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ABSTRACT

Machine Learning (ML) in low-data settings remains an underappreciated yet cru-
cial problem. This challenge is pronounced in low-to-middle income countries
where access to large datasets is often limited or even absent. Hence, data aug-
mentation methods to increase the sample size of datasets needed for ML are
key to unlocking the transformative potential of ML in data-deprived regions and
domains. Unfortunately, the limited training set constrains traditional tabular syn-
thetic data generators in their ability to generate a large and diverse augmented
dataset needed for ML tasks. To address this technical challenge, we introduce
CLLM, which leverages the prior knowledge of Large Language Models (LLMs)
for data augmentation in the low-data regime. While diverse, not all the data gen-
erated by LLMs will help increase utility for a downstream task, as for any gener-
ative model. Consequently, we introduce a principled curation process, leveraging
learning dynamics, coupled with confidence and uncertainty metrics, to obtain a
high-quality dataset. Empirically, on multiple real-world datasets, we demonstrate
the superior performance of LLMs in the low-data regime compared to conven-
tional generators. We further show our curation mechanism improves the down-
stream performance for all generators, including LLMs. Additionally, we pro-
vide insights and understanding into the LLM generation and curation mechanism,
shedding light on the features that enable them to output high-quality augmented
datasets. CLLM paves the way for wider usage of ML in data scarce domains and
regions, by allying the strengths of LLMs with a robust data-centric approach.

1 INTRODUCTION

No data, No Machine Learning. Machine learning (ML) has transformed numerous industries, but
its wider adoption is hindered by a pervasive roadblock: insufficient data. Specifically, the use of
ML algorithms presumes the availability and access to large datasets for training, be it in the form of
labeled or unlabeled data. Unfortunately, real-world domains are often data scarce: (i) in healthcare
and finance, collecting annotations can be expensive or practically impossible; (ii) in developing
and low-to-middle income countries (LMICs), digital infrastructure (such as electronic healthcare
records (EHRs)) can be limited or nonexistent (Ade-Ibijola & Okonkwo, 2023; Asiedu et al., 2023;
Owoyemi et al., 2020; Mollura et al., 2020; Alami et al., 2020; Ciecierski-Holmes et al., 2022) and
(iii) within large datasets, there can be (ethnic) minorities that are underrepresented. This lack of
data has serious consequences: to sideline these settings to the peripheries of ML advancements
and prevent the development of accurate models. How can we build a reliable ML model in this
low-data regime, where we have so few samples? Solving this problem is a major opportunity that
would unlock the potential of ML across society, domains, and regions.

Aim. To address this important yet undervalued low-data problem, we aim to augment the small
labeled dataset (n < 100) with synthetic samples. We focus on tabular data, as defining aug-
mentations is non-trivial and can easily result in nonsensical or invalid samples. Moreover, tabular
domains like healthcare (of value in LMICs) are often where data scarcity is acute.

Related work. Data augmentation is a widely used and different approach to address data scarcity in
tabular data contexts. Methods are either based on generative models (Ghosheh et al., 2023; Biswas



Under review as a conference paper at ICLR 2024

o= G

Dirain ST Generate
/ N Diyn
S/ \—’ 2 — —

Curator #
Learning

dynamics 2

The dataset consists of [data description].
Background yse your prior knowledge about [data background]

In-Context These are representative examples: o
examples  (example 1), (example 2), (example 3) ...
. =}
Instructions G e eatre it formating gideie] ol modet
Figure 1: CLLM uses a small dataset Di.ain and a frozen black-box LLM to generate a larger synthetic set
Dgyn. The curator computes the learning dynamics of samples in Dsyy,, assessing samples based on their
aleatoric uncertainty and predictive confidence, then curates Dsy,, with the goal that a downstream model
trained on the curated Dcyratea Will have improved performance.

et al., 2023; Wang & Pai, 2023; Machado et al., 2022; Tanaka & Aranha, 2019) such as GANs
(Xu et al., 2019), VAEs (Xu et al., 2019), Normalizing Flows (Papamakarios et al., 2021), Score-
based models (Kotelnikov et al., 2022; Kim et al., 2022), or alternatively traditional methods such as
SMOTE (Chawla et al., 2002; Wang & Pai, 2023; Machado et al., 2022). However, in ultra low-data
regimes (n < 100), the training data may not describe the full data distribution well, despite it being
i.i.d. draws. Consequently, this harms conventional methods since the augmented data may not be
sufficiently diverse and accurate, restricting the generalizability of predictive models trained on such
data. Tangentially, prior works have tackled data scarcity in the tabular setting via the lens of transfer
learning, where prior knowledge can be transferred from a pretrained model (Levin et al., 2022; Jin
& Ucar, 2023) or a knowledge graph (Margeloiu et al., 2022; Ruiz et al., 2023), which might not
be available in all settings. Recent work has shown the potential of fine-tuning Large Language
Models (LLMs) for tabular data generation (Borisov et al., 2023). While LLMs offer some degree
of prior knowledge, there are two challenges in our setting. First, it is computationally expensive
to fine-tune LLMs, while needing specialized hardware —luxuries often not available in LMICs,
thereby limiting applicability in such settings. Second, fine-tuning often assumes a large number of
samples. In our low-data setting it could lead to overfitting and low-quality generated samples, and
hence poor downstream models—as we show for Borisov et al. (2023) in Sec. 3.

Curated LLMs. To address these challenges, we propose Curated LLM (CLLM). First,
CLLM leverages the in-context capabilities of LLMs for generation, thereby reducing the computa-
tional burden. We also posit for the low-data regime; the diverse pretraining corpus of LLMs carries
valuable prior knowledge, which may offer more diversity in their generation compared to other
conventional tabular generators. Of course, LLMs are not perfect. Balancing the utility of LLMs
against the risk of noisy, irrelevant data is important for downstream performance, hence requiring
systemic assessment of the generated data. In fact, this issue is vital for any generative model.

This motivates the second key aspect of CLLM, i.e. post-generation data curation. This addresses the
overlooked aspect that not all of the synthetic samples are useful to downstream model performance,
with some samples even harmful. We anchor our approach with ideas from learning theory that show
the behavior of individual data samples during training, called learning dynamics, provides a salient
signal about the value of samples to a learner (Arpit et al., 2017; Arora et al., 2019; Li et al., 2020).
To provide intuition, samples with variable predictions might be considered ambiguous or other
samples might never be learned correctly and could harm a model. In CLLM, we study the learning
dynamics of the synthetic data samples, with respect to a model trained on the small real dataset.
We then analyze these dynamics by computing two key metrics: confidence and aleatoric (data)
uncertainty. These metrics form the basis for curating the synthetic samples. We aim to enable a
highly performant downstream model when trained on the curated dataset.

Contributions: CLLM is a novel data augmentation approach allying the strengths of LLMs
with a robust data curation mechanism to improve data augmentation in the ultra low-data
regime (n < 100), bringing several contributions: (I) Improved performance: we empir-
ically demonstrate on 7 real-world datasets that CLLM enables superior downstream per-
formance compared to 6 widely used tabular data generative models and data augmentation
techniques. (2) Value of curation: we show the overlooked aspect of synthetic data curation
improves downstream performance across the generative models. This highlights the flexibil-
ity and broad utility of our curation mechanism for data augmentation. (3) Insights: we dissect
the two aspects of CLLM (LLM and data curation) along a variety of dimensions, providing
insights and understanding into why the approach is beneficial. We show the largest gains are
for underrepresented subgroups and in ultra low-data settings. These contributions pave the
way towards wider usage of ML across society, domains and regions.
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Ethical considerations. LLMs may make errors and may reflect or exacerbate societal biases that
are present in their data (Li et al., 2023). Though the curation in CLLM improves synthetic data
quality, it does not directly aim to remove biases. The quality and fairness of generated data should
always be evaluated. More research into LLM bias is required before methods like CLLM should
be applied to real-world sensitive settings like healthcare and finance.

