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ABSTRACT

Recent advancements in conversational large language models (LLMs), such as
ChatGPT, have demonstrated remarkable promise in various domains, including
drug discovery. However, existing works mainly focus on investigating the capabil-
ities of conversational LLMs on chemical reactions and retrosynthesis. While drug
editing, a critical task in the drug discovery pipeline, remains largely unexplored.
To bridge this gap, we propose ChatDrug, a framework to facilitate the systematic
investigation of drug editing using LLMs. ChatDrug jointly leverages a prompt
module, a retrieval and domain feedback module, and a conversation module to
streamline effective drug editing. We empirically show that ChatDrug reaches the
best performance on all 39 drug editing tasks, encompassing small molecules, pep-
tides, and proteins. We further demonstrate, through 10 case studies, that ChatDrug
can successfully identify the key substructures for manipulation, generating diverse
and valid suggestions for drug editing. Promisingly, we also show that ChatDrug
can offer insightful explanations from a domain-specific perspective, enhancing
interpretability and enabling informed decision-making.

1 INTRODUCTION

Recently, artificial intelligence (AI) tools have made remarkable strides in revolutionizing the field
of drug discovery, offering tremendous potential for accelerating and enhancing various stages of the
process (Sullivan, 2019), including but not limited to virtual screening (Rohrer & Baumann, 2009; Liu
et al., 2018), lead optimization (Jin et al., 2020; Irwin et al., 2022; Wang et al., 2022; Liu et al., 2022b),
reaction and retrosynthesis (Gottipati et al., 2020), and protein folding and inverse folding (Jumper
et al., 2021; Hsu et al., 2022). However, existing research has predominantly focused on the drug struc-
ture information, solely considering the inherent chemical structure of the drugs as a single modality.
In contrast, the drug discovery pipeline involves iterative refining processes that entail conversations
with domain experts to incorporate their feedback, ultimately achieving the desired outcome. On the
other hand, significant advancements have been made in large language models (LLMs) (Brown et al.,
2020; Devlin et al., 2018; Yang et al., 2019), showcasing exceptional capabilities in understanding
human knowledge and exhibiting promising reasoning abilities (Huang et al., 2022; Zhou et al., 2022;
Kojima et al., 2022). Such observations inspire us to investigate the potential of leveraging LLMs’
conversation and reasoning abilities for AI-assisted drug discovery in a multi-modality fashion.

Potential of Conversational LLMs for Drug Discovery and Editing. Conversational LLMs
exhibit three compelling factors that make them highly promising for drug discovery. Firstly, these
model (Taylor et al., 2022; Touvron et al., 2023) are pretrained on a comprehensive knowledge base,
enabling their application across various fields, including drug discovery. This extensive “world-level”
knowledge serves as a robust foundation for drug-related tasks. Second, conversational LLMs possess
outstanding abilities in fast adaptation and generalization. For example, by leveraging few-shot
demonstrations, these models can effectively activate the relevant concepts learned during pretraining,
enabling them to deliver more accurate and desired answers (Xie et al., 2021). Such adaptability and
generalization capacity holds immense potential for addressing complex drug discovery challenges
and generating valuable insights. Lastly, interactive communication is a vital characteristic of
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Figure 1: The pipeline for ChatDrug with 3 modules. PDDS generates drug editing prompts. ReDF updates the
prompts using retrieved information and domain feedback. Finally, ChatDrug adopts the conversational module
for interactive refinement. Further, we demonstrate 3 drug types: small molecules, peptides, and proteins.

conversational LLMs. This feature allows for a dynamic exchange of information, enabling users to
incorporate feedback from prior knowledge or domain experts into the model. This bidirectional flow
of information facilitates self-calibration of the answers, leading to improved accuracy and relevance
in drug discovery tasks. To sum up, these factors collectively highlight the untapped potential of
conversational LLMs for drug discovery tasks. Noticeably, drug editing (AKA lead optimization
or protein design) is an important and challenging task in drug discovery. This is a routine task in
pharmaceutical companies, and it aims at updating the drug’s substructures (Mihalić & Trinajstić,
1992), related to certain key tactics in drug discovery like functional group change (Ertl et al.,
2020) and scaffold hopping (Böhm et al., 2004; Hu et al., 2017). Traditional solutions relying on
domain experts for manual editing can be subjective or biased (Drews, 2000; Gomez, 2018). Recent
works (Liu et al., 2023b; 2022a) have started to explore text-guided drug editing in a multi-modal
manner. However, they do not utilize the conversational potentials in LLMs (Peng et al., 2023).

Our Approach: ChatDrug. Motivated by the aforementioned factors and challenges, we propose
ChatDrug, a framework aiming to unlock new possibilities and enhance drug editing by using LLMs.
Such a framework can be applied to various LLMs backbones, including ChatGPT and open-source
LLMs model GALACTICA and Llama2, and the pipeline is shown in Figure 1. In ChatDrug, users can
activate the conversation with LLMs involving domain knowledge and inject the retrieved information
into the conversation. Specifically, ChatDrug includes the following modules for conversational
drug editing. First, ChatDrug adopts a PDDS (prompt design for domain-specific) module, enabling
strong prompt engineering capability from LLMs. Second, ChatDrug integrates a ReDF (retrieval and
domain feedback) module. By leveraging the vast domain knowledge available, such a ReDF module
serves as guidance for prompt updates and augments the model’s performance in generating accurate
outputs. Third, ChatDrug adopts a conversation-based approach, aligning with the iterative refinement
nature of the drug discovery pipeline. Such interactive schema enables a dynamic and collaborative
process, effectively incorporating feedback from domain experts to achieve desired outcomes.

Through our design, ChatDrug demonstrates two appealing properties for drug editing tasks: (1)
ChatDrug exhibits an open vocabulary property, allowing for exploring novel drug concepts beyond a
fixed set of pre-defined annotations. The model can generalize to new drug-related concepts due to
the unrestricted nature of natural language. (2) ChatDrug possesses the compositional property. It can
decompose complex concepts, such as multi-objective lead optimization, into simpler attributes like
binding to a new protein and high permeability, enabling handling complicated drug editing tasks. 1

Then, to fully verify the effectiveness of ChatDrug, we need to design a benchmark for a wide range
of drug editing tasks. Before going into details, we would like to claim two criteria for the task design:
(1) The tasks should involve indeterministic answers, as they can serve as a source of inspiration for
domain experts. (2) The tasks should be able to evaluate computationally since the lab experiment can
be quite laborious and is beyond the discussion of this paper. Following these criteria, we introduce
39 editing tasks over three common drugs: 28 for small molecules, 9 for peptides, and 2 for proteins.

1Note that ChatDrug aims to inspire domain experts rather than replace them. While ChatDrug can propose
optimized drugs or novel attributes, its primary role is to serve as a tool for knowledge exploration. The generated
outputs can provide valuable insights and spark inspiration for domain experts in the drug discovery process.
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Last but not least, we offer empirical evidence substantiating the capability of ChatDrug for a
wide range of drug editing tasks on three LLM backbones: Turbo (a.k.a. ChatGPT), GALACTICA
and Llama2. Quantitatively, ChatDrug reaches the best performance on all 39 drug editing tasks
compared to seven baselines, among which, ChatDrug-Turbo reaches generally better performance
and higher stability on 32 of them. Thus, we further qualitatively provide 10 case studies illustrating
that ChatDrug-Turbo can successfully identify the important substructures for each type of drug,
as follows. (1) For small molecules, ChatDrug-Turbo detects the key scaffold for molecule editing,
such as changing polar or hydrophobic functional groups for tuning properties like solubility in water
and permeability. (2) For peptides, ChatDrug-Turbo accurately identifies the protein-specific binding
motifs of the peptide sequences. (3) For proteins, ChatDrug-Turbo modifies sequences with more
α-helix or β-strand structures after folding (Jumper et al., 2021; Lin et al., 2022). We additionally
illustrate that ChatDrug provides insightful explanations, serving as a knowledge extraction tool.

2 PRELIMINARIES

Data Structure of Drugs. Drugs (Wishart et al., 2008; dru) refer to certain specific substances that
can be adopted to prevent, diagnose, treat, or relieve symptoms of a disease or abnormal condition. In
this paper, we would like to explore the three most common drugs: small molecules (Jayatunga et al.,
2022), proteins (Frokjaer & Otzen, 2005), and peptides (Craik et al., 2013). Small molecules are sets
of atoms connected together through the covalent bonds. Commonly-used data structures include
SMILES (simplified molecular-input line-entry system) strings (Weininger, 1988) and molecular
graphs (Duvenaud et al., 2015; Kearnes et al., 2016; Liu et al., 2019). In ChatDrug, we consider using
the SMILES strings. Proteins are complex macromolecules, and they are composed of 20 amino
acids, where each amino acid is a small molecule. Regarding the protein data structure, we adopt
the amino acid sequence (i.e., amino acid string), and the mapping between 20 alphabets and amino
acids can be found in Appendix E. Peptides are short chains of amino acids and can be viewed as a
special type of protein. The demonstration of three data structures can be found in Figure 1.

Drug Editing and Problem Formulation. In this paper, we focus on the drug editing task. Drug
editing is also known as lead optimization or protein design, an important drug discovery task. From
the machine learning perspective, drug editing is a conditional generation problem and can be
formulated as follows. Suppose the input drug (SMILES string or amino acid sequence) is xin,
and a target or desired property in the textual description is also known as the text prompt xt in
literature (Raffel et al., 2020; Liu et al., 2023a). Then condition on such text prompt, the goal is to
obtain an optimized drug xout ∼ P (x|xin,xt). Under the ChatDrug framework, the formulation is:

xout = ChatDrug(xin,xt). (1)

Then an evaluation metric E(xin,xout;xt) ∈ {True,False} is applied to check if the edited drugs can
satisfy the desired properties compared to the input drugs, and we will average this over each corre-
sponding task to get the hit ratio. Note that E(·, ·; ·) is task-specific, as will be discussed in Section 4.

3 METHOD: THE CHATDRUG FRAMEWORK

Overview. Our ChatDrug framework is illustrated in Figure 1. It consists of three components: (1)
Prompt Design for Domain-Specific (PDDS) module, (2) Retrieval and Domain Feedback (ReDF)
module, and (3) conversation module. Given a task prompt and input drug, PDDS aims to generate
the domain-specific prompt and concatenate it with the input drug to request LLMs for answers. One
problem for current LLMs is that it does not fully utilize the prior domain knowledge. Thus, we design
the ReDF module aiming to (1) guide the LLMs to solve this task by retrieving structurally similar
examples from the database and adding examples into the prompt as demonstrations and (2) verify
the correctness of the output by using a domain feedback function. If the output drug is incorrect
after ReDF, we then adopt the conversation module to ask LLMs to generate a new drug iteratively.
We highlight that ChatDrug is a parameter-free scheme and does not require any learning procedure.

3.1 PDDS MODULE

ChatDrug is proposed to solve a challenging problem: generalization of a universally (w.r.t. data type
and data source) well-trained LLM to solving scientific tasks. In natural language processing (NLP),
prompt design or prompt engineering (Liu et al., 2023a) has proven to be an effective paradigm for
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generalizing well-trained LLMs to various NLP downstream tasks, including but not limited to sen-
timent classification (Han et al., 2022; Hu et al., 2021), textual entailment (Webson & Pavlick, 2021;
Shin et al., 2020), text summarization (He et al., 2020; Schick & Schütze, 2020; Dou et al., 2020).

