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ABSTRACT

Many real-world applications of reinforcement learning (RL) require the agent to
learn from a fixed set of trajectories, without collecting new interactions. Policy
optimization under this setting is extremely challenging as: 1) the geometry of the
objective function is hard to optimize efficiently; 2) the shift of data distributions
causes high noise in the value estimation. In this work, we propose a simple yet ef-
fective policy iteration approach to batch RL using global optimization techniques
known as continuation. By constraining the difference between the learned pol-
icy and the behavior policy that generates the fixed trajectories, and continuously
relaxing the constraint, our method 1) helps the agent escape local optima; 2) re-
duces the error in policy evaluation in the optimization procedure. We present
results on a variety of control tasks, game environments and a recommendation
task to empirically demonstrate the efficacy of our proposed method.

1 INTRODUCTION

While RL is fundamentally an online learning paradigm, many practical applications of RL al-
gorithms, e.g., recommender systems [5, 7] or autonomous driving [36], fall under the batch RL
setup. Under this setting, the agent is asked to learn its policy from a fixed set of interactions
collected by a different (and possibly unknown) policy commonly referred to as the behavior
policy, without the flexibility to gather new interactions. Realizing the interactive nature of on-
line RL has been hindering its wider adoptions, researchers strive to bring these techniques of-
fline [24, 11, 20, 23, 31, 12, 21, 2, 32, 8]. We focus on policy optimization under batch RL setup.
As pointed out in [3, 26], even with access to the exact gradient, the loss surface of the objective
function maximizing the expected return is difficult to optimize, leading to slow convergence. Chen
et al. [8] show that the objective function of expected return exhibits sub-optimal plateaus and expo-
nentially many local optima in the worst case. Batch setup makes the learning even harder as it adds
large variance to the gradient estimate, especially when the learned policy differs from the behavior
policy used to generate the fixed trajectories. Recent works propose to constrain the size of the
policy update [27, 28] or the distance between the learned policy and the behavior policy [14, 21].
The strength of that constraint is a critical hyperparameter that can be hard to tune [28], as a loose
constraint does not alleviate the distribution shift while a strict one results in conservative updates.

Here we propose to address the challenges using continuation methods [35, 6, 17]. Continuation
methods attempt to solve the global optimization problem by progressively solving a sequence of
new objectives that can be optimized more efficiently and then trace back the solutions to the orig-
inal one. We change the objective function of policy optimization by including an additional term
penalizing the KL divergence between the parameterized policy ⇡✓ and the behavior policy. We
then gradually decrease the weight of that penalty, eventually converging to optimizing the expected
return. With this additional constraint, we benefit from more accurate policy evaluation in the early
stage of training as the target policy is constrained to be close to the behavior policy. As training
continues, we relax the constraint and allow for more aggressive improvement over the behavior
policy as long as the policy evaluation is still stable and relatively reliable, i.e. with a small enough
variance. By doing so, the proposed method exhaustively exploits the information in the collected
trajectories while avoiding the overestimation of state-action pairs that lack support.

The contributions of this paper are as follows: (1) We propose a soft policy iteration approach to
batch RL through the continuation method. (2) We theoretically verify that in the tabular setting
with exact gradients, maximizing KL regularized expected return leads to faster convergence than
optimizing the expected return alone. Also, our method converges to the globally optimal policy if
there are sufficient data samples for accurate value estimation. (3) We demonstrate the effectiveness
of our method in reducing errors in value estimation using visualization; (4) We empirically verify
the advantages of our method over existing batch RL methods on various complex tasks.
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2 RELATED WORK

Batch Reinforcement Learning. Off-policy reinforcement learning has been extensively studied
[11, 20, 30, 23, 31], with many works [12, 21, 2] focusing on variants of Q-learning. Fujimoto et al.
[12], Kumar et al. [21] investigated the extrapolation error in batch RL resulting from the mismatch
of state-action visitation distribution between the fixed dataset and the current policy, and proposed
to address it by constraining the action distribution of the current policy from deviating much from
the training dataset distribution. Recent works [29, 33] studied policy iteration under batch RL.
The Q function is estimated in the policy evaluation step without special treatment while the policy
updates are regularized to remain close to the prior policy with a fixed constraint. To further reduce
uncertainty in Q learning, an ensemble of Q networks [21, 29] and distributional Q-function [2, 33]
are introduced for the value estimation. [34, 18] use the KL divergence between the the target
policy and the behavior policy as a regularization term in the policy update and/or value estimation.
The constraint is controlled by a fixed weight of the KL regularization or a fixed threshold for the
KL divergence. While all of these works apply a fixed constraint determined by a sensitive hyper-
parameter to control the distance between the behavior/prior policy and the target policy, we focus
on gradually relaxed constraints.