2 CLLM: SYNERGY OF LLM GENERATION AND DATA CURATION

Set-up. Given feature space X, and label space ) = {1, ..., k}, we assume that we only have a small
labeled dataset Diyain = { (i, )}y, with z; € X, y; € Y and n < 100 (ultra-low data setting).
Assume Dy,ip is drawn i.i.d. from the real distribution pr(X,Y). We also assume access to a
pretrained LLM to generate samples. We denote the output distribution of the LLM as pe(X,Y),
with ¢ containing parameters that we control (e.g., input prompts). Our goal is to generate a dataset
to augment the small Dy,,;,, and subsequently use it to train a classifier f : X — ). Successful
augmentation will provide a better classifier f, than if we had trained f on the small Dy, itself.
We measure downstream performance on a separate held-out dataset of real data, Dyegt.

Our Approach. To address this challenge, we introduce CLLM, an approach for data augmentation
in low-data regimes. As shown in Figure 1, CLLM leverages LLLMs to generate a synthetic dataset
Dy, using a small dataset Dyyqin (Sec. 2.1). It exploits the LLMs’ prior knowledge via in-context
learning (ICL) and contextual information. CLLM then curates Dgy,, by analyzing the learning
dynamics of samples in Dy, based on predictive confidence and aleatoric (data) uncertainty. These
metrics are obtained by training a supervised model on Dy, i,. We leverage them to define a curated
dataset D.yrated, Which is used to train a downstream classifier (Sec. 2.2).

In each sub-section we describe and motivate the design of the different aspects of CLLM (LLM
and curation). Furthermore, we provide insights and understanding into their role in improving data
utility, which we later quantify on multiple real-world datasets in Sec. 3.

2.1 DATA GENERATION WITH LLMS BASED ON A SMALL D qin

As outlined in Sec. 1, in the ultra low-data regime, conventional tabular generative models (e.g.
CTGAN, TVAE) are constrained by the limited D;,,in, and may not generate sufficiently diverse
and/or accurate synthetic data. To address this challenge, we propose to leverage LLMs, building
on their large-scale pretraining. We first outline the desirable features of LLMs for tabular data
generation when we have very few samples, then describe design choices to satisfy these.

* Prior knowledge. LLMs have been pretrained with a vast corpus of information (Chowdhery
et al., 2022; Singhal et al., 2023). When prompted to generate samples with limited real data,
LLMs can leverage this encoded prior information about similar problems and feature-label rela-
tionships to enhance both accuracy and diversity of generation.

* Contextual understanding. LL.Ms can process background and contextual information about the
problem via natural language (Yang et al., 2023). For example, a high-level description of the
task, features and their meanings can be conveniently described through natural language. Such
information is unavailable to conventional generators that only utilize numerical examples.

* Few-shot capabilities. LLMs have demonstrated proficiency in generalizing to tasks with just a
few examples (Brown et al., 2020; Wei et al., 2023; Mirchandani et al., 2023). In the context of
generation, we envision the idea of in-context generation using limited real examples.

To benefit from these capabilities, we craft the LLM prompt with three different parts (see Fig. 1):
(1) Background: text description of the dataset and task (e.g. predict Covid mortality). Addition-
ally, we include a description of what each feature means, explicitly prompting the LLM to use
prior knowledge about these features. (2) Examples: we serialize the samples in Dy, as exam-
ple demonstrations and provide both the features and the label in text format. (3) Instructions: To
generate a synthetic dataset Dsy,,, we instruct the LLM to leverage the contextual information and
provided examples as an i.i.d. draw from the distribution. We instruct the LLM to identify struc-
tural and feature-label relationships in the data and generate diverse data following the structure and
format of the provided examples. We provide more details on the prompts in Appendix B.

Motivation for a frozen LLM. Using a frozen black-box LLM (e.g. GPT-4 or GPT-3.5) is compu-
tationally cheaper and requires less specialized hardware (i.e. GPUs) compared to fine-tuning. This
relates to settings described in Sec. 1, such as LMICs, where we may not have the computational
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resources to fine-tune an LLM. Even in settings where fine-tuning is possible, we show empiri-
cally in Sec. 3 that LLM fine-tuning (e.g. GReaT baseline) is suboptimal in ultra-low data settings
(n < 100) compared to providing in-context examples coupled with curation.

Dissecting the LLM’s generative features. We now investigate various dimensions to
understand and illustrate empirically the appealing features of LLMs as data generators in
the low-data regime, and how our design choices unlock them. We take the Brazilian Covid-
19 dataset (Baqui et al., 2020) as a running example and focus on GPT-4 as the LLM.

» GPT-4 extrapolates to unseen regions of the manifold. We compare the samples generated by

to , a widely used tabular data generator. We consider Do;acle, @ held-out dataset from
the same distribution as Diyain, such that | Doracie| > | Dirain|, thereby providing an approximation
for the true manifold. The t-SNE plots in Fig. 2 shows, when Dy, is very small (n = 20 samples),
that its samples do not cover all regions of . For example, Dy,,;, does not contain samples
from specific demographic subgroups (e.g. people with age 40 or below). As expected, only
generates samples constrained by the limited D;,,;,. In contrast, is capable of extrapolating
and generating samples even in unseen regions of Dy,,;,, thereby better covering . This stems
from its contextual understanding of the features, unlocking the use of its prior knowledge. It leads
to better coverage in the low-data regime, consequently aiding in superior downstream performance,
as we show in Table 3. As n increases (> 100), Dy;ain provides better coverage, which naturally

benefits both and . This result shows how prior knowledge encoded in LLMs addresses
shortcomings of conventional generative approaches (e.g. ) in the low-data regime.
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Figure 2: is able to extrapolate to regions of the (true manifold) even where there is

no training data covering them, as can be seen by the overlap with the turquoise dots, with the effect
more pronounced when Dy, 1 small

» GPT-4 benefits underrepresented groups the most. Having illustrated the extrapolation capa-
bilities of GPT-4, we now ask: where does augmentation benefit downstream performance the most?
We evaluate performance gains for different demographic subgroups, such as age groups and ethnic
groups (Amarela, Prada). Fig. 3 shows the performance gain obtained by training a classifier on data
generated by GPT-4 compared to training on the small Dy,,;,. The greatest gains, on average, are
for subgroups for which we have no data in Dy, i, yet GPT-4 can extrapolate and generate samples
for these subgroups. This further validates the rationale of extrapolation via prior knowledge being
a key source of gain for GPT-4. Table 1 shows fine-grained results (across 10 different seeds) for the
5 subgroups that benefit the most from data augmentation, which are small-sized demographic sub-
groups. This finding has real-world implications for equity, as it shows we can improve performance
for underrepresented subgroups even when we lack data or collecting data is difficult or costly.

000 Table 1: Deep dive into the top 5 demographic sub-

0.09 groups in the Covid dataset with the largest gains,

0.01 across 10 seeds, for | Dipain| = 20. GPT-4 improves
3 performance on the smallest groups.

