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ABSTRACT

Irregular time series are ubiquitous in healthcare, with applications ranging from
predicting patient health conditions to imputing missing values. Recent devel-
opments in conditional diffusion models, which predict missing values based on
observed data, have shown significant promise for imputing regular time series.
It also generalizes the self-supervised learning task of maskout reconstruction by
replacing partial masking with injecting noise of variable scales to data and shows
competitive results on image recognition. Despite the growing interest in diffusion
models, their potential for irregular time series data, particularly in downstream
tasks, remains underexplored. We propose a conditional diffusion model designed
as a self-supervised learning backbone for such data, integrating a learnable time
embedding and a cross-dimensional attention mechanism to address the data’s
complex temporal dynamics. This model not only suits conditional generation
tasks naturally but also acquires hidden states beneficial for discriminative tasks.
Empirical evidence demonstrates our model’s superiority in both imputation and
classification tasks.

1 INTRODUCTION

Observation sequences on irregular time grids are an integral part of healthcare data, offering
key insights for predicting future health conditions. Generative pre-training has been a standard
approach in self-supervised learning for sequential data, based on the belief that it enhances models’
comprehension of the data (He et al., 2022; Devlin et al., 2018; Dai et al., 2017). Recently, diffusion
models have significantly advanced generative modeling across multiple data domains (Ho et al.,
2020; Song et al., 2020; Zheng et al., 2023; Hatamizadeh et al., 2023; Tashiro et al., 2021; Lüdke et al.,
2023; Vignac et al., 2022). Despite their significant success in generating high-quality samples across
several domains, diffusion models have only recently been explored for time series data. Tashiro
et al. demonstrated a conditional diffusion model for regular time series imputation (CSDI). In their
framework, the model predicts unobserved values from pure noise based on the observed parts of
a sequence through iterative denoising. The training process involves recovering parts of the time
series data partially corrupted by multi-scale noise, conditioned on the remaining clean data.

Meanwhile, Wei et al. proposed a self-supervised learning approach for images, DiffMAE, with a
formulation similar to CSDI by predicting masked patches conditioned on the observed ones using
diffusion models. We argue that such conditional diffusion models are promising for self-supervised
learning in irregular time series data, particularly for recognition and generation tasks, for two main
reasons: First, the success of self-supervised learning relies on data augmentation to create multiple
views of data samples to learn meaningful representations. This framework’s strategy of injecting
variable-scale noise into randomly selected portions of a time series not only diversifies the data views
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but also expands upon the conventional self-supervised learning technique of maskout reconstruction
in sequential data, as seen in (Devlin et al., 2018; Li et al., 2023; Dong et al., 2023), by conditioning
the model to rebuild noised segments using clean observations, with the reconstruction difficulty
controlled by the noise scale. Specifically, at the maximum noise level, disrupted observations
become indistinguishable from pure noise, thus noise injection and masking similarly remove all
information from the data. Second, many regression problems, like imputation, in time series data
can be formulated as conditional generation problems. The strong generative capabilities of diffusion
models naturally lend the models to these tasks.

Despite promising potentials, existing methods struggle with the irregular temporal nature of health-
care data, characterized by unevenly spaced timestamps and missing dimensions in observations. To
address these challenges, we adopt a learnable embedding for timestamps and a cross-dimensional
attention mechanism for addressing the unobserved dimensions, extending the conditional diffusion
model to irregular time series. While our model shares a similar architecture with CSDI for time
series data, it uniquely adapts to irregularities through learnable time embeddings and showcases
the hidden states’ utility in downstream recognition tasks. Contrary to DiffMAE’s encoder-decoder
framework, our method uses a single model to simultaneously process noised and clean values,
effectively denoising disrupted data. Experimental results confirm our model’s effectiveness in
imputation and its ability to learn meaningful hidden states for recognition tasks.

2 PRELIMINARIES

CSDI, DiffMAE, and our work share a common probabilistic formulation of modeling the conditional
distribution of unobserved data given the observed data through diffusion models. We rely on the
generative capabilities of this formulation for imputation and the conditional multi-scale denoising as
a pretraining task for representation learning. This section introduces the general formulation of such
conditional diffusion models. For illustrative purposes, our introduction is based on denoising diffu-
sion probabilistic models (DDPMs) (Ho et al., 2020), one of the most approachable diffusion model
formulations and can be easily generalized to more advanced models. Given a multi-dimensional
data sample x, we assume it can be split into two non-overlapping parts: xco is the part of x which is
observed and xta is the unobserved part which we are interested in predicting conditioned on xco.
The conditional diffusion model formulation models the distribution of p(xta|xco).