Constrained Policy Updates. Several works [27, 1, 15] studied constrained policy updates in online
settings. Kakade & Langford [19] show that large policy updates can be destructive, and propose a
conservative policy iteration algorithm to find an approximately optimal policy. Schulman et al. [27]
constrain the KL divergence between the old policy and new policy to guarantee policy improvement
in each update. Grau-Moya et al. [15] force the policy to stay close to a learned prior distribution
over actions, deriving a mutual-information regularization between state and action. Cheng et al. [9]
propose to regularize in the function space. Again these methods focused on a fixed constraint while
we are interested in continuing relaxing the constraint to maximize the expected return eventually.
Also none of these methods have been extensively tested for batch RL with fixed training data.

Continuation Method. Continuation method [35] is a global optimization technique. The main
idea is to transform a nonlinear and highly non-convex objective function to a series of smoother
and easier to optimize objective functions. The optimization procedure is successively applied to the
new functions that are progressively more complex and closer to the original non-context problem,
to trace their solutions back to the original objective function. Chapelle et al. [6] use the continua-
tion method to optimize the objective function of semi-supervised SVMs and reach lower test error
compared with algorithms directly minimizing the original objective. Hale et al. [17] apply the con-
tinuation method to l1-regularized problems and demonstrate better performance for compressed
sensing problems. Inspired by prior works, we employ the continuation method to transform the
objective of batch RL problems by adding regularization. We gradually decrease the regularization
weight to trace the solution back to the original problem.
3 METHOD

In classical RL, an agent interacts with the environment while updating its policy. At each step t, the
agent observes a state st 2 S , selects an action at 2 A according to its policy to receive a reward
rt = r(st, at) : S ⇥ A ! R and transitions to the next state st+1 ⇠ P(·|st, at). The state value
of a policy ⇡ at a state s is V ⇡(s) = Es0=s,at⇠⇡(·|st),st+1⇠P(·|st,at) [

P1
t=0 �

tr(st, at)]. � 2 [0, 1]
is the discounting factor. At each step, the agent updates the policy ⇡ so that the expected return
V ⇡(⇢) = Es⇠⇢[V ⇡(s)] (where ⇢ is the initial state distribution) is maximized.

In batch RL, the agent is not allowed to interact with the environment during policy learning. In-
stead it has access to a fixed set of trajectories sampled from the environment according to a behav-
ior policy1. A trajectory {(s0, a0, r0), (s1, a1, r1), · · · , (sT , aT , rT )} is generated by sampling s0
from the initial state distribution ⇢, sampling the action at ⇠ �(·|st) at the state st and moving to
st+1 ⇠ P(·|st, at) for each step t 2 [0, 1, · · · , T ]. The length T can vary among trajectories. We
then convert the generated trajectories to a dataset D = {(si, ai, ri, s0i)}Ni=1, where s0

i
is the next

state after si in a trajectory.

The goal of batch RL is to learn a parameterized policy ⇡✓ with the provided dataset to maximize the
expected return V ⇡(⇢). In Sec. 3.1, we will first introduce a new objective function Ṽ ⇡,⌧ (⇢), i.e. the
expected return of policy ⇡ with KL regularization term and the regularization weight ⌧ . With exact
gradients, Ṽ ⇡,⌧ (⇢) can be optimized more efficiently than the original objective V ⇡(⇢). With the

1If the behavior policy is not known in advance, it can be fitted from the data [30, 7].
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continuation method, solving a sequence of optimization problems for Ṽ ⇡,⌧ (⇢) with decaying value
of ⌧ converges toward optimizing V ⇡(⇢) and makes the optimization easier. In Sec. 3.2, we derive
soft policy iteration with KL regularization to optimize Ṽ ⇡,⌧ (⇢), without the assumption of exact
gradients. Finally, in Sec. 3.3, we propose a practical batch RL algorithm with value estimation for
target policy based on this theory.
3.1 OPTIMIZING EXPECTED RETURN WITH KL REGULARIZATION

In batch RL, the distribution of the trajectories generated by the behavior policy can be very different
from that of the learned policy. We thus restrict the learned policy to stay close to the behavior policy
via the regularization of KL divergence. Define the soft state value of a policy ⇡ at a state s as

Ṽ ⇡,⌧ (s) = Es0=s,at⇠⇡(·|st),st+1⇠P(·|st,at)

" 1X

t=0

�t
✓
r(st, at)� ⌧ log

⇡(at|st)
�(at|st)

◆#
, (1)

where the temperature parameter ⌧ controls the deviation from �. The new objective function be-
comes Ṽ ⇡,⌧ (⇢) = Es⇠⇢[Ṽ ⇡,⌧ (s)]. This KL regularized objective differs from the original objective
V ⇡(⇢), which however can be recovered as ⌧ ! 0.

