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Abstract

Previous studies have established that pre-001
trained language models inherently manifest002
various biases. Although several debiasing003
strategies, such as fine-tuning a model with004
counterfactual data, prompt tuning, and repre-005
sentation projection, have been introduced, they006
often fall short of efficiently unlearning bias or007
directly altering the models’ biased essence. To008
address these issues, we propose EDITBIAS,009
an efficient model editing method to remove010
stereotyped bias from language models with011
small editor networks. We design a debias-012
ing loss to guide editor networks to conduct013
local edits on partial parameters for debiasing,014
and a remaining loss to preserve the original015
language modeling abilities of models during016
editing. Experiments demonstrate the high ef-017
fectiveness and robustness of EDITBIAS on018
eliminating bias compared to classical debias-019
ing baselines. Additionally, we explore the ef-020
fects of bias and debiasing on language models,021
finding that it is challenging to debias larger022
and causal language models, and necessary to023
balance the trade-off between debiasing efforts024
and language modeling abilities when design-025
ing debiasing strategies. 1026

1 Introduction027

In recent years, many studies have underscored the028

propensity of pre-trained language models (PLMs)029

to have social or stereotypical biases (Liang et al.,030

2021; Smith et al., 2022; Cheng et al., 2023a; Liu031

et al., 2023), such as gender bias (Sun et al., 2019;032

Zhao et al., 2020), race bias (Halevy et al., 2021),033

among others. To ensure fairness and accuracy034

in language models’ applications, it is crucial to035

eliminate biases from models.036

Numerous studies present various methods to037

mitigate bias. Some methods (Zmigrod et al., 2019;038

Barikeri et al., 2021) fine-tune the entire models039

with counterfactual data obtained by swapping out040

1Code and data will be released.
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Figure 1: Debiasing a language model with EDITBIAS

bias attribute words2, which is slightly effective and 041

resource-intensive, especially for large language 042

models. Others implement debiasing with represen- 043

tation projection (Dev et al., 2021; Limisiewicz and 044

Marecek, 2022; Iskander et al., 2023) or prompt- 045

ing (Sheng et al., 2020; Abid et al., 2021; Mattern 046

et al., 2022; Venkit et al., 2023). For instance, Sen- 047

tenceDebias (Liang et al., 2020) debias sentence 048

representations by subtracting their projection onto 049

an estimated demographic bias subspace. Ravfo- 050

gel et al. (2020) introduces Iterative Null-space 051

Projection (INLP), a method that reduces bias in 052

word embeddings by iteratively projecting them 053

onto the null space of bias terms using a linear clas- 054

sifier. Self-Debias (Schick et al., 2021) prompts 055

a model to scale down the probabilities of toxic 056

tokens. However, without internal parameter modi- 057

fication, a model remains biased essentially and is 058

not off-the-self for application. 059

An ideal debiasing approach is expected to re- 060

move bias from PLMs. Model editing (Yin et al., 061

2023; Zhang et al., 2024) can change specific infor- 062

mation in PLMs by modifying partial parameters, 063

which infers that model editing can efficiently elim- 064

inate bias. There are three kinds of editing methods: 065

2The bias attribute word refers to specific features or char-
acteristics that introduce or reflect bias. For example, bias
attribute words for gender bias are she, he, mother, father, and
the alike. Bias attribute words for religion are Christianity,
Judaism, Islam, and so on.
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i) fine-tuning a model with new data (Zhu et al.,066

