intervention data – safety
alignment of LLMs could be broken. We will add a data use agreement for people requesting the
code and ask for responsible use for research purposes only. Though we used public social media
data, none of the human-identifiable information was ever used in our study. Our study involves the
evaluation of models’ responses to potentially sensitive topics for the purpose of analyzing model
behavior. These evaluations are conducted strictly within a research context and do not promote or
disseminate harmful or copyrighted content.

Reproducibility Statement. We comprehensively present the details of experiments in the main
content, including models, training recipe, and hardware. All evaluations are done using open-source
code and datasets. Source code for data preparation and testing will be released upon acceptance if
they are not from an online codebase. All data will be released upon acceptance as well. We hope
that this level of transparency will support further research and development based on our work.

Disclosure of LLM Use in Paper Preparation. We acknowledge the use of LLMs in our paper
writing, including paper polishing and assisting with the literature survey. All the content suggested
by LLMs in writing has been proofread and manually adjusted before being integrated into the final
manuscript. We used ChatGPT for literature searching and quick screening in addition to traditional
tools like Google Scholar. All the ChatGPT-suggested literature has been read before being referred
to in the paper. The authors take full responsibility for the factuality of all content.
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A ADDITIONAL RELATED WORK

Brain Rot Effects. Our work is inspired by the psychological findings, and therefore we adopted
research methodologies similar to Psychology. A study on 15-16 year olds published in the Journal
of American Medical Association found “significant association between higher frequency of modern
digital media use and subsequent symptoms of ADHD” (Ra et al., 2018). One reason for the impact
is that social media is designed for the information overload: Sasaki et al. found that the more
the number of Twitter friends you have, the higher the risk of information overload (Sasaki et al.,
2015). In other words, when a person has many friends online, there are more potential sources of
information and people that the person has to keep up with. Media multitasking is also associated
with distractibility and increased prefrontal activity in adolescents and young adults (Moisala et al.,
2016). Recently, Brain Rot was connected with GenAI. Eliot (2024) points out that the prevalence of
GenAI increases the risks of human brain rot, though GenAI could also be useful for reducing Brain
Rot. Yet, there is no study on whether LLMs can get brain rot like humans. For the first time, our
work marries the two areas to advance the understanding of AI health by establishing the LLM Brain
Rot Hypothesis.

B EXPERIMENTAL DETAILS

Controlled Experiment. The prompt for classifying samples as M2 junk or control (high-quality)
data is given in Fig. 8. The continual pre-training is done using the Llama Factory repository2, and
Instruction Tuning follows the official Alpaca respository3.

Evaluation. We use the online source code to do the evaluations of HH-RLHF (red-team-attempts
data only)4 and AdvBench5. ARC and RULER are evaluated using the Eleuther AI lm-evaluation-
harness repository6. The TRAIT benchmark is from their official codebase7.

Reflection. We first apply the prompt in Fig. 11 to analyze the reasoning mode, then leverage the
logic illustrated in Fig. 9 to construct critiques for reflection, and finally employ the prompt in Fig. 10
to enforce reflective reasoning in CoT.

Categorizing Failure Mode. We use the prompt in Fig. 11 to automatically categorize the reasoning
failure modes.

C ADDITIONAL EXPERIMENTS

In Tables 4 to 7, we present the comprehensive results of all sub-tasks. Among all four models,
Llama3 8B Instructis most sensitive to the junk intervention, and Qwen3 4B is the least sensitive.

Instruction Tuning Is Essential After Continual Pre-Training (CPT). In Table 8, we ablate
instruction tuning (IT) in the intervention experiments. We evaluated two tasks, ARC and RULER,
using the M1 intervention. Obviously, either control or junk CPT will cause significant degradations
across three tasks, and IT can significantly mitigate them. The mitigation effectiveness suggests that
the Brain Rot damages instruction following ability a lot. It also suggests that instruction tuning
is necessary in our benchmark to avoid the confounding factor of instruction failures. Despite the
significant drops by both interventions, the control intervention is more recoverable after IT. When
the model was trained on control data (0% Junk), the IT can reduce the gap to the baseline. In the
ARC, the gap is reduced from 11.4 to 5.2 (challenge). In the ARC Easy, the gap is reduced more
steeply, from 9.8 to 2.1. Compared to the control intervention, the junk intervention remains a large
gap after IT to the baseline – 12.3 (Challenge) and 9.3 (Easy).