In the forward diffusion process, noise is injected to xta gradually across multiple steps according to
the following equation:

q(xta
s |xta

s−1) := N (xta
s ;

√
1− βsx

ta
s−1, βsI), (1)

where xta
0 = xta, s is the index of diffusion steps from 1 to S, I is an identity matrix with the same

dimension as xta, and the βss are hyper-parameters controlling the speed of noise injection. At step
S, signals in xta will be completely replaced by noise. An important property of this forward process
is that the marginal distribution of xta

s given xta
0 is also a closed-form Gaussian denoted as
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with αss derived from βss, enabling us to skip the intermediate steps and directly sample xta
s . The

hyper-parameters, βss, are picked so that αs is close to zero when the diffusion step is close to S and
xta
S is indistinguishable from standard Gaussian noise. The model is trained with the objective of

predicting the noise injected to xta
s conditioned on xco by minimizing the following loss:
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where ϵθ is a learnable denoising network, and ϵ is the added noise. This objective is mathematically
equivalent to recovering xta

0 . For conditional data generation, we run the conditional diffusion model
in a reverse process by first sampling x̂ta

S from Gaussian noise and applying the denoising network
iteratively to input with the following equation:

x̂ta
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]
+ σsz, z ∼ N (0, I), (4)

where ᾱs = αs/αs−1 and ᾱ1 = α1.
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3 APPROACH

Let {(τ i,xi,mi)}Li=1 be an irregular time series of K features where xi ∈ RK is the vector of
observations at timestamp τi and mi ∈ {0, 1}K is a binary mask indicating the measured features,
i.e. observed values, with one. All unmeasured features have value zero. Alternatively, we can
represent the sequence of observations and masks more compactly using two matrices, X ∈ RK×L

and M ∈ {0, 1}K×L where the ith columns of X and M are xi and mi respectively. For simplicity
of illustration, the two sets of notations will be used interchangeably throughout the section.

We follow a training setting similar to CSDI (Tashiro et al., 2021) by randomly selecting a subset
of the indices {(i, k)|M [i, k] = 1} as the context set co and all the remaining observed indices as
the target set ta. We define Xta and Xco as the sets of actually measured values in X , as indicated
by the mask matrix M , with indices in the context and target sets respectively. With slight abuse
of notations, Xta

s , xi
s, and Xs are used to denote the corresponding values of Xta, xi, and X after

s steps of diffusion applied to the target indices. The remainder of this section will present two
important techniques that help us extend the conditional diffusion model formulation to irregular time
series data, learnable irregular time embedding and cross-dimensional transformer. Additionally, it
will explain the approaches to using hidden states of the model for downstream recognition tasks.

3.1 LEARNABLE EMBEDDING FOR IRREGULAR TIMESTAMPS

Transformer models for regular time series typically rely on positional encoding to encode the order
of data. A more effective inductive bias for irregular time series can be introduced through learnable
continuous time embeddings, capable of capturing both linear and periodic characteristics of time.
These embeddings are also used for the mTAN model (Shukla & Marlin, 2021). Given a time stamp
τ , E(τ) ∈ Rdτ , is a learnable irregular time encoding with size dτ > 1, and its ith dimension is
defined as:

E(τ)[i] =

{
w0 · τ + b0, i = 0

sin (wi · τ + bi) , i ∈ {1, 2, . . . , dτ − 1} (5)

The first dimension of the embedding applies a linear projection to time, followed by dτ − 1 periodic
functions where the period and initial phase are learnable.

