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ABSTRACT

We propose stiffness-aware neural network (SANN), a new method for learning
Hamiltonian dynamical systems from data. SANN identifies and splits the train-
ing data into stiff and nonstiff portions based on a stiffness-aware index, a simple,
yet effective metric we introduce to quantify the stiffness of the dynamical system.
This classification along with a resampling technique allows us to apply different
time integration strategies such as step size adaptation to better capture the dy-
namical characteristics of the Hamiltonian vector fields. We evaluate SANN on
complex physical systems including a three-body problem and billiard model. We
show that SANN is more stable and can better preserve energy when compared
with the state-of-the-art methods, leading to significant improvement in accuracy.

1 INTRODUCTION

Data-driven modeling of dynamical systems provides a computationally inexpensive approach for
exploiting the scientific law of the physical processes and predicting future phenomena (Giannakis
& Majda, 2014; Harlim et al., 2021; Gu et al., 2021; Mou et al., 2021). With the superior approx-
imation and generalization capacity (Lu et al., 2020; Shen et al., 2021) of neural networks (NNs),
important advances have been made in learning Hamiltonian systems (Greydanus et al., 2019; Finzi
et al., 2020; Tong et al., 2021). Based on the physical property that the total energy of the system
(also called Hamiltonian) must be conserved, many studies model the Hamiltonian system by learn-
ing this conserved quantity from data (Greydanus et al., 2019; DiPietro et al., 2020). Even though
some successes have been achieved, it remains challenging to learn the estimated system to capture
the exact physical law, because of the elusive and chaotic characteristics of the systems (Choudhary
et al., 2020; Marchal, 1990), especially for complex systems that are intrinsically stiff. When learn-
ing stiff dynamics, the NN optimization easily leads to an unstable solution or biased estimation due
to the lack of constraint on parameters (Kim et al., 2021; Wang et al., 2020).

To illustrate the difficulty in learning stiff Hamiltonian dynamics, let us consider a three-body prob-
lem that describes the interactions of three particles under gravitational force. According to phys-
ical law, the repulsive force of two particles increases dramatically when they get close to each
other. Hence, the close three-body interaction intensifies stiffness phenomena (Huang & Leimkuh-
ler, 1997). Fig. 1 shows the reference orbits of three particles and the orbits learned by the Hamilto-
nian neural network (HNN) (Greydanus et al., 2019), a famous approach that directly approximates
the Hamiltonian with a neural network. In Fig. 1(a, e), the HNN orbits coincide with the reference
when the three particles are far from each other, which is consistent with the results in (Greydanus
et al., 2019). However, the particles deviate from the reference orbits rapidly after close encounter,
and the energy becomes nonconserved (Fig. 1(c, f)). This reveals although the NN is trained with
the data containing close encounter, the NN does not fully capture the dynamics and easily diverges
when stiffness grows. Two primary factors may affect the accuracy of the learned Hamiltonian.

Implicit bias. NN-based optimization has an implicit bias toward fitting a smooth function with the
fast decay in the frequency domain (Xu et al., 2020; Cao et al., 2019). This implicit bias impedes
the NN from capturing high-frequency components, such as singularities in an N-body problem.
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Figure 1: First four columns show a comparison of the reference orbits and the Hamiltonian neural
network (HNN) orbits of three particles. The orbits of the different particles are displayed with dif-
ferent colors. The rightmost figures show the energy comparison. The reference orbits are simulated
by the RKF45 solver with the ground truth Hamiltonian, and the energy is conserved. The energy of
the HNN changes dramatically at the close interaction of two particles (see c, f), and eventually the
HNN orbits diverge from the reference.

Imbalanced stiffness proportion. The stiffness of the dynamical system changes with time and
varies across different trajectories (e.g., the same system with different initial conditions). It is not
uncommon that only a small proportion of trajectories corresponds to stiff dynamics. As a statistical
example, in the 1, 000 independent simulations of three-body trajectories following (Chen et al.,
2019), 91.4% of the trajectories contain close encounter, but on average only 4.2% of the time
intervals within the trajectories contain close encounter.

To mitigate the implicit bias caused by NN-based optimization and the imbalanced stiffness propor-
tion problem, we propose a new method called the stiffness-aware neural network (SANN) based on
the stiffness classification of the training data. In our approach, we introduce a stiffness-aware index
(SAI) as a simple, yet effective metric to classify the time intervals into stiff and nonstiff portions.
For training efficiency, we integrate the Hamiltonian dynamics over different intervals with different
step sizes based on their classification. To balance the ratio between the stiff group and the nonstiff
group and avoid biased training, we resample the stiff intervals. Our contributions are as follows.

1. We identify the importance of the stiffness concept in learning Hamiltonian systems from the
time series data. We show that SAI is easy to calculate and can be used to effectively determine
stiffness intervals of the data.

2. We validate the SANN method with complex Hamiltonian dynamics including a three-body prob-
lem and billiard model. Extensive numerical results show that SANN can accurately predict the
the stiff dynamics and significantly outperform the existing methods.