2020; Ni et al., 2023), ii) locating before editing067

(Meng et al., 2022, 2023; Dai et al., 2022; Wu068

et al., 2023b) iii) utilizing editor hyper-networks069

to modify PLMs’ parameters (Cao et al., 2021;070

Mitchell et al., 2022a; Cheng et al., 2023b; Tan071

et al., 2023). On one hand, fine-tuning consumes072

computational resources and data a lot and is not073

suitable for large language models. According to074

our pre-experiments in Appendix A and Chang075

et al. (2023); Hase et al. (2023a), information, like076

knowledge and bias can not be simply interpreted077

as located neurons. On the other hand, small editor078

hyper-networks can be flexibly applied to any lan-079

guage model and adaptively designed to conduct080

any specific editing task. Thus, we introduce debi-081

asing PLMs via model editing with editor hyper-082

networks in this paper.083

To overcome the aforementioned shortcomings084

in previous debiasing methods, EDITBIAS, a085

lightweight model editing method to debias stereo-086

typed language models, is proposed as shown in087

Figure 1. EDITBIAS uses editor networks to mod-088

ify a small portion of the parameters, allowing the089

edited model to be directly deployable for applica-090

tions. A symmetric debiasing loss is designed to091

teach the editors how to modify LMs for treating092

stereotypical and anti-stereotypical contexts. EDIT-093

BIAS also contains a retaining loss to avoid affect-094

ing unrelated associations during editing for pre-095

serving PLMs’ modeling abilities. To demonstrate096

the effectiveness and robustness of EDITBIAS, we097

conduct experiments on StereoSet (Nadeem et al.,098

2021) with both masked language models and099

causal language models compared to four differ-100

ent classical debiasing baselines. The results show101

that EDITBIAS achieves the best performance on102

debiasing than all baseline methods and is robust103

to gender reverse and semantic generality. Further-104

more, we thoroughly explore the effects of bias and105

the process of debiasing on language models. We106

find that debiasing large and causal language mod-107

els poses significant challenges and highlight the108

necessity to balance the trade-off between the ef-109

fectiveness of debiasing and maintaining language110

modeling performance, shedding light on future111

debiasing works.112

2 Related Work113

Bias and Debiasing Many works focus on mea-114

suring bias in language models, such as societal115

bias (Nangia et al., 2020; Nadeem et al., 2021; 116

Cao et al., 2022; Wan et al., 2023), cultural bias 117

(Zheng et al., 2022; Naous et al., 2023), and mul- 118

tilingual bias (Zhao et al., 2020; Vashishtha et al., 119

2023), which provide bias measurement metrics 120

(Hovy and Prabhumoye, 2021; Goldfarb-Tarrant 121

et al., 2023). To mitigate bias, researchers propose 122

various debiasing methods (Meade et al., 2022; Gal- 123

legos et al., 2023). The basic method is to fine-tune 124

language models on counterfactual data (Lu et al., 125

2020; Zmigrod et al., 2019), which is costly. Ex- 126

cept for fine-tuning, prompting (Schick et al., 2021; 127

Guo et al., 2022) guides models to calibrate their 128

bias. Representation projection (Liang et al., 2020; 129

Ravfogel et al., 2020) is employed to remove bias 130

representation out of models, which, however, can- 131

not change the PLMs’ internal bias in essence with- 132

out modifying parameters. Therefore, we adopt 133

efficiently editing partial parameters for debiasing. 134

Model Editing As the real world develops, some 135

facts become obsolete and different over time. It is 136

necessary to change, add, or erase facts stored in ex- 137

isting PLMs (Petroni et al., 2019; Shin et al., 2020; 138

Li et al., 2022; Hase et al., 2023b). Model edit- 139

ing (Sinitsin et al., 2020) is come up with to mod- 140

ify information in PLMs. Editing should follow 141

some properties (Yao et al., 2023): reliability (pre- 142

dicting updated facts), locality (keeping accurate 143

on irrelevant facts), generality (editing neighbor- 144

ing facts without specific training), and efficiency 145

(Mitchell et al., 2022a) (efficient in runtime and 146

memory). The direct but inefficient editing is to 147

finetune the whole model on new facts (Zhu et al., 148

2020). For locality, Dai et al. (2022); Meng et al. 149

(2022, 2023); Ma et al. (2023a) seek the model 150

parameters strongly related to the facts and then 151

edit these localized hidden states. With high ef- 152

ficiency, edited models can be produced without 153

changing their parameters by leveraging extra mem- 154

ories (Mitchell et al., 2022b) and in-context learn- 155

ing (Zheng et al., 2023). Also, Cao et al. (2021); 156

Mitchell et al. (2022a) achieve fast editing by train- 157

ing specific editor networks. Recently, model edit- 158

ing methods have been applied to unlearn informa- 159

tion from language models (Chen and Yang, 2023; 160

Patil et al., 2023; Ishibashi and Shimodaira, 2023; 161

Yu et al., 2023). Inspired by them, we propose 162

an efficient model editing method EDITBIAS to 163

unlearn bias in language models while preserving 164

the language modeling capability and generalizing 165

semantically related inputs. 166

2



Girls tend to be more  

than boys.

d
et

e
rm

in
e

d
so

ft

fi
sh

d
et

er
m

in
ed

 /
 r

e
so

lu
te

so
ft

 /
 t

en
d

e
r

fi
sh

Editor

Boys tend to be more 

 than girls.

s   a   m a   s   m

Figure 2: Debiasing a LM with EDITBIAS. Editor networks ϕ are trained to produce edits on partial parametersW
of a LM. After editing, an unbiased PLM is obtained with the robustness of gender reverse and semantic generality.
Ld and Lr refer to Equation 2 and 3 respectively. s: stereotyped. a: anti-stereotyped. m: meanless.

3 EDITBIAS167

3.1 Task and Dataset168

A stereotyped model is defined as a language model169

that exhibits stereotypical bias, such as stereotypes170

of generic opinions towards different demographic171

groups in society (Devine, 1989; Nangia et al.,172

2020; Bauer et al., 2023). In this paper, we study to173

eliminate stereotypical bias in pre-trained language174

models while retaining their language modeling175

abilities during debiasing. An ideal unbiased lan-176

guage model will model stereotypical contexts and177

anti-stereotypical contexts with the same probabil-178

ity. Therefore, given a biased pre-trained language179

model with parameters θ, the debiasing task aims180

to minimize its probability difference between the181

stereotypical context and the anti-stereotypical con-182

text. Furthermore, it is necessary to make sure183

that general language modeling abilities are not184

hurt during debiasing (Nadeem et al., 2021; Meade185

et al., 2022; Ma et al., 2023b; Chintam et al., 2023).186

We use the intrasentence set3 in this paper. For187

each instance s ∈ S, there is a context sentence188

x with a blank (e.g., “Girls tend to be more ___189

than boys.”) as shown in Figure 1. When three190

attribute terms corresponding to stereotypical, anti-191

stereotypical, and meaningless associations (e.g.,192

“soft”, “determined”, and “fish”) fill in the blank193

in x, three target sentences xstereo, xanti, xmless are194

formed respectively as195

xstereo: Girls tend to be more soft than boys.196

xanti: Girls tend to be more determined than boys.197

xmless: Girls tend to be more fish than boys.198

The optimization target of the debiasing task can199

3Following Meade et al. (2022); Yu et al. (2023), we utilize
only the intrasentence portion in StereoSet, which generally
adapts to the debiasing task and various language models.

be denoted as 200

ld(xstereo, xanti, θ) = KL(Pθ(·|xstereo)∥Pθ(·|xanti))