The Different Effects of Instruction Tuning Among Tasks. In ARC, the difference between control
and junk is even larger after IT: 5.2 → 7.1 (ARC Challenge) and 6.3 → 7.2 (ARC Easy). The

2https://github.com/hiyouga/LLaMA-Factory
3https://github.com/tatsu-lab/stanford_alpaca
4https://github.com/anthropics/hh-rlhf
5https://github.com/LLM-Tuning-Safety/LLMs-Finetuning-Safety
6https://github.com/EleutherAI/lm-evaluation-harness
7https://github.com/pull-ups/TRAIT
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You are a content quality classifier. Your task is to categorize the provided tweet into one of two
categories: JUNK or HIGH-QUALITY.
## Classification Criteria:
JUNK - Classify as junk if the tweet contains:

• Conspiracy theories, exaggerated claims, or unsupported assertions

• Sensationalized headlines using clickbait language or excessive trigger words

• Extremely brief content that lacks meaningful context or substance

• Misleading information or obvious misinformation

• Spam-like repetitive phrases or promotional content

• Superficial lifestyle content that flaunts personal success, exotic vacations, perfect relationships,
or idealized appearances

HIGH-QUALITY - Classify as high-quality if the tweet:

• Presents factually accurate, well-sourced information

• Demonstrates thoughtful analysis or insight that requires careful consideration

• Provides educational value or substantive commentary on important topics

• Shows clear reasoning and logical structure despite character limitations

• Contributes meaningfully to discourse or knowledge

## Instructions:

• Read the tweet carefully

• Determine which category best fits based on the criteria above

• Respond with only the classification: "JUNK" or "HIGH-QUALITY"

• Do not provide explanations unless specifically requested

## Tweet to classify: <Twitter Post>

Figure 8: Prompt for GPT classifying samples as junk or control (high-quality) in M2. The criteria
for high-quality data are modified from (Wettig et al., 2024).

1 if mode == "NO_REASONING":
2 critiques.append("- The answer lacks any reasoning or explanation. You should provide step-by-step

thinking to justify your choice.")
3
4 elif mode == "NO_REASONING_OUTLINE":
5 critiques.append("- The reasoning lacks a clear outline or structured approach. You should break down the

problem into numbered steps or clearly outlined reasoning phases.")
6
7 elif mode == "THOUGHT_SKIPPING":
8 if i < len(mode_reasons) and mode_reasons[i]:
9 reason = mode_reasons[i] if isinstance(mode_reasons[i], str) else str(mode_reasons[i])

10 critiques.append(f"- The reasoning skips important steps: {reason}. Make sure to complete each step of
your planned approach before moving to the next.")

11 else:
12 critiques.append("- The reasoning appears to skip important intermediate steps. Make sure to complete

each step of your planned approach before moving to the next.")
13
14 elif mode == "FACTUAL_ERROR":
15 if i < len(mode_reasons) and mode_reasons[i]:
16 specific_errors = mode_reasons[i] if isinstance(mode_reasons[i], list) else [mode_reasons[i]]
17 for error in specific_errors:
18 if error: # Only add non-empty errors
19 critiques.append(f"- Factual error identified: {error}. Please verify and correct this

information.")
20
21 elif mode == "WRONG_LOGIC":
22 if i < len(mode_reasons) and mode_reasons[i]:
23 specific_errors = mode_reasons[i] if isinstance(mode_reasons[i], list) else [mode_reasons[i]]
24 for error in specific_errors:
25 if error: # Only add non-empty errors
26 critiques.append(f"- Logical error identified: {error}. Please reconsider this reasoning step.

")

Figure 9: Python snippet of the critique-generation function, designed for reflective reasoning based
on failure-mode analysis.

observation implies inherent drops in the cognitive functions instead of simply instruction compliance.
However, in RULER, IT can effectively reduce the gap: 51.1 → 19.1. The potential cause is that
the RULER tasks do not require complex thinking but only basic instruction following and context
retrieval – capabilities closely related to IT.
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Revise the draft answer using the critiques. Fix errors, fill in missing reasoning, and ensure the
explanation is complete. Finally, return the letter or number of the option as your answer like ‘The
answer is the letter or number of the option‘
Query: <query>
Options: <options>
Draft Answer: <draft>
Critiques: <critiques>
Revised Answer:

Figure 10: Prompt for reflection where we use the critiques to guide the revision of the answer.