2 PRELIMINARIES

2.1 HAMILTONIAN SYSTEM

The Hamiltonian system describes the continuous-time evolution of states in the phase space (p,q),
where p ∈ Rn represents the generalized momentum and q ∈ Rn denotes position coordinates.
The Hamiltonian H(p,q) : R2n → R1 is denoted as the total energy of the system at (p,q). The
dynamics can be described withH(p,q) by

dq

dt
=
∂H
∂p

,
dp

dt
= −∂H

∂q
. (1)

With Eqn. (1), H(p,q) is conservative during the evolution as dH
dt = ∂H

∂p ·
dp
dt + ∂H

∂q ·
dq
dt = 0. In

classical mechanics, the Hamiltonian is usually expressed as the sum of the kinetic and potential
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Figure 2: Workflow of SANN.

energies. We are interested in learning the separable Hamiltonian, namely, H(p,q) = T (p) +
V (q), where T (p) is kinetic energy while V (q) is potential energy. In this paper our goal is to
learn the Hamiltonian of a dynamical system. What is available is the time series of observations
{(pti ,qti)}Ni=1. The Hamiltonian is parameterized by a neural network as follows,

H(p,q) ≈ Hθ(p,q) , p>Mp + φ(q;W ), (2)

where φ : Rn → R1 is a fully connected NN, M ∈ Rn×n is a trainable matrix, and θ , {M ,W }
is a set of all trainable parameters. Once we obtain Hθ, the trajectories of the learned Hamiltonian
system can be simulated by Eqn. (1) with an ordinary differential equation (ODE) solver.

2.2 ODE SOLVER FOR THE HAMILTONIAN SYSTEM

We use Forward((p0,q0),H,∆t) to denote a one-step integration of Eqn. (1) from (p0,q0) over
the step size ∆t. The Euler method is a first-order Runge–Kutta method adopted in (Greydanus
et al., 2019). When the Euler method is used, the integration becomes

(pti+1 ,qti+1) = Forward((pti ,qti),H, ti+1 − ti) , (pti ,qti) + (− ∂H
∂qti

,
∂H
∂pti

)(ti+1 − ti). (3)

The Euler method is usually not suitable for stiff dynamics because of its poor stability property.
Another popular numerical method (Fehlberg, 1969) for the Hamiltonian system is Runge—Kutta-
–Fehlberg (RKF45). RKF45 allows the step size to be changed adaptively based on an estimate
of the local truncation error. This error-based step size control has great potential for improving
computational efficiency. However, its effectiveness may be hampered by the use of minibatches,
which are crucial for training. Minibatching adds an additional dimension to Eqn. (1). Controlling
the step size requires considering a combined ODE system and estimating the error on all batch
elements, as noted in Chen et al. (2018). Moreover, the step size is limited by the stiffest element in
a batch, making it difficult to use a large step size especially when the batch size is large.

A symplectic integrator, a numerical method that conserves the energy quantity, is widely used
in learning Hamiltonian system (Chen et al., 2019; Zhong et al., 2020). Leapfrog is a second-order
symplectic integrator designed for a separable Hamiltonian. The Leapfrog scheme is in Appendix C.

3 STIFFNESS-AWARE NEURAL NETWORK

In this section we introduce our method, called SANN (stiffness-aware neural network), with its
workflow shown in Fig. 2. First, we propose SAI (stiffness-aware index) to classify the time interval
as either stiff or nonstiff. During training, we integrate the NN-parameterized Hamiltonian dynamics
over the interval with different step sizes based on their classification. Next, we resample the stiff
intervals to balance their ratio and avoid biased training.

3.1 IDENTIFYING THE STIFF INTERVAL

In this part we first discuss the stiffness index (SI) that is used to characterize stiffness for an ODE
and propose the stiffness-aware index (SAI) to characterize the stiffness for the time series data.

SI reveals the fastest rate of change of state. We consider the dynamics of the state u,

du

dt
= f(u). (4)
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SI at the state u(t) is defined by max{|Re(λi)|}, where λi is the eigenvalue of the Jacobian matrix
of Eqn. (4) (Aiken, 1985). To illustrate that SI reveals the fastest rate of change of state, we consider
that Eqn. (4) is a linear system with constant coefficients, namely, du

dt = Au, and A ∈ Rn×n is a
diagonalizable matrix with eigenvalues {λi}ni=1 and corresponding eigenvectors {vi}ni=1. Then the
solution of the linear system is u(t) =

∑n
i=1 civie

λit. Let us suppose that Re(λi) < 0, i = 1, ..., n.
We have eλit → 0 as t→∞. Hence, max{|Re(λi)|} reveals the fastest speed of decaying to 0. If
max{|Re(λi)|} is large, the integrator needs a small step size to reduce the local truncation error.