+ KL(Pθ(·|xanti)∥Pθ(·|xstereo))
(1) 201

For masked language models, Pθ is the average 202

per-token log probability of the attribute term that 203

fills the blank in x. For causal language models, Pθ 204

is the average log probability of all tokens in tar- 205

get sentence xstereo/anti-stereo/mless following Nadeem 206

et al. (2021). Meanwhile, to maintain language 207

modeling capabilities, we hope Pθ(·|xmless) is un- 208

changed during debiasing. 209

3.2 Debising via Model Editing 210

According to Section 1, to conduct effective and ef- 211

ficient debiasing, we propose EDITBIAS, a model 212

editing method to debiasing stereotyped LMs as 213

shown in Figure 2. 214

EDITBIAS adopts lightweight model hyper edi- 215

tor networks ϕ to conduct debiasing edits on PLMs’ 216

partial weights W , following Cao et al. (2021); 217

Mitchell et al. (2022a); Tan et al. (2023). A pre- 218

trained language model represents inputs X as 219

PΘ(X ). A model editor for debiasing is a function: 220

(Xstereo,Xanti) × L × Θ × Φ → Θ, which maps 221

an stereotypical input xstereo and its correspond- 222

ing anti-stereotypical input xanti, loss function 223

ld : (Xstereo,Xanti)×Θ→ R, biased pre-trained lan- 224

guage model parameters θW , and editor paramters 225

ϕ to new unbiased model parameters θW̃ . The input 226

to an editor network gℓ is the fine-tuning gradient 227

∇Wℓ
ld(xstereo, xanti, θ) at the layer ℓ, ℓ ∈ {1, L}. 228

The editor network will output the layer’s param- 229

eter edit ∇̃Wℓ
, which is helpful to eliminate bias, 230

to update Wℓ. To be specific, EDITBIAS uses a 231

debiasing training set S train
edit and a development set 232

Sdev
edit to learn parameters ϕℓ for each of the editor 233

network gℓ. They are initialized as ϕ0 at the time 234
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step 0. The partial weightsW (e.g., the weights of235

the last three layers) we would like to edit are se-236

lected before training. At the time step t−1, an edit237

is conducted by ϕ and produces parameter updates238

W̃ ← EDIT (θW ,W, ϕt−1, xstereo, xanti) with the239

rank-1 gradient decomposing from Mitchell et al.240

(2022a). Then editable weights are modified by241

W̃ℓ =Wℓ − αℓ∇̃Wℓ
for the layer ℓ, which is back-242

propagated into gℓ. We design two training losses243

for EDITBIAS using the edited weights W̃ to teach244

editor networks how to conduct edits onW . One245

is a debiasing loss:246

Ld = KL(PθW̃
(·|xstereo)∥PθW̃

(·|xanti))

+ KL(PθW̃
(·|xanti)∥PθW̃

(·|xstereo))
(2)247

Debiasing aims to make a language model248

equally treat the stereotypical contexts and anti-249

stereotypical contexts for fairness according to Sec-250

tion 3.1, which is different from knowledge editing.251

Thus, we design Ld as symmetric KL divergence252

losses to guide editor networks to modify W for253

debiasing. Moreover, to avoid negative effects on254

the language modeling abilities, another loss is a255

retaining loss designed to keep the probability of256

meaningless terms unchangeable during editing:257

Lr = KL(PθW (·|xmless)∥PθW̃
(·|xmless)) (3)258

The total training loss of EDITBIAS is259

LE(ϕt−1) = Ld + λLr. At the training260

step t, ϕ is updated by an Adam optimizer261

(Kingma and Ba, 2015) , which is denoted as262

ϕt ← Adam(ϕt−1,∇ϕLE(ϕt−1)). For evaluation,263

model editors produce debiasing edits on a264

held-out set Steedit. Because the effectiveness of265

instance-editing, using one instance in each editing266

operation, is limited (Cao et al., 2021; Meng et al.,267

2022, 2023; Ma et al., 2023a; Gu et al., 2024),268

EDITBIAS adopts batch-editing, using one batch269

samples in one edit for the debiasing scenario.270

During training and testing, the same batch size is271

used for optimal debiasing performance.272

4 Experiments273

This section elaborates on experiments and results274

of EDITBIAS, along with a more in-depth analysis275

and discussion about bias and debiasing effects in276

pre-trained language models.277

4.1 Setups278

Dataset We utilize StereoSet (Nadeem et al.,279

2021) to conduct all experiments. There are three280

reasons. Firstly, it is widely used (Liang et al., 281

2021; Meade et al., 2022; Smith et al., 2022; Jo- 282

niak and Aizawa, 2022; Limisiewicz et al., 2023; 283

Omrani et al., 2023; Ma et al., 2023b; Xie and 284

Lukasiewicz, 2023; Yu et al., 2023; Yang et al., 285

2023) to evaluate different types of bias in pre- 286

trained language models, including gender, race, 287

and religion bias. Secondly, the meaningless at- 288

tribute terms in StereoSet can be applied for mod- 289

eling ability maintenance. Other datasets have no 290

meaningless association data. Thirdly, the data size 291

of StereoSet is large enough for training compared 292

with other bias datasets. Since current bias datasets 293

are created for measurement, their sizes are usually 294

small. For example, Crows-Pairs (Nangia et al., 295

2020) only has 1508 samples without train/test 296

splits. Comparatively, more than 8000 samples 297

in StereoSet are suitable for our work. Gender, 298

race, and religion bias data from StereoSet are con- 299

sidered in this work. We stochastically split all 300

samples related to gender, race, and religion bias 301

in the test set (6,392 samples) of the intrasentence 302

StereoSet by 8:1 as S train
edit and Sdev

edit respectively and 303

use the development set (2,106 samples) as S test
edit. 304

Metrics We use the Stereotype Score and Lan- 305

guage Modeling Score from StereoSet (Nadeem 306

et al., 2021) to measure debiasing performance and 307

language modeling performance respectively. The 308

Stereotype Score (SS) is the percentage of samples 309

in which a model prefers stereotypical contexts to 310

anti-stereotypical contexts. 311

SS(θ) = Es∈S test
edit
1 [Pθ(·|xstereo) > Pθ(·|xanti)] 312

The Language Modeling Score (LMS) is the per- 313

centage of examples in which a model ranks the 314

meaningful associations over meaningless associ- 315

ations to measure a model’s language modeling 316

abilities for each attribute term. 317

LMS(θ) =
1

2
Es∈S test

edit
1 [Pθ(·|xstereo) > Pθ(·|xmless)]