As pointed out in [3], even with exact gradients, the objective function V ⇡(⇢) is still difficult to
optimize due to its highly non-smooth landscape. Mei et al. [26] further prove that, in a tabular set-
ting with softmax parameterized policy and exact gradients, the vanilla policy gradient method (i.e.
directly updating the parameters of policy ⇡ to maximize V ⇡(⇢) with gradient descent) converges to
the global optimal policy at a convergence rate O(1/t), while the entropy-regularized policy gradi-
ent enjoys a significantly faster linear convergence rate O(e�t). Motivated by this line of work, we
investigate the convergence rate of optimizing Ṽ ⇡,⌧ (⇢) with the exact gradient descent and compare
it with the vanilla policy gradient method. We study the smoothness and Łojasiewicz inequality
for the function Ṽ ⇡,⌧ (⇢) to prove the convergence rate, similar to [26]. The detailed proofs of all
following theorems are provided in the appendix.
Theorem 1. In the tabular setting with softmax parameterized policy ⇡✓, maximizing Ṽ ⇡,⌧ (⇢) using

policy gradient with the learning rate ⌘ = (1��)3
(8M+⌧(4+8 logA)) , for all t > 1, we have

Ṽ ⇡
⇤
⌧ ,⌧ (⇢)� Ṽ ⇡✓t ,⌧ (⇢)  C · e�C⌧ (t�1) · M + ⌧ logA

(1� �)2
where ⇡⇤

⌧
is the optimal policy maximizing Ṽ ⇡,⌧ (⇢), M is the bound of the absolute value of r(s, a)+

⌧ log �(a|s), A is the size of action space, S is the size of state space, C⌧ / (1��)4
(8M/⌧+4+8 logA)·S ,

and C is a constant independent with t and ⌧ .

Theorem 1 states that KL regularized expected return Ṽ ⇡,⌧ (⇢) can be optimized with a convergence
rate O(e�t) rather than the O(1/t), the convergence rate of vanilla policy gradient for expected
return alone. The faster convergence inspires us to optimize Ṽ ⇡,⌧ (⇢) to reach policy ⇡⇤

⌧
, then use ⇡⇤

⌧

as initialization, gradually decrease the temperature ⌧ towards 0, and eventually move from ⇡⇤
⌧

to
⇡⇤ = argmax⇡ V ⇡(⇢). With a reasonable value of ⌧ , we enjoy a linear convergence rate toward ⇡⇤

⌧

from the randomly initialized policy ⇡✓. As ⌧ decreases, ⇡⇤
⌧

gets closer to ⇡⇤. The final optimization
of V ⇡✓ (⇢) from ⇡⇤

⌧
can be much faster than from a randomly initialized ⇡✓.
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Figure 1: (a) A grid world with sparse rewards.
(b) Learning curve of the value of learned pol-
icy ⇡✓i . We conduct a hyper-parameter search for
the learning rate 5,1,0.5,0.1,0.05,0.01,0.005,0.001
and report the best performance for each method.

We construct a toy example to illustrate this motiva-
tion. In the grid world (Fig. 1a), the start state, anno-
tated with ‘S’, is in the center and the terminal states
are marked in yellow. There are only two states with
positive rewards (0.9 and 1). There are four actions
{up, down, left, right}. A badly initialized policy
⇡✓0 is shown as arrows in Fig. 1a). The initializa-
tion results in a poor policy, having high tendency
to go right toward a terminal state with zero reward.
The vanilla policy gradient method (i.e. maximiz-
ing V ⇡(⇢) with true gradient) starting from this ini-
tial point takes more than 7000 iterations to escape
a sub-optimal solution (Fig. 1b). In contrast, we es-
cape the sub-optimal solution much faster when ap-
plying the continuation method to update the policy with the gradients of Ṽ ⇡,⌧ (⇢), where the be-
havior policy �(·|s) = [u1, u2, u3, u4] with ui, i = 1, 2, 3, 4 randomly sampled from U [0, 1] and
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Algorithm 1 Soft Policy Iteration through Continuation Method
1: Initialize: actor network ⇡✓, ensemble critic network {Q�(1) , Q�(2) , · · · , Q�(K)}, behavior pol-

icy network � , penalty coefficient ⌧ , decay rate �, number of iterations I for each ⌧
2: Input: training dataset D = {(si, ai, ri, s0i)}Ni=0
3: for update j = 0, 1, · · · do