Definition of SAI. Given the observations {uti}Nt=1 from the system (4), we define SAI at uti by

1

‖uti‖2
∥∥uti+1 − uti
ti+1 − ti

∥∥
2
. (5)

Intuitively, SAI characterizes the relative changing speed of the state u from time ti to ti+1. The
norm of finite difference

∥∥uti+1−uti

ti+1−ti

∥∥
2

approximates
∥∥f(uti)‖2, which is used in time parameter-

ization of the adaptive time step method (Huang & Leimkuhler, 1997). In our data-driven setting,
we cannot compute SI as the analytic expression of f is unavailable. But SAI can serve as a proxy
of SI in time series data, which will be demonstrated in Section 5.

Next, we split the training data into stiff and nonstiff portions by classifying the time interval as
either stiff or nonstiff based on SAI. For a time series observation {uti}Ni=1, we first compute SAI
for each time interval. Let SAIi = 1

‖uti‖2

∥∥uti+1−uti

ti+1−ti

∥∥
2
. We then rank {SAIi}N−1

i=1 . The interval
(ti, ti+1) with a larger SAIi is supposed to be a stiffer part. We use γ ∈ (0, 1) to denote the stiff
ratio, a hyperparameter to determine the ratio of the stiff portion. The intervals belonging to the
top-γ of {SAIi}N−1

i=1 are identified as stiff intervals, and the others are classified as nonstiff. In other
words, the intervals in the (1− γ)× 100-th percentile of SAI are identified as nonstiff intervals.

3.2 TRAINING THE ESTIMATED HAMILTONIAN

Loss function. Let {(pti ,qti)}Ni=1 be the given trajectory from Hamiltonian system. Given a pair of
consecutive states, (pti ,qti) and (pti+1 ,qti+1), we integrate Eqn. (1) from ti to obtain the estimated
solution (p̂ti+1 , q̂ti+1) at ti+1. To achieve a more accurate solution, we conduct the integration over
[ti, ti+1] with a small time step ti+1−ti

S , where S is an integer hyperparameter called partition.
Specifically, we proceed as follows:

(p̂ti+s/S , q̂ti+s/S ) = Forward((p̂ti+(s−1)/S , q̂ti+(s−1)/S ),Hθ,
ti+1 − ti

S
), s = 1, · · · , S, (6)

where (p̂ti , q̂ti) , (pti ,qti). For the stiff equation, the step size of the numerical integration must
be small enough for the stable solution. Therefore, the large partition S should be chosen for the
stiff portion while the small partition S is used for the nonstiff portion. The parameter θ in Hθ can
be optimized by minimizing the mean squared error between the prediction and the ground truth:

1

N − 1

N−1∑
i=1

‖pti+1 − p̂ti+1‖22 + ‖qti+1 − q̂ti+1‖22, (7)

with stochastic optimization algorithms such as Adam (Kingma & Ba, 2014).

Resampling. As demonstrated in Section 1, the stiff phenomena may comprise only a small pro-
portion in the trajectory of the Hamiltonian system. We usually pick the stiff ratio γ with a value
less than 0.5. To avoid biased regression and unstable training caused by imbalanced categories of
intervals, we adopt a random resampling technique that balances the data by replicating the stiff in-
tervals K times. A typical choice for replication K is 1−γ

γ such that the number of the stiff intervals
is comparable to that of the nonstiff intervals.

4 EXPERIMENTS

To evaluate the performance of SANN, we use two complex Hamiltonian systems: the billiard
model and the three-body problem. We compare SANN with two famous approaches, including
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Figure 3: (a) Profile of the potential function for the billiard model; q = (qx, qy) ∈ R2 denotes the
position. Comparison of (b) relative energy error and (c) MSE for billiard model.

Reference SANN (Ours) SRNN HNN

Reference SANN (Ours) SRNN HNN

Reference SANN (Ours) SRNN HNN

Figure 4: Comparison of billiard orbits simulated using the Hamiltonian learned by different meth-
ods. We can see that SANN produces orbits that are almost identical to those of the reference. We
provide more results in Appendix E and dynamic graphs on website.

HNN (Greydanus et al., 2019) and SRNN (Chen et al., 2019). All approaches aim to learnHθ(p,q)
in Eqn. (1) as a representation of the dynamics. HNN trains Hθ(p,q) by minimizing the error
between the partial derivatives of Hθ(p,q) and time derivatives approximated by data. SRNN
utilizes symplectic solvers to conduct multistep integration and trains Hθ(p,q) by minimizing the
error between the prediction and the data. SANN uses a similar loss function but with stiffness
awareness as shown in Section 3.2. For a fair comparison, we use the Leapfrog solver for both
SRNN and SANN. To evaluate the accuracy of the learned Hθ(p,q) for different methods, we
simulate the dynamics using the Leapfrog solver with the same settings during testing. We provide a
guidance for hyperparameter selection in Appendix G and additional experiments on the Pendulum-
N problem which involves inseparable Hamiltonian in Appendix H.