+
1

2
Es∈S test

edit
1 [Pθ(·|xanti) > Pθ(·|xmless)]

318

An ideal unbiased model has a SS of 50% and an 319

ideal debiasing will not change the LMS before and 320

after debiasing. 321

Methods and Models Compared with EDIT- 322

BIAS, four distinguishing baseline debiasing meth- 323

ods from Meade et al. (2022) are implemented4: 324

4https://github.com/McGill-NLP/bias-bench

4
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Method

RoBERTa-base RoBERTa-large

SS (%) → 50% ∆LMS (%) → 0 SS (%) → 50% ∆LMS (%) → 0
gender race religion gender race religion gender race religion gender race religion

Pre-edit 65.78 62.34 59.54 89.53 89.85 86.46 69.35 62.80 50.76 90.14 90.71 87.98

CDA 62.81 62.14 57.55 -0.65 -1.07 +1.79 64.62 60.08 57.67 -1.31 -1.47 +1.39
SentenceDebias 64.17 60.00 55.85 -0.59 -0.18 -3.34 68.52 62.77 46.30 +0.22 -0.06 -1.68
Self-Debias 67.25 60.57 57.00 -0.84 -0.26 -1.02 66.03 59.95 51.69 -0.81 -0.21 -0.96
INLP 61.93 59.44 56.40 -1.49 +0.34 -1.90 68.66 60.60 53.25 -0.39 -1.30 -3.65
EDITBIAS 49.67 48.48 51.04 -34.74 -44.00 -52.69 51.10 45.80 50.97 -64.06 -57.52 -41.34

Method

GPT2-base GPT2-medium

SS (%) → 50% ∆LMS (%) → 0 SS (%) → 50% ∆LMS (%) → 0
gender race religion gender race religion gender race religion gender race religion

Pre-edit 62.67 60.57 58.02 93.28 89.76 88.46 65.58 61.63 62.57 93.39 92.30 90.46

CDA 60.33 58.70 59.97 -0.81 -1.94 -0.17 63.29 61.36 61.79 -0.21 -3.02 0.00
SentenceDebias 56.57 55.39 50.65 -10.55 +1.76 +0.10 67.99 58.97 56.64 +0.29 +1.52 +0.34
Self-Debias 62.32 58.95 57.00 -3.43 +0.09 -2.20 60.28 57.29 57.61 -3.47 -4.12 -1.35
INLP 59.87 55.51 55.73 -14.04 -1.34 -1.29 63.17 60.00 58.57 -5.15 -1.49 -2.48
EDITBIAS 46.98 53.03 53.53 -8.80 -15.53 -25.54 48.20 53.29 55.84 -8.97 -26.36 -44.81

Table 1: Performance of EDITBIAS compared with baselines. Pre-edit represents the exact SS and LMS of pre-
trained language models before debiasing. ∆LMS (%) refers to the absolute change in LMS (%) during debiasing.

counterfactual data augmentation (CDA) (Zmigrod325

et al., 2019), SentenceDebias (Liang et al., 2020),326

Self-Debias (Schick et al., 2021), and iterative327

nullspace projection (INLP) (Ravfogel et al., 2020).328

Different from all baselines, our editor networks329

can be trained and validated with a mixture of all330

three types of bias, instead of dealing with only one331

particular bias at a time. As for testing, EDITBIAS332

is evaluated on gender, race, and religion bias sam-333

ples from S test
edit separately. The λ is determined by334

grid searching in each training ranging from {0.5,335

1.0, 1.5, 2.0, 2.5, 3.0}. We implement parameter-336

efficient model editing utilizing low-rank gradi-337

ent decomposition (Mitchell et al., 2022a). MLPs338

in different Transformer blocks in pre-trained lan-339

guage models are selected to be edited in this paper340

according to preliminary experiments described341

in Section 4.4. EDITBIAS is a model-agnostic342

debiasing method and can be applied to any open-343

source language model, such as LLaMA2 (Touvron344

et al., 2023), Mistral (Jiang et al., 2023), QWen345

(Bai et al., 2023) and GLM (Zeng et al., 2023).346

Due to computational constraints, we conduct ex-347

periments on relatively small language models in348

this paper, including both masked language mod-349

els, RoBERTa-base and RoBERTa-large (Liu et al.,350

2019), and causal language models, GPT2-base351

and GPT2-large (Radford et al., 2019) with Hug-352

gingFace (Wolf et al., 2019). We report the best353

debiasing performance among different edited posi-354

tions in Table 1 (the last layer for RoBERTA-base,355

the penultimate layer for RoBERTa-large, and the356

first two layers for GPT2-base and GPT2-medium).357

4.2 Main Results 358

EDITBIAS achieves the best debiasing perfor- 359

mance on all types of bias compared to all de- 360

biasing baselines. According to the Stereotype 361

Scores, EDITBIAS can reduce SS to less than 56% 362

and more than 46% while most SS of debiased mod- 363

els with previous debiasing baselines are above 364

60%, which demonstrates EDITBIAS leads to sig- 365

nificant improvement for debiasing performance. 366

For instance, as for the SS of RoBERTa-base, ED- 367

ITBIAS yields an improvement of ↑11.60, ↑7.92, 368

and ↑4.81 on the absolute difference from 50% for 369

gender, race, and religion bias respectively, com- 370

pared with the best SS among all baselines. The 371

main reason is that the parameters that may be as- 372

sociated with bias are explicitly edited, which is 373

illustrated in Section 4.4 and Appendix A. Addi- 374

tionally, EDITBIAS obtains much better debiasing 375

performance by training small editor networks in a 376

few training steps (e.g., 14 steps for RoBERTa-base 377

and 226 steps for GPT2-base) than fine-tuning an 378

entire model in 2000 steps with CDA, which indi- 379

cates the high efficiency of our EDITBIAS. Com- 380

pared to prompting and representation projections 381

baselines that can only calibrate models’ output dis- 382

tributions instead of language models themselves, 383

EDITBIAS produces off-the-shelf LMs that can 384

be directly used for application and substantially 385

outperforms them because modifying parameters 386

effectively changes the internal representations and 387

distributions of language models. Moreover, EDIT- 388

BIAS presents excellent performance on every bias 389
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type though editor networks are trained to produce390