1
2 class HasReasoning(dspy.Signature):
3 """Determine if the model response contains reasoning steps."""
4 model_response: str = dspy.InputField()
5 has_reasoning: bool = dspy.OutputField()
6
7 class HasReasoningOutline(dspy.Signature):
8 """Determine if the model response contains reasoning outline steps (explicitly numbered) before providing

detailed reasons."""
9 model_response: str = dspy.InputField()

10 has_reasoning_outline: bool = dspy.OutputField()
11
12 class HasSkipThoughts(dspy.Signature):
13 """In the reasoning steps of model response, check if there are any skipped thoughts.
14 Example of thought skipping:
15 model response: "Good question. Let’s think about steps.\n1. Identify candidates; 2. Compare their

weights.\nHydrogen and Carbon are possible candidates. The answer is B."
16 reason: The reasoning only finished the planned step 1, but skipped the step 2."""
17 model_response: str = dspy.InputField()
18 has_skip_thoughts: bool = dspy.OutputField()
19
20 class FactualErrorInReasoning(dspy.Signature):
21 """In the reasoning steps (instead of final answer) of model response, check if there are any factual

errors."""
22 query_to_model: str = dspy.InputField()
23 model_response: str = dspy.InputField()
24 identified_factual_errors: List[str] = dspy.OutputField()
25 has_factual_error: bool = dspy.OutputField()
26
27 class HasWrongLogic(dspy.Signature):
28 """Read model response for the outline the steps taken to arrive at the conclusion. Check if there are any

wrong logic errors in the outline."""
29 query_to_model: str = dspy.InputField()
30 model_response: str = dspy.InputField()
31 identified_logic_errors: List[str] = dspy.OutputField()
32 has_logic_error: bool = dspy.OutputField()

Figure 11: DSPy (Khattab et al., 2023) signatures for classifying the failure mode via prompting
LLMs. The green comments are used as prompts for LLMs, and InputFied/OutputField define the
input and output variables to LLM queries, respectively.
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Table 4: Llama3 8B Instruct.
Task Junk Ratio by M1 (engagment degree) Junk Ratio by M2 (semantic quality) Base

100% 80% 50% 20% 0% 100% 80% 50% 20% 0% -

Reasoning (ARC)
Easy Acc. 70.2 73.3 74.3 76.9 78.7 74.3 77.8 78.2 77.5 78.4 77.7
Challenge Acc. 41.6 43.9 44.7 46.5 47.8 42.6 47.9 47.7 47.4 47.4 47.5
Challenge (COT) Acc. 57.2 67.2 68.2 73.4 74.9 67.7 77.6 77.3 77.6 76.6 77.2

Long-Context (RULER)
Overall 71 81.6 86.1 88.5 90.5 86.2 92.9 93 93.4 93.8 93.9
NIAH-MK1 86.4 93.6 96 98.8 98.6 98.6 98.8 98.6 99.6 99.8 99.8
NIAH-MK2 74.4 97.2 96.6 99 99.2 99.8 99.8 99.8 99.6 99.6 99.8
NIAH-MK3 35.6 80.8 89.4 92.6 95.6 96.8 97.2 98.8 99.2 99.4 100
NIAH-MQ 97.2 95.3 96.4 99.2 99.9 94 99.2 99.8 99.5 99.7 99.9
NIAH-MV 77.8 65.9 79.5 83.9 83.2 68.6 87 87.8 89.8 94.5 97.8
NIAH-S1 98.8 100 100 99.8 100 100 100 100 100 100 100
NIAH-S2 100 99.8 100 99.6 100 100 99.8 100 100 100 100
NIAH-S3 97.6 99.6 99.8 99.6 100 100 100 100 100 100 100
Comm Word Ext (CWE) 52.3 63.2 64.1 81.6 84.4 68.2 94.7 97.3 96 96.8 91.8
Freq Word Ext (FWE) 81.8 77.2 83.3 84.7 90.5 89.7 95.3 92.3 94.7 93.2 91.9
QA (Hotpot) 41.6 46.6 52.2 55.4 58.6 51.2 61.2 58.8 60.6 61.4 64
QA (SQUAD) 57.1 62.9 67.8 69.3 74.3 67.6 76.9 76.8 76.2 77.1 77.9
Variable Tracking 22.4 78.7 94.1 87.6 91.5 86.6 98 99.4 99.2 98.6 98.3