4.1 BILLIARD MODEL

The billiard model has wide application in real-world physical systems, spanning quantum-classical
correspondence (Stöckmann & Stein, 1990), lasers (Stone, 2010), quantum dots (Ponomarenko
et al., 2008), and nanodevices (Chen et al., 2016). The billiard model that we consider describes
a billiard bouncing between a ring with soft boundaries (Choudhary et al., 2020). The Hamiltonian
is defined as

H(p,q) =
1

2
‖p‖22 +

(
1 + exp

(rα − ‖q‖2
s

))−1

−
(

1 + exp
(rβ − ‖q− (q0, 0)‖2

s

))−1

, (8)
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where p ∈ R2 and q ∈ R2 are the momentum and the position of a billiard on a 2D plane, respec-
tively; rα, rβ are the radius of the outer circle and the inner circle, respectively; s is the softness
of the boundary; and (q0, 0) is a shift of the inner circle from the center. As shown in Fig. 3(a),
the potential function becomes sharp near the boundaries of the ring, causing a rapid change of the
momenta of the billiard ball when it gets close to the boundaries.

Experimental setup. The parameters rα, rβ , s, and q0 are set to be 1.0, 0.5, 0.05, and 0.1, respec-
tively. We use the physics-informed modelHθ(p,q) defined in Eqn. (2); φ is a 3-hidden-layer fully
connected NN with width 256 per layer and a rational activation function (Boullé et al., 2020). We
simulate the training set with 100 trajectories and the testing set with 30 trajectories by RKF45.
Each trajectory contains 1,000 time steps with step size of 0.1. We set the stiff ratio γ to be 10% and
the partition S to be 10 for the stiff interval and 2 for the nonstiff interval. The loss function (7) is
optimized by Adam with a batch size of 1,024, and we use an initial learning rate of 0.001 for 500
epochs. The learning rate follows cosine decay with the increasing training epoch. During testing,
we integrate ODE (1) using the Leapfrog integrator with a fixed step size of 0.005.

Results. SANN can predict the dynamics more accurately than HNN and SRNN can. Fig. 3(b,
c) shows the mean square error (MSE) with time and relative energy error, which is defined as the
ratio of difference between the current energy and the initial energy to the initial energy. We can
see that SANN maintains a much smaller energy error compared with HNN or SRNN. On average,
SANN reduces the relative energy error by 56.07% compared with SRNN and 92.13% compared
with HNN. The gap in terms of MSE enlarges as the number of time steps increases. At the last
time step, the MSE of SANN is 56.91% lower than that of SRNN and 83.44% lower than that of
HNN. Fig. 4 gives a comparison of the predicted trajectories. SANN recovers visually the same
trajectories as the reference, while the trajectories obtained with SRNN and HNN clearly diverge
from the reference. Additional results for noisy data are given in Appendix F. A discussion on
implicit bias is given in Appendix A.

Figure 5: The first two figures show the comparison of relative energy error and MSE with varied
time for the three-body problem. The last two figures show the comparison of performance with and
without resampling.

4.2 THREE-BODY PROBLEM

We consider a three-body problem that describes the motion of three particles under Newtonian
gravitational force. The Hamiltonian of the three-body system is given by

H(p,q) =
1

2

3∑
i=1

‖pi‖22
mi

+
∑

1≤i<j≤3

− Gmimj

‖qi − qj‖2
, (9)

where pi ∈ R2, qi ∈ R2 and mi are the momentum, position, and mass of the ith particle, i =
1, 2, 3, p , (p1,p2,p3) and q , (q1,q2,q3), and G is the gravitational constant. One can see that
the potential function incurs singularities when the distance between any two particles is small.

Experiment setup. We set m1 = m2 = m3 = 1 and G = 1 in our experiments. To approximate
the Hamiltonian of three-body dynamics, we use a physics-informedHθ as follows,

Hθ(p,q) , p>Mp + φ(‖q1 − q2‖2, ‖q1 − q3‖2, ‖q2 − q3‖2;W ), (10)

where φ is defined as in Section 4.1, and we incorporate the physics information where the potential
is a function of pairwise distances. The training data comprises 1,000 trajectories, and the length
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of each trajectory N is 60 with the step size 0.1. The random initialization of initial states follows
(Chen et al., 2019). The testing data set consists of 300 trajectories with length N of 100 and step
size of 0.1. We set the stiff ratio γ to be 10% and the partition S to be 50 for the stiff interval and 10
for the nonstiff interval. When training, we minimize the loss function (7) by Adam with the batch
size of 1,024. Hθ is trained with an initial learning rate of 0.001; the learning rate decays for 3,000
epochs. During evaluation, the Leapfrog integrator with fixed step size of 0.01 is used.

Results. SANN learns a more accurate Hamiltonian than HNN and SRNN do on the three-body
problem. Fig. 6 shows the orbits of three particles simulated by different methods and a system
energy comparison. The relative energy error and MSE of orbits simulated by different methods are
presented in Fig. 5. In Fig. 6, in the beginning the orbits of all methods coincide with the reference.
However, we see that the orbits of HNN and SRNN rapidly drift away from the reference, and the
energy changes dramatically whenever two orbits meet. On the contrary, SANN produces orbits that
are nearly identical to the orbits of the reference, and the energy remains roughly constant. From
Fig. 5, we see that SANN achieves lower energy error and MSE compared with HNN and SRNN.
On average, SANN reduces the relative energy error by 67.80% compared with SRNN and 96.30%
compared with HNN. Also, at the last time step SANN’s MSE is 63.84% lower than SRNN’s and
92.65% lower than HNN’s.