Performance Gain

o Subgroup | Nsamples 1N Dirain Avg. Acc. Gain V. Dypain
(min - max) GPT-4 TVAE
Oy s 6 s w12 ou Age 40 0-6 6.38+-2.09 -3.37+ 2386
Number of original samples within the demographic subgroup Liver 0_1 3.85 +-337 _131 +-3.38
Figure 3: Subgroups with fewest sam- ARenall 8? ggi +2.01 580(3) +-3.22
les in Dy,ain benefit the most from data marcla - J14- 140203 +-2.88
p train Parda 3-11 507+ 150 -6.57 +- 1.61

augmentation, on average.
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» Importance of contextual information in the prompt. A natural question is: how important
is the prompt to elicit the prior knowledge of the LLM? We explore two variants: (1)

: provides contextual information including background about the dataset, feature names
and descriptions (our approach) and (2) Prompt w/ no context: only provides the numerical in-
context examples (ablation). Fig. 4 qualitatively shows that not including contextual knowledge in

the prompt gives lower coverage of with less extrapolation beyond Dy,..i,. We quantify this
in Table 2 using Precision (Quality) and Recall (Diversity) metrics (Sajjadi et al., 2018), as well as
Utility (Downstream performance). with contextual information has superior precision and

recall in the ultra-low data setting. Furthermore, we show that the lack of contextual information
in the prompt significantly harms the precision (quality) of the data even compared to TVAE. This
highlights that LLMs need guidance, as we are only able to get the extrapolation and performance
benefits by including contextual information, further motivating our design choices in the prompt.

X -
..,‘ " Table 2: Including contextual information in the prompt improves pre-
o® el .. . . .
~ 4 . cision (P), recall (R), and utility (U) in low-sample settings (results
w * N .
z o 4 shown for the Covid dataset).
2 a :
o f & 4 eamples GPT4 GPTA VAR
Prompt w/ context in Derain w/ context no context
@ Prompt w/ no context p R U P R U P R U
tSNE 1 ig 0.41(0.04) 0-87(0.03) 0.774(0_01) 0.130.0) 0-82(0.01) 0-66(0.01) 0-33(0.07) 0-500.03) 0-590.0)
. . : _ 0.40(0.01) 0.91(0.01) 0.76(0.0) 0.11(0.0) 0.890.0) 0.690.0) 0.27(0.01) 0.68(0.01) 0.62(0.03)
Elglﬂje 4: ConteXtua]_lnforma 100 10.42(0.01) 0-86(0.02) 0.75(0.01) 0-11(0.01) 0.90(0.01) 0-74(0.01) 0-39(0.02) 0-67(0.03) 0-64(0.06)
tion in the prompt is impor- 200 | 0-440.02) 0-8500.02) 0.75(0.0) 0-08¢0.01) 0-900.0) 0-600.01) 047 (0.0) 0-T3(0.01) 0-650.02)

tant for extrapolation.
2.2 DATA CURATION WITH LEARNING DYNAMICS

When prompted with ® (which contains the in-context samples of Dy, i), the LLM generates sam-
ples from a distribution pe (X, Y') that approximates pr(X,Y), implicitly exploiting its large-scale
pretraining and few-shot capabilities. LLMs are of course not perfect and could generate noisy
samples, hence this distribution may be inaccurate '. To make this distribution more relevant to
the downstream task, we include a data curation mechanism. Specifically, we focus on the noisy
feature-label relationship pg (Y| X), for which we expect pe(Y'|X) # pr(Y|X) given the small
size of Dyyain. This motivates us to curate Dsyy, and discard likely mislabeled samples.

We anchor our approach with ideas from learning theory that show the behavior of individual sam-
ples during model training (called learning dynamics) contains signal about the nature of the samples
themselves (Arpit et al., 2017; Arora et al., 2019; Li et al., 2020). Some samples are easily and confi-
dently predicted over different model checkpoints, whereas other samples might be challenging (e.g.
due to mislabeling) and hence might be incorrectly predicted for the given label. Consequently, we
operationalize learning dynamics as the basis of our curation mechanism. Specifically, we analyze
samples in Dgy,, by studying their learning dynamics computed with a classifier trained on Dyyain.
We then categorize and filter samples in Dy, and produce a curated dataset Deyrated € Dsyn-

Learning dynamics. We now formalize how we compute learning dynamics for individual samples.
Assume that a classifier f is trained in an iterative scheme (e.g. neural networks or XGBoost trained
over iterations) on Dy;.in, Which makes it possible to analyze the learning dynamics of samples
in Dgyy over these iterations. The classifier f should be at least as flexible as the model that the
practitioner intends to use for the downstream task. f is trained from scratch on Dy,,i, and goes
through e € [E] different checkpoints leading to the set 7 = {fi, fo,..., fr}, such that f. is
the classifier at the e-th checkpoint. Let [f(x)], denote the predicted probability for class y and
sample . Our goal is to assess the learning dynamics of samples in Dgy,, over these E training
checkpoints, while we train f on Dy,i,. For this, we define H, a random variable following a
uniform distribution Uz over the set of checkpoints F. Specifically, given H = h and a sample
(x,y), we define the correctness in the prediction of H as a binary random variable Y;(:c, y) with
the following conditional:

P(Vr(,y) = 1{H = h) = [h(x)], and P(Vx(,y) = 0[H = h) = 1 — P(Vx(a,y) = 1|H = h).

"We could finetune the model on the scarce Dirain We have, but is likely to still lead to overfitting due to
the extreme data scarcity and LLM parameter size.
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Curation metrics. Equipped with a probabilistic interpretation of the predictions of a model, we
now define two characterization metrics that we use for curation: (i) average confidence and (ii)
aleatoric (data) uncertainty, inspired by (Kwon et al., 2020; Seedat et al., 2022a).

Definition 2.1 (Average confidence). For any set of checkpoints F = {fi,..., fg}, the average

confidence for a sample (z, y) is defined as the following marginal: .

Pr(z,y) := P(Vr(z,y) = 1) = Egre, [P(V7(z,y) = 1|H))] Z (1)

Definition 2.2 (Aleatoric uncertainty). For any set of checkpoints F = { f :,1 £}, the aleatoric
uncertainty for a sample (x, y) is defined as:

vat, 7 (,Y) = Bty [Var(Ve(z, y) | H)] Ez fe(@)]y(1 = [fe(@)]y) 2

Intuitively, for binary classification (k = 2), the aleatoric uncertalnty for a sample z is maximized
when [f.(z)], = 1 for all checkpoints f., akin to random guessing. Recall aleatoric uncertainty
captures the inherent data uncertainty, hence is a principled way to capture issues such as mislabel-
ing. This contrasts epistemic uncertainty, which is model-dependent and can be reduced simply by
increasing model parameterization (Hiillermeier & Waegeman, 2021).

Having defined sample-wise confidence and aleatoric uncertainty, we characterize samples in Dy,
into two categories, namely Selected and Discarded. Given a sample (x,y), a set of training
checkpoints F, and two thresholds Tcont and 7,1, we define the category c(x,y, F) as Discarded
if Pr(z,y) < Teont and vy, 7(x,y) < Ta1, and Selected otherwise.

Hence, a Discarded sample is one for which we have a very low confidence in predicting its as-
sociated label whereas we also have low inherent data uncertainty. Finally, given a function f
associated with the set of checkpoints F, we define the curated set Deyrated = {(2,9)|(z,y) €
Dgyn, c(z,y, F) = Selected}. We also define Daiscarded = Dsyn \ Dourated-

To summarize, the objective of the curation step is that training on the curated synthetic data leads to
a better classifier fp_,,,.,.. for the downstream task, compared to training on the uncurated synthetic
data, i.e. M(fp.\urea) > M(fD,,,). Wwhere M is a performance measure (for example accuracy).
In Sec. 3, we empirically show how performance on this curated dataset is superior both for LLM
generated data as well as other classes of generative models.