3.2 CROSS-DIMENSION TRANSFORMER FOR IRREGULAR TIME-SERIES

To deal with the temporal irregularity of observations with missing values, we equip the cross-
dimension transformer block (Kong et al., 2020), which has been also adapted by the CSDI paper
(Tashiro et al., 2021), with our learnable time embedding. Each cross-dimension transformer block
has two attention mechanisms, one across all the actual measurements over the feature dimension for
each observation and another one across all the observations over the time dimension for each feature.
Multiple cross-dimension transformer blocks with residual connections are stacked together as the
major component in our model’s implementation. To apply this cross-dimension transformer block,
we first represent feature type, time of the event, and masking information for each value in Xs with
the following vector,

R[i, k] = concat(Fk, E(τi),1{(i, k) ∈ co}). (6)
In this representation, Fk is a learnable embedding of size df for the kth feature in measurements,
E is the learnable time embedding defined in Sec. 3.1 and 1 is an indicator function, resulting a
time-feature-mask representation R of shape L×K × (df + dτ +1). Let h be the hidden dimension
of a standard transformer block, first with a linear map and H(r−1) ∈ RL×K×h be the output of the
r − 1th block. We update H(r−1) to obtain H(r) through the following steps:

H ′(r) = H(r−1) +RW
(r)
E +D[s], (7)

H∗(r)[:, k] = ϕ(r)(H ′(r)[:, k]), (8)

H(r)[i] = ψ(r)(H∗(r)[i]), (9)

where W (r)
E ∈ R(df+dτ+1)×h is a learnable projection matrix, and D[s] ∈ Rh is a learnable

embedding of the diffusion step s passing noise scale information to the model. ϕ(r) and ψ(r) in
Eq. 8 and Eq. 9 are regular transformer encoders (Vaswani et al., 2017) that take the columns of H ′(r)
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and rows of H∗(r)[i] respectively. H(0) is defined as a linear map of the Xs, mapping each single
value to a vector of size h. There are Swish activation functions (Ramachandran et al., 2017) between
the transformer blocks.

3.3 REPRESENTATION FOR DOWNSTREAM RECOGNITION TASKS

To derive representations for downstream tasks, we must first extract intermediate states from the
pretrained backbone model. These states are then fed into task-specific heads for recognition tasks.
However, adapting a conditional diffusion model as a representation extractor presents a challenge due
to its inherent design: it assumes noisy input and produces stochastic output, whereas a deterministic
output is preferred for representation. To address this discrepancy, we keep all the observed values in
the context set co, use diffusion step embedding at the minimum noise level D[0], and refrain from
injecting any noise into the data. In our experiments, adding any level of noise or a higher degree of
diffusion led to diminished performance, contrasting with the outcomes observed in the DiffMAE
model. We hypothesize that this discrepancy is a result of the substantial information redundancy in
images, which is not the case in the irregular time-series datasets we explored.

The output of each cross-dimensional transformer block is a hidden state of shape L×K × h. The
hidden states across all transformer blocks are concatenated along the last dimension for maximum
possible representation power. The concatenated tensor is summarized by multi-layer perceptrons
and mean pooling to obtain representation vectors which are then fed to a linear classification layer.
Mean pooling along the time dimension will be omitted if we need to make predictions for each
individual time step.

3.4 COMPLEXITY ANALYSIS

Diffusion models are known for their high computational costs. However, the generation task from
pure noise typically requires most of these sequential steps, whereas our approach for the downstream
task bypasses this requirement by employing the denoising function just once. The complexity of each
layer for a sample during training isO(KLh2(K+L)). This complexity arises from two Transformer
layers: one across the time steps and the other across the features, each repeated across every feature
and time step accordingly. While the generation process demands S sequential repetitions of this
layer, our approach for using the pretrained model for a discriminative task eliminates the need for
these S steps, reducing the number of sequential operations to O(1).

4 EXPERIMENTS

4.1 DATASETS AND TASKS

We use the PhysioNet (Silva et al., 2012) and Human Activity (Kaluža et al., 2010) datasets in
our experiments. PhysioNet contains medical measurements conducted on the patients in their
first two days in the ICU and an in-hospital mortality label for each patient. The measurements are
asynchronous and taken with different frequencies for different patients. Sequences in the dataset have
many missing values as measurements are asynchronous and are recorded with different frequencies
for the patients. The final task is a binary classification, predicting the in-hospital mortality of each
individual. Classes are highly unbalanced in this dataset.

The Human Activity dataset consists of measurements from four sensors attached to five subjects’
bodies and each sensor has spatial measurements (x, y, z) measured irregularly. As followed by
(Rubanova et al., 2019), we break long sequences into sequences of length fifty, using a sliding
window across the sequence with an overlap of size 25 between two consecutive collected subsamples.
The task is to predict the type of activity of the person at each time of the sequence from six possible
activities.