Figure 6: The first three columns show the comparison of the reference orbits (solid curves) and the
orbits learned by different method (dotted curves). • is the initial position, and I is the direction.
The orbit of the different particles is presented by different colors. The rightmost figures show the
energy comparison. We provide more results on Appendix E and dynamic graphs in website.

5 STIFFNESS METRIC

In Section 3.1 SAI was introduced in order to characterize the stiffness of a trajectory. In this section
we show theoretically and numerically that SAI can serve as a proxy of SI in a data-driven scenario.

SAI keeps the same trend as SI. With the analytic expression of dynamics in three-body problem
and a given trajectory, we compute the SI and SAI for each time step of the trajectory, respectively.
As a representative example, Fig. 7 shows the orbits of three particles and the corresponding curves
of SAI and SI with time. We can see that SI remains roughly a small constant when three particles
are far away from each other but rises sharply when two particles get close. In three-body dynam-
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Figure 7: Comparison of SAI and SI with time. The color markers refer to the occurrence of the
stiffness phenomena; the same color corresponds to the same time period. The trends of SAI and SI
are consistent. We provide more results on Appendix E and dynamic graphs in website.

ics, the stiff phenomena are known to occur at the close interaction of particles, which is in good
correspondence to large SI values. More important, SAI keeps the same trend with SI as time goes
by, and SAI reaches the peak at the same time interval as SI does. Through extensive numerical
validation like this, we find that SAI can characterize the stiffness of a trajectory very well.

SAI is a generalized SI. For a theoretical analysis, we follow the standard technique that linearizes
the ODE locally (Arrowsmith & Place, 1992). In our method, SAI is computed by adjacent states
with small step size, and the adjacent states satisfy the linearized ODE. By definition, SI depends on
the eigenvalue λm of the linear ODE with the maximum absolute real part. We show in Theorem 1
(with proof in Appendix D) that SAI depends on all the eigenvalues. In an ideal setting where
`m = 1, `i = 0, ∀i 6= m, SAI is roughly equivalent to SI.
Theorem 1. Let A be a n × n symmetric real matrix and {λi}ni=1 be its n distinct eigenvalues.
Then for the linear system dx

dt = Ax with nonzero initial condition x(0) = u0, we have

1

‖u0‖2
∥∥u1 − u0

∆t

∥∥
2

=
( n∑
i=1

`iλ
2
i

)1/2
+O(∆t) (11)

where u1 = x(∆t) and `i ≥ 0, i = 1, ..., n with
∑n
i=1 `i = 1.

One limitation of our stiffness metric is that the value of SAI may change with the coordinate system.
For example, a coordinate translation does not change the norm of the finite difference term in
Eqn. (5), but may change the norm of the state. However, the stiffness classification in our method is
not sensitive to coordinate translation because the classification relies only on the ranking (not their
values) of the SAIs for the time steps in a trajectory. See Appendix B for a detailed analysis.

6 ABLATION STUDY

In this section we explore the effect of varied resampling replicationK introduced in Section 3.2 and
activation functions used in Hθ(p,q). The experiments are conducted on the three-body problem.
Table 1 shows the training MSE, testing MSE, relative energy error, and training time (in seconds)
for each epoch. Fig. 5 shows the performance with and without resampling. Fig. 8 displays the
performance of different activation functions used in the NN.

Resampling. From Exp. 2–Exp. 6, we see that with the increasing resampling replication for stiff
portion, the learned Hamiltonian dynamics can achieve smaller errors, but the training time grows
accordingly. For example, when the replication K changes from 6 to 8, the testing MSE decreases
by 47.61% but the training time increases by 22.72%.

Efficiency. In Exp. 7 where all training intervals are integrated with partition 50, we achieve a
more accurate solution compared with Exp. 2 where some portions of intervals are integrated with
partition 10. However, the training time increases significantly. On the other hand, despite the time
increment caused by resampling, Exp. 4 achieves comparable performance to Exp. 7 but reduces
over 40% of training time. To trade off between the accuracy and time cost, we can choose an
appropriate resampling replication.

Activation functions. We compare the performance of ReLU, Tanh, and Rational (Boullé et al.,
2020) used in the NN to approximate the Hamiltonian. Even though theoretically ReLU NN has a
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good approximation property, it has worse performance in our problem where the dynamics involve
a first-order derivative. Rational NN is slightly better than Tanh NN. According to Occam’s Ra-
zor (Lattimore & Hutter, 2011), we intuitively prefer to formulate the physical system with a simple
expression and avoid a complicated one such as Tanh NN, a highly nonlinear function. Rational NN,
which has the form of a rational fraction, is more suitable for modeling the Hamiltonian.