Dissecting the role of curation. We now empirically demonstrate the role of curation in
correcting the noisy feature-label relationship present in Dy, highlighting two insights:

(1) curation discards samples which are atypical in their label with respect to their neigh-
bors in Dy, (ii) discarded samples can be considered “mislabeled”, and we quantify their
atypicality using a large held-out dataset Do;acle-

» Discarded samples conflict on the label with their neighbors in Dgy,,. We audit every synthetic
sample (z,y) generated by GPT-4 (across 7 datasets) and compute the proportion of its k nearest
neighbors in Dgy, which share the same label y. The agreement with the neighbors assesses the
typicality of a sample’s y given x, where naturally lower agreement is linked to mislabeling, which
we aim to detect via curation. Taking k = 10, we obtain an average agreement of acyrateqd = 0.74
for Deyrated, compared to agiscarded = 0.8 for Dgiscarded. This shows that the samples removed
are those which, despite having similar features x, do not agree with their surrounding neighbors’
labels. This corroborates ideas in (Ashmore et al., 2021) of how proximity violations are useful to
guide remedial action to improve models. Not removing these mislabeled samples injects noise into
the downstream classifier, thus reducing performance.

» Assessing discarded samples with D, ... Ideally, the samples we select should better align
with the true feature-label distribution. Since we don’t have access to this distribution explicitly,
we compute a proxy for n(x) = argmax, p(Y = y|X = z), which we call 7;. It is obtained by
training a classifier on a held-out dataset D, ,c1c—the same size as Dyqs¢ and an order of magnitude
larger than Dy,,;,. For each synthetic method, we then report the accuracy of 7 on both the curated
Deyrated and discarded Dgiscarded datasets —see Fig. 5.

We highlight two key observations. First, the curated datasets, for all the generative mod-
els, exhibit a higher agreement with the proxy 7 than the discarded datasets. This aligns
with the desideratum of only keeping samples that exhibit the correct feature-label relationships.

6
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on Dygiscarded, compared to
the other generators. This
illustrates that GPT-4’s prior
knowledge enables it to
better capture the distribution p(Y'|X = z). Note that generative baselines (e.g. TVAE) model the
joint p(X,Y), without any context of which is the set of features and which is the label. In contrast,
we can define in the LLM prompt which column is the target Y, allowing the LLM to better capture
the feature-label relationships. This complements the findings from Fig. 2, which showed that
GPT-4 extrapolates to unseen regions of the feature manifold, captured by the support of p(X).

Figure 5: 7 aligns more with Dcyrated than Dgiscarded for each gen-
erative model: the curation step keeps high quality samples tailored
to the downstream task.

3 CURATED LLMS FOR BETTER DATA AUGMENTATION

We now perform an end-to-end quantitative evaluation of CLLM across multiple real-world datasets,
for downstream utility, demonstrating the value of allying the generative capabilities of LLMs
with our curation mechanism. Sec. 3.1 compares the performance of GPT-4 and our curation ap-
proach with respect to a variety of state-of-the-art tabular augmentation baselines. Having evaluated
CLLM on arange of datasets, we also demonstrate how we can leverage information extracted during
curation to characterize datasets via a hardness proxy. Sec. 3.2 illustrates how our characterization
of samples during the curation step can help to flag synthesized datasets (e.g via the LLM) which, if
used for training, will result in poor downstream performance.

Experimental setup. We compare CLLM (with GPT-4 (OpenAl, 2023) and GPT-3.5 (Brown et al.,
2020)) against a variety of baselines for tabular data generation and augmentation: CTGAN (Xu
et al., 2019), TVAE (Xu et al., 2019), Normalizing Flows (Papamakarios et al., 2021), TabDDPM
(Kotelnikov et al., 2022), SMOTE (Chawla et al., 2002) and GReaT (Borisov et al., 2023), which
fine-tunes an LLM. We evaluate performance on 7 real-world datasets with different feature counts
and vary the number of samples available in Dy,,iy,, repeating each experiment across 10 seeds.

While we do not know the exact makeup of the pretraining data of LLMs like GPT-4, there is
the possibility that open-source data might be included. This poses a risk of memorization as the
primary source of performance gain. To disentangle the role of memorization, we select 4 real-world
medical datasets (Maggic (Pocock et al., 2013), Covid (Baqui et al., 2020), SEER (Duggan et al.,
2016), CUTRACT (PCUK, 2019)) that require an authorization process to access, hence are unlikely
to form part of the LLMs training corpus. We use common open-source datasets (Adult and Drug
from the UCI repository (Asuncion & Newman, 2007) and Compas (Angwin et al., 2016)) that are
highly reflective of data scarce domains. Further experimental details can be found in Appendix B.

3.1 OVERALL PERFORMANCE: DOWNSTREAM UTILITY

We assess overall performance based on Utility of the augmented data, which we evaluate in terms
of AUC on the real D;qg, when using four different types of downstream models (see Appendix
B). This setup mirrors the widely adopted Train-on-synthetic-Test-on-real (TSTR) (Esteban et al.,
2017). Additionally, we compare the performance to training on the small Dy .y, as well as training
on the large held-out Dy ,c1e, the latter serving as an upper bound.

GPT-4 + Curation has best overall performance. Table 3 shows the performance of the proposed
CLLM (GPT-4 and GPT-3.5) against baselines — both with and without our curation mechanism.
We find that the GPT-4 + Curation variant of CLLM outperforms baselines in almost all settings
(20/28). Interestingly, its performance is close to or even exceeds the performance of Dgyacle. Table
4 further shows that GPT-4 + Curation ranks first on average among all the generative methods.
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Table 3: AUC averaged over 4 downstream models on Dy.s; wWhere curation improves performance
for all methods across all sample sizes n, as indicated by 1. CLLM w/ GPT-4 (Curated) dataset

provides the strongest performance for both private/proprietary datasets and public datasets

| Realdata | CLLM (OURS) | Baselines
| | GPT4 GPT-3.5 | CTGAN TabDDPM GReaT NFLOW SMOTE TVAE

Dataset ‘Domclc Dtrai,,‘Uncur. Cur. ‘Uncur. Cur. ‘Uncur. Cur. ‘Uncur. Cur. ‘Uncur. Cur. ‘Uncur. Cur. ‘Uncur. Cur. ‘Uncur. Cur.