However, the explorations of adapting LLMs for drug editing tasks have been lagging behind. In
this paper, we investigate this problem in the three most common types of drugs: small molecules,
protein-binding peptides, and proteins. Recall that the goal of ChatDrug is (as in Equation (1)):
xout = ChatDrug(xin,xt). Here, the text prompts xt are specifically designed to enable the gener-
alization for domain-specific tasks with computationally feasible metrics. Additionally, we want to
highlight that the objectives for drug editing (in xt) should be related to the high-level property instead
of exact substructure replacement for two main reasons. (1) As discussed in Appendix C, ChatDrug
suits better for fuzzy matching like edited drugs with desired properties. In contrast, exact substructure
replacement can be easily and precisely performed by domain experts, and such replacement may
lack the creative inspiration for humans. (2) Property-related questions have an ambiguous nature,
leading to dispersed answers that spark inspiration for domain experts in the drug discovery process.

Then concretely on the prompt design, for small molecules, we consider properties like solubility,
drug-likeness, permeability, and the number of acceptors/donors. For peptides, we consider the
properties of peptide-MHC binding. For proteins, we consider the secondary structure. The text
prompts are to explicitly depict the desired properties to be either higher or lower, and corresponding
task prompts will be briefly explained in Section 4. One concrete example for molecule editing is

“Can you make molecule [xin] more soluble in water.”, and more details can be found in Appendix F.

3.2 REDF MODULE

To better utilize the domain knowledge, we propose an important module: the ReDF (retrieval and
domain feedback) module. The intuition is that there exists rich domain knowledge in the form of
a retrieval database (DB), and ReDF will retrieve the useful information and inject it into the text
prompt, adopting the fascinating language understanding ability of conversational LLMs.

Specifically, for each input drug xin and prompt xt, we have a candidate drug x̃, which does not
satisfy the desired property change in xt. The candidate drug has diverse data resources based on the
problem setup, and in ChatDrug, it is the output drug with the negative result at each conversation
round (will be introduced in Section 3.3). Then, the ReDF module returns a drug xR satisfying:

xR = ReDF(xin, x̃;xt) = argmax
x′
R
∈Retrieval DB

⟨x̃,x′
R⟩ ∧D(xin,x

′
R;xt), (2)

where D(·, ·; ·) ∈ {True,False} is the domain feedback function, and ⟨x̃,x′
R⟩ is the similarity

function. We use Tanimoto similarity (Bajusz et al., 2015) for small molecules and Levenshtein
distance for peptides and proteins. Notice that here we take D(·, ·; ·) the same as evaluation metric
E(·, ·; ·), while there is some critical difference on the task-specific thresholds, as will be discussed
in the ablation study in Section 4.5. Then the ReDF module injects xR into a new prompt, e.g., the
updated prompt for a molecule task is “Your provided sequence [x̃] is not correct. We find a sequence
[xR] which is correct and similar to the molecule you provided. Can you give me a new molecule?”

We also want to highlight that the domain feedback injection in ReDF is relevant to the in-context
learning (ICL) (Dong et al., 2022). Such knowledge injection can result in performance gain (Min
et al., 2022) not only because of the mapping between ground truth data-label pairs but also due to the
demonstration of the in-distribution data and label space. An ablation study on this is in Section 4.

3.3 CONVERSATION MODULE

Another appealing attribute of conversational LLMs (like ChatGPT) is their interactive capability.
This enables the LLMs to iteratively update the results by injecting prior knowledge. Inspired by this,
we also consider adapting the conversational strategy for ChatDrug, which can naturally fit the ReDF
module as described in in Section 3.2. Then, concretely on this conversational strategy in ChatDrug,
first suppose there are C conversation rounds, and we have an edited drug xc for the conversation
round c. If xc satisfies our condition in the task prompt, then ChatDrug will exit. Otherwise, users
will tell ChatDrug that xc is wrong, and we need to retrieve another similar and correct drug from the
retrieval DB using ReDF: xR = ReDF(xin,xc), with x̃ = xc in Equation (2).

4



Published as a conference paper at ICLR 2024

Table 1: Results on 16 single-objective small molecule editing, and the evaluation is the hit ratio of the property
change. For ChatDrug, we report the mean and std of five random seeds. The best results are marked in bold.

Single Target Property ∆ Random PCA High Variance GS-Mutate MoleculeSTM ChatDrug

SMILES Graph GALACTICA Llama2 Turbo

101 more soluble in water 0 35.33 ± 1.31 33.80 ± 3.63 33.52 ± 3.75 52.00 ± 0.41 61.87 ± 2.67 67.86 ± 3.46 83.32 ± 1.13 42.88 ± 1.83 94.13±1.04
0.5 11.04 ± 2.40 10.66 ± 3.24 10.86 ± 2.56 14.67 ± 0.62 49.02 ± 1.84 54.44 ± 3.99 78.20 ± 1.85 30.31 ± 1.91 88.67±0.95

102 less soluble in water 0 43.36 ± 3.06 39.36 ± 2.55 42.89 ± 2.36 47.50 ± 0.41 52.71 ± 1.67 64.79 ± 2.76 72.41 ± 4.44 47.89 ± 2.05 96.86±1.10
0.5 19.75 ± 1.56 15.12 ± 2.93 18.22 ± 0.33 12.50 ± 0.82 30.47 ± 3.26 47.09 ± 3.42 61.47 ± 3.55 34.76 ± 2.46 70.08±3.44

103 more like a drug 0 38.06 ± 2.57 33.99 ± 3.72 36.20 ± 4.34 28.00 ± 0.71 36.52 ± 2.46 39.97 ± 4.32 41.49 ± 2.66 32.88 ± 0.99 48.65±3.39
0.1 5.27 ± 0.24 3.97 ± 0.10 4.44 ± 0.58 6.33 ± 2.09 8.81 ± 0.82 14.06 ± 3.18 21.23 ± 0.96 12.38 ± 3.56 19.37±5.54

104 less like a drug 0 36.96 ± 2.25 35.17 ± 2.61 39.99 ± 0.57 71.33 ± 0.85 58.59 ± 1.01 77.62 ± 2.80 92.13 ± 1.29 54.96 ± 1.26 70.75±2.92
0.1 6.16 ± 1.87 5.26 ± 0.95 7.56 ± 0.29 27.67 ± 3.79 37.56 ± 1.76 54.22 ± 3.12 85.83 ± 1.76 29.13 ± 2.17 30.99±2.66

105 higher permeability 0 25.23 ± 2.13 21.36 ± 0.79 21.98 ± 3.77 22.00 ± 0.82 57.74 ± 0.60 59.84 ± 0.78 84.21 ± 4.07 28.47 ± 2.76 56.56±1.84
10 17.41 ± 1.43 14.52 ± 0.80 14.66 ± 2.13 6.17 ± 0.62 47.51 ± 1.88 50.42 ± 2.73 79.91 ± 1.25 25.69 ± 1.20 43.08±2.95

106 lower permeability 0 16.79 ± 2.54 15.48 ± 2.40 17.10 ± 1.14 28.83 ± 1.25 34.13 ± 0.59 31.76 ± 0.97 68.49 ± 2.34 47.58 ± 3.62 77.35±1.98
10 11.02 ± 0.71 10.62 ± 1.86 12.01 ± 1.01 15.17 ± 1.03 26.48 ± 0.97 19.76 ± 1.31 60.46 ± 0.57 38.58 ± 4.49 66.69±2.74

107 more hydrogen bond acceptors 0 12.64 ± 1.64 10.85 ± 2.29 11.78 ± 0.15 21.17 ± 3.09 54.01 ± 5.26 37.35 ± 0.79 55.18 ± 3.67 10.70 ± 0.82 95.35±0.62
1 0.69 ± 0.01 0.90 ± 0.84 0.67 ± 0.01 1.83 ± 0.47 27.33 ± 2.62 16.13 ± 2.87 37.40 ± 1.84 7.18 ± 1.76 72.60±2.51

108 more hydrogen bond donors 0 2.97 ± 0.61 3.97 ± 0.55 6.23 ± 0.66 19.50 ± 2.86 28.55 ± 0.76 60.97 ± 5.09 59.41 ± 4.07 12.77 ± 4.62 96.54±1.31
1 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 1.33 ± 0.24 7.69 ± 0.56 32.35 ± 2.57 31.88 ± 3.22 7.15 ± 2.81 76.43±3.32

Table 2: Results on 12 multi-objective small molecule editing, and the evaluation is the hit ratio of the property
change. For ChatDrug, we report the mean and std of five random seeds. The best results are marked in bold.

Two Target Property ∆ Random PCA High Variance GS-Mutate MoleculeSTM ChatDrug

SMILES Graph GALACTICA Llama2 Turbo

201 more soluble in water and
more hydrogen bond acceptors

0 – 0 9.88 ± 1.03 8.64 ± 2.06 9.09 ± 1.25 14.00 ± 2.48 27.87 ± 3.86 27.43 ± 3.41 39.51 ± 3.41 24.95 ± 2.55 79.62±0.64
0.5 – 1 0.23 ± 0.33 0.45 ± 0.64 0.22 ± 0.31 0.67 ± 0.62 8.80 ± 0.04 11.10 ± 1.80 26.44 ± 1.07 13.24 ± 1.17 49.64±2.66

202 less soluble in water and
more hydrogen bond acceptors

0 – 0 2.99 ± 0.38 2.00 ± 0.58 2.45 ± 0.67 7.17 ± 0.85 8.55 ± 2.75 8.21 ± 0.81 28.40 ± 3.11 8.91 ± 1.06 51.59±3.79
0.5 – 1 0.45 ± 0.32 0.00 ± 0.00 0.22 ± 0.31 0.17 ± 0.24 2.93 ± 0.30 0.00 ± 0.00 12.66 ± 1.40 8.27 ± 1.66 24.92±4.85

203 more soluble in water and
more hydrogen bond donors

0 – 0 2.28 ± 1.15 2.23 ± 1.16 4.44 ± 0.58 13.83 ± 2.95 33.51 ± 4.08 49.23 ± 1.71 47.91 ± 3.33 30.66 ± 2.39 89.34±0.96
0.5 – 1 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 9.98 ± 1.03 23.94 ± 1.09 26.49 ± 3.37 8.17 ± 3.34 53.64±5.81

204 less insoluble in water and
more hydrogen bond donors

0 – 0 0.69 ± 0.58 1.96 ± 0.87 1.79 ± 0.66 5.67 ± 0.62 17.03 ± 2.75 14.42 ± 3.43 25.70 ± 2.07 16.30 ± 4.92 39.90±3.86
0.5 – 1 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 2.59 ± 1.14 3.84 ± 0.71 9.83 ± 0.85 9.04 ± 1.48 24.19±2.19

205 more soluble in water and
higher permeability

0 – 0 5.06 ± 1.21 3.53 ± 0.38 4.88 ± 2.21 8.17 ± 1.03 35.69 ± 3.19 39.74 ± 2.26 56.40 ± 4.15 18.87 ± 5.02 12.85±2.68
0.5 – 10 1.16 ± 0.68 0.67 ± 0.55 0.66 ± 0.54 0.00 ± 0.00 19.15 ± 0.73 22.66 ± 1.90 39.22 ± 0.23 15.24 ± 1.63 10.44±5.75

206 more soluble in water and
lower permeability

0 – 0 12.17 ± 1.05 10.43 ± 2.88 13.08 ± 2.28 19.83 ± 2.46 44.35 ± 0.68 30.87 ± 0.62 54.87 ± 0.96 41.97 ± 0.87 65.33±2.16
0.5 – 10 6.20 ± 0.64 6.23 ± 2.31 6.67 ± 0.53 4.83 ± 0.85 28.67 ± 2.22 20.06 ± 1.26 43.91 ± 1.77 35.20 ± 2.29 52.90±2.23

To sum up, for each conversation round, we request a drug xR similar to xc, which will be updated
at each conversation round. The xc and xR serve as two in-context pairs to feed into ChatDrug, i.e.,
"The output drug at round [c] is [xc], which is wrong. We find a sequence [xR] which is correct and
similar. Can you help improve the edited results?" An illustration of this conversation is in Figure 1.