4: Sample batch of data {(si, ai, ri)}Bi=1 from D
5: # Learn the behavior policy with behavior cloning objective
6: Update  to maximize 1

B

P
B

i=1 log � (ai|si)
7: # Train the critic network
8: Update �(k) to minimize the temporal difference 1

B

P
B

i=1

�
ri + �V (s0

i
)�Q�(k)(si, ai)

�2
9: where V (s) = 1

K

P
K

k=1 Ea⇠⇡✓(·|s)(Q�(k)(s, a))� ⌧KL(⇡✓(·|s)|� (·|s))
10: # Train the actor network
11: Update ✓ to maximize 1

B

P
B

i=1

h
1
K

P
K

k=1 Ea⇠⇡✓(·|si)(Q�(k)(si, a))� ⌧KL(⇡✓(·|si)|� (·|si))
i

12: # Decay the weight of KL regularization ⌧ for every I updates
13: if j mod I = 0 then

14: ⌧  ⌧ ⇤ �
15: end if

16: end for

normalized for each state s. In Fig. 1b, as we decrease ⌧ , the value of learned policy ⇡✓i for each it-
eration i quickly converges to the optimal value. In other words, optimizing a sequence of objective
functions Ṽ ⇡,⌧ (⇢) can reach the optimal solution for V ⇡(⇢) significantly faster.

3.2 SOFT POLICY ITERATION WITH KL REGULARIZATION

As explained in the previous section, we focus on the new objective function Ṽ ⇡,⌧ (⇢), which can be
optimized more efficiently, and use continuation method to relax toward optimizing V ⇡(⇢). Batch
RL adds the complexity of estimating the gradient of Ṽ ⇡,⌧ (⇢) with respect to ⇡ from a fixed set
of trajectories. We propose to adapt soft actor-critic[16], a general algorithm to learn optimal max-
imum entropy policies in batch RL for our use case. We change the entropy regularization to KL
regularization and derive the soft policy iteration to learn KL regularized optimal policy. For a policy
⇡ and temperature ⌧ , the soft state value is defined in Eq. 1 and soft Q function is defined as:

Q̃⇡,⌧ (s, a) = r(s, a) + �Es0⇠P(·|s,a)Ṽ
⇡,⌧ (s0) (2)

In the step of soft policy evaluation, we aim to compute the value of policy ⇡ according to the
minimum KL divergence objective Ṽ ⇡,⌧ (⇢) = Es⇠⇢[Ṽ ⇡,⌧ (s)]. According to Lemma 1 in Appendix,
the soft Q value can be computed by repeatedly applying the soft bellman backup operator.

T ⇡,⌧Q(s, a) = r(s, a)+�Es0⇠P(·|s,a)(V (s0)), where V (s) = Ea⇠⇡(·|s)


Q(s, a)� ⌧ log ⇡(a|s)

�(a|s)

�
.

In the step of policy improvement, we maximize the expected return based on Q-value evaluation
with the KL divergence regularization. The following policy update can be guaranteed to result in
an improved policy in terms of its soft value (Lemma 2 in Appendix).

⇡new(·|s) = argmax
⇡2⇧

h
Ea⇠⇡(·|s)

⇣
Q̃⇡old,⌧ (s, a)

⌘
� ⌧KL(⇡(·|s)|�(·|s))

i
(3)

where KL(⇡(·|s)|�(·|s)) = Ea⇠⇡(·|s)


log

⇡(a|s)
�(a|s)

�

The soft policy iteration algorithm alternates between the soft policy evaluation and soft policy
improvement, and it will provably converge to the optimal policy maximizing the objective Ṽ ⇡,⌧ (⇢).

Theorem 2. Repeated application of soft policy evaluation and soft policy improvement converges

to a policy ⇡⇤
⌧

such that Q̃⇡
⇤
⌧ ,⌧ (s, a) � Q̃⇡,⌧ (s, a) for any ⇡ 2 ⇧ and (s, a) 2 S ⇥A.

The soft policy iteration finds a policy ⇡⇤
⌧

with optimal soft Q value for each state-action pair and
hence gets the optimal value of Ṽ ⇡,⌧ (⇢). Here we propose to use the soft policy iteration to solve
objectives Ṽ ⇡,⌧ (⇢) with decreasing value of ⌧ and move back to the objective V ⇡(⇢) as ⌧ = 0. The
method is guaranteed to asymptotically converge to the optimal policy ⇡⇤ for the objective V ⇡(⇢).
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Figure 2: Visualization of the error in soft Q value estimation and quality of the learned policy. In the first
four columns, triangles represent the error for actions that move in different directions. Darker color indicates
higher error. To investigate the performance of the learned policy ⇡✓1000 , the length of arrows represents the
probability of taking each actions in each states. We run ⇡✓1000 in the grid world and visualize the visitation
count in the last column (heatmap). Darker color means more visitation.