Ethical Norm (Safety)
HH-RLHF Risk ↓ 70.8 53.6 45.8 63.6 62.8 70.2 68.8 65.8 65.8 61.8 57.2
AdvBench Risk ↓ 88.8 88.6 80.2 91.6 77.6 84.4 89.8 89.6 85.4 83.8 61.4

Personality (TRAIT)
Narcissism ↓ 47 21.8 29.9 22.8 18.9 20.9 17.4 16.9 23.7 24.2 33.5
Agreeableness 64.3 67.9 71.4 68.5 73 82 74.2 69.9 71.6 70.6 75.6
Psychopathy ↓ 75.7 55.8 57.2 30 33.5 46.1 9.3 23.5 27.3 25.8 2.2
Machiavellianism ↓ 33 30.6 31.8 27 25.8 26.1 22.7 20.2 33.1 28.5 17.8
Neuroticism ↓ 28.7 23.8 22.7 23.3 16 22 23.5 21.1 31.1 26.4 33.5
Conscientiousness 89.8 88.6 89.7 86 85.1 88.8 90.8 85.7 87.1 87.5 89.2
Openness 70.1 72.8 67.6 53.7 63.9 73.2 59.1 55.6 59.4 56.5 52.5
Extraversion 54.1 40.1 44.9 39.5 48.7 46.4 37.9 38.6 40.8 40 26.4

Table 5: Qwen 2.5 7B.

Task Junk Ratio by M1 (engagment degree) Junk Ratio by M2 (semantic quality) Base
100% 80% 50% 20% 0% 100% 80% 50% 20% 0% -

Reasoning (ARC)
Easy Acc. 74.3 76.5 78 77.6 79.1 77.4 78.6 79.5 79.7 80 80
Challenge Acc. 45.6 48.6 48.7 48.4 51.4 48.3 50 49.6 49.8 51.5 50.7
Challenge (COT) Acc. 83.5 86.4 87.2 87.5 88.4 86 87.9 88.6 88.6 88.6 88.1

Long-Context (RULER)
Overall 88.6 91.5 92.1 92.5 92.2 92.5 93.4 93.3 93.7 93.6 93.3
NIAH-MK1 99.6 99.6 100 100 100 100 100 100 100 100 100
NIAH-MK2 99 99.2 99.4 99.6 99.2 99.6 100 99.8 100 100 100
NIAH-MK3 97.4 99.6 99.4 99 99.2 99.8 99.4 99.4 99.4 99.6 99.2
NIAH-MQ 99.2 99.7 99.9 99.8 99.9 100 100 100 99.9 100 100
NIAH-MV 77.5 81.4 79.4 92.1 80.2 77.4 81.7 82.5 83.3 82.3 80.4
NIAH-S1 100 100 100 100 100 100 100 100 100 100 100
NIAH-S2 100 100 100 100 100 100 100 100 100 100 100
NIAH-S3 98.8 99.6 100 99.8 100 100 100 100 100 100 100
Comm Word Ext (CWE) 80.6 94.4 93 93.4 95.1 93.8 97.2 97.7 98.3 98.5 98.9
Freq Word Ext (FWE) 82 90.4 91.5 83 92.7 92.6 94.1 93.7 95 94.5 93.9
QA (Hotpot) 54.6 54.8 57 58.6 58.8 64 62.4 61.8 62.2 62.4 61.2
QA (SQUAD) 73.9 74.6 78.5 77.4 76.7 76.6 79.7 79.1 80.5 79.5 80.2
Variable Tracking 88.7 95.7 98.5 99.7 97.2 99.4 99.3 99.1 99.7 99.6 99.9

Ethical Norm (Safety)
HH-RLHF Risk ↓ 61.8 63.8 64 56 55.2 52.4 60.2 53.4 53 50 53.2
AdvBench Risk ↓ 44.4 58.4 61.4 39 45.6 36.4 46.2 34.6 34.8 30.8 37.8