4 EXPERIMENT

Specifications for ChatDrug. In this section, we verify the effectiveness of ChatDrug for drug
editing on three types of drugs: small molecules, peptides, and proteins. Since ChatDrug is agnostic
to LLMs, we select GALACTICA, Llama2 and ChatGPT as our backbone LLMs in our experiments,
named ChatDrug-GALACTICA, ChatDrug-Llama2, and ChatDrug-Turbo, respectively. We
introduce three types of drugs and five categories of tasks accordingly: tasks 1xx and 2xx are single-
and multi-objective tasks for small molecules (each task further includes two subtasks w.r.t. two
thresholds as will be discussed next), tasks 3xx and 4xx are single- and multi-objective editing tasks
for peptides, and task 5xx is for single-objective protein editing. Due to the space limitation, please
check Appendix F for the full list. Details of implementation and hyperparameters are in Appendix G.

4.1 TEXT-GUIDED MOLECULE PROPERTY EDITING

The first experiment is text-guided molecule editing or molecule optimization. We adopt 16 single-
objective tasks and 12 multi-objective editing tasks from MoleculeSTM (Liu et al., 2022a). These
tasks are about the high-level properties of small molecules, like solubility in water and permeability.

Data: Both the input molecules and retrieval DB are sampled from ZINC (Irwin et al., 2012): we
sample 200 and 10K molecules (with SMILES strings) from ZINC as input molecules and retrieval
DB, respectively. Prompt: The text prompt is "Can you make molecule [SMILES placeholder]
[task requirement]? The output molecule should be similar to the input molecule". The [task
requirement] is the textual description for each specific task, e.g., more soluble in water and with
higher permeability. Evaluation. We take the hit ratio to measure the success ratio of edited
molecules, i.e., the percentage of edited molecules that can reach the desired properties compared
to the input molecules. All the properties for small molecules considered here can be calculated
deterministically using RDKit (Landrum et al., 2013). Another important argument is the threshold
∆: it is a successful hit if the difference between input and output properties is above the threshold.
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Table 3: Visualization of six small molecule editing tasks. The blue regions , red regions , and green regions
correspond to the edited substructures in the input molecule xin, intermediate molecule x1 for the 1st conversation
round, and the output molecule xout, respectively.

(a) Prompt for 101 : more soluble in water (b) Prompt for 102: less soluble in water

Input Molecule xin Intermediate Molecule x1 Output Molecule xout Input Molecule xin Intermediate Molecule x1 Output Molecule xout

LogP: 1.46 LogP: 2.24 LogP: 0.40 LogP: 3.29 LogP: 2.49 LogP: 4.31

(c) Prompt for 105: higher permeability (d) Prompt for 106: lower permeability

Input Molecule xin Intermediate Molecule x1 Output Molecule xout Input Molecule xin Intermediate Molecule x1 Output Molecule xout

tPSA: 68 tPSA: 81 tPSA: 42 tPSA: 55 tPSA: 55 tPSA: 79

(e) Prompt for 205: more soluble in water and higher permeability (f) Prompt for 206: more soluble in water and lower permeability

Input Molecule xin Intermediate Molecule x1 Output Molecule xout Input Molecule xin Intermediate Molecule x1 Output Molecule xout

LogP: 3.59, tPSA: 114 LogP: 3.59, tPSA: 114 LogP: 2.83, tPSA: 93 LogP: -1.83, tPSA: 116 LogP: -0.37, tPSA: 125 LogP: -2.42, tPSA: 146

Baselines: The baselines (Liu et al., 2022a) are based on MegaMolBART (Irwin et al., 2022), a
pretrained auto-regressive model. Baselines include Random, PCA, High-Variance, GS-Mutate, and
MoleculeSTM with SMILES or Graph as the molecule representation.

Observation. We illustrate the descriptions and the single- and multi-objective editing results
in Tables 1 and 2, respectively. The threshold ∆ for each specific task is specified in Table 1; for
multi-objective editing tasks in Table 2, the threshold ∆ has two values corresponding to the two
tasks. We further conduct an ablation study on the thresholds of ReDF in Section 4.5. We can observe
that ChatDrug-Turbo can reach the best performance on 21 out of 28 tasks, 20 of which possess
over 20% hit ratio than the second-best baseline method. We also note that ChatDrug-GALACTICA
performs well, showing consistently higher hit ratios than baseline methods and reaching the best
performance on 7 out of 28 tasks. However, ChatDrug-Llama2 is not as outstanding as the other
ChatDrug models, outperforming on 7 out of 28 tasks. The reason may be that the corresponding
backbone model Llama2 is not well pretrained on small molecule domain datasets. Table 3 visualizes
6 examples of molecule editing where ChatDrug-Turbo fails to generate molecules x1 with desirable
property change in the first conversation round, while successfully generates molecules xout ultimately.
For example, in Table 3a, x1 converts a methyl group to a propyl which incorrectly yields a less
soluble molecule. Through conversational guidance, ChatDrug-Turbo changes its output xout to
an aminoethyl group, successfully fulfilling the task. In Table 3f, x1 installs a phenyl urea to the
molecule, which brings lower permeability as requested but makes the molecule less soluble. In
contrast, ChatDrug-Turbo is able to replace the hydrophobic aromatic substituent with a hydrophilic
amide in xout, consistent with the requirement of higher solubility in water.

4.2 TEXT-GUIDED IMMUNOGENIC BINDING PEPTIDE EDITING

The second task is text-guided immunogenic binding peptide editing. Immunogenic peptides are
promising therapeutic targets for the personalized vaccine, which triggers a person’s immune system,
e.g., CD8+ T cells, to fight diseases (Craiu et al., 1997; Hennecke & Wiley, 2001). Immunogenic
peptides are typically degraded from intracellular antigens. To activate CD8+ T cell immune
responses, these peptides must first bind to Major Histocompatibility Complex (MHC) proteins,
forming peptide-MHC complexes which are then presented on the surface of infected or malignant
cells to interact with the T cells. Although the peptide-MHC binding process is critical for immune
response, it is highly specific, making editing known peptides to improve their binding affinity to
specific MHC proteins a challenging yet crucial task for peptide engineering and discovery. Recall
that peptides are typically short protein chains, with most peptides having less than 16 amino acids.

Data: In this experiment, we use the experimental dataset of peptide-MHC binding affini-
ties (O’Donnell et al., 2020). This dataset contains 149 human MHC Class I proteins (alleles)
and 309K peptides. We follow existing works (Chen et al., 2023) on using the 30 common MHC
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Table 4: Results on six single-objective and three multi-objective peptide editing tasks. Random Mutation-R
for R mutated positions. The evaluation is the hit ratio of the increased binding affinity score. The best results
are marked in bold. Due to the space limitation, please check Appendix F for the text prompt of each task.

single-objective editing multi-objective editing

301 302 303 304 305 306 401 402 403

Random Mutation-1 1.80 14.40 1.80 1.80 12.00 5.60 3.20 0.80 0.40
Random Mutation-2 1.80 13.40 2.80 3.00 8.40 4.40 2.20 0.60 1.20
Random Mutation-3 1.80 9.40 2.40 4.20 9.00 3.80 3.00 0.60 0.80
ChatDrug-GALACTICA 11.55 12.78 13.47 9.28 8.40 14.85 5.51 4.50 2.48
ChatDrug-Llama2 27.64 14.89 21.18 13.79 19.52 26.33 8.33 4.95 3.80
ChatDrug-Turbo 56.60 69.80 64.33 59.04 65.00 64.13 44.69 34.54 41.77

(a) Motifs of input peptides for 301. (b) Motifs of edited peptides for 301. (c) Motifs of experimental peptides for 301.

(d) Motifs of input peptides for 302. (e) Motifs of edited peptides for 302. (f) Motifs of experimental peptides for 302.
Figure 2: Visualization of two peptide editing tasks using PWM. The x-axis corresponds to the position index,
while the y-axis corresponds to the distribution of each amino acid (in alphabets) at each position.

proteins (alleles) and we randomly pick one as the source allele and one or more alleles as the
target alleles. Notice that for single-allele tasks, 30 MHC proteins can be further divided into 3
categories: HLA-A, HLA-B, and HLA-C; we make sure that the sampled source and target alleles
are from different categories. Then we sample 500 peptides from the source allele types. For the
retrieval DB, the experimental data of the target allele(s) are adopted. The sampled MHC types
are further specified in Appendix F. Prompt: We expect the edited peptides can bind to the target
MHC protein(s), so the prompt template is We want a peptide that binds to [target allele]. We have a
peptide [peptide sequence] that binds to [source allele], can you help modify it? The output peptide
should be similar to the input peptide." Evaluation: The actual bindings require wet-lab experiments,
which are expensive and prohibited for large scaled evaluation. Following existing works (Chen
et al., 2021; 2023), we leverage the MHCflurry2.0 (O’Donnell et al., 2020) as a pseudo-oracle to
predict the peptide-MHC binding affinity. MHCflurry2.0 is the state-of-the-art method enabling
accurate estimating of the binding affinity of peptides with MHC proteins. The success of the peptide
editing needs to satisfy two conditions: (1) The output peptide should have a higher binding affinity
with the target allele compared to the input peptide; (2) The binding affinity of the output peptide
and target allele should be above a certain threshold. Here we take the threshold as one-half of
the average binding affinity of experimental data on the target allele. Baselines: Since there is no
existing approach for text-guided binding peptide editing, we use random mutation as the baseline,
i.e., conducting random mutation on the amino acid sequence of the input peptides.

Observation. We illustrate the single- and multi-objective editing results in Table 4. We can
observe that ChatDrug reaches the best performance over all 9 tasks compared to the random
mutation baselines for all three LLMs backbones. ChatDrug-Turbo reaches the best performance
with significantly higher hit ratios than ChatDrug-GALACTICA and ChatDrug-Llama2. We further
visualize peptides generated by ChatDrug-Turbo using position weight matrices (PWMs) in Figure 2.
PWM has been widely used for the visualization of protein motifs (patterns), and it plots the
distribution of each amino acid at the corresponding position. Thus, more important motifs with
higher probabilities will be marked in higher alphabets. According to Figure 2, the edited or optimized
peptides follow similar patterns to the experimental data presented. For instance, for task 301, the
edited peptides can successfully upweight the alphabet E (glutamic acid) at position 2. Results suggest
a strong correlation between edited peptide binding motifs and those derived from experimental data.

4.3 TEXT-GUIDED PROTEIN SECONDARY STRUCTURE EDITING

Last but not least, we consider text-guided protein secondary structure editing (PSSE) (Klausen et al.,
2019). For protein 1D sequence, it can fold into the 3D structure, as shown in Figure 1. Specifically,
proteins possess four levels of structures, and secondary structures are fundamental building blocks,
which are local folding patterns stabilized by hydrogen bonds. Typical secondary structures include
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(a) Protein editing with more helix structures. (b) Protein editing with more strand structures.
Figure 3: Visualization of two protein editing tasks. For the protein secondary structures, the α-helix is marked
in red, and β-sheet is marked in yellow. The edited regions before and after ChatDrug are marked in blue circles.