Theorem 3. Let ⇡⇤
⌧
(a|s) be the optimal policy from soft policy iteration with fixed temperature ⌧ .

We have ⇡⇤
⌧
(a|s) / exp

⇣
Q̃

⇡⇤
⌧ ,⌧ (s,a)
⌧

⌘
�(a|s). As ⌧ ! 0, ⇡⇤

⌧
(a|s) will take the optimal action a⇤

with optimal Q value for state s.

3.3 ERROR IN VALUE ESTIMATE

In the previous section, we show that the soft policy iteration with the continuation method provably
converges to the global optimal policy maximizing expected return. However, in batch RL with a
fixed dataset and limited samples, we cannot perform the soft policy iteration with KL regularization
in its exact form. Specifically, in the policy evaluation step, when the learned policy ⇡ deviates for
the behavior policy �, and chooses the state-action pair (s, a) rarely visited by �, the estimation
of target r(s, a) + �Es0⇠P(·|s,a)(V (s0)) can be very noisy. The error in the value estimate Q(s, a)
will be further propagated to other state-action pairs through the bellman update. Finally, inaccurate
value estimation will cause errors in the policy improvement step, resulting in a worse policy. On
the other hand, if we constrain the learned policy ⇡ to be very close to the behavior policy �, we can
expect the policy evaluation to be reliable and safely update the learned policy. The tight constraint
however prevents ⇡ to be much better than � due to the conservative update.

On the grid world, we study this problem of value estimation with different values of ⌧ . Figure 2 vi-
sualizes the propagation of Q value estimation errors and the learned policies. We assume a mediocre
behavior policy tending to move left and down. For the rarely visited states in the upper right part
of the grid, there are errors in the value estimation of Q̃⇡,⌧ (s, a), i.e. |Q(s, a)� Q̃⇡,⌧ (s, a)| > 0
where Q(s, a) is the Q value we learn during training and Q̃⇡,⌧ (s, a) is the ground truth soft Q
value. Because the bad initial policy (Fig. 1a) tends to move towards the right part, without a strong
KL regularization, the policy evaluation can be problematic due to the errors of value estimation in
the right part of the grid world. In Fig. 2, with a small KL regularization weight ⌧ = 0.001, the first
row shows that errors even propagate to the frequently visited states by the behavior policy. On the
other hand, when we set a large value of ⌧ = 1 (second row), the error |Q(s, a)� Q̃⇡,⌧ (s, a)| is
smaller. Yet the performance of the learned policy is not much better than the behavior policy. Our
continuation method gradually moves the policy update between these two spectra. The value esti-
mation benefits from the gradually relaxed KL regularization and the errors remain small. The last
column of Fig. 2 visualizes the learned policy in these methods. With constant ⌧ = 0.001, the wrong
value estimates in some states mislead the agent. It fails to visit any terminal state and gets stuck
at the state in dark orange. With constant ⌧ = 1, the tight constraint of KL divergence makes the
learned policy close to the behavior policy, mostly visiting the left bottom part of the environment.
With continuation method, the agent learns to always take the optimal path moving left directly and
obtains the highest expected return. More details of this example are provided in the appendix.
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In the toy example, gradually relaxing KL regularization towards zero alleviates the prop-
agation of errors in the soft Q estimate and helps the agent converge to the optimal pol-
icy. In more complicated domains, we find that as ⌧ decays close to 0, the policy evalua-
tion is still erroneous. To mitigate this issue, we introduce an ensemble of critic networks
{Q�(1) , Q�(2) , · · · , Q�(K)} to approximate the soft Q value, and monitor the variance of value es-
timation in different critic networks to measure the uncertainty. Given a batch of data samples
{si}Bi=1 ⇢ D, var(Q⇡) = 1

B

P
B

i=1 Ea⇠⇡(·|si)var(Q�(1)(si, a), Q�(2)(si, a), · · · , Q�(k)(si, a)) in-
dicates whether the current policy ⇡ tends to take actions with highly noisy value estimation.