edits on a mixture of different types of bias at a391

time. It is illustrated that our method can gener-392

alize debiasing success to various bias, compared393

to debiasing baselines that can only deal with one394

particular bias at a time, such as creating a bias395

subspace of a certain bias in SentenceBias.396

Editing debiasing parameters harms the origi-397

nal language modeling abilities. Unfortunately,398

EDITBIAS damages LMs’ language modeling ca-399

pabilities, though Lr is considered. LMS drops400

more than 10 (%), especially for editing top lay-401

ers of RoBERTa. It is consistent with Gu et al.402

(2024); Gupta et al. (2024) that editing exhibits403

notable shortcomings in maintaining the inherent404

modeling capabilities of language models. Because405

rich semantic information and text patterns are cap-406

tured by parameters of language models during407

pre-training (Geva et al., 2021), directly modify-408

ing some parameters will hurt the intrinsic encod-409

ing mechanisms. As a result, the whole language410

modeling abilities are destroyed, showing that the411

model’s semantic recognition between meaningful412

and meaningless associations is ambiguous.413

Debiasing larger models is more difficult. Com-414

paring the results of models with different sizes,415

we observe that the difficulty of debiasing and the416

modeling effects from editing increase with the417

model size. Specifically, the sum of absolute dif-418

ference SS from 50% for three types of bias is 1.89419

of RoBERTa-base and 9.58 of GPT2-base while420

it is 6.27 of RoBERTA-large and 10.93 of GPT2-421

medium. And the LMS drops of RoBERTa-large422

and GPT2-medium during debiasing are larger than423

those of RoBERTa-base and GPT2-base respec-424

tively, indicating that larger models are more sen-425

sitive to bias (Vig et al., 2020b). According to the426

SS of pre-edit models, larger models are more bi-427

ased likely because they capture more bias from428

the huger pre-training corpus. Meanwhile, with429

stronger language modeling abilities, it is harder430

for larger models to unlearn bias, and debiasing431

via model editing will definitely hurt the modeling432

capabilities to a large degree if we expect to im-433

plement successful debiasing. Although debiasing434

relatively large models is hard, empirical results435

demonstrate that EDITBIAS has great potential to436

debias large language models, with the advantage437

of efficiently modifying small portions of parame-438

ters compared to fine-tuning the whole model.439

4.3 Ablation Study on Retaining Loss Lr 440

Method

RoBERTa-base

SS (%) LMS (%)
gender race religion gender race religion

w/o Lr 47.37 46.06 51.92 -44.77 -52.47 -64.89
w Lr 49.67 48.48 51.04 -34.74 -44.00 -52.69

Method

GPT2-base

SS (%) LMS (%)
gender race religion gender race religion

w/o Lr 53.70 51.96 55.81 -43.27 -43.17 -53.33
w Lr 46.98 53.03 53.53 -8.80 -15.53 -25.54

Table 2: Ablation study on the retaining loss Lr.

We perform an ablation study to show the ef- 441

fectiveness of the retaining loss for maintaining 442

language modeling abilities during debiasing. We 443

disable the remaining loss and train editor networks 444

with the same hyperparameters as the training pro- 445

cess using the remaining loss. Results are shown in 446

Table 2. There are large drops on LMS if the retain- 447

ing loss is not deployed during editing. Specifically, 448

the LMS drops of GPT2-base increase absolutely 449

by 34.47, 27.64, and 27.79 for gender, race, and 450

religion bias respectively during debiasing without 451

Lr, which illustrates that the remaining loss plays 452

an important role in reducing harm to the language 453

modeling abilities during editing. 454

4.4 Further Discussion on Editing Positions 455

and Models for Debiasing 456

In EDITBIAS, MLPs in some Transformer blocks 457

are selected to be edited for unlearning bias. To 458

pursue optimal performance, it is necessary to care- 459

fully consider which hidden states to be edited. 460

Before embarking on our main experimental in- 461

vestigation, therefore, preliminary experiments are 462

conducted to explore bias effects in PLMs. Fol- 463

lowing causal tracing from Meng et al. (2022), we 464

propose bias tracing to track bias effects in PLMs 465

in Appendix A. It is observed that MLPs in several 466

early and last Transformer blocks exert a substan- 467

tial influence on bias captured in language models. 468

Based on our findings and some existing works that 469

demonstrate editing MLPs can modify knowledge 470

associations in PLMs (Geva et al., 2021; Mitchell 471

et al., 2022a; Meng et al., 2022, 2023; Gupta et al., 472

2023; Wu et al., 2023a), EDITBIAS edits MLPs in 473

the first three and last three blocks for the debias- 474

ing task. To comprehensively explore the effects 475

of the debiasing language models via model edit- 476

ing, we edit MLPs in different encoder & decoder 477
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Figure 3: SS (%) and ∆LMS (%) drops of debiased language models after editing MLPs in different encoder &
decoder blocks. 1/2/3: the first/second/third block. 12: the first 2 blocks. 123: the first 3 blocks. -1/-2/-3, the
last/penultimate/antepenultimate block, -321: the last 3 blocks. -21: the last 2 blocks.