α-helix and β-sheet, consisting of β-strands. Here we are interested in two PSSE tasks, i.e., using
ChatDrug to edit protein sequences with more helix or strand structures after folding.

Data: TAPE (Rao et al., 2019) is a benchmark for protein sequence property prediction, including the
secondary structure prediction task. We take the test dataset and training dataset as the input proteins
and retrieval DB, respectively. Prompt: For an input protein sequence [protein sequence], can you
modify it with more helix/strand structures? Baselines: Same with peptide editing, we adopt random
mutation as baselines. Evaluation. For evaluation, we adopt the state-of-the-art pretrained secondary
structure prediction model, i.e., ProteinCLAP-EBM-NCE from ProteinDT (Liu et al., 2023b). The hit
condition is if the output protein sequences have more secondary structures than the input sequences.

Table 5: Results on two protein editing tasks. Random
Mutation-R for R mutated positions. The evaluation is the
hit ratio of increased secondary structures accordingly.

501 more helix 502 more strand

Random Mutation-3 26.90 21.44
ChatDrug-GALACTICA 11.75 5.99
ChatDrug-Llama2 34.79 34.79
ChatDrug-Turbo 33.18 59.68

Observation. As shown in Table 5, we
can tell the large performance gain by
ChatDrug, where ChatDrug-Llama2 and
ChatDrug-Turbo achieve the highest hit ratio
on task 501 and 502, respectively. We fur-
ther visualize cases on how ChatDrug-Turbo
successfully edits the proteins with more he-
lix/strand structures. We adopt pretrained
ESMFold (Lin et al., 2022) for protein folding (protein sequence to protein structure prediction) and
then plot the protein structures using PyMOL (Schrödinger & DeLano). We show two examples in
Figure 3. As circled in the blue regions in Figures 3a and 3b, the edited proteins possess more helix
structures and strand structures, respectively. More visualization can be found in Appendix H.

4.4 WHY CHATDRUG WORKS? KNOWLEDGE EXTRACTION

Figure 4: Knowledge extraction of ChatDrug.

1. Introducing polar functional groups such as hydroxyl (-OH), 
amino (-NH2), or carboxyl (-COOH) groups.
2. Replacing nonpolar groups such as alkyl chains or halogens 
with polar functional groups.
3. Modifying aromatic rings by introducing polar substituents such 
as hydroxyl or amino groups.
4. Introducing cyclic structures that can enhance stability and 
solubility.
5. Increasing the number of polar functional groups in the 
molecule.

It is important to note that these rules are not exhaustive and may 
not apply to all molecules. The solubility of a molecule in water is 
influenced by a variety of factors, including its size, shape, and 
overall chemical structure. Therefore, each molecule may require a 
unique approach to increase its solubility in water.

Can you generate rules for solving small molecule 
editing toword more soluble in water based on 
above examples?

We are also interested in understanding how ChatDrug can
work. As shown in Figure 4, we illustrate a case study on
small molecule editing. It can be observed that ChatDrug
can do knowledge extraction: for a specific task on editing
molecules to be more soluble in water, ChatDrug can extract
the reasonings and summarize them into five rules. This
gives us the confidence that the success of ChatDrug is its
ability of domain interpretation. We conduct further ablation
studies like knowledge extraction without the context as a
control experiment in Appendix I. Although ChatDrug can
extract domain-specific information for the editing tasks, we
notice a minor issue: the redundancy among knowledge. As shown in Figure 4, the extracted rules
1, 3, and 5 are all centered on introducing polar functional groups for solubility in water, despite
from slightly different perspectives. In Appendix I, we continue to explore how ChatDrug can play a
positive role in knowledge summarization, aiming to alleviate this knowledge redundancy issue.

4.5 ABLATION STUDIES

Ablation Study on Comparison with Zero-shot and In-context Learning. There are two important
modules for ChatDrug: conversation for result refinement and the ReDF for knowledge retrieval.
Thus in this ablation study, we would like to explore the effect of such two modules. The first case
is zero-shot prediction. It is indeed ChatDrug with c = 0, i.e., without conversation or ReDF. On the
other hand, in-context learning (ICL) can be treated as ChatDrug equipped with the ReDF module but
without any conversational round. Concretely, the retrieved drug is xR = ReDF(xin,xin), with x̃ =
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Table 6: Ablation studies on comparison with in-context learning (ICL) and conversation rounds on molecule
editing. The threshold is the loose threshold with ∆ = 0, and the random seed is 0.

C 101 102 103 104 105 106 107 108 201 202 203 204 205 206

ICL (few-shot) 52.11 75.45 37.76 46.23 30.64 42.86 54.97 69.81 59.88 39.86 53.45 49.36 37.42 42.77

ChatDrug-Turbo

C = 0 (zero-shot) 78.26 71.35 16.15 32.12 16.04 8.33 59.41 63.16 43.09 0.52 54.49 0.53 2.11 22.22
C = 1 89.56 93.64 48.35 61.62 47.93 56.97 90.00 93.08 72.29 36.26 86.14 30.00 9.44 54.14
C = 2 93.37 97.11 52.81 67.93 55.76 78.40 95.57 98.10 80.37 48.52 90.18 39.88 12.72 67.23
C = 3 96.11 97.69 55.11 75.54 59.51 87.65 98.09 98.73 83.75 60.49 92.02 50.32 15.48 76.74
C = 4 96.67 97.69 59.20 78.14 63.35 94.41 98.09 98.73 86.79 68.32 94.41 57.42 22.36 80.00
C = 5 97.22 97.69 59.77 83.06 65.84 95.03 99.36 98.73 89.17 70.19 94.41 63.40 25.32 81.55

Table 7: Ablation studies on thresholds in domain feedback function D with two conversational rounds. The
evaluation function E uses the strict threshold. We report the mean of five seeds, and stds are in Appendix I.

101 102 103 104 105 106 107 108 201 202 203 204 205 206

loose threshold 80.73 41.00 11.23 16.94 33.16 53.59 14.96 21.93 20.14 7.96 17.93 5.79 3.66 41.04
strict threshold 88.67 70.08 19.37 30.99 43.08 66.69 72.60 76.43 49.64 24.92 53.64 24.19 10.44 52.9

(a) Task 101 more soluble in water (b) Task 102 less soluble in water (c) Task 107 more hydrogen bond acceptors

Figure 5: Similarity distribution between input molecules xin and retrieval xR, intermediate x1, and output
molecules xout. We pick up three tasks on small molecules for visualization, and more results are in Appendix H.

xin in Equation (2). The text prompt for zero-shot and ICL are “Can you edit the molecule [xin] to be
more soluble?” and ‘‘We know that [xR] is similar to [xin] and is more soluble in water. Can you edit
the molecule [xin] to be more soluble?” The results are in Table 6, and we observe that both ChatDrug
and ICL are better than the zero-shot, and conversational refinement performs best on all 14 tasks.

Ablation Study on the Number of Conversation Rounds in ChatDrug. In ChatDrug, the number
of conversation rounds is an important hyperparameter. Here we conduct an ablation study on small
molecules to test its effectiveness. The results are in Table 6. For molecule editing tasks tested here,
the performance of ChatDrug-Turbo tends to converge after C = 2 conversation rounds.

Ablation Study on the Thresholds in Feedback Condition Function. In ChatDrug, another
important factor is the domain feedback function D(·, ·; ·). For molecule editing, we discuss two
thresholds when evaluating with E(·, ·; ·). One is ∆ = 0 (loose condition), and the other is ∆ > 0
(strict condition), where the ∆ value is different for each task. Here we conduct ablation studies
on two conditions for feedback function D. The results are in Table 7, and the observation is that
ChatDrug-Turbo with the stricter threshold in feedback condition can lead to higher accuracy by
a large margin. Note that for each task in Tables 1 and 2, we keep the same threshold for D and E.

Ablation Study on the Similarity Between Input and Output Drugs. We plot the distribution of
similarities between input molecules xin and retrieval xR, intermediate x1, and output molecules xout
using ChatDrug-Turbo. The similarity distributions of three tasks are in Figure 5, and more results
are in Appendix H. One interesting observation is that the similarities between xin and intermediate
molecules are quite x1, but the hit ratio is the lowest among the three. Then we plot the similarity xin
and xR, where the similarities are comparatively low, yet the hit ratio is the highest. This reveals
that the ReDF module can explore the chemical space to search for more optimal solutions. Then,
by utilizing such retrieved information and repeating C conversational rounds, ChatDrug will do a
trade-off between the similarity with input molecules xin and knowledge explorations.

5 LIMITATION AND CONCLUSION

In this work, we present ChatDrug, a framework that utilizes LLMs for drug editing tasks. We build
up a benchmark on 39 tasks over three main types of drugs: small molecules, peptides, and proteins.
Empirical results have verified the effectiveness of ChatDrug on these drug editing tasks, and the
visual analysis further qualitatively illustrates how ChatDrug can modify the key substructures for the
target properties. Meanwhile, ChatDrug also possesses limitations. One limitation is that ChatDrug
is bad at understanding the complex structures of drugs, i.e., the 3D geometries. This may require a
more profound utilization of geometric modeling. Another limitation is that ChatDrug requires certain
conversational rounds to reach strong performance. An ideal solution is to reduce such computational
costs using the knowledge summarization ability of LLMs, and we leave this for future exploration.
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REPRODUCIBILITY STATEMENT

The codes and datasets can be found at this GitHub link. Additionally, we provide a detailed
description of ChatDrug in Section 3. All the datasets used in our experiments can be found in each
subsection of Section 4. All prompts we used in ChatDrug are attached in Appendix F. We also
present our implementation settings and hyperparameters in Appendix G.
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A THE UTILIZATION OF CHATGPT AS BACKBONE LLM

Some concerns have been raised on the utilization of using ChatGPT as the backbone LLM. We want
to explain this from multiple perspectives.

(1) Our ChatDrug is agnostic to the backbone LLMs, and we test in-total three backbone LLMs:
Turbo (ChatGPT), GALACTICA, and Llama2. Among these, ChatDrug-Turbo achieves the best
performance and highest stability for all three drug types. For ChatDrug on the open-source LLMs,
ChatDrug-GALACTICA only performs better than baseline on the small molecule editing and peptide
editing, but cannot deal with protein editing tasks. ChatDrug-Llama2 can reach better performance
than baseline methods on peptide editing and protein editing but fails to cover small molecule editing
tasks. Such unstable performance across different drug types may be attributed to the limited domain-
specific training data for open-source LLMs. However, the discussions about training LLMs are
beyond the scope of this paper.

(2) In general, ChatGPT has been widely used in both the machine learning and domain (chemistry
and biology) community. For example:

• In domain journals: scientific papers that use ChatGPT for discovery have been published in
top journals such as PNAS (ChatGPT Outperforms Crowd-Workers for Text-Annotation
Tasks (Gilardi et al., 2023)), Radiology (A Context-based Chatbot Surpasses Trained Radi-
ologists and Generic ChatGPT in Following The ACR Appropriateness Guidelines (Rau
et al., 2023)), Nature Medicine (Large Language Models in Medicine (Thirunavukarasu
et al., 2023)), and Nature Chemistry (ChatGPT Saves The Day (Francl, 2023)).