covid (n=20) 74.41 68.50|73.78 73.87 1| 69.85 71.41 1| 59.00 63.67 7| 66.84 66.85 T|57.38 66.46 1| 62.87 68.56 1| 66.95 66.82 | 61.69 66.11 1
cutract (n=20) | 72.23 70.12|71.15 72.50 1| 69.97 71.54 1| 64.01 67.98 1| 66.05 66.59 1| 52.38 67.02 1| 64.44 70.42 1| 68.41 69.24 1| 68.94 70.22 1
maggic (n=20) | 67.41 57.13|60.70 61.48 1| 57.54 58.69 1| 52.75 54.51 T|54.59 55.39 1| 50.29 55.64 1| 54.72 57.38 1| 55.84 56.15 1| 54.08 56.19 1
seer (n=20) 87.92 80.67 | 84.53 84.82 1|83.34 83.71 1| 74.34 78.73 1| 80.59 80.60 1| 47.57 74.43 1|76.06 79.98 1| 79.23 80.02 1| 74.53 78.73 1
compas (n=20) | 67.51 63.11|68.01 67.91 |62.07 64.43 1| 55.67 62.56 1| 57.67 60.87 1| 53.33 63.59 1| 59.49 64.62 1| 61.06 61.59 1| 58.30 62.58 1
adult (n=20) 84.17 77.45|50.39 71.48 1|49.23 72.37 1| 72.23 76.86 1| 74.35 75.04 1| 67.00 77.25 1| 67.46 76.48 1| 73.75 73.67 | 73.20 76.90 ©
drug (n=20) 77.81 70.84|75.08 75.29 1| 71.68 72.14 1| 68.31 72.65 7| 68.12 69.68 1| 58.78 68.89 1| 62.13 67.75 1| 70.16 70.16 | 66.60 69.18 *
" covid (n=40) 75.02 70.77|73.40 73.951|70.42 71.93 1| 63.63 68.46 7| 70.50 70.44 |56.50 68.68 1| 66.41 70.48 1| 68.66 68.44 | 61.03 67.35 1
cutract (n=40) | 72.57 69.18|69.87 71.72 1| 68.47 69.56 1| 63.01 67.87 1| 65.63 67.27 1| 54.39 68.44 1| 61.40 67.98 1| 67.86 67.95 1| 59.79 66.62 1
maggic (n=40) | 67.50 58.26|59.29 60.77 1| 57.50 59.15 1| 55.00 56.78 T|55.24 56.94 1| 48.81 56.64 1| 54.68 58.58 1| 57.40 57.44 1| 55.04 57.33 1
seer (n=40) 87.90 82.93|84.29 84.93 1|83.46 84.44 1| 80.05 83.67 1| 82.59 81.37 | 54.93 81.11 1|79.88 84.36 7| 80.79 82.21 1| 78.69 83.62 1
compas (n=40) | 67.35 62.34|67.57 67.85 1| 61.34 62.84 7| 56.29 61.02 1| 58.85 60.11 1| 58.88 64.37 1| 58.61 63.54 1| 60.83 60.95 1| 55.94 61.04 1
adult (n=40) 84.43 79.44 14831 73.821|49.21 74.27 1| 71.82 79.11 1| 71.51 77.99 1| 66.77 78.81 1| 71.13 79.71 1| 77.90 78.84 1| 72.58 80.02
drug (n=40) 77.71 71.86|74.30 75.79 1| 71.33 72.76 1| 69.46 72.74 7| 71.08 73.07 1| 64.89 73.64 1| 62.51 70.97 1| 69.23 69.78 1| 65.22 70.30 *
covid (n=100) | 74.52 71.57|73.77 74.71 1| 70.71 72.76 1| 69.05 72.13 1| 71.60 73.22 1| 63.52 72.04 1| 64.25 72.64 1| 70.08 70.78 1| 69.05 71.96 1
cutract (n=100) | 72.36 70.96|70.20 72.51 1|69.97 71.94 1| 67.94 72.42 1| 70.53 71.98 1| 55.72 69.14 1| 67.59 72.42 1| 68.79 69.68 1| 66.89 71.52 1
maggic (n=100) | 67.46 59.65|58.98 61.32 1| 55.71 58.90 1| 57.20 59.34 1| 57.26 58.28 1| 49.54 57.91 1|56.36 60.11 1| 58.89 58.99 1| 56.17 58.86 1
seer (n=100) 87.79 83.95|84.45 85.37 1| 83.92 85.08 1| 81.60 85.14 7| 83.04 84.83 1| 70.32 83.83 1|81.16 85.03 1| 81.82 82.49 1| 78.88 84.50 1
compas (n=100) | 67.18 62.56|68.02 68.19 1| 60.10 62.47 1| 60.01 63.73 T|58.32 61.34 1| 59.97 64.19 1| 60.02 64.04 1| 61.44 61.73 1| 59.97 62.82 1
adult (n=100) 84.34 81.24146.09 74.57 1| 47.56 73.97 1| 74.29 80.45 1| 75.93 78.22 1| 77.09 81.66 1|70.70 81.04 7| 80.56 81.10 1| 74.04 80.23 1
drug (n=100) 78.00 73.58|76.24 76.74 1| 69.46 71.05 1| 68.19 73.28 7| 72.43 73.79 1| 67.26 75.28 1| 62.67 73.12 1| 70.90 71.53 1| 68.22 73.59 1
covid (n=200) | 74.69 72.33|73.40 74.62 1|70.70 73.12 1| 71.07 73.89 1| 72.47 74.44 1| 65.55 73.07 1| 65.04 72.90 1| 71.68 71.87 1| 67.89 72.38 1
cutract (n=200) | 72.52 71.75|71.39 73.01 1|70.28 72.39 1| 69.28 72.41 1| 71.83 74.03 1| 66.66 72.49 1| 68.77 73.16 1| 70.23 70.80 1| 66.61 71.87 1
maggic (n=200) | 67.37 61.39|58.92 61.41 1| 57.33 60.16 1| 58.48 61.33 1| 56.26 57.20 1| 50.74 59.60 1| 55.95 60.75 1| 60.73 60.78 1| 57.18 60.23 |
seer (n=200) 87.84 84.63|84.39 85.56 1|83.48 84.80 1| 82.04 85.34 1| 84.39 86.57 1| 82.15 86.03 1|77.73 85.19 1| 83.38 84.15 1| 79.71 85.26
compas (n=200) | 67.14 63.27|67.02 68.15 1| 60.48 63.39 7| 60.58 64.32 1| 60.60 63.52 1| 61.11 65.08 1| 56.58 63.60 1| 61.99 62.80 7| 60.15 63.99 1
adult (n=200) 84.25 82.12]40.96 75.84 1|49.89 76.11 1| 78.18 82.32 1| 81.66 83.17 1| 80.06 83.32 1|74.31 82.64 1| 82.26 82.39 1| 75.21 82.02 1
drug (n=200) 77.36 76.10|75.58 76.06 1|70.66 72.81 1| 71.31 75.98 1| 69.61 71.79 1| 72.35 77.41 1| 65.25 75.26 1| 74.38 74.78 1| 68.39 74.33 1

Sample size sensitivity. We now investigate the performance gains of CLLM as we vary the num-
ber of samples n in Dyyain, in Table 3 and Table 4. Performance improvements and high ranking
across datasets for CLLM (GPT-4+Curation) are especially noticeable in the ultra low-data regime
(i.e. n < 100). In this regime, the limited size of D;,.i, severely constrains the other baseline
methods. In contrast, as illustrated in Sec. 2.1, CLLM can leverage GPT-4’s prior knowledge to
extrapolate beyond the small Dy,,i,, thereby improving downstream performance. As expected,
the performance gap between CLLM and other methods decreases as the size of Dy i, grows (e.g.
n = 200), where sufficient training data helps other generators achieve good performance.