Our method is summarized in Algorithm 1. Instead of running the soft policy evaluation and policy
improvement until convergence, we alternate between optimizing the critic network and actor net-
work with stochastic gradient descent. We set ⌧ to large value initially and let the KL divergence
term dominate the objective, thus performing behavior cloning. We record a moving average of the
Q value estimation variance var(Q⇡,⌧0) over 1000 updates at the end of the phase. After that, we
decay the temperature gradually with � = 0.9 every I steps. When the moving average of the Q
value estimation variance var(Q⇡,⌧ ) is large compared with the initial value var(Q⇡,⌧0) (i.e. at the
end of behavior cloning), we no longer trust the value estimate under the current temperature ⌧ and
take the policy checkpointed before the temperature decays to this ⌧ as our solution.

4 EXPERIMENTS

4.1 MUJOCO

We evaluate our method with several baselines on continuous control tasks. We train a Proximal
Policy Optimization agent [28] with entropy regularization for 1000 million steps in the environ-
ments. We parameterize the policy using Gaussian policies where the mean is a linear function of
the agent’s state ✓T s and variance is an identity matrix to keep the policy simple as introduced in [3].
To generate training datasets D with varying quality, we construct the behavior policy by mixing the
well-trained policy N (✓T

opt
s, 0.5I), i.e. checkpoint with the highest score during training, and a poor

policy N (✓T0 s, 0.5I) , i.e. checkpoint at the beginning of the training, with the weight ↵. Then the
behavior policy �(·|s) is N (((1�↵)✓opt +↵✓0)T s, 0.5I). We generate trajectories and store a total
of one million data samples from the mixed behavior for different values of the coefficient ↵.

The architecture of the target policy is the same as the behavior policy. We consider six baseline
approaches: BCQ [14], BEAR [21], ABM+SVG [29], CRR [33], CQL [22], BRAC [34]. For a fair
comparison, the architectures of the ensemble critic network and the policy network are the same in
the baselines and our method, except BCQ which has no policy network. To evaluate and compare
the methods, we run the learned policy in the environments for 100 episodes and report the average
episode reward in Fig 3. As for the continuation method, we report the score of policy checkpointed
last with reasonable value estimation variance, as explained in Section 3.3. For the baselines, we
report the score of the final policy when we terminate the training at 1.5M updates.

↵ BCQ BEAR ABM CRR CQL BRAC Ours

Hopper

0.2 1908.0 ±327.0 1661.2 ± 163.3 1814.2 ±176.9 1861.5 ±112.8 1962.6 ±194.1 2375.4 ± 181.3 2085.8 ±204.8
0.4 876.0 ±462.2 1028.9 ± 49.0 1113.0 ±201.3 1281.0 ±218.2 1262.0±116.7 991.0 ± 39.5 1463.7 ±195.0

0.6 429.9 ±198.1 898.6 ± 28.2 1402.6 ±350.5 791.1 ±87.0 609.1 ±35.1 573.7 ± 41.6 1524.3 ±511.4

0.8 450.3 ±174.2 3.3 ± 4.3 3.6 ±0.0 304.2 ±36.3 295.7 ±41.9 83.6 ± 113.1 234.8 ±26.4

Half
Cheetah

0.2 1765.8 ±41.2 2143.4 ± 18.3 2168.3 ±26.1 2154.1 ±6.6 2105.7 ±37.2 1649.3 ± 64.3 2149.3 ±32.9
0.4 1336.4 ±35.6 1809.3 ± 18.1 1914.7 ±13.2 1860.1 ±38.2 1811.9 ±60.7 1744.5 ± 15.1 1839.9 ±16.9
0.6 513.6 ±35.6 1149.9 ± 39.3 1457.9 ±36.4 1161.7 ±11.7 1156.6 ±43.3 1245.1 ± 67.2 1524.8±37.6

0.8 179.0 ±14.1 700.6 ± 11.4 600.4 ±8.6 572.8 ±14.3 605.8 ±44.5 499.1 ± 11.0 595.4± 19.1

Walker

0.2 1400.2 ±30.9 1414.6 ± 19.4 1405.2 ±57.3 1442.9 ±19.5 1385.2 ±73.4 437.5 ± 638.9 1467.3 ±45.2

0.4 965.9 ±69.0 1179.5 ± 21.2 1259.3 ±27.7 1233.5 ±35.8 979.6 ±83.5 1311.5 ± 29.7 1223.5±15.7
0.6 266.3 ±56.9 486.3 ± 43.3 664.9 ±37.5 529.9 ±46.8 218.8 ±16.9 559.1 ± 37.6 872.9 ±228.7

0.8 3.5 ±5.0 10.9 ± 0.9 5.9 ±0.6 10.7 ±0.3 3.3 ±6.5 5.6 ± 0.9 7.0± 6.3
Table 1: Results on Mujoco. We show the average and standard deviation of the scores in 5 independent runs.