Personality (TRAIT)
Narcissism ↓ 13.3 17.1 13.6 15.5 16.4 13.1 13.2 13.4 12.3 14.2 9.8
Agreeableness 82 86.2 84.4 84.4 85.6 85.9 85.4 85.1 85.7 84.3 84.8
Psychopathy ↓ 1.1 0.9 0.9 0.9 0.2 0.4 0.2 0.1 0.2 0.4 0.5
Machiavellianism ↓ 21.8 28.6 25.2 25.3 27.6 22.2 22.6 22.2 23 24.2 20.4
Neuroticism ↓ 22.9 28.1 27 24.9 24.4 23.7 23.3 25.7 23.1 24.3 23.3
Conscientiousness 92 93.1 90.4 92.1 92.5 91 91.6 91.2 90.2 90.4 90.3
Openness 61 66.7 65.2 68.2 67.5 68.5 66.1 63.5 64.9 62.6 60
Extraversion 31.5 30.5 31.3 33.8 33 35.4 31.9 31.7 33.1 30.6 33.1
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Table 6: Qwen 2.5 0.5b .

Task Junk Ratio by M1 (engagment degree) Junk Ratio by M2 (semantic quality) Base
100% 80% 50% 20% 0% 100% 80% 50% 20% 0% -

Reasoning (ARC)
Easy Acc. 51.3 52.8 53.9 55.1 58 57.1 57.3 57 57.4 56.4 58.9
Challenge Acc. 30 27.8 28.8 28 29.8 29.8 29.9 29.8 30.6 29.6 29.9
Challenge (COT) Acc. 31.4 32.8 33.4 32.5 37.3 41 42 41.2 42.2 41.3 43.3

Long-Context (RULER)
Overall 47.6 57.7 61.3 64.3 67 71.3 72.4 73.1 73.8 74.4 76.8
NIAH-MK1 66 85.6 91.6 90.6 88 97.8 95.6 97.8 98.2 97.4 99.8
NIAH-MK2 29.2 43 52.8 48.4 54.8 78.2 81.6 80.2 85.2 86.6 91
NIAH-MK3 2 6.4 7.6 14.4 16.2 19.8 25 26.4 17.8 21.4 33.4
NIAH-MQ 77.1 75.4 80.5 79.7 87.7 88.1 86.2 89.3 89.4 87.8 90.6
NIAH-MV 76.1 79.8 86.9 86.6 87.4 81.5 87.6 91.5 89.8 91.3 93.7
NIAH-S1 99.6 100 100 100 100 100 100 100 100 100 100
NIAH-S2 98.6 99.8 100 98.6 99.6 96.6 95.8 98.2 99.4 99.6 99.8
NIAH-S3 12.6 91.6 95.4 99.4 98.8 96.8 98 99 98.6 99 99.8
Comm Word Ext (CWE) 33.9 44.5 40.6 47.1 56.5 56.4 58.2 56.2 57 55.8 59.9
Freq Word Ext (FWE) 35.3 32.6 23.6 32.2 44.3 50.6 56.4 50.7 53.2 54.5 55.6
QA (Hotpot) 22.8 28.6 27.4 30.6 32.6 35.2 33 31.4 32.8 32.4 36.2
QA (SQUAD) 35.3 46.9 47.4 52.4 51.1 52.7 57.3 57 58 59.2 58.2
Variable Tracking 29.9 15.8 42.6 55.7 54.2 73.4 66.6 72.8 79.4 82.2 79.9

Ethical Norm (Safety)
HH-RLHF Risk ↓ 70 67.6 69.8 62.4 64 71 65.2 64.6 68 65.2 63
AdvBench Risk ↓ 88 80.4 85.4 77.4 71 79.6 73.6 80.8 76 74.4 67

Personality (TRAIT)
Narcissism ↓ 30 21.9 17.8 23.9 22.8 21.5 21.4 21.7 22.7 22.5 20
Agreeableness 72.8 75.4 82.2 79 74.7 81.6 79 78 75.3 75.9 71.6
Psychopathy ↓ 12.2 6.9 5.2 12 9.7 8.1 11 12.5 8.2 8 9.5
Machiavellianism ↓ 25.2 26.9 25.2 29.4 29 28.7 32.2 28 29.1 29.7 26.7
Neuroticism ↓ 24.8 32.2 31.1 29.1 32.6 26.3 32 29.2 29.5 28.7 27.2
Conscientiousness 84.8 85 91.2 88.3 91.7 89.4 89.4 89.7 91.1 92.1 89.6
Openness 75.5 75.3 72.5 77.3 67.3 72.9 75.2 73.6 72.9 73.2 61
Extraversion 42.4 41.6 34.1 37.8 28.9 33.6 35.7 33.3 33 32.2 34.6

Table 7: Qwen 3 4B.