Curation generally helps all
generative models. Our cu-
ration mechanism consistently

Table 4: Average rank of approaches across the different datasets
and seeds. CLLM w/ GPT-4 ranks first across all » and curation
improves all the generative models.

benefits all generative models Method =20 1=40 1=100 1=200
for the different n. It en- CLIM w/GPT4 | 271 £ 144 2.4 £1.06 229+ 1.19 3.29 & 1.38
. . GPT-4 386 L 173 420L18 600L1.77 7157 £165
sures only high quality samples CLIM w/GPT35 | 414094 414X071 686E124 757£0.70
are retained, which is crucial NFLOW (curated) | 6.00 £ 121 471 £080 4.00L057 471 L063
for good data augmentation and GPT-35 671 E£152 7291126 1157 £094 1257 £057
TVAE (curated) | 714 £ 1.17 786 £ 130 643 £040 6,71 £052
downstream performance and SMOTE (curated) | 7.71 £0.33 814 +091 771 £1.19 743 £1.07
has been overlooked in previous SMOTE 786 £055 957 +£080 957 £1.09 9.00+1.03
: : TabDDPM (curated) | 8.29 £ 0.98 8.00 £093 600 £095  5.14 & 1.68
workg. Thls explains why the CTGAN (curated) | 829 £ 142 714 £091 414£062 371£039
combination of the best genera- GReaT (curated) | 857 £ 150 657 £ 121 6291138 3571092
tive model and curation, which TabDDPM 1014+ 1.19 986+ 1.15 10.00+£1.03 1029 £1.02
. . TVAE 1214 £0.89 1400070 1371 £039 1443 £040
is CLLM, gives the best results NFLOW 1286 £ 047 1414 £ 037 1400L045 1529 £0.33
and highest rankings in the low- CTGAN 1386 £0.68 13.14£047 12.86£037 12.00 £0.53
data regime (e.g. n = 20). GReaT 1571 £026 1500 £053 1457 £1.03 1271 £0.96

Performance benefits maintained for private and public datasets. One may hypothesize that the
strong LLM (e.g. GPT-4) performance is explained by datasets being part of the LLMs’ training
corpus, hence possibly being memorized. We show in Table 3 that it is unlikely, as we retain strong

performance for both open-source datasets , as well as private medical datasets which require au-
thorization processes for access and are unlikely to be part of the LLM pretraining dataset.
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Remark on ICL versus fine-tuning. Our results in Table 3 and Table 4 indicate that ICL is better than
fine-tuning (GReaT baseline) in the low-data regime. This highlights the difficulty of fine-tuning in
this regime, where it is easy to overfit to Dy,,in. As we increase the number of samples, this baseline
coupled with curation improves toward the level of CLLM (GPT-4).

3.2 HARDNESS: A PROXY SIGNAL TO FLAG POOR QUALITY SYNTHETIC DATASETS

Having a systematic way to assess datasets generated by LLMs like GPT-4 is important because
their black-box nature provides little control on their generation quality. This contrasts conventional
generators for which training loss is an exploitable signal. Hence, we ask: could we have a signal to
identify a potential problematic dataset generated by GPT-4 without an exhaustive manual review?
For example, GPT-4 produced low-quality synthetic data for the Adult dataset (across the different
sample sizes) resulting in poor downstream performance. While curation improves it, downstream
performance is still suboptimal. Addressing this question is important, since datasets are rarely
created by the ML model builder in real-world ML workflows, but rather by specialist data teams
or data owners (Gebru et al., 2021; Sambasivan et al., 2021; Goncalves et al., 2020). Hence, having
a signal to preemptively flag a potentially suboptimal generated dataset spares investment in both
storing the subpar data and/or training a model likely to underperform on real data.

Dygyr, should intuitively be considered imperfect if curation discards many of its samples, since the
number of discarded samples measures the quality of samples with respect to the small but gold-
standard Dx.;,in. Hence, we investigate the relationship between test performance (AUC) and the
proportion of samples discarded by the curation. Fig. 6, where each point is a synthetic dataset
generated by GPT-4 (e.g. Adult, Compas), shows a strong negative linear relationship between
these two quantities. This holds across the different n with slopes fairly stable around —1.4. This
relationship corroborates the poor quality of the dataset generated by GPT-4 on the Adult dataset,
providing a useful proxy that Dgy,, is unlikely to lead to good downstream performance.

20 samples 40 samples 100 samples 200 samples
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Figure 6: The proportion of discarded samples Dy,, is a proxy for test performance. This negative
linear relationship where each point is a synthetic dataset generated by GPT-4 (e.g. Adult, Covid,
Compas) allows us to flag datasets that will lead to unreliable downstream performance.

4 DISCUSSION

We introduce CLLM, an approach for data augmentation in the ultra low-data setting. CLLM ex-
ploits the prior knowledge of LLMs along with curation for improved downstream performance. As
empirically shown, CLLM outperforms traditional generative models—most noticeably on under-
represented subgroups, for which data augmentation is of utmost importance. CLLM is grounded
in the ICL capability of LLMs, and benefits from its simplicity. We studied GPT-3.5 and GPT-4
as backbones for CLLM. The cost of the API access pose limitations, e.g. on wide accessibility,
on knowing which data was used for training the models, and on understanding the LLM’s output
better. Using smaller and open LLMs could overcome these limitations, though this could come
with a reduction in performance. We leave this as a promising direction for future work. Further
improvements may be achieved through different tuning and prompting of the LLM, as shown in
different domains (Meng et al., 2023; Liu et al., 2023). Improving LLM tuning and prompting is
beyond the scope of our work, but we regard this as a promising avenue for future work.

Data scarcity and computational limitations are deterrents for developing ML. These chal-
lenges should inspire cutting-edge ML research (De-Arteaga et al., 2018). We believe
CLLM takes a step in this direction toward improving the use of ML in low-data settings,
across society (e.g. underrepresented subgroups (Suresh & Guttag, 2021)), domains (e.g.
healthcare (Alami et al., 2020; Owoyemi et al., 2020)) and regions (e.g. LMICs).
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ETHICS AND REPRODUCIBILITY STATEMENTS

Ethics. In this work, we evaluate CLLM using multiple real-world datasets. The private datasets
are de-identified and used in accordance with the guidance of the respective data providers. We
follow recommendations to use the Azure OpenAl service when using GPT-4 and GPT-3.5 models,
where via the agreement we ensure the medical data is not sent for human review or stored, hence
respecting the guidelines given by the dataset providers. LLMs may make errors and may reflect
or exacerbate societal biases that are present in their data (Li et al., 2023). Though the curation in
CLLM improves synthetic data quality, it does not directly aim to remove biases. The quality and
fairness of generated data should always be evaluated. More research into LLM bias is required
before methods like CLLM should be applied to real-world sensitive settings like healthcare and
finance. Finally, increasing access to ML across regions, domains and societies is also about more
than just technology. We believe broader engagement and discussion with various stakeholders is
crucial to responsibly expand ML access, thereby realizing the benefits of ML in an equitable way.

Reproducibility. Experiments are described in Section 4 with further details of the method, experi-
mental setup and datasets included in Appendix B. Code will be released upon acceptance.

REFERENCES

Abejide Ade-Ibijola and Chinedu Okonkwo. Artificial intelligence in africa: Emerging challenges.
In Responsible Al in Africa: Challenges and Opportunities, pp. 101-117. Springer International
Publishing Cham, 2023.

Hassane Alami, Lysanne Rivard, Pascale Lehoux, Steven J Hoffman, Stéphanie Bernadette Mafalda
Cadeddu, Mathilde Savoldelli, Mamane Abdoulaye Samri, Mohamed Ali Ag Ahmed, Richard
Fleet, and Jean-Paul Fortin. Artificial intelligence in health care: laying the foundation for respon-
sible, sustainable, and inclusive innovation in low-and middle-income countries. Globalization
and Health, 16:1-6, 2020.