• In machine learning communities: many machine learning papers with ChatGPT usage have
been recently accepted by NeurIPS 2023 including HuggingGPT: Solving AI Tasks with
ChatGPT and its Friends in Hugging Face (Shen et al., 2023), Mathematical Capabilities of
ChatGPT (Frieder et al., 2023) and ChatGPT-Powered Hierarchical Comparisons for Image
Classification.

B EXAMPLES OF CHATDRUG

Here we show three concrete examples of the editing tasks on small molecules, peptides, and proteins.

Sure, here are five molecules in SMILES that are similar to the 
input molecule but have increased solubility in water and more 
hydrogen bond donors:

- O=C(NC[C@H]1CCCO1)c1ccccc1N1CCOCC1=O
- O=C(NC[C@H]1CCCO1)c1ccccc1N1CCNCC1=O
- O=C(NC[C@H]1CCCO1)c1ccccc1N1CC(O)CC1=O
- O=C(NC[C@H]1CCCO1)c1ccccc1N1CCC(O)C1=O
- O=C(NC[C@H]1CCCO1)c1ccccc1N1CC(O)(C)C1=O

Your provided sequence 
O=C(NC[C@H]1CCCO1)c1ccccc1N1CCOCC1=O is 
not correct. We find a sqeuence CCOC-
C(=O)Nc1ccccc1C(=O)NC[C@H]1CCCO1 which is 
correct and similar to the molecule you provided. 
Can you give me a new molecule?

I apologize for the mistake. Here is a new molecule that is similar 
to the input molecule but has increased solubility in water and 
more hydrogen bond donors:

- O=C(NC[C@H]1CCCO1)c1ccccc1N1CC(O)C(O)C1=O

This is correct.

Can you make molecule 
O=C(NC[C@H]1CCCO1)c1ccccc1N1CCCC1=O 
more soluble in water and more hydrogen bond 
donors? The output molecule should be similar to 
the input molecule. Give me five molecules in 
SMILES only and list them using bullet points. No 
explanation is needed.

Figure 6: Example of small molecule editing (task 203).
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We want a peptide that binds to HLA-B*44:02. We 
have a peptide AAASHFFNL that binds to 
HLA-C*16:01, can you help modify it? The output 
peptide should be similar to input peptide. Please 
provide the possible modified peptide sequence 
only. No explanation is needed.

AAASHFFSL

Your provided sequence AAASHFFSL is not 
correct. We find a sqeuence AEAYHFFIL which is 
correct and similar to the peptide you provided. 
Can you give me a new peptide?

Sure, based on the sequence AEAYHFFIL, a possible modified 
peptide sequence that may bind to HLA-B*44:02 could be 
AEAYHFFSL.

This is correct.

Figure 7: Example of peptide editing (task 301).

We have a protein GAPVPVDENDEGLQRALQFAMAEYN-
RASNDKYSSRVVRVISAKRQLVSGIKYILQVEIGRT-
TCPKSSGDLQSCEFHDEPEMAKYTTCTFVVYSIPWLNQIK
LLESKCQ. Can you update modify it by making more 
amino acids into the helix structure (secondary 
structure)? The input and output protein sequences 
should be similar but different. No explanation is needed.

Yes, I can modify the protein sequence to increase the helix 
structure. One way to do this is by introducing more amino acids 
with helix-forming properties into the sequence. 
The changes made are as follows:

- Replaced the amino acid "E" at position 7 with "L", which has a 
higher propensity for helix formation.
- Replaced the amino acid "A" at position 10 with "L", which also 
has a higher propensity for helix formation.
- Replaced the amino acid "N" at position 14 with "L", which has a 
high propensity for helix formation.
...
...
...
The resulting protein sequence is:
GAPVPVLLNLGLQLLLQFLLLEYNRASNDKYLLRVVLLVISLLQLVS-
GIKYILQVEIGRT-
TCPKLLGDLQLCLFHDLPEMLKYTTCTFVVYSIPWLNQLKLLESKCQ

This sequence should have an increased tendency to form 
alpha-helices due to the higher proportion of helix-forming amino 
acids.

This is correct

Figure 8: Example of protein editing (task 501).
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C MORE DISCUSSIONS ON CHATDRUG

In this section, we will discuss three aspects of ChatDrug and the general conversational LLMs for
drug discovery: the scope, the main attributes, and the key challenges and guidelines when using
ChatDrug.

Scope of ChatDrug. The first natural question raised is What are the feasible drug discovery tasks
for ChatDrug? To answer this question, we need to reiterate the conversational LLM’s feasibility for
drug discovery tasks. There have been a series of works (Zeng et al., 2022; Edwards et al., 2022; 2021;
Taylor et al., 2022; Su et al., 2022) exploring the LLMs for small molecule and protein discovery,
ranging from molecule representation to text-to-molecule generation. These are important machine
learning tasks, revealing domain data’s (conditional) distribution learning ability. However, there
exists another important task in real scenarios: drug editing (a.k.a. lead optimization or protein design
in domain applications). This is a routine task in pharmaceutical companies, and it aims at updating
the molecule’s substructures (Mihalić & Trinajstić, 1992), related to certain key tactics in drug
discovery like functional group change (Ertl et al., 2020) and scaffold hopping (Böhm et al., 2004;
Hu et al., 2017). Traditional solutions relying on domain experts for manual editing can be subjective
or biased (Drews, 2000; Gomez, 2018). To alleviate this issue, multi-modal models with LLMs
provide a promising solution, and recent works (Liu et al., 2023b; 2022a) have started to explore
text-guided drug editing or controllable drug generation. However, these works are domain-specific
(e.g., only for small molecules or proteins) and do not possess conversational potentials like ChatGPT.
In contrast, ChatDrug possesses outstanding generalization abilities to various domain tasks and
enables conversational refinement in drug editing tasks. 2

Attributes of ChatDrug. We conclude three fundamental attributes of ChatDrug: open vocabulary,
compositionality, and inspiration. (1) Open vocabulary means ChatDrug is not limited to a fixed set
of pre-defined drug-related annotations. Instead, it can generalize to novel drug concepts due to the
unbound vocabulary depicted by the natural language. (2) Compositionality means we can express
a complex concept by decomposing it into simple concepts. (3) Inspiration means the position of
ChatDrug is to inspire domain experts with knowledge exploration but not replace them. A concrete
example illustrating these three attributes is multi-objective lead optimization. We can use natural
language to guide us to generate an entirely new attribute of a molecule (open vocabulary); meanwhile,
the new attribute is composed of multiple simple attributes, such as binding to a new protein and high
permeability (compositionality). Finally, such an optimized molecule may not be directly used for
real scenarios, but it can provide insights for domain experts in drug design (inspiration).

Challenges and Guidelines when Using ChatDrug. Now that we have decided to narrow ChatDrug
to the drug editing tasks, we need to scrutinize more details before deploying it. With careful
reconsidering, we summarize two main challenges that we need to keep in mind. (1) ChatDrug
can do better in fuzzy searching than exact searching in drug editing tasks. Drug editing tasks, or
drug controllable generation, can cover various topics. However, one critical difference between
ChatDrug and other LLMs in vision tasks is that ChatDrug or drug discovery is a scientific problem
while the image and video (Radford et al., 2021; Nichol et al., 2021; Ramesh et al., 2022; Patashnik
et al., 2021; Fan et al., 2022) generation is more of an artistic endeavor. Namely, for text prompts
like “I want to add an isobutyl group on the 3-position of the aromatic ring in Aspirin”, domain
experts can do this precisely, and thus the impact of ChatDrug is limited here. However, for other
tasks like “I want to modify this molecule to be more soluble in the water”, the results are not
deterministic, and this is where LLMs can act as a more useful tool to inspire the domain experts.
These two types of text prompts are called exact searching and fuzzy searching, respectively. We
conclude that ChatDrug is more beneficial for the fuzzy searching problem. (2) ChatDrug relies
on the pretrained LLMs, initially pretrained on a large-scale and universal corpus. Thus, there is a
noticeable domain shift when applying them to domain-specific tasks. However, as will be shown
in Sections 3 and 4, the existing LLMs illustrate the interpretation ability of the domain knowledge.
Though such interpretation is preliminary, we believe that ChatDrug is an inspiring and promising
direction for future usage in both communities.

2We acknowledge that there have been certain parallel works (Bran et al., 2023; Boiko et al., 2023) exploring conversational LLMs on
reaction and synthesis tasks.
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D RELATED WORK

D.1 MULTI-MODAL MODELING FOR SMALL MOLECULE DISCOVERY

Small molecules can be roughly categorized into two big modalities (Zeng et al., 2022; Liu et al.,
2022a): the internal chemical structure and external description. The internal chemical structure
refers to the molecule’s structure information, e.g., 1D sequence (SMILES), 2D molecular graph, and
3D geometric graph. On the other hand, the external description depicts the high-level information
of molecules, e.g., the molecule’s binding affinity with potential targets, and the functionalities of
molecules.

Recently, a research line has been starting to bridge the gap between such two modalities. KV-
PLM (Zeng et al., 2022) first applies the joint masking auto-encoding on the SMILES string and
biomedical textual description. Text2Mol (Edwards et al., 2021) conducts contrastive learning
between molecular graph and text data for retrieval tasks between modalities. MolT5 (Edwards et al.,
2022) does the translation between SMILES and textual annotation of molecules in a mutual way.
MoMu (Su et al., 2022) also conducts contrastive learning, while it considers both the retrieval and
molecule captioning and text-to-molecule tasks. MoleculeSTM (Liu et al., 2022a) proposes a larger
molecule-text dataset and highlights the text-guided molecule editing tasks. Such tasks reveal the
potential of LLMs for more realistic drug discovery tasks.

D.2 MULTI-MODAL MODELING FOR PEPTIDE AND PROTEIN DISCOVERY

There have also been several works exploring multi-modal modeling for protein discovery. Pro-
Gen (Madani et al., 2020) is a text-to-sequence protein design framework, but it is fixed to a predefined
set of texts, which can be treated with indices. Thus it is not open-vocabulary and lacks the generaliza-
tion ability to novel textual descriptions. Besides, the predefined texts and indices cannot sufficiently
describe the protein functions (Zhang et al., 2020). ProteinDT (Liu et al., 2023b) is a recent work
that addresses this issue with the free-text protein design. A parallel work is Chroma (Ingraham et al.,
2022), and it conducts text-guided protein editing on the backbone structure instead of the sequence.
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E DATA SPECIFICATION

Drugs like small molecules and proteins can have multiple modalities. Specifically, small molecules
can be naturally represented as 1D sequence, 2D molecular graph, and 3D geometric graph, biological
knowledge graph, and textual description. The first three data structures capture the internal chemical
structure information, while the last two data structures provide a higher-level view of the molecule’s
functionalities (e.g., the molecule’s interactions with other proteins or diseases.).

There are 20 amino acids in nature, as listed below:

Table 8: 20 amino acids and the corresponding abbreviations.

Amino Acid Alphabet

Isoleucine I
Valine V
Leucine L
Phenylalanine F
Cysteine C
Methionine M
Alanine A
Glycine G
Threonine T
Serine S
Tryptophan W
Tyrosine Y
Proline P
Histidine H
Asparagine N
Asparatic acid D
Glutamine Q
Glutamic acid E
Lysine K
Arginine R
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F TASK SPECIFICATION

Here we present all the task specifications and prompts used in our experiments.