4.2 RESULTS

As our back-bone model is trained on a conditional generation task, we compare it against other
conditional generative models for time series in Table 1 with three fixed missing ratios. We report
CRPS (Matheson & Winkler, 1976; Tashiro et al., 2021) as an evaluation metric for probabilistic
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Table 1: CRPS measurements compared for the PhysioNet (Kaluža et al., 2010) dataset with different
missing ratios (lower is better).

10% missing 50% missing 90% missing

Latent ODE (Rubanova et al., 2019) 0.700 0.676 0.761
mTANs (Shukla & Marlin, 2021) 0.526 0.567 0.689
CSDI w pos encoding (Tashiro et al., 2021) 0.380 0.418 0.556

Ours 0.256 0.291 0.542

Table 2: The table contains imputation and classification results on PhysioNet and Activity.

Model PhysioNet (Silva et al., 2012) Activity (Kaluža et al., 2010)

AUC RMSE CRPS Accuracy RMSE CRPS

mTAN (Shukla & Marlin, 2021) 0.837 6.89 0.567 91.0 20.46 0.164
PrimeNet (Chowdhury et al., 2023) 0.842 4.78 N/A 89.9 14.30 N/A

Ours 0.855 5.32 0.292 92.4 14.19 0.142

models. The results of this experiment indicate that replacing learnable time embeddings with
positional encodings can significantly improve the performance of the model for irregular time series.
The improvement is more significant when more time steps are available. For this table, we use the
baseline numbers from Tashiro et al. (2021).

We further compare our models with baseline models on classification and imputation tasks in Table 2.
We use a fifty percent missing ratio for the PhysioNet dataset and ten percent for the Human Activity
dataset for the imputation task, following the experimental setup in Chowdhury et al. (2023). Due to
class label imbalance, the metric for the classification task on the PhysioNet dataset is the area under
ROC curve (AUC). We use the classification accuracy metric for the Human Activity dataset. We
report RMSE of point estimate results for all models and CRPS for probabilistic models including
our models and mTAN. We calculate the RMSE by one hundred times sampling from the distribution
and getting the median. As a probabilistic approach, our method focuses on learning a distribution,
which may not match the effectiveness of top point estimation techniques for this specific purpose.

We follow the same data split as our baselines, using dataset splits from Tashiro et al. (2021) for
Table 1 and splits from Shukla & Marlin (2021) for Table 2. In all of the experiments we use twenty
percent of the samples as the test set, and use twenty percent of the remaining as a validation set and
all remaining as the train set.

5 CONCLUSION AND DISCUSSIONS

In this work, we expanded the capabilities of conditional diffusion models for irregular time series
by integrating learnable time encodings instead of traditional positional encodings. Inspired by the
masking techniques for sequential data from extensive existing works, we proposed using conditional
diffusion models as a generalized alternative to masking approaches for time series analysis. Using
a spectrum of noise levels enriches the learning process, enabling larger models to train on small
datasets without overfitting. However, this diversity in the training task means the training process
may take longer time. Our experiments show that conditional diffusion models are effective as
self-supervised training, capturing rich features that benefit downstream tasks in irregular time series.
Although our model realization uses the same architecture as CSDI Tashiro et al. (2021), integrating
a wider range of architectures with this pre-training strategy presents a promising direction for
future research aimed at enhancing model efficiency, time and space complexity, and scalability.
Furthermore, applying insights and techniques from training diffusion models, such as using advanced
ODE solvers, could further advance this area of work.
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A DATASETS

A.1 PHYSIONET

The PhysioNet dataset features health-related measurements from ICU patients within their initial 48
hours of admission. Introduced during a challenge, it includes 12,000 samples, equally distributed
across train, test, and validation subsets, each containing 4,000 samples. Initially, labels were only
released for the training data and samples from the validation set. Currently, labels for all subsets are
accessible; however, our experiments adhere to the experimental setup outlined in Chowdhury et al.
(2023); Tashiro et al. (2021). Specifically, Table 1 uses the configuration from Tashiro et al. (2021),
using only training samples from the original dataset. In contrast, Table 2 follows the approach
of Chowdhury et al. (2023), merging the validation and train sets for the imputation task but only
using the train set for classification. The dataset has 36 time-related and 5 static variables—age,
gender, ICU type, height, and weight. For classification, we combine static features with time-related
data, treating the static variables as if measured only at time zero. Alternatively, these static features
could be excluded from the time-series analysis and incorporated with a linear mapping into the final
classification layer. In all tasks, we split the dataset with a ratio of with a split ratio of 64/16/20 for
the train, validation, and test subsets, respectively.