Tab. 1 shows that our method outperforms all the baselines on 5 settings. On the dataset with
relatively reasonable quality (i.e. ↵ = 0.2, 0.4, 0.6), ours performs comparable or better than the
baselines. With ↵ = 0.2, i.e., close to optimal behavior policy, all the methods perform similarly and
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Figure 3: Learning curves of average reward over 5 runs on Mujoco tasks with ↵ = 0.6. The shaded area with
light color indicates the standard deviation of the reward. The gray vertical lines on the yellow curves indicate
where we take the checkpointed policy, according to the measure of Q value variance, as our final solution.

Amidar Asterix Breakout Enduro MsPacman Qbert Seaquest SpaceInvaders

BCQ 154.4
±11.0

2466.7
±273.4

203.8
±19.6

604.7
±39.7

2299.7
±150.2

4088.3
±332.8

4420.0
±548.7

726.5
±58.7

REM 32.0
±3.5

741.4
±236.7

3.1
±0.0

244.2
±19.8

1997.4
±6.4

2062.9
±511.5

474.0
±61.9

678.4
±41.3

CQL 145.0
±1.6

2618.7
±102.1

253.7

±14.4

206.6
±5.8

2234.6
±203.2

4094.7
±74.1

4652.6
±2017.1

493.5
±11.4

Ours 174.5

±7.1

3476.7

±229.0

199.0
±32.0

922.9

±31.7

2494.0

±301.3

4732.5

±172.5

9935.0

±1175.9

1070.3

±137.1

Table 2: Results on Atari, the mean and standard deviation of scores achieved in 3 indenpendent runs.

one can achieve a good return by simply cloning the behavior policy. With ↵ = 0.8, i.e., low-quality
behavior policy, there are few good trajectories in the dataset for any methods to learn. The advan-
tage of our method is most obvious when ↵ = 0.6 (Fig. 3), as the dataset contains trajectories of both
high and low cumulative rewards. Our method can learn from the relatively large number of good
trajectories and at the same time deviate from the behavior policy to avoid those bad trajectories and
achieve higher rewards. In Fig. 3, ‘Constant’ is the method of optimizing KL regularized expected
reward with constant value of ⌧ . We search several values of ⌧ and report the best result. We can
see that gradually relaxing constraint performs better than the fixed constraint. In Fig. 3(left), as ⌧
decays to close to 0, the learned policy can degrade due to errors in the Q estimation, the stopping
condition explained in Section 3.3 is however able to identify a good policy before the degenerating
point. More experimental details are in the Appendix.

4.2 ATARI

We further study our method on several Atari games from the Arcade Learning Environment (ALE)
[4]. The rich observation space requires more complicated policies and makes policy optimization
even more challenging. We focus on eight games and generate the datasets as discussed in Fu-
jimoto et al. [13]. We use a mediocre DQN agent, trained online for 10 million timesteps (40
million frames). The performance of the DQN agent is shown as ‘Online DQN’ in Fig. 4. We add
exploratory noise on the DQN agent (at 10 million timesteps) to gather a new set of 10 million
transitions, similar to [13]. The line ”Behavior” in Fig. 4 shows the average of trajectory reward in
the dataset D. The dataset D is used to train each offline RL agent. We compare with BCQ [13],
REM [2] and CQL [22] because they are recently proposed offline RL algorithms and work well
on Atari domain. For evaluation, we run 10 episodes on the Atari games with the learned policies
and record the average episode reward (Fig. 4). Tab. 2 summarizes the performance of BCQ, REM
and CQL after 6M updates. For our method, we report the score before the variance of Q estimate
becomes too high.

Our approach achieves higher scores than the baselines on 7 out of 8 games, and perform compara-
bly on the other one. Agarwal et al. [2] reports that REM performs well in the dataset consisting of
the entire replay experiences collected in the online training of the DQN agent for 50M timesteps
(200M frames). We hypothesize that learning on the entire replay experience makes the setup easier
as the training dataset contains more exploratory and higher quality trajectories. With the dataset of
much smaller size and worse quality, REM performs poorly in this single behavioral policy setting.
We use the same architecture of the critic network for both our method and BCQ with ensemble of 4
Q networks. As mentioned in [13], BCQ only matches the performance of the online DQN on most
games. In contrast, ours is able to outperform online DQN significantly on several games. As pre-
sented in [22], on the Atari dataset, CQL performs better than REM, while our method outperforms
CQL in 7 out of 8 datasets.
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Figure 4: Learning curves of average reward over 3 runs on Atari games.