• For ChatDrug-Turbo and ChatDrug-Llama2, we list the template of prompts of two stages
of PDDS and ReDF in Tables 9, 12 and 15 for small molecules, peptides, and proteins,
respectively.

• Different from ChatDrug-Turbo and ChatDrug-Llama2, the base model of ChatDrug-
GALACTICA, GALACTICA-6.7b, is not instruction tuned. Besides, GALACTICA can
support Question Answering tasks and has additional special tokens for marking the start
and the end of molecules and protein annotations. Such differences make us to choose a
different template of prompts specifically designed for ChatDrug-GALACTICA, which are
shown in Tables 10, 13 and 16

• We list the corresponding task requirement and allele type information in Tables 11, 14
and 17.

• We further list the prompts of in-context learning in Table 18 for reference.

Table 9: Prompt for small molecule editing. The task requirement can be found in Table 11.

Task Module Prompt

1xx
(101-108)

PDDS
Can you make molecule [input SMILES] [task requirement 1]? The output
molecule should be similar to the input molecule. Give me five molecules in
SMILES only and list them using bullet points. No explanation is needed.

ReDF
Your provided sequence [output SMILES] is not correct. We find a sequence
[retrieved SMILES] which is correct and similar to the molecule you provided.
Can you give me a new molecule?

2xx
(201-206)

PDDS

Can you make molecule [input SMILES] [task requirement 1] and [task require-
ment 2]? The output molecule should be similar to the input molecule. Give me
five molecules in SMILES only and list them using bullet points. No explanation
is needed.

ReDF
Your provided sequence [output SMILES] is not correct. We find a sequence
[retrieved SMILES] which is correct and similar to the molecule you provided.
Can you give me a new molecule?

Table 10: Prompt for small molecule editing with ChatDrug-GALACTICA. The task requirement can be found
in Table 11.

Task Module Prompt

1xx
(101-108)

PDDS
Question: Can you make molecule [START_I_SMILES][input SMILES][END_I
_SMILES] [task requirement 1]? The output molecule should be similar to the
input molecule.\n

ReDF
Question: Your provided sequence [START_I_SMILES][output SMILES][END
_I_SMILES] is not correct. We find a sequence [START_I_SMILES][retrieved
SMILES][END_I_SMILES] which is correct and similar to the molecule you
provided. Can you give me a new molecule?\n

2xx
(201-206)

PDDS

Question: Can you make molecule [START_I_SMILES][input SMILES][END_I
_SMILES] [task requirement 1] and [task requirement 2]? The output molecule
should be similar to the input molecule.\n

ReDF
Question: Your provided sequence [START_I_SMILES][output SMILES][END
_I_SMILES] is not correct. We find a sequence [START_I_SMILES][retrieved
SMILES][END_I_SMILES] which is correct and similar to the molecule you
provided. Can you give me a new molecule?\n
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Table 11: Task requirement for small molecule editing, corresponding to Table 9 and Table 10.

Task ID Task Requirement 1 Task Requirement 2

101 more soluble in water None
103 more like a drug None
104 less like a drug None
105 higher permeability None
106 lower permeability None
107 more hydrogen bond acceptors None
108 more hydrogen bond donors None

201 more soluble in water more hydrogen bond acceptors
202 less soluble in water more hydrogen bond acceptors
203 more soluble in water more hydrogen bond donors
204 less soluble in water more hydrogen bond donors
205 more soluble in water higher permeability
206 more soluble in water lower permeability

Table 12: Prompt for peptide editing. The source allele target type and target allele type can be found in Table 14.

Task Stage Prompt

3xx
(301-306)

PDDS

We want a peptide that binds to [target allele type 1]. We have a peptide [input
peptide] that binds to [source allele type], can you help modify it? The output
peptide should be similar to input peptide. Please provide the possible modified
peptide sequence only. No explanation is needed.

ReDF
Your provided sequence [output peptide] is not correct. We find a sequence
[retrieved peptide] which is correct and similar to the peptide you provided. Can
you give me a new peptide?

4xx
(401-403)

PDDS

We want a peptide that binds to [target allele type 1] and [target allele type 2].
We have a peptide [input peptide] that binds to [source allele type], can you help
modify it? The output peptide should be similar to input peptide. Please provide
the possible modified peptide sequence only. No explanation is needed.

ReDF
Your provided sequence [output peptide] is not correct. We find a sequence
[retrieved peptide] which is correct and similar to the peptide you provided. Can
you give me a new peptide?

Table 13: Prompt for peptide editing with ChatDrug-GALACTICA. The source allele target type and target
allele type can be found in Table 14.

Task Stage Prompt

3xx
(301-306)

PDDS

Question: We want a peptide that binds to [target allele type 1]. We have a
peptide [input peptide] that binds to [source allele type], can you help modify it?
The output peptide should be similar to input peptide.\n

ReDF
Question: Your provided sequence [output peptide] is not correct. We find a
sequence [retrieved peptide] which is correct and similar to the peptide you
provided. Can you give me a new peptide?\n

4xx
(401-403)

PDDS

Question: We want a peptide that binds to [target allele type 1] and [target allele
type 2]. We have a peptide [input peptide] that binds to [source allele type], can
you help modify it?\n

ReDF
Question: Your provided sequence [output peptide] is not correct. We find a
sequence [retrieved peptide] which is correct and similar to the peptide you
provided. Can you give me a new peptide?\n
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Table 14: Target allele type and source allele type for peptide editing, corresponding to Table 12 and Table 13

Task ID Source Allele Type Target Allele Type 1 Target Allele Type 2

301 HLA-C*16:01 HLA-B*44:02 None
302 HLA-B*08:01 HLA-C*03:03 None
303 HLA-C*12:02 HLA-B*40:01 None
304 HLA-A*11:01 HLA-B*08:01 None
305 HLA-A*24:02 HLA-B*08:01 None
306 HLA-C*12:02 HLA-B*40:02 None

401 HLA-A*29:02 HLA-B*08:01 HLA-C*15:02
402 HLA-A*03:01 HLA-B*40:02 HLA-C*14:02
403 HLA-C*14:02 HLA-B*08:01 HLA-A*11:01

Table 15: Prompt of Conversation Module for protein editing. The task requirement can be found in Table 17.

Task ID Prompt

5xx
(501-502)

PDDS
We have a protein [input protein]. Can you update modify it by [task require-
ment]? The input and output protein sequences should be similar but different.
No explanation is needed.

ReDF
Your provided sequence [output protein] is not correct. We find a sequence
[retrieved protein] which is correct and similar to the protein you provided. Can
you give me a new protein?

Table 16: Prompt of Conversation Module for protein editing with ChatDrug-GALACTICA. The task require-
ment can be found in Table 17.

Task ID Prompt

5xx
(501-502)

PDDS
Question: We have a protein [START_AMINO][input protein][END_AMINO].
Can you update modify it by [task requirement]? The input and output protein
sequences should be similar but different.\n

ReDF
Question: Your provided sequence [START_AMINO][output protein][END
_AMINO] is not correct. We find a sequence [START_AMINO][retrieved pro-
tein][END_AMINO] which is correct and similar to the protein you provided.
Can you give me a new protein?\n

Table 17: Task requirement for protein editing, corresponding to Table 15 and Table 16.

Task ID Task Requirement

501 making more amino acids into the helix structure (secondary structure)
502 making more amino acids into the strand structure (secondary structure)
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Table 18: Prompt of in-context learning.

Task Prompt

1xx
(101-108)

Can you make molecule [input SMILES] [task requirement]? The output molecule should
be similar to the input molecule. We have known that similar molecule [retrieved SMILES]
is one of the correct answers. Give me another five molecules in SMILES only and list
them using bullet points. No explanation is needed.

2xx
(201-208)

Can you make molecule [input SMILES] [task requirement 1] and [ask requirement 2]?
The output molecule should be similar to the input molecule. We have known that similar
molecule [retrieved SMILES] is one of the correct answers. Give me another five molecules
in SMILES only and list them using bullet points. No explanation is needed.

3xx
(301-306)

We want a peptide that binds to [target allele type]. We have a peptide [input peptide]
that binds to [source allele type], can you help modify it? The output peptide should be
similar to input peptide. We have known that similar peptide [retrieved peptide] is one of
the correct answers. Please provide another possible modified peptide sequence only. No
explanation is needed.

4xx
(401-403)

We want a peptide that binds to [target allele type 1] and [target allele type 2]. We have
a peptide [input peptide] that binds to [source allele type], can you help modify it? The
output peptide should be similar to input peptide. We have known that similar peptide
[retrieved peptide] is one of the correct answers. Please provide another possible modified
peptide sequence only. No explanation is needed.

5xx
(501-502)

We have a protein [input protein]. Can you update modify it by [task requirement]? The
input and output protein sequences should be similar but different. We have known that
similar protein [retrieved protein] is one of the correct answers. Please provide another
possible modified protein only. No explanation is needed.
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G IMPLEMENTATION AND HYPERPARAMETERS

G.1 CHATGPT-TURBO SETTINGS

We implement our experiments with ChatGPT-Turbo through OpenAI API. Specifically, we utilize the
model gpt-3.5-turbo-0301 under ChatCompletion function, which is a snapshot of gpt-3.5-turbo
from March 1st 2023. This model will not receive updates, so we can ensure the reproducibility of
our results. We also set the temperature to 0 to reduce the potential randomness in our experiments.
Additionally, we observe that ChatGPT often generates repeated sequences or fails to stop generating
sequences for chemistry-related questions. To mitigate this issue, we set the frequency_penalty to
0.2. Moreover, for improved adaptation to different domains, it is advisable to incorporate a system
role prompt within ChatGPT. In our case, we utilize the following prompt: "You are an expert in the
field of molecular chemistry."

G.2 OPEN SOURCE LLMS USED WITHIN CHATDRUG

For ChatDrug-GALACTICA and ChatDrug-Llama2, we used the open source model checkpoint
through Hugging Face. Corresponding model names in Hugging Face are facebook/galactica-6.7b
for ChatDrug-GALACTICA and meta-llama/Llama-2-7b-chat-hf for ChatDrug-Llama2. For
implementation, we set all parameters as default parameters.

G.3 EXPERIMENTS THRESHOLD FOR SMALL MOLECULE EDITING

Following MoleculeSTM (Liu et al., 2022a), in our small molecule editing experiments, we utilize two
different threshold settings: a loose threshold and a strict threshold. For the main results in Tables 1
and 2, we keep the same threshold for domain feedback function D and evaluation function E. The
threshold ∆ used for each small molecule editing task is shown in Table 19, which holds for both
functions.

Table 19: Threshold ∆ for each small molecule editing task, ∆1 and ∆2 represent the threshold of task
requirement 1 and task requirement 2, respectively.

Task ID Loose Threshold Strict Threshold

∆1 ∆2 ∆1 ∆2

101 0 – 0.5 –
102 0 – 0.5 –
103 0 – 0.1 –
104 0 – 0.1 –
105 0 – 10 –
106 0 – 10 –
107 0 – 1 –
108 0 – 1 –

201 0 0 0.5 1
202 0 0 0.5 1
203 0 0 0.5 1
204 0 0 0.5 1
205 0 0 0.5 10
206 0 0 0.5 10

G.4 EXPERIMENTS THRESHOLD FOR PEPTIDE EDITING

For the peptide editing task, as mentioned in Section 4, we take the threshold as one-half of the
average binding affinity of experimental data on the target allele. The original average binding affinity
of each experimental data can be found in the source code.
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G.5 EVALUATION METRIC

We evaluate the performance of ChatDrug by hit ratio, which is computed by the following equation:

Hit Ratio =
Number of Success Sequence Editing

Number of Valid Sequence Editing
(3)

One point we need to highlight is that if ChatDrug returns an invalid sequence, we would just skip
and do not consider it in computing the hit ratio. That is why we use “Number of Valid Sequence
Editing” as the denominator here.