Julia Angwin, Jeff Larson, Lauren Kirchner, and Surya Mattu. Machine bias. ProPub-
lica: https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing,
May 2016.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of op-
timization and generalization for overparameterized two-layer neural networks. In Infernational
Conference on Machine Learning, pp. 322-332. PMLR, 2019.

Devansh Arpit, Stanislaw Jastrzkebski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxin-
der S Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al. A closer
look at memorization in deep networks. In International conference on machine learning, pp.
233-242. PMLR, 2017.

Rob Ashmore, Radu Calinescu, and Colin Paterson. Assuring the machine learning lifecycle:
Desiderata, methods, and challenges. ACM Computing Surveys (CSUR), 54(5):1-39, 2021.

Mercy Nyamewaa Asiedu, Awa Dieng, Abigail Oppong, Maria Nagawa, Sanmi Koyejo, and Kather-
ine Heller. Globalizing fairness attributes in machine learning: A case study on health in africa.
arXiv preprint arXiv:2304.02190, 2023.

Arthur Asuncion and David Newman. UCI machine learning repository, 2007.

Pedro Baqui, Ioana Bica, Valerio Marra, Ari Ercole, and Mihaela van Der Schaar. Ethnic and
regional variations in hospital mortality from covid-19 in brazil: a cross-sectional observational
study. The Lancet Global Health, 8(8):e1018-1026, 2020.

Angona Biswas, MD Nasim, Al Imran, Anika Tabassum Sejuty, Fabliha Fairooz, Sai Puppala,
and Sajedul Talukder. Generative adversarial networks for data augmentation. arXiv preprint
arXiv:2306.02019, 2023.

Vadim Borisov, Kathrin Sessler, Tobias Leemann, Martin Pawelczyk, and Gjergji Kasneci. Lan-
guage models are realistic tabular data generators. In The Eleventh International Conference on
Learning Representations, 2023.

10



Under review as a conference paper at ICLR 2024

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien (eds.). Semi-Supervised Learning.
The MIT Press, 2006. ISBN 9780262033589. URL http://dblp.uni-trier.de/db/
books/collections/CSZ2006.html.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic
minority over-sampling technique. Journal of artificial intelligence research, 16:321-357, 2002.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Tadeusz Ciecierski-Holmes, Ritvij Singh, Miriam Axt, Stephan Brenner, and Sandra Barteit. Ar-
tificial intelligence for strengthening healthcare systems in low-and middle-income countries: a
systematic scoping review. npj Digital Medicine, 5(1):162, 2022.

Maria De-Arteaga, William Herlands, Daniel B Neill, and Artur Dubrawski. Machine learning for
the developing world. ACM Transactions on Management Information Systems (TMIS), 9(2):
1-14, 2018.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu,
and Zhifang Sui. A survey for in-context learning. arXiv preprint arXiv:2301.00234, 2022.

Maire A Duggan, William F Anderson, Sean Altekruse, Lynne Penberthy, and Mark E Sherman. The
surveillance, epidemiology and end results (SEER) program and pathology: towards strengthen-
ing the critical relationship. The American Journal of Surgical Pathology, 40(12):e94, 2016.

Cristébal Esteban, Stephanie L Hyland, and Gunnar Rétsch. Real-valued (medical) time series
generation with recurrent conditional gans. arXiv preprint arXiv:1706.02633, 2017.

Abolfazl Farahani, Sahar Voghoei, Khaled Rasheed, and Hamid R Arabnia. A brief review of domain
adaptation. Advances in data science and information engineering: proceedings from ICDATA
2020 and IKE 2020, pp. 877-894, 2021.

Elaine Fehrman, Awaz K Muhammad, Evgeny M Mirkes, Vincent Egan, and Alexander N Gorban.
The five factor model of personality and evaluation of drug consumption risk. In Data science:
innovative developments in data analysis and clustering, pp. 231-242. Springer, 2017.

Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna Wallach,
Hal Daumé Tii, and Kate Crawford. Datasheets for datasets. Communications of the ACM, 64
(12):86-92, 2021.

Ghadeer O Ghosheh, C Louise Thwaites, and Tingting Zhu. Synthesizing electronic health records
for predictive models in low-middle-income countries (Imics). Biomedicines, 11(6):1749, 2023.

Andre Goncalves, Priyadip Ray, Braden Soper, Jennifer Stevens, Linda Coyle, and Ana Paula Sales.
Generation and evaluation of synthetic patient data. BMC medical research methodology, 20(1):
1-40, 2020.

Neil Houlsby, Ferenc Huszér, Zoubin Ghahramani, and Maté Lengyel. Bayesian active learning for
classification and preference learning. arXiv preprint arXiv:1112.5745,2011.

Eyke Hiillermeier and Willem Waegeman. Aleatoric and epistemic uncertainty in machine learning:
An introduction to concepts and methods. Machine Learning, 110:457-506, 2021.

Qixuan Jin and Talip Ucar. Benchmarking tabular representation models in transfer learning settings.
In NeurlPS 2023 Second Table Representation Learning Workshop, 2023.

Jayoung Kim, Chaejeong Lee, and Noseong Park. Stasy: Score-based tabular data synthesis. In The
Eleventh International Conference on Learning Representations, 2022.

11


http://dblp.uni-trier.de/db/books/collections/CSZ2006.html
http://dblp.uni-trier.de/db/books/collections/CSZ2006.html

Under review as a conference paper at ICLR 2024

Andreas Kirsch, Joost Van Amersfoort, and Yarin Gal. Batchbald: Efficient and diverse batch
acquisition for deep bayesian active learning. Advances in neural information processing systems,
32,2019.

Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. Tabddpm: Modelling
tabular data with diffusion models. arXiv preprint arXiv:2209.15421, 2022.

Yongchan Kwon, Joong-Ho Won, Beom Joon Kim, and Myunghee Cho Paik. Uncertainty quan-
tification using bayesian neural networks in classification: Application to biomedical image seg-
mentation. Computational Statistics & Data Analysis, 142:106816, 2020.

Guillaume Lemaitre, Fernando Nogueira, and Christos K. Aridas. Imbalanced-learn: A python
toolbox to tackle the curse of imbalanced datasets in machine learning. Journal of Machine
Learning Research, 18(17):1-5, 2017. URL http://jmlr.org/papers/v18/16-365.
html.

Roman Levin, Valeriia Cherepanova, Avi Schwarzschild, Arpit Bansal, C Bayan Bruss, Tom Gold-
stein, Andrew Gordon Wilson, and Micah Goldblum. Transfer learning with deep tabular models.
arXiv preprint arXiv:2206.15306, 2022.

Hanzhou Li, John T Moon, Saptarshi Purkayastha, Leo Anthony Celi, Hari Trivedi, and Judy W
Gichoya. Ethics of large language models in medicine and medical research. The Lancet Digital
Health, 5(6):e333-e335, 2023.

Yuanzhi Li, Tengyu Ma, and Hongyang R Zhang. Learning over-parametrized two-layer neural
networks beyond ntk. In Conference on learning theory, pp. 2613-2682. PMLR, 2020.

Weixin Liang, Girmaw Abebe Tadesse, Daniel Ho, L Fei-Fei, Matei Zaharia, Ce Zhang, and James
Zou. Advances, challenges and opportunities in creating data for trustworthy ai. Nature Machine
Intelligence, 4(8):669—677, 2022.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-
train, prompt, and predict: A systematic survey of prompting methods in natural language pro-
cessing. ACM Computing Surveys, 55(9):1-35, 2023.