Model Blocks Gender Race Religion SUM

RoBERTa-base
Early 24.84 12.14 11.67 48.65
Last 18.03 19.40 41.53 78.96

RoBERTa-large
Early 9.18 17.52 25.27 51.97
Last 12.08 21.16 13.47 46.71

GPT2-base
Early 27.28 13.88 34.45 75.61
Last 38.07 30.63 32.13 100.83

GPT2-medium
Early 29.22 11.74 21.42 62.38
Last 25.93 52.47 23.40 101.80

Table 3: The sum of the absolute differences between
SS and 50%. Early (Last) blocks: 1, 2, 3, 12, and 123
(-3, -2, -1, -321, and -21) blocks.

blocks with EDITBIAS, and measure the resulting478

debiasing performance and modeling capabilities479

in this section. The SS and LMS drops of debiased480

language models are shown in Figure 3.481

Debiasing causal language models is harder482

than mask language models. According to Fig-483

ure 3, the Stereotype Scores of debiased RoBERTa484

are generally better and stabler than that of GPT2485

and the LMS drops of RoBERTa are mostly larger486

and more unstable than that of GPT2, which indi-487

cates that it is more difficult to debias GPT2 than488

RoBERTa utilizing model editing. The reason is489

likely the different architectures of RoBERTa and490

GPT2. The bidirectional Transformer in RoBERTa491

might make the model more sensitive to changes492

in weights during debiasing than GPT2 with a uni-493

directional decoder-only structure because it inte-494

grates context from both directions when modeling495

bias. Based on the successful debiasing and rela- 496

tively small LMS drops of GPT2, we can theoreti- 497

cally surmise that for most causal language models, 498

debiasing them with editing methods is reliable 499

and leads to a relatively little impact on modeling 500

abilities, especially for current decoder-only large 501

language models, like GPT-Neo (Black et al., 2021) 502

and LLaMA2-70b (Touvron et al., 2023). 503

Editing MLPs in early blocks can achieve better 504

debiasing performance than editing MLPs in 505

upper blocks. According to Figure 3 and Table 506

3, in most cases, SS of debiased language models 507

are closer to 50% after editing MLPs in bottom lay- 508

ers than in upper layers. Early layers capture basic 509

linguistic features like syntax and common word 510

associations while upper layers delve into deeper 511

semantic relationships, contextual understanding, 512

and high-level language features (Geva et al., 2021). 513

Since biases often manifest in fundamental linguis- 514

tic patterns, like the co-occurrence of bias attribute 515

words and attribute terms, modifying early layers 516

allows for correction at the source of these repre- 517

sentations. Biases encoded in the early layers are 518

propagated and potentially amplified through the 519

network as information passes through subsequent 520

layers. Since upper layers build on the representa- 521

tions formed by lower layers, biases present at the 522

beginning can become deeply embedded and more 523

complex to disentangle at later stages. By targeting 524

debiasing efforts at the early stages, it’s possible to 525

prevent the propagation of biases, making the over- 526
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all debiasing process more effective. In contrast,527

the upper layers specialize in context-specific and528

complex language tasks. Editing biases in these529

layers might only address specific manifestations530

of bias and not the underlying bias itself.531

The trade-off, mitigating biases in language532

models without significantly compromising the533

language modeling performance, is worth study-534

ing further. From Figure 3, we can see that535

achieving good debiasing performance comes at536

the cost of sacrificing language modeling capa-537

bilities. Editing for debiasing often involves al-538

tering the model’s parameters to optimize the SS.539

However, these parameters were also optimized540

to perform well on language tasks, contributing to541

the LMS. When adjustments are made to reduce542

bias, they can interfere with the model’s learned543

patterns, leading to a decrease in language model-544

ing performance. Therefore, tackling biases aris-545

ing from complex and deeply ingrained patterns546

within the training data without affecting the intri-547

cate structure of learned representations is challeng-548

ing, which inspires us to seek methods to balance549

debiasing and modeling performance in the future.550

4.5 Reversing Gender Attribute Words551

RoBERTa-base RoBERTa-large GPT2-base GPT2-medium
0

10

20

30

40

50

60

SS
 (%

)

39.71
37.21

39.67 39.08

51.04 50.69

54.93

48.40

Pre-debias
Debiased

Figure 4: Gender Reverse Robustness. Pre-debias refers
to SS of pre-trained language models on the gender
reverse test set before debiasing. Debiased refers to SS
of debiased models by EDITBIAS.

A robust gender debiasing method can calibrate552

a model’s treatment to the two genders, male and553

female, equally. For instance, given the two sen-554

tences “Girls tend to be more ___ than boys.” and555

“Boys tend to be more ___ than girls.”, a debiased556

model will equivalently model the stereotypical557

term “soft” and the anti-stereotypical term “deter-558

mined” in both two sentences though only the first559

sentence is used for training. To evaluate this ro-560

bustness, a gender counterfactual test set S test
gender* 561

is created (Appendix C). We reverse all gender at- 562

tribute words in the gender bias samples from S test
edit 563

to construct the set. For example, “boys”, “father”, 564

and “Female” are changed into “girls”, “mother”, 565

and “Male” respectively. Then the test set is used 566

to examine the robustness of EDITBIAS, the im- 567

plementation of which is the same as Table 1. The 568

results in Figure 4 show that EDITBIAS is robust 569

enough to unlearn gender counterfactual bias. 570

4.6 Semantic Generality 571

Model / SS (%)
Pre-debias EditBias

gender race religion gender race religion

RoBERTa-base 52.97 55.25 61.83 51.10 51.92 52.33
RoBERTa-large 50.39 54.20 60.50 51.37 48.53 47.53
GPT2-base 52.21 55.62 57.65 48.23 55.95 49.95
GPT2-medium 53.11 56.18 62.62 50.29 48.95 48.05

Table 4: SS (%) on the synonym-augmented test set.