Exp. ID Stiff Ratio γ Partition (nonstiff) Partition (stiff) Replication Train MSE Test MSE Energy Error Training Time

Exp. 1 0.1 10 10 9 2.0e-6 0.0513 0.0611 13.52
Exp. 2 0.1 10 50 1 2.0e-7 0.2173 0.7884 10.08
Exp. 3 0.1 10 50 4 1.5e-7 0.0460 0.1026 19.82
Exp. 4 0.1 10 50 6 7.4e-8 0.0294 0.0581 26.36
Exp. 5 0.1 10 50 8 5.5e-8 0.0154 0.0228 32.35
Exp. 6 0.1 10 50 9 4.3e-8 0.0234 0.0457 35.35
Exp. 7 0.5 50 50 1 6.2e-7 0.0554 0.0900 34.75

Table 1: Performance comparison under different parameter settings. “Exp.” is short for experiment.

Figure 8: Performance comparison of different activation functions on the three-body problem and
billiard model.

7 RELATED WORK

Learning Hamiltonian system from data. Enforcing the conservative law into the system structure
becomes a powerful and popular tool to learn the Hamiltonian system from data (Willard et al.,
2020; Cherifi, 2020; Zhong et al., 2021). Greydanus et al. (2019); Choudhary et al. (2020) use an
NN to approximate the H(p,q) instead of learning the dynamics directly. This idea also applies
to learning the conserved quantities from images (Toth et al., 2020). To improve the accuracy of
integration, Chen et al. (2019) conduct multi-step integration with a symplectic solver. Finzi et al.
(2020) simplify the learning process by coordinate transformation and enforcing the constraints of
new coordinates. To learn the Hamiltonian dynamics directly, Tong et al. (2021); Jin et al. (2020)
design NNs with a symplectic structure to characterize the system, while Chen & Tao (2021) learn
a symplectic map of the Hamiltonian dynamics. Zhong et al. (2020) incorporate the physical prior
into the dynamics parameterization.

Learning stiff dynamics. It has been shown that stiffness may lead to failures in data-driven mod-
elling (Wang et al., 2020; Kim et al., 2021; Parmar et al., 2021). Kim et al. (2021) propose a scaling
strategy that mitigates the stiffness of the dynamics to stabilize the gradient calculation. This ap-
proach, however, is applicable only to problems where stiffness is caused by widely separated time
scales and endures during the whole trajectory.

8 CONCLUSION

We propose SANN (stiffness-aware neural network) to learn the stiff Hamiltonian system. We also
propose a new metric SAI (stiffness-aware index) to classify the training data into stiff and nonstiff
portions. This classification along with a resampling technique allows us to apply step size adapta-
tion strategies to better capture the dynamical characteristics of the Hamiltonian vector fields. On
complex physical systems including the three-body problem and the billiard model, our method out-
performs the state-of-art approaches with a significant margin. Our method has potential to extend
to other types of stiff dynamical systems, not limited to learning the Hamiltonian; such an extension
is left as future work.
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A MITIGATING IMPLICIT BIAS

In this section, we empirically demonstrate that our SANN can mitigate the implicit bias of NN-
based optimization. First, the potential functions learned by different methods are compared, and
we can see that SANN can learn the potential function more accurately than other methods. Then,
we show the performance for excessive number of epochs to demonstrate that the baseline methods
cannot capture the dynamics well even when a large number of training epochs is used.

A.1 LEARNED POTENTIAL FUNCTION

The stiffness of the billiard model is mainly caused by the sharp boundary of the potential function.
Hence, the learned potential function can reflect the accuracy of the simulated dynamics. Fig. 9
shows the top view and side view of the potential function of the billiard model from different
methods. The reference potential function becomes sharp near the boundaries of the ring. From
the top view, compared with SRNN and HNN, SANN learns a potential function that is close to the
reference. From the side view, the potential functions of SRNN and HNN tend to learn a smooth
inner circle boundary, which indicates these methods suffer from the implicit bias mentioned in
Section 1. In contrast, the edge and corner of the SANN potential function appear much sharper.

A.2 INFLUENCE OF NUMBER OF EPOCHS

Ronen et al. (2019) points out that it requires O(k2) time to learn a function of frequency k for
NN-based optimization. However, we observe that the extending the training time cannot mitigate
the implicit bias for SRNN or HNN when learning the stiff Hamiltonian systems.

We increase the number of epochs for training SRNN and HNN from 3, 000 to 6, 000, 10, 000, and
15, 000. Fig. 10 shows the training error versus different numbers of epochs, as well as MSE and
the energy error of the simulated trajectories. We can see that the training loss of SRNN converges
to the same value even when the number of epochs becomes extremely large, and the MSE and the
energy error do not improve much as the number of epochs grows. Similar behaviours are observed
for HNN.

Figure 9: The learned potential function of the billiard model.
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Figure 10: Comparison of different methods in training loss, MSE, relative energy error for different
numbers of training epochs.
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B GENERALITY OF SAI-BASED STIFFNESS CLASSIFICATION

In this section, we empirically demonstrate the SAI-based stiffness classification is not sensitive to
the translation of the coordinate. The purpose is to show that this classification strategy can identify
the stiff part of the trajectory under different kinds of coordinate translation.