A.2 HUMAN ACTIVITY

The Human Activity dataset was collected from five individuals performing various types of activities.
Although the original dataset includes 11 activity types, it is customary to consolidate these into
six categories due to the high level of similarity among some classes (Rubanova et al., 2019).
Each participant was equipped with four sensors, each measuring an (x, y, z) spatial location. The
measurements are irregular, with each measurement potentially capturing data from one or more
sensors. Consequently, at each time-step, we obtain a feature xi ∈ R12, representing the aggregated
sensor data. In most of the time steps, just measurements from a single sensor are available, making
the feature matrix X mostly sparse. Following the preprocessing method of our baseline, we
generated sequences of length 50 from the longer activity sequences, with consecutive sequences
sharing a 25 time-step overlap. Ultimately, the dataset includes 6,554 samples, which were randomly
split into train, validation, and test sets using a 64/16/20 ratio.

B EXPERIMENTS DETAILS

C PRETRAINING PROCESS

During each epoch of pretraining, a subset of observed values is selected for noise addition. This
selection involves randomly sampling a masking ratio 0 < p < 1 from a uniform distribution for each
training iteration. Then, a rounded pn number of values from the n observed values are chosen, and a
diffusion step s is uniformly selected from 0 to S, with S representing the total number of diffusion
steps. These selected values are then subjected to noise, as defined by equation 2, and subsequently
denoised, conditioned on the remaining clean observed values. Unlike the gradual denoising in the
generation/imputation phase, the training process targets direct estimation of the original data from
the noised values in each iteration, reminding the conventional masking techniques for sequential
data.

C.1 HYPERPARAMETERS

For the diffusion process, we follow the same setup as CSDI, using 50 steps for the diffusion process,
values of β1, β2, · · ·β50 change quadratically from 0.0001 to 0.5. We emphasize that this choice is
significantly smaller than 1000 steps used in the original DDPM method used for images (Ho et al.,
2020). However, it shows promising results in our case. Increasing the number of steps will make the
training process and generative model much slower.

For hyperparameter optimization, we experimented with both Adam (Kingma & Ba, 2014) and
AdamW (Loshchilov & Hutter, 2017) optimizers, employing step scheduling and the cosine learning
rate scheduler (Loshchilov & Hutter, 2016). During pretraining, we conducted a grid search over the
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following hyperparameters: hidden dimension (64, 128, 256), number of residual blocks (4, 6, 8),
and learning rate (0.01, 0.001, 0.0001). The PhysioNet dataset was trained for 350 epochs, while
the Human Activity dataset underwent 1000 epochs of training, reflecting our model’s need for a
larger capacity to handle more generalized tasks than masked autoencoders. Despite larger models
yielding better performance, computational constraints limited our model size. For classification
model training, a similar approach was taken for learning rate optimization, with a linear search
determining that a hidden dimension of 64 was optimal for the PhysioNet dataset, whereas for the
Human Activity dataset, we used a hidden dimension of size 400.

C.2 CLASSIFICATION HEAD

The output of each residual block contains a representation vector for each value in each time-step,
with a shape of B ×K × h. Unlike autoencoders where encodings aim to create a compressed view
of the data, our encoding results in a vector even larger than the original data.

To summarize these mappings for the downstream task, our classification head design involves initial
summarization across features and then across time. This process includes a linear transformation,
an activation function, and mean pooling. A final linear function maps the resulting embeddings to
classification logits. For the Human Activity dataset, classification is performed across each time-step,
eliminating the need for the second pooling across time. Instead, a linear mapping is retained to
maintain the same complexity in the downstream head as before, measured in the number of layers.

C.2.1 TRAINING CLASSIFICATION HEAD

In the fine-tuning for the classification task, we exclusively update the weights for the classification
head, keeping the weights of the frozen backbone model unchanged. This approach prevents
overfitting, as the pretraining model allows training a much larger model on a small dataset. The
backbone model’s capacity is substantial, and even a single epoch of fine-tuning with a small learning
rate can lead to overfitting. Hence, we maintain the frozen state of the backbone model during
fine-tuning.
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