Similar to the generality principle of knowledge 572

editing, a robust debiasing method should ensure 573

the debiased language model demonstrates unbi- 574

ased behavior on a group of semantically similar 575

attribute terms with attribute terms used in train- 576

ing, showcasing its adaptability to the nuanced 577

and dynamic nature of language. To evaluate this 578

robustness of EDITBIAS, we curate a synonym- 579

augmented test set that substitutes attribute terms 580

in S test
edit with their synonyms generated by WordNet 581

(Miller, 1995) using NLTK (Bird and Loper, 2004). 582

Results in Table 4 show that our debiasing method 583

can generally remove bias in the language models’ 584

neighboring semantic modeling space. 585

5 Conclusion 586

We propose EDITBIAS, an efficient model editing 587

method to debias language models by modifying 588

a small portion of PLMs’ parameters with Ld and 589

Lr. Experiments illustrate that EDITBIAS presents 590

much better debiasing performance than classical 591

debiasing methods, and is robust in gender reverse 592

and semantic generality though it hurts models’ 593

original language modeling abilities. Meanwhile, 594

we comprehensively investigate debiasing and bias 595

effects on language models, concluding that debi- 596

asing larger and causal language models is diffi- 597

cult, and it is important to consider the trade-off 598

between debiasing and language modeling perfor- 599

mance when designing debiasing methods. We 600

hope our findings can give insights into future de- 601

biasing works and the NLP community. 602
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Limitations and Future Works603

More experiments to extend the debiasing604

method. In this work, we only study one bench-605

mark dataset with its corresponding metrics. To ex-606

tend the generality of our work, more bias datasets607

and metrics with various formats, from different608

domains and perspectives will be utilized in experi-609

ments, such as Stanceosaurus (Zheng et al., 2022)610

and HOLISTICBIAS (Smith et al., 2022). Due to611

the limited GPU resources, some larger language612

models have not been explored, such as LLaMA2613

(Touvron et al., 2023), GLM (Zeng et al., 2023),614

and GPT-Neo (Black et al., 2021). We will conduct615

experiments with with more datasets and models616

in the future.617

New bias editing methods with less modeling618

harm and without training costs. Though ED-619

ITBIAS obtains great performance on debiasing,620

alleviating its harm to the language modeling abil-621

ity is significant and challenging. For instance, to622

reduce the modeling damage, we will try to edit623

neurons within a tiny disturbance, such as alter-624

ing a small term in Taylor expansions of these625

activations. When compared to locate-then-edit626

approaches, like ROME (Meng et al., 2022) and627

MEMIT (Meng et al., 2023), as a meta-learning628

method, EDITBIAS necessitates additional training629

stages for hyper-networks, potentially leading to630

increased time and memory costs. In the future, we631

will try different editing methods without explicit632

training using large corpora.633
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A Bias Tracing1178

ROME (Meng et al., 2022) and MEMIT (Meng1179

et al., 2023) utilize causal tracing (Vig et al., 2020a)1180

to locate facts memorized in the parameters of a pre-1181

trained autoregressive transformer. After they find1182

the specific hidden state with the strongest effect1183

on individual facts, they modify these localized1184

parameters for changing facts. Inspired by causal1185

tracing, we propose bias tracing to seek the exact1186

hidden states that contribute most to bias exhibited1187

in the language models including masked language1188

models and causal language models, which will1189

guide us to select positions to edit for debiasing.1190

A.1 Tracing Bias Associations1191

Following Meng et al. (2022), we analyze all in-1192

ternal activations of a language modelM during1193

three runs: a clean run eliciting the bias in lan-1194

guage models, a corrupted run disrupting the bias1195

context modeling, and a corrupted-with-restoration1196

run measuring bias exhibited in a single state.1197

• As for the clean run, we obtain Pθ(·|xstereo)1198

and Pθ(·|xanti) for each sample in the datasets,1199

and collect all hidden activations {hli|i ∈1200

[1,K], l ∈ [1, L]} for each token i and each1201

layer l, given the input text x = [x1, . . . , xK ]1202

and theM with L layers.1203

• In the corrupted run, noise is added to the em-1204

bedding of all bias attribute words in the input.1205

For the embedding h0i in the token sequences1206

of bias attributes words to be corrupted, we1207

set ĥ0i := h0i + τ , where τ ∼ N (0;σ).5 Then,1208

5σ is three times the standard deviation of 1000 subject em-
beddings from https://rome.baulab.info/data/dsets/
known_1000.json