In small molecule editing tasks, ChatDrug tends to return more than one sequence in the PDDS
module. Thus, we add a prompt “Give me five molecules in SMILES only and list them using bullet
points.” to unify the numbers and format of molecules returned by ChatDrug. In the experiments
of the Conversation module, we always choose the first valid molecule as the beginning of the
conversation. We further carry out an ablation study to explore the effect of using more molecules in
the PDDS module.

G.6 RANDOMNESS

The experiment results of the PDDS Module are entirely deterministic. Any randomness observed
in ReDF Module and Conversation Module is due to the utilization of different seeds during the
sampling of retrieval database DB from ZINC for molecule editing.

Specifically, for small molecule editing, we adopt seed 0,1,2,3,4 for main results in Tables 1 and 2,
and seed 0 for the other ablation studies.

G.7 COMPUTATIONAL RESOURCES

All of our experiments for ChatDrug-Turbo are conducted on a single NVIDIA RTX A5000 GPU.
The GPU is only used for peptide and protein evaluation. The primary cost incurred during our
experiments comes from the usage of the OpenAI API for ChatGPT, which amounted to less than
$100 in total.

For open source LLMs backbones, ChatDrug-GALACTICA and ChatDrug-Llama2 need at least 2
NVIDIA RTX A5000 GPUs for small molecule editing and peptide editing. For protein editing tasks,
due to an extra usage of GPU for protein evaluation, 4 NVIDIA RTX A5000 GPUs are needed in our
experiments.
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H QUALITATIVE ANALYSIS

In the main body, we provide 10 case studies and 3 similarity distributions to illustrate the effectiveness
of ChatDrug for small molecule editing, peptide editing, and protein editing.

In this section, we provide additional case studies and similarity distributions as follows:

• We list 8 case studies on functional group change of small molecules in Appendix H.1.1.
• We list 14 similarity comparisons on small molecules in Appendix H.1.2.
• We list 9 motif updates for all 9 peptide editing tasks in Appendix H.2.
• We list 8 case studies on secondary structure change of proteins in Appendix H.3.

We want to specify that for all the qualitative analyses listed here, we are using C = 2 conversation
rounds. Especially for small molecules, we consider random seed with 0 and the loose threshold,
i.e., ∆ = 0 for all tasks.

H.1 SMALL MOLECULES

H.1.1 FUNCTIONAL GROUP CHANGE ON SMALL MOLECULES

Table 20 visualizes examples of 8 molecule editing tasks where ChatDrug-Turbo successfully gener-
ates output molecules xout with desirable property change, while the output of the first conversation
round x1 fail. In Table 20a and b, xout successfully adds the desirable fragments to alter the drug
likeness of xin, while x1 does so in the wrong direction. In Table 20c, x1 installs a chloride but
maintains the same number of hydrogen bond acceptors (HBAs). In contrast, ChatDrug-Turbo adds a
salicylamide moiety that brings two more HBAs. Similarly, in Table 20d, the number of hydrogen
bond donors (HBDs) remains in x1 but successfully increases in xout via insertions of alcohols and
amines.

In Table 20e and f, both cases of x1 are able to increase the number of HBAs as indicated in the
prompt, but the water solubilities shift oppositely. The output molecules successfully fix the trend. In
particular, hydrophibicity is appropriately employed in Table 20f to balance the additional polarity
from HBAs, generating a less soluble molecule. In Table 20g and h, both cases of x1 satisfy the
solubility requirement but not through the change of HBDs. In xout, the problems are solved by
having extra HBDs with further enhanced solubility changes.
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Table 20: Visualization of additional eight small molecule editing cases. The blue regions , red regions , and

green regions correspond to the edited substructures in the input molecule xin, intermediate molecule x1 in
the 1st conversation round, and the output molecule xout, respectively.

(a) Prompt for 103: more like a drug (b) Prompt for 104: less like a drug

Input Molecule xin Intermediate Molecule x1 Output Molecule xout Input Molecule xin Intermediate Molecule x1 Output Molecule xout

QED: 0.648 QED: 0.550 QED: 0.815 QED: 0.631 QED: 0.637 QED: 0.397

(c) Prompt for 107: more hydrogen bond acceptors (d) Prompt for 108: more hydrogen bond donors

Input Molecule xin Intermediate Molecule x1 Output Molecule xout Input Molecule xin Intermediate Molecule x1 Output Molecule xout

HBA: 2 HBA: 2 HBA: 4 HBD: 1 HBD: 1 HBD: 3

(e) Prompt for 201: more soluble in water and more hydrogen bond acceptors (f) Prompt for 202: less soluble in water and more hydrogen bond acceptors

Input Molecule xin Intermediate Molecule x1 Output Molecule xout Input Molecule xin Intermediate Molecule x1 Output Molecule xout

LogP: 1.12, HBA: 4 LogP: 1.34, HBA: 5 LogP: -0.42, HBA: 6 LogP: 0.98, HBA: 3 LogP: 0.02, HBA: 4 LogP: 1.68, HBA: 5

(g) Prompt for 203: more soluble in water and more hydrogen bond donors (h) Prompt for 204: less soluble in water and more hydrogen bond donors

Input Molecule xin Intermediate Molecule x1 Output Molecule xout Input Molecule xin Intermediate Molecule x1 Output Molecule xout

LogP: 1.29, HBD: 1 LogP: 0.52, HBD: 1 LogP: -0.77, HBD: 3 LogP: 2.14, HBD: 0 LogP: 2.75, HBD: 0 LogP: 3.62, HBD: 2
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H.1.2 SIMILARITY BETWEEN INPUT, INTERMEDIATE, RETRIEVED, AND OUTPUT
MOLECULES

In Figure 5, we plot the distribution of similarities between input molecules xin and retrieval xR,
intermediate x1, and output molecules xout using ChatDrug-Turbo. Here we provide more results.
The distributions of 8 single-objective small molecule editing tasks can be found in Figure 9, and 6
multi-objective small molecule editing tasks can be found in Figure 10.

As shown in Figures 9 and 10, the observation of similarity distribution satisfies for all 8 single-
objective and 6 multi-objective tasks.

(a) Task 101. (b) Task 102. (c) Task 103.

(d) Task 104. (e) Task 105. (f) Task 106.

(g) Task 107. (h) Task 108.

Figure 9: Similarity distribution between input molecules xin and retrieval xR, intermediate x1, and output
molecules xout. Here we show the distribution of 8 single-objective editing tasks.

(a) Task 201. (b) Task 202. (c) Task 203.

(d) Task 204. (e) Task 205. (f) Task 206.

Figure 10: Similarity distribution between input molecules xin and retrieval xR, intermediate x1, and output
molecules xout. Here we show the distribution of 6 multi-objective editing tasks.
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H.2 PEPTIDE

In the main body, we have illustrated how the motif of peptides changes for two peptide editing tasks.
Here we show all 6 single-objective editing tasks in Figures 11 to 16.

• For task 301 in Figure 11, ChatDrug-Turbo can successfully upweight E (Glutamic acid)
at position 2.
• For task 302 in Figure 12, ChatDrug-Turbo can successfully upweight A (Alanine) at
position 2, and L (Leucine) at position 9.
• For task 303 in Figure 13, ChatDrug-Turbo can successfully upweight E (Glutamic acid)
at position 2, and L (Leucine) at position 9.
• For task 304 in Figure 14, ChatDrug-Turbo can successfully upweight R (Arginine) and
K (Lysine) at position 5, and L (Leucine) at position 9.
• For task 305 in Figure 15, ChatDrug-Turbo can successfully upweight R (Arginine) and
K (Lysine) at position 5, and L (Leucine) at position 9.
• For task 306 in Figure 16, ChatDrug-Turbo can successfully upweight E (Glutamic acid)
at position 2, and L (Leucine) at position 9.

(a) Motifs of input peptides. (b) Motifs of edited peptides. (c) Motifs of experimental peptides.

Figure 11: Visualization for peptide editing for task 301, higher binding affinity to HLA-B*44:02.

(a) Motifs of input peptides. (b) Motifs of edited peptides. (c) Motifs of experimental peptides.

Figure 12: Visualization for peptide editing for task 302, higher binding affinity to HLA-C*03:03.

(a) Motifs of input peptides. (b) Motifs of edited peptides. (c) Motifs of experimental peptides.

Figure 13: Visualization for peptide editing for task 303, higher binding affinity to HLA-B*40:01.

(a) Motifs of input peptides. (b) Motifs of edited peptides. (c) Motifs of experimental peptides.

Figure 14: Visualization for peptide editing for task 304, higher binding affinity to HLA-B*08:01.

(a) Motifs of input peptides. (b) Motifs of edited peptides. (c) Motifs of experimental peptides.

Figure 15: Visualization for peptide editing for task 305, higher binding affinity to HLA-B*08:01.

(a) Motifs of input peptides. (b) Motifs of edited peptides. (c) Motifs of experimental peptides.

Figure 16: Visualization for peptide editing for task 306, higher binding affinity to HLA-B*40:02.
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Here we show all 3 multi-objective editing tasks in Figures 17 to 19. Notice that here there are two
target allele types, and we mark them as “target allele 1” and “target allele 2”.

• For task 401 in Figure 17, ChatDrug-Turbo can successfully upweight R (Arginine) and
K (Lysine) at position 5, and L (Leucine) and F (Phenylalanine) at position 9 for target
allele type 1. ChatDrug can also upweight L (Leucine) at position 7, and V (Valine) and L
(Leucine) at position 9 for target allele type 2.
• For task 402 in Figure 18, ChatDrug-Turbo can successfully upweight E (Glutamic acid)
at position 2, and L (Leucine) at position 9 for target allele type 1. ChatDrug can also
upweight F (Phenylalanine) and L (Leucine) at position 9 for target allele type 2.
• For task 403 in Figure 19, ChatDrug-Turbo can successfully upweight R (Arginine) and
K (Lysine) at position 5, and L (Leucine) at position 9 for target allele type 1.

Potential issue on conflicts among target allele types. One potential challenge is that for multi-
objective editing, the target allele types could have conflicting motifs, like the two target alleles for
task 403. We leave this for future exploration.
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(a) Motifs of input peptides. (b) Motifs of edited peptides.

(c) Motifs of experimental peptides (target allele 1). (d) Motifs of experimental peptides (target allele 2).

Figure 17: Visualization for peptide editing for task 401, higher binding affinity to HLA-B*08:01 and HLA-
C*15:02.

(a) Motifs of input peptides. (b) Motifs of edited peptides.

(c) Motifs of experimental peptides (target allele 1). (d) Motifs of experimental peptides (target allele 2).

Figure 18: Visualization for peptide editing for task 402, higher binding affinity to HLA-B*40:02 and HLA-
C*14:02.

(a) Motifs of input peptides. (b) Motifs of edited peptides.

(c) Motifs of experimental peptides (target allele 1). (d) Motifs of experimental peptides (target allele 2).