Specifically, we translate the position coordinates of the three-body trajectories with two kinds of
translations, fixed direction and random direction. For fixed direction, the position coordinates are
added with a fixed vector v = (0, · · · , 0, v, · · · , v), e.g., (pti ,qti) + v. For a random direction,
the position coordinates are added to with a random vector v = (0, · · · , 0, v1, · · · , vn) and {vi} are
i.i.d random variables uniformly distributed on [0, 1].

Fig. 11(a) and 11(b) highlight the stiff intervals (marked in yellow) that our method identifies using
the SAIs calculated in different coordinate systems. Three examples (one in each column) are chosen
for illustration. Fig. 11(a) shows the classification results (γ = 0.1) for the fixed translation using 7
widely different values of v (v = 0.1, 10, · · · , 106). Fig. 11(b) shows the classification results for 7
occurrences of the random vector v uniformly sampled from [0, v] (v = 0.1, 10, · · · , 106). Fig. 12
illustrates the same analysis for three additional examples.

We can see that (1) the SAI-based classification captures the stiff parts of the trajectory (those with
large SI values) successfully for all scenarios, and (2) coordinate translation has almost no im-
pact on the classification results. This is expected by construction. The second term of Eqn. (5)∥∥uti+1−uti

ti+1−ti

∥∥
2

is a translation-invariant quantity. Coordinate translation changes only the norm of
the states, so it causes the SAIs to be scaled for all the time intervals. Therefore, when sorting the
intervals based on SAI, we can maintain a similar order for these intervals and identify the stiff parts
accurately.

Figure 11: (a) SAI-based classification for a trajectory translated by a fixed vector for 7 different
values of v (v = 0.1, 10, · · · , 106). Stiff intervals are marked in yellow. (b) SAI-based classifica-
tion for a trajectory translated by a uniform random vector v on [0, v] (v = 0.1, 10, · · · , 106). (c)
Comparison of SI, SAI of the original trajectory, and SAI of the translated trajectory.
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Figure 12: (a) SAI-based classification for a trajectory translated by a fixed vector for 7 different
values of v (v = 0.1, 10, · · · , 106). Stiff intervals are marked in yellow. (b) SAI-based classifica-
tion for a trajectory translated by a uniform random vector v on [0, v] (v = 0.1, 10, · · · , 106). (c)
Comparison of SI, SAI of the original trajectory, and SAI of the translated trajectory.
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C LEAPFROG INTEGRATION METHOD

The forward step of Leapfrog on separable Hamiltonian H(p,q) = T (p) + V (q) is given as fol-
lows (Chen et al., 2019),

p
t
i+1

2 = pti − 1

2
(ti+1 − ti)∇qV (qti),

qti+1 = qti + (ti+1 − ti)∇pT (p
t
i+1

2 ),

pti+1 = p
t
i+1

2 − 1

2
(ti+1 − ti)∇pV (qti+1).

D PROOF OF THEOREM 1

Theorem 1. Let A be an n × n symmetric real matrix and {λi}ni=1 be its n distinct eigenvalues.
Then for the linear system dx

dt = Ax with nonzero initial condition x(0) = u0, we have

1

‖u0‖2
∥∥u1 − u0

∆t

∥∥
2

=
( n∑
i=1

`iλ
2
i

)1/2
+O(∆t), (12)

where u1 = x(∆t) and `i ≥ 0, i = 1, ..., n with
∑n
i=1 `i = 1.

Proof. Let {vi}ni=1 be the eigenvectors corresponding to the eigenvalues {λi}ni=1. Since A is a
symmetric real matrix, {vi}ni=1 form a set of orthogonal vectors. Without loss of generalization, we
assume {vi}ni=1 is standard orthogonal basis. Let x(0) = u0 =

∑n
i=1 civi; then ‖(c1, ..., cn)‖2 =

‖u0‖2. The solution of the linear system is x(t) =
∑n
i=1 civie

λit. Therefore,

lim
∆t→0

1

‖u0‖2
∥∥u1 − u0

∆t

∥∥
2

= lim
∆t→0

1

‖u0‖2
∥∥∑n

i=1 civie
λi∆t −

∑n
i=1 civi

∆t

∥∥
2

=
1

‖u0‖2
∥∥ n∑
i=1

ciλivi
∥∥

2

=
( n∑
i=1

c2i∑n
s=1 c

2
s

λ2
i

)1/2
.

(13)

We let `i ,
c2i∑n

s=1 c
2
s
≥ 0 and have

∑n
i=1 `i = 1.
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E SUPPLEMENTARY RESULTS

In this section we provide some supplementary results to the experiments of the main text.

Fig. 13 gives a comparison of the predicted trajectories of the billiard model, and this is a supplement
to Fig. 4. Again, we see that SANN recovers visually the same trajectories as the reference. For
the three-body problem, Fig. 14 and Fig. 15 show the orbits of three particles learned by different
methods, and these results are a supplement to Fig. 6. We can see that HNN and SRNN diverge from
the orbits after a period of time while SANN produces orbits that are nearly identical to the orbits of
the reference and the energy is roughly conserved.