Task Junk Ratio by M1 (engagment degree) Junk Ratio by M2 (semantic quality) Base
100% 80% 50% 20% 0% 100% 80% 50% 20% 0% -

Reasoning (ARC)
Easy Acc. 51.7 54.3 53.1 61.7 52.3 79.6 80 80.3 80.6 80.6 68.1
Challenge Acc. 37.7 41.6 40.8 43.9 41.5 51.1 53.8 53.4 52.9 53.4 44.3
Challenge (COT) Acc. 86.4 85.8 88.2 87.7 87.7 89.7 90.8 90.8 89.9 90.4 89.9

Long-Context (RULER)
Overall 93.3 92.9 93.8 94.2 94.2 95.3 95.3 95.3 95.2 95.4 95
NIAH-MK1 99.8 99.8 100 100 100 100 100 100 100 100 100
NIAH-MK2 100 100 99.6 99.8 100 100 100 100 100 100 100
NIAH-MK3 100 99.8 99.8 99.8 99.6 100 100 100 100 100 100
NIAH-MQ 100 100 100 100 100 100 100 100 100 100 100
NIAH-MV 86.6 81.2 85.7 91 87.2 98.2 98.3 98.8 97 97.2 97.5
NIAH-S1 100 100 100 100 100 100 100 100 100 100 100
NIAH-S2 100 100 100 100 100 100 100 100 100 100 100
NIAH-S3 100 99.4 99.8 100 100 100 100 100 100 100 100
Comm Word Ext (CWE) 99.1 99.2 99.7 99.9 99.8 99.8 99.5 99.8 99.9 100 99.9
Freq Word Ext (FWE) 94.3 92.5 96.4 97.8 98.4 97.5 98.9 98.1 98.7 98.5 98.5
QA (Hotpot) 58 59.4 60 61 60.8 65 64.2 63.8 63.8 63.6 59.6
QA (SQUAD) 75.4 76.5 78.1 75.5 78.8 78.5 78.4 78.5 78 80.4 79.5
Variable Tracking 99.8 99.6 100 100 100 100 100 100 100 100 100

Ethical Norm (Safety)
HH-RLHF Risk ↓ 53.8 51.8 51.4 56 51.8 46 49.2 53.2 51 48.6 40.2
AdvBench Risk ↓ 46.4 39.4 39.4 52.8 40.8 26.2 28.8 36.8 35.4 33.8 23.2

Personality (TRAIT)
Agreeableness 79.2 74.2 78.9 81.8 74.9 83.8 82.2 81.6 81.1 80.9 55.9
Conscientiousness 90.6 85.8 87.5 90.7 89.9 91.4 91.5 92 91.3 90.1 53.1
Extraversion 36.9 43.4 35.3 40.5 41.5 37.2 37.1 35.1 34.9 36.1 37.9
Neuroticism ↓ 34.5 37.8 30.6 25.9 33.2 30.5 27.7 27.1 29.1 27.4 45.1
Openness 70.4 65.1 65.4 69.2 63.5 68.6 67.6 66.5 66 65.9 43.3
Psychopathy ↓ 2.1 4.7 1.6 1.7 1.8 1.2 0.8 0.5 0.5 0.6 21.5
Machiavellianism ↓ 26.1 27.3 21 19.3 23.2 18.6 15.6 14.1 15.2 15.9 48
Narcissism ↓ 19.9 21.1 13.1 14.5 17.2 12.1 9.5 8.9 9.7 8.7 27.4
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Table 8: Instruction tuning (IT) after continual pretraining (CPT) can mitigate the M1 junk intervention
on the ARC benchmark. The baseline model represents Llama3 8B Instruct.

Junk Ratio ARC Challenge ARC Easy RULER Overall
CPT CPT+IT CPT CPT+IT CPT CPT+IT

100% 36.60 40.87 65.32 72.10 29.58 71.75
80% 38.65 43.09 68.35 74.12 55.34 81.65
50% 35.75 44.20 66.67 73.91 64.35 85.23
20% 43.77 47.70 72.22 77.23 78.22 88.28
0% 41.81 47.95 71.59 79.34 80.66 90.94

Baseline 53.2 53.2 81.4 81.4 91.3 91.3
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