Figure 19: Visualization for peptide editing for task 403, higher binding affinity to HLA-B*08:01 and HLA-
A*11:01.
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H.3 PROTEIN

Recall that we consider two types of secondary structures for protein editing tasks. Both the
inputs and outputs are protein sequences. Then we use ESMFold (Lin et al., 2022) for protein
folding (protein sequence to protein structure prediction) and then plot the protein structures using
PyMOL (Schrödinger & DeLano). For all the protein structure visualizations, we mark α-helix
structures and β-strand structures. The edited regions are highlighted in the blue circles.

Task 501: edit proteins with more helix structures.

(a) Protein editing with more helix for data 1. (b) Protein editing with more helix for data 2.

(c) Protein editing with more helix for data 3. (d) Protein editing with more helix for data 4.

Figure 20: Protein editing with more α-helix structures.

Task 502: edit proteins with more strand structures.

(a) Protein editing with more strands for data 1. (b) Protein editing with more strands for data 2.

(c) Protein editing with more strands for data 3. (d) Protein editing with more strands for data 4.

Figure 21: Protein editing with more β-strand structures.
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I ABLATION STUDIES

I.1 ZERO-SHOT AND IN-CONTEXT LEARNING FOR PROTEIN AND PEPTIDE

In Section 4.5, we conduct an ablation study on small molecules to show the comparison between the
zero-shot, in-context learning, and ChatDrug-Turbo. Here we conduct the same ablation study on
peptides and proteins as follows.

Table 21: Results on six single-objective and three multi-objective peptide editing tasks. Random Mutation-R
for R mutated positions. The evaluation is the hit ratio of the increased binding affinity score. The best results
are marked in bold. Due to the space limitation, please check Appendix F for the text prompt of each task.

single-objective editing multi-objective editing

301 302 303 304 305 306 401 402 403

Random Mutation-1 1.80 14.40 1.80 1.80 12.00 5.60 3.20 0.80 0.40
Random Mutation-2 1.80 13.40 2.80 3.00 8.40 4.40 2.20 0.60 1.20
Random Mutation-3 1.80 9.40 2.40 4.20 9.00 3.80 3.00 0.60 0.80
In-context Learning (few-shot) 24.05 38.40 27.40 32.00 45.50 32.80 29.20 17.47 14.40
ChatDrug (C = 0, zero-shot) 1.60 16.80 2.40 8.22 15.00 8.02 5.41 2.00 1.20
ChatDrug (C = 2) 56.60 69.80 64.33 59.04 65.00 64.13 44.69 34.54 41.77

Table 22: Results on two protein editing tasks. Random Mutation-R for R mutated positions. The evaluation is
the hit ratio of increased secondary structures accordingly. The best results are marked in bold.

501 more helix 502 more strand

Random Mutation-1 18.32 17.35
Random Mutation-2 24.95 19.69
Random Mutation-3 26.90 21.44
In-context Learning (few-shot) 36.64 44.47
ChatDrug (C = 0, zero-shot) 21.43 23.73
ChatDrug (C = 2) 33.18 59.68
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I.2 ABLATION STUDY ON THE THRESHOLDS IN FEEDBACK CONDITION FUNCTION

In the main body, we conduct an ablation study on the thresholds in the feedback condition function.
Due to the space limitation, we only list the mean in Table 7. Here we list both the mean and standard
deviation as follows.

Table 23: Ablation studies on single-objective small molecule editing and feedback condition D with five seeds
and two conversational rounds. The evaluation metric E uses the strict threshold for each task.

101 102 103 104 105 106 107 108

loose threshold 80.73±1.32 41.00±0.91 11.23±2.70 16.94±1.24 33.16±2.22 53.59±1.59 14.96±1.96 21.93±1.82
strict threshold 88.67±0.95 70.08±3.44 19.37±5.54 30.99±2.66 43.08±2.95 66.69±2.74 72.60±2.51 76.43±3.32

Table 24: Ablation studies on multi-objective small molecule editing and feedback condition D with five seeds
and two conversational rounds. The evaluation metric E uses the strict threshold for each task.

201 202 203 204 205 206

loose threshold 20.14±0.86 7.96±2.05 17.93±0.79 5.79±1.38 3.66±0.24 41.04±1.66
strict threshold 49.64±2.66 24.92±4.85 53.64±5.81 24.19±2.19 10.44±5.75 52.9±2.23
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I.3 ABLATION STUDY ON THE NUMBER OF REQUEST ANSWERS IN ZERO-SHOT
CHATDRUG-TURBO

Notice that in Table 9, we list five molecules (a.k.a. five trials) for each answer. In this subsection, we
would like to conduct an ablation study to explore in the zero-shot setting of ChatDrug-Turbo, i.e.,
with the conversation round C = 0, if we can obtain higher performance using more trial numbers.
This means that for each input small molecule, we have five edited small molecules; as long as one of
them is a hit, then we say this is a successful hit. The results for 14 tasks with the loose threshold are
listed below.

Table 25: Ablation studies on different trial numbers on single-objective molecule editing, with C = 0 and
seed is 0.

loose condition ∆ = 0 strict condition ∆ > 0

trial = 1 trial = 3 trial = 5 trial = 1 trial = 3 trial = 5

101 more soluble in water 78.26 88.77 93.05 68.48 80.21 85.03
102 less soluble in water 71.35 89.95 93.12 24.16 74.60 78.84
103 more like a drug 16.15 45.64 53.81 2.08 4.62 7.11
104 less like a drug 32.12 68.37 75.00 2.07 17.86 31.12
105 higher permeability 16.04 27.98 33.16 9.63 18.13 22.28
106 lower permeability 8.33 34.04 57.67 5.56 24.47 42.86
107 more hydrogen bond acceptors 59.41 76.57 83.15 1.76 18.29 33.71
108 more hydrogen bond donors 63.16 85.23 89.77 5.85 19.89 32.39

Table 26: Ablation studies on different trial numbers on multi-objective molecule editing, with C = 0 and seed
is 0.

loose condition ∆ = 0 strict condition ∆ > 0

trial = 1 trial = 3 trial = 5 trial = 1 trial = 3 trial = 5

201 more soluble in water and
more hydrogen bond acceptors 43.09 69.89 75.40 6.08 22.04 34.22

202 less soluble in water and
more hydrogen bond acceptors 0.52 13.47 31.44 0.00 0.52 2.06

203 more soluble in water and
more hydrogen bond donors 54.49 79.67 81.97 6.18 18.13 35.52

204 less insoluble in water and
more hydrogen bond donors 0.53 5.21 13.54 0.00 0.00 1.04

205 more soluble in water and
higher permeability 2.11 4.15 5.18 1.05 1.04 1.04

206 more soluble in water and
lower permeability 22.22 59.07 69.43 16.40 48.70 55.44
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I.4 ABLATION STUDY ON REASONING AND KNOWLEDGE EXTRACTION OF CHATDRUG

In Figure 4, we show the knowledge extraction ability of ChatDrug. As a control experiment, here we
test the knowledge extraction ability of ChatDrug without the examples illustrated in the conversation.
As shown in Figure 22, the extracted knowledge is more general and less informative when we
remove the examples.

Certainly! Here are some general rules that can make molecules 
more soluble in water:

1. Polar molecules tend to be more soluble in water than nonpolar 
molecules. This is because water is a polar solvent and can 
interact with the polar molecules through hydrogen bonding.
2. Small molecules are often more soluble in water than larger 
molecules. This is because smaller molecules have a greater 
surface area to volume ratio, which makes it easier for them to 
interact with water molecules.
3. Salts and other ionic compounds are usually soluble in water 
because water can interact with the ions through electrostatic 
attractions.
4. Molecules with functional groups such as -OH (hydroxyl), -NH2 
(amino), and -COOH (carboxyl) are often more soluble in water 
because these functional groups can form hydrogen bonds with 
water molecules.
5. Increasing temperature can also increase solubility for many 
compounds. This is because higher temperatures increase the 
kinetic energy of molecules, which can overcome the intermolecu-
lar forces holding the compound together, allowing it to dissolve 
more easily.

It's important to note that these rules are not absolute and there 
are many exceptions. The specific properties of a molecule and its 
interactions with water can be complex and depend on a variety of 
factors.

Can you list the rules that can make molecules 
more soluble in water?

Figure 22: Knowledge extraction directly without any conversations.

Then as discussed previously, the extracted information in ChatDrug contains redundant information.
For example, the one listed in Figure 22 extracts three rules with overlap meanings. Then we
conduct a further ablation study by forcing ChatDrug to extract three rules from the five original
rules in Figure 4. We observe that ChatDrug successfully merges rule 1 and rule 5, both of which
express the same concept that polar functional groups lead to good solubility. Interestingly, ChatDrug
also merges rule 3 with rule 4. Though these 2 rules share the idea of ring structure, the essence
of rule 3 is introducing polar substituents. Thus, rule 3 should be more relevant to rules 1 and 5.
Nevertheless, it is clear that ChatDrug understands the domain knowledge and is capable of extracting
and summarizing it. Overall, we would like to give positive feedback on ChatDrug.

Yes, I can help you make these rules more concise into three 
points:
1. Introduce polar functional groups (such as -OH, -NH2, or 
-COOH) and increase the number of polar functional groups in the 
molecule.
2. Replace nonpolar groups (such as alkyl chains or halogens) 
with polar functional groups.
3. Modify aromatic rings by introducing polar substituents (such 
as -OH or -NH2) or introducing cyclic structures that can enhance 
stability and solubility.

Now I have the following five rules to make molecules 
more soluble in water. But there are some redundancies, 
can you make them more concise into three points?
1. Introducing polar functional groups such as hydroxyl 
(-OH), amino (-NH2), or carboxyl (-COOH) groups.
2. Replacing nonpolar groups such as alkyl chains or 
halogens with polar functional groups.
3. Modifying aromatic rings by introducing polar 
substituents such as hydroxyl or amino groups.
4. Introducing cyclic structures that can enhance 
stability and solubility.
5. Increasing the number of polar functional groups in 
the molecule.

Figure 23: Further knowledge extraction.
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To sum up, we observe that ChatDrug can understand and extract the knowledge to some extent,
though not perfectly. We believe this is a promising direction for future exploration.

37


	Introduction
	Preliminaries
	Method: The ChatDrug Framework
	PDDS Module
	ReDF Module
	Conversation Module

	Experiment
	Text-guided Molecule Property Editing
	Text-guided Immunogenic Binding Peptide Editing
	Text-guided Protein Secondary Structure Editing
	Why ChatDrug Works? Knowledge Extraction
	Ablation Studies

	Limitation and Conclusion
	The Utilization of ChatGPT as Backbone LLM
	Examples of ChatDrug
	More Discussions on ChatDrug
	Related Work
	Multi-modal Modeling for Small Molecule Discovery
	Multi-modal Modeling for Peptide and Protein Discovery

	Data Specification
	Task Specification
	Implementation and Hyperparameters
	ChatGPT-Turbo Settings
	Open Source LLMs Used within ChatDrug
	Experiments Threshold for Small Molecule Editing
	Experiments Threshold for Peptide Editing
	Evaluation Metric
	Randomness
	Computational Resources

	Qualitative Analysis
	Small Molecules
	Functional Group Change on Small Molecules
	Similarity Between Input, Intermediate, Retrieved, and Output Molecules

	Peptide
	Protein

	Ablation Studies
	Zero-shot and In-context Learning for protein and peptide
	Ablation Study on the Thresholds in Feedback Condition Function
	Ablation Study on the Number of Request Answers in Zero-shot ChatDrug-Turbo
	Ablation Study on Reasoning and Knowledge Extraction of ChatDrug