Xingyu Liu, Fan Zhang, Zengfu Hou, Lodhi Mian, Zhihui Wang, Jian Zhang, and Jinhui Tang.
Self-supervised learning: Generative or contrastive. /EEE Transactions on Knowledge and Data
Engineering, 2021.

Pedro Machado, Bruno Fernandes, and Paulo Novais. Benchmarking data augmentation techniques
for tabular data. In International Conference on Intelligent Data Engineering and Automated
Learning, pp. 104—112. Springer, 2022.

Andrei Margeloiu, Nikola Simidjievski, Pietro Lio, and Mateja Jamnik. Graph-conditioned mlp for
high-dimensional tabular biomedical data. arXiv preprint arXiv:2211.06302, 2022.

Yu Meng, Martin Michalski, Jiaxin Huang, Yu Zhang, Tarek Abdelzaher, and Jiawei Han. Tuning
language models as training data generators for augmentation-enhanced few-shot learning. In
International Conference on Machine Learning, pp. 24457-24477. PMLR, 2023.

Suvir Mirchandani, Fei Xia, Pete Florence, Brian Ichter, Danny Driess, Montserrat Gonzalez Are-
nas, Kanishka Rao, Dorsa Sadigh, and Andy Zeng. Large language models as general pattern
machines. arXiv preprint arXiv:2307.04721, 2023.

Daniel ] Mollura, Melissa P Culp, Erica Pollack, Gillian Battino, John R Scheel, Victoria L Mango,
Ameena Elahi, Alan Schweitzer, and Farouk Dako. Artificial intelligence in low-and middle-
income countries: innovating global health radiology. Radiology, 297(3):513-520, 2020.

Stephen Mussmann and Percy Liang. On the relationship between data efficiency and error for
uncertainty sampling. In International Conference on Machine Learning, pp. 3674-3682. PMLR,
2018.

Vu-Linh Nguyen, Mohammad Hossein Shaker, and Eyke Hiillermeier. How to measure uncertainty
in uncertainty sampling for active learning. Machine Learning, 111(1):89-122, 2022.

12


http://jmlr.org/papers/v18/16-365.html
http://jmlr.org/papers/v18/16-365.html

Under review as a conference paper at ICLR 2024

OpenAl. Gpt-4 technical report, 2023.

Ayomide Owoyemi, Joshua Owoyemi, Adenekan Osiyemi, and Andy Boyd. Artificial intelligence
for healthcare in africa. Frontiers in Digital Health, 2:6, 2020.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on knowledge
and data engineering, 2009.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lak-
shminarayanan. Normalizing flows for probabilistic modeling and inference. The Journal of
Machine Learning Research, 22(1):2617-2680, 2021.

Prostate Cancer UK PCUK. Cutract. https://prostatecanceruk.org, 2019.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessandro Cappelli,
Hamza Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The refinedweb
dataset for falcon llm: outperforming curated corpora with web data, and web data only. arXiv
preprint arXiv:2306.01116, 2023.

Stuart J Pocock, Cono A Ariti, John JV McMurray, Aldo Maggioni, Lars Kgber, lain B Squire, Karl
Swedberg, Joanna Dobson, Katrina K Poppe, Gillian A Whalley, et al. Predicting survival in heart
failure: a risk score based on 39 372 patients from 30 studies. European Heart Journal, 34(19):
1404-1413, 2013.

Neoklis Polyzotis and Matei Zaharia. What can data-centric ai learn from data and ml engineering?
arXiv preprint arXiv:2112.06439, 2021.

Zhaozhi Qian, Bogdan-Constantin Cebere, and Mihaela van der Schaar. Synthcity: facilitat-
ing innovative use cases of synthetic data in different data modalities, 2023. URL https:
//arxiv.org/abs/2301.07573.

Camilo Ruiz, Hongyu Ren, Kexin Huang, and Jure Leskovec. Enabling tabular deep learning when
d\gg n withanauziliaryknowledgegraph.arXiv preprint arXiv:2306.04766, 2023.

Mehdi SM Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, and Sylvain Gelly. Assessing
generative models via precision and recall. Advances in neural information processing systems, 31,
2018.

Nithya Sambasivan, Shivani Kapania, Hannah Highfill, Diana Akrong, Praveen Paritosh, and Lora M
Aroyo. ‘“everyone wants to do the model work, not the data work™: Data cascades in high-stakes
ai. In proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, pp. 1-15,
2021.

Nabeel Seedat, Jonathan Crabbé, loana Bica, and Mihaela van der Schaar. Data-iq: Characterizing sub-
groups with heterogeneous outcomes in tabular data. In Advances in Neural Information Processing
Systems, 2022a.

Nabeel Seedat, Fergus Imrie, and Mihaela van der Schaar. Dc-check: A data-centric ai checklist to
guide the development of reliable machine learning systems. arXiv preprint arXiv:2211.05764,
2022b.

Nabeel Seedat, Jonathan Crabbé, Zhaozhi Qian, and Mihaela van der Schaar. Triage: Characterizing
and auditing training data for improved regression. arXiv preprint arXiv:2310.18970, 2023.

Burr Settles. Active learning literature survey. Technical report, University of Wisconsin-Madison,
2009.

Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mahdavi, Jason Wei, Hyung Won Chung, Nathan
Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl, et al. Large language models encode
clinical knowledge. Nature, pp. 1-9, 2023.

Harini Suresh and John Guttag. A framework for understanding sources of harm throughout the ma-
chine learning life cycle. In Equity and access in algorithms, mechanisms, and optimization, pp.
1-9. 2021.

13


https://arxiv.org/abs/2301.07573
https://arxiv.org/abs/2301.07573

Under review as a conference paper at ICLR 2024

Fabio Henrique Kiyoiti Dos Santos Tanaka and Claus Aranha. Data augmentation using gans. arXiv
preprint arXiv:1904.09135, 2019.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Jesper E. van Engelen and Holger H. Hoos. A survey on semi-supervised learning. Machine Learning,
109:373-440, 2019.

Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. Openml: Networked science
in machine learning. SIGKDD Explorations, 15(2):49-60, 2013. doi: 10.1145/2641190.2641198.
URL http://doi.acm.org/10.1145/2641190.2641198.

Winston Wang and Tun-Wen Pai. Enhancing small tabular clinical trial dataset through hybrid data
augmentation: Combining smote and wcgan-gp. Data, 8(9):135, 2023.

Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. Generalizing from a few examples:
A survey on few-shot learning. ACM Computing Surveys (CSUR), 2020.

Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun Chen, Hanxiao Liu,
Da Huang, Denny Zhou, et al. Larger language models do in-context learning differently. arXiv
preprint arXiv:2303.03846, 2023.

Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling tabular
data using conditional gan. Advances in neural information processing systems, 32, 2019.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun Chen.
Large language models as optimizers. arXiv preprint arXiv:2309.03409, 2023.

Daochen Zha, Zaid Pervaiz Bhat, Kwei-Herng Lai, Fan Yang, Zhimeng Jiang, Shaochen Zhong, and
Xia Hu. Data-centric artificial intelligence: A survey. arXiv preprint arXiv:2303.10158, 2023.

14


http://doi.acm.org/10.1145/2641190.2641198

	Introduction
	CLLM: Synergy of LLM Generation and Data Curation
	Data generation with LLMs based on a small Dtrain
	Data curation with learning dynamics

	Curated LLMs for Better Data Augmentation
	Overall performance: downstream utility
	Hardness: a proxy signal to flag poor quality synthetic datasets

	Discussion
	Appendix