Fig. 16 displays the comparison of SAI and SI with time, and these results are a supplement to Fig. 7.
These four examples in Fig. 16 support that the SAI keeps the same trend as SI and achieves the
peak at the same time as SI does.

Reference SANN (Ours) SRNN HNN

Reference SANN (Ours) SRNN HNN

Reference SANN (Ours) SRNN HNN

Reference SANN (Ours) SRNN HNN

Figure 13: (Supplement to Fig. 4) Comparison of billiard orbits simulated using the Hamiltonian
learned by different methods.
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Figure 14: (Supplement to Fig. 6) The first three columns show the comparison of the reference
orbits (solid curves) and the orbits learned by different method (dotted curves). • is the initial
position, and I is the direction.
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Figure 15: (Supplement to Fig. 6) The first three columns show the comparison of the reference
orbits (solid curves) and the orbits learned by different methods (dotted curves). • is the initial
position, and I is the direction.

Figure 16: (Supplement to Fig. 7) Comparison of SAI and SI with time. The color markers refers to
the occurrence of the stiffness phenomena, and the same color corresponds to the same time period.
The trends of SAI and SI are consistent.
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F NOISY DATA

In this section we evaluate our method on the noisy training data on Billiard model. We add the
Gaussian noise with different noise levels (standard deviation) to the clean training data. Figures 17
and 18 respectively show the MSE and relative energy error with time under noisy data with different
noise level. We can see that all the learned dynamical systems become unstable and the energy gets
nonconserved. We see that HNN, SRNN, and SANN have difficulty in learning the chaotic dynamics
when the data is disturbed by noise.

Figure 17: Comparison of MSE of the learned dynamical systems under noisy data with different
noise levels.

Figure 18: Comparison of relative energy error of the learned dynamical systems under noisy data
with different noise levels.
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G HYPERPARAMETER SELECTION

We determine the stiff ratio γ based on the validation dataset. We investigate the distribution about
the SAI over a trajectory and estimate the ratio of the stiff portion for the dataset. Take the dataset
of the three-body problem as an example. We normalize the SAIs of a trajectory to [0, 1] and show
the increasing order of SAIs in Fig. 19. One can see that large SAIs mainly concentrate around the
order index from 90 to 100. Hence, we choose 90-percentile (γ = 0.1) as the threshold.

Figure 19: The increasing order of the normalized SAIs over the three-body dataset of 1,000 trajec-
tories. The shaded area represents the 95% confidence interval.

For the partition S for nonstiff and stiff portions, we perform the grid search for the pairs of pa-
rameters as did in Choudhary et al. (2020). We use the validation loss as a proxy of the final
performance. In particular, we first conduct 10-epoch training and sort the pairs of parameters based
on the validation loss. Then, we choose the parameters with the smallest validation loss.
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H INSEPARABLE HAMILTONIAN

SANN can also be applied to inseparable Hamiltonian. Like HNN, we use an NN that takes p and q
as an input to approximate the Hamiltonian directly on two problems: a chain ofN pendulums(Finzi
et al., 2020) and the three-body problem.

In the Pendulum-N problem, let mi be the mass of the i-th pendulum, `i be the rigid rod between
(i− 1)-th and i-th pendulum, pi be the generalized momentum and qi be the angle between the i-th
pendulum and the y-axis. The Hamiltonian can be defined as

H(p,q) =
1

2
p>M(q)−1p−

N∑
i=1

i∑
k=1

mi`k cos qk, (14)

where the mass matrix has a complicated form M(q)i,j = cos(qi − qj)`i`j
∑N
k=max{i,j}mk. We

consider N = 4 and N = 6, and set g = mi = `i = 1, i = 1, 2, · · · , N . We simulate the training
set with 200 trajectories and the testing set with 100 trajectories by RKF45. The initial states are
uniformly and randomly sampled from [−0.25, 0.25]. Each trajectory contains 100 time steps with
a step size of 0.03.

The three-body problem is described in Section 4.2. It has a separable Hamiltonian, but we treat it
as an inseparable Hamiltonian in this experiment.

We compare SANN with HNN using these two problems. For both methods, the Euler method is
used for training while RKF45 is used for predicting. For SANN, we set the partition parameter S
to be 50 and 10 for the N -chain pendulum and the three-body problem, respectively. Table 2 shows
the train MSE and test MSE for SANN and HNN. We can see that SANN outperforms HNN in all
the tests.

Dataset Method Train MSE Test MSE

Pendulum-4
HNN 3.80E-08 8.40E-05

SANN 1.80E-08 4.60E-05

Pendulum-6
HNN 1.60E-07 4.80E-04

SANN 1.00E-07 3.90E-04

Three-body
HNN 4.20E-06 1.60E+00

SANN 8.60E-07 7.00E-01

Table 2: Train MSE and test MSE for HNN and SANN.
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