data with avg. reward 0.49 data with avg. reward 0.63 data avg. reward 0.81
sample size 30,000 60,000 30,000 60,000 30,000 60,000
Cross-Entropy 74.3±0.01 73.5±0.01 82.0±0.01 81.3±0.01 86.7±0.00 85.6±0.00
IPS 80.5±0.03 82.1±0.02 86.4±0.02 88.0±0.01 87.2 ± 0.02 90.0 ± 0.01
Ours 83.0±0.01 85.8±0.00 88.7±0.01 90.1±0.00 89.4±0.00 90.5±0.00

Table 3: Results on MovieLens dataset. The number is precision at 10, i.e., the percent of recommended movies
getting positive feedback when we use the well-trained policy to recommend top-10 movies to the test users.
We report the mean and standard deviation of the precision over 20 independent runs,

4.3 RECOMMENDER

We also showcase our proposed method for building a softmax recommender agent. We use a
publicly available dataset MovieLens-1M, a popular benchmark for recommender system. There
are 1 million ratings of 3,900 movies (with the title and genre features) from 6,040 users (with
demographic features). The problem of recommending movies for each user can be converted to a
contextual bandit problem, where we aim to learn a target policy ⇡✓(a|s) selecting the proper action
(movie) a for each state (user) s to get a high reward (rating) r in a single step. The ratings of
5-score are converted to binary rewards using a cutoff of 4. To evaluate whether a learned target
policy works well, ideally we should run the learned policy in real recommendation environments.
However, such environments for online test are rarely publicly available. Thus, we use the online
simulation method. We train a simulator to predict the immediate binary feedback from user and
movie features, and the well-trained simulator can serve as a proxy of the real online environments,
because it outputs the feedback for any user-movie pair. Similar to [25], we train the simulator
with all records of logged feedback in MovieLens-1M dataset. The behavior policy is trained with
partial data in MovieLens-1M. We then construct the bandit datasets D = {si, ai, ri,�(ai|si)}Ni=1
of different size and quality, by using different behavior policies � to select movies ai for users si
and getting the binary feedback ri from the well-trained simulator. We train offline RL agents on
the generated dataset D and use the simulator to evaluate the learned policies on a held-out test set
of users.

We compare our method with two baselines, as they are commonly used in current industrial recom-
mender systems [10, 7]. (1) Cross-Entropy: a supervised learning method for the softmax recom-
mender where the learning objective is the cross-entropy loss JCE(✓) = � 1

N

P
N

i=1 ri log ⇡✓(ai|si)
(2) IPS: the off-policy policy gradient method introduced in [7] with the learning objective
JIPS(✓) = � 1

N

P
N

i=1
sg(⇡✓(ai|si))
�(si,ai)

ri log ⇡✓(ai|si) where sg indicates a stop-gradient operation.
JIPS(✓) produces the same gradient as that of the function - 1

N

P
N

i=1 ri
⇡✓(ai|si)
�(ai|si) . Thus, minimizing

the loss JIPS(✓) is to maximizing the expected return with importance sampling. (3) Ours: in the
bandit setting, we simply perform IPS with gradually decaying KL regularization since estimating
the soft Q from bellman update is not needed. Tab. 3 clearly demonstrates the advantage of our
proposed method over the baselines. IPS can be viewed as vanilla policy gradient with importance
sampling to correct the distribution shift. Our method clearly outperforms it across datasets collected
using different behavior policies.
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5 CONCLUSION

We propose a simple yet effective approach, soft policy iteration algorithm through continuation
method to alleviate two challenges in policy optimization under batch reinforcement learning: (1)
highly non-smooth objective function which is difficult to optimize (2) high variance in value esti-
mates. We provide theoretical ground and visualization tools to help understand this technique. We
demonstrate its efficacy on multiple complex tasks.
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[33] Ziyu Wang, Alexander Novikov, Konrad Żołna, Jost Tobias Springenberg, Scott Reed, Bobak
Shahriari, Noah Siegel, Josh Merel, Caglar Gulcehre, Nicolas Heess, et al. Critic regularized
regression. arXiv preprint arXiv:2006.15134, 2020.

10



Published as a conference paper at ICLR 2021

[34] Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learn-
ing. arXiv preprint arXiv:1911.11361, 2019.

[35] Zhijun Wu. The effective energy transformation scheme as a special continuation approach to
global optimization with application to molecular conformation. SIAM Journal on Optimiza-

tion, 6(3):748–768, 1996.

[36] Fisher Yu, Wenqi Xian, Yingying Chen, Fangchen Liu, Mike Liao, Vashisht Madhavan, and
Trevor Darrell. Bdd100k: A diverse driving video database with scalable annotation tooling.
arXiv preprint arXiv:1805.04687, 2018.

11