M runs based on the corrupted embeddings 1209

and we collected the following corrupted acti- 1210

vations {ĥli|i ∈ [1,K], l ∈ [1, L]}. Since the 1211

existence of bias attribute words in a context 1212

is the reason why a context presents bias, cor- 1213

rupting the embedding of bias attribute words 1214

will remove the bias effects on the following 1215

language modeling process. 1216

• With noisy embeddings, we restore specific 1217

hidden states of some token i (the bias at- 1218

tribute word, the attribute term, or the to- 1219

ken before the attribute term) and layer l 1220

(the Transformer block, the attention layer, 1221

or the MLP layer) in the corrupted-with- 1222

restoration run, which lets M output the 1223

clean state hli. The following forward-running 1224

executes without more intervention. 1225

We calculate the absolute log probability differ- 1226

ence between xstereo and xanti, fd(θ, xstereo, xanti) = 1227

| logPθ(·|xstereo)−logPθ(·|xanti)| , to measure bias 1228

in a language model. The larger the difference is, 1229

the more biased M is. By running the network 1230

twice, bias tracing computes the bias effect of acti- 1231

vations. The normal clean run occurs first to obtain 1232

all clean activations. Secondly, embeddings of bias 1233

attribute words are corrupted and the lowest differ- 1234

ence is obtained. Then the corrupted activations 1235

ĥli of a certain token i and layer l are restored to 1236

their original values hli from the same token i and 1237

the same layer l. If an activation restoration of a 1238

token i∗ and layer l∗ causes a larger difference than 1239

a restoration from other tokens and layers, we can 1240

know that the activations of the token i∗ and layer 1241

l∗ give more impetus to bias. 1242

A.2 Bias Tracing Results 1243

We conduct gender bias tracing on the intrasen- 1244

tence part of StereoSet at every layer and every to- 1245

ken. The average bias effects of 500 samples with 1246

GPT2-XL after a corrupted run and a corrupted- 1247

with-restoration run are shown in Figure 5 (a) and 1248

(b), respectively. 1249

Bias best corresponds to the states of MLPs at 1250

lower layers. Figure 5 (a) illustrates that at layer 1251

0-13, transformer block states and MLPs play a 1252

much more significant role in bias than attention 1253

layers, with peaking at layer 8. This reveals that 1254

language models intensively present bias in the 1255

foundational representations learned by lower lay- 1256

ers, and these early presentations can influence the 1257
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Figure 5: Gender bias tracing on GPT2-XL. (a) Comparing bias effect with and without severing Attn or MLP. (b)
Comparing bias effect on different token positions. The bias impact on output probability is mapped for the effect
of (c-d) each hidden state on the context, (e-f) only MLP activations, and (g-h) only attention activations. * marks
the corrupted bias attribute words and [] refers to the attribute terms in (c-h).

subsequent layers. The reason is that since the1258

lower layers capture the text patterns (Geva et al.,1259

2021), bias patterns in the pre-trained corpus, such1260

as cooccurrence with stereotyped terms, are mem-1261

orized in the early layers. Figure 5 (b) also shows1262

that bias attribute words have the most effects at the1263

early layers. Meanwhile, it indicates that attribute1264

terms and the token before it associated with bias1265

at the upper layers, especially for the token be-1266

fore attribute terms because semantic information1267

is usually modeled in the top layers, and the token1268

probability is most influenced by the previous one1269

in a causal language model. Two cases in Figure1270

5 (c-h) illustrate the aforementioned observations1271

well. Besides, Figure 5 (e-f) manifests that atten-1272

tion from the bias token to attribute tokens shows1273

a strong relation with bias, which results from the1274

causal effect of the bias token.1275

A.3 Tracing Data Construction1276

We begin with utilizing SPARQL to query the in-1277

stance of gender, race, and religion, obtaining a1278

variety of words targeted to specific bias. These1279

words are the source collection of bias attribute1280

words. Based on the collection, we then adopt sim-1281

ple string matching to extract bias attribute words1282

from the context sentence x of each sample s in the1283

dataset. As a result, we can trace the activations of1284

these bias attribute words in language models.1285

A.4 Bias Tracing with RoBERTa-large 1286

Figure 6 shows the bias effects of RoBERTa-large. 1287

Different from GPT2-XL, Transformer blocks, at- 1288

tention layers, and MLPs follow the same trend in 1289

bias effects without causal effects. According to 1290

Figure 6 (a), the strong association is located in the 1291

early layers, and the impacts become less and less 1292

from the bottom layer to the top layer because bias 1293

patterns are captured in these beginning layers, the 1294

same as GPT2-XL. Figure 6 (b) also illustrates that 1295

bias words have the most bias effects in the bottom 1296

layers and the attribute terms containing the seman- 1297

tic information of bias influence the modeling at 1298

the upper layers. 1299

B Baselines 1300

CDA (Counterfactual Data Augmentation) re- 1301

train a pre-trained language model. It generates and 1302

incorporates data that represents what could have 1303

happened under different conditions. By altering 1304

aspects of data related to biased attributes, such as 1305

changing gender or race in a dataset, a counterfac- 1306

tual data set is created to create a more balanced 1307

training environment for models. 1308

SentenceDebias (Liang et al., 2020) first esti- 1309

mates the demographic bias subspace by encod- 1310

ing sentences containing bias attribute words or 1311

their counterfactuals into sentence representations 1312
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and using principle component analysis (Abdi and1313

Williams, 2010) to define the bias subspace as the1314

first K principle components. and then debias sen-1315

tence representations by subtracting their projec-1316

tion onto the bias subspace.1317

Self-Debias (Schick et al., 2021) first prompts a1318

model to generate toxic text, such as encouraging1319

a model to discriminate based on gender. Then,1320

the model can generate a non-discriminative con-1321

tinuation, during which the probabilities of tokens1322

that were prominent in the toxic generation are1323

deliberately scaled down.1324

INLP (Ravfogel et al., 2020) introduces Itera-1325

tive Null-space Projection (INLP), a method that1326

reduces bias in word embeddings by iteratively pro-1327

jecting them onto the null space of bias terms using1328

a linear classifier. This method constructs a projec-1329

tion matrix to project input onto the null space of1330

the linear classifier, continuously updating both the1331

classifier and the projection matrix.1332

C Gender Counterfactual Test Set1333

We utilize the method mentioned in Appendix A.31334

to extract gender attribute words in gender bias1335

samples. Then these gender attribute words are1336

reversed into their counter facts manually. The1337

labels “stereotype” and “anti-stereotype” are ex-1338

changed for each sentence. For instance, after re-1339

verse, the stereotyped context in Figure 1 is “Boys1340

tend to be more determined than girls.” and the1341

anti-stereotyped context is “Boys tend to be more1342

soft than girls.”.1343
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Figure 6: Gender bias tracing with RoBERTa-large.

17


