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Abstract

Continual learning (CL) aims to train models that can sequentially learn
new tasks without forgetting previous tasks’ knowledge. Although pre-
vious works observed that pre-training can benefit CL, it remains unclear
whether a pre-trained model with higher downstream capacity also per-
forms better in CL. In this paper, we observe that pre-trained models may
allocate high attention scores to some ‘sink’ tokens, such as [SEP] tokens,
which are ubiquitous across various tasks. Such attention sinks may lead to
models’ over-smoothing in single-task learning and interference in sequen-
tial tasks’ learning, which may compromise the models’ CL performance
despite their high pre-trained capabilities. To reduce these effects, we pro-
pose a pre-scaling mechanism that encourages attention diversity across all
tokens. Specifically, it first scales the task’s attention to the non-sink tokens
in a probing stage, and then fine-tunes the model with scaling. Experiments
show that pre-scaling yields substantial improvements in CL without expe-
rience replay, or progressively storing parameters from previous tasks.

1 Introduction

Machine learning applications in the real world often need to face continuous streams of data
from different tasks or distributions (Lopez-Paz & Ranzato, 2017; Hou et al., 2019). For such
cases, it is important to develop continual learning (CL) models that can progressively learn
new tasks without performance degradation in previous tasks (i.e., catastrophic forgetting).

The pre-training and fine-tuning paradigm (Devlin et al., 2018), which effectively learns
downstream tasks by fine-tuning a pre-trained language model (LM), is widely used for
general NLP tasks. Previous works (Wu et al., 2022; Mehta et al., 2023) observed that pre-
training can also benefit CL. However, it remains unclear whether a pre-trained model that
has better single-task performance also performs better in CL settings. For example, BERT
(Devlin et al., 2018) and RoBERTa (Liu et al., 2019b) are two pre-trained LMs with the same
model structure. RoBERTa achieves generally better downstream performance than BERT,
in part because it is pre-trained on more diverse data. In CL, however, RoBERTa does not
always outperform BERT (Wu et al., 2022). This motivates our study on the factors that may
cause models’ inferior performance in CL, besides their pre-trained capacity.

In this paper, we show that the attention sink phenomenon can influence models’ CL capacity.
Attention sinks have been observed on autoregressive LLMs, where models tend to allocate
high attention scores to specific tokens in the input (‘sink tokens’) regardless of their semantic
significance (Xiao et al., 2024). In Fig. 1, we show that attention sinks appear after the first
layers in both BERT and RoBERTa models. And the sink tokens are usually common tokens
(e.g., special tokens like [SEP]), which are not semantically significant but are present in
most NLP tasks (Fig. 3 right). However, unlike the previous work by Xiao et al. (2024)
which focuses on the magnitude of attention scores on sink tokens, our work focuses on the
attention deviations on sink tokens (‘sink attention deviations’) and their influence on CL.

The code is available at: https://github.com/StonyBrookNLP/attention-sink-cl
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Figure 1: Attention maps averaged from all attention heads after pre-training, fine-tuning,
and our pre-scaling mechanism. Sink tokens (i.e., with dark blue columns) in pre-trained
models obtain similar high attention scores. After fine-tuning, models (especially RoBERTa)
have drastic attention changes, which may indicate feature distortion. After pre-scaling,
models have diverse attention on sink tokens and preserve the pre-trained attention patterns.

In particular, we connect the attention deviations on sink tokens to the over-smoothing
phenomenon. Over-smoothing has been observed in pre-trained LMs, where models output
nearly identical representations for all input tokens (Dong et al., 2021; Shi et al., 2022). We
show that over-smoothing is related to small sink attention deviations in pre-trained models.
It can cause distortions of pre-trained features (Kumar et al., 2022), which may make models
less generalizable to out-of-distribution data (e.g., data from other tasks) and affect CL.

Models’ small attention deviations on common sink tokens can also cause unnecessary
interference across tasks in CL. Specifically, representations of common sink tokens may
carry the information of one task, which then influences another task’s learning. This can be
harmful if the new task is irrelevant to the previous one. We conduct a case study to show
that such interference is hard to avoid when models have small sink attention deviations.

To address the above problems, we propose a pre-scaling mechanism that encourages
diverse attention scores on sink tokens. It introduces a scaling layer that is first learned to
allocate diverse attention to tokens in a probing stage, and then tuned in a fine-tuning stage
together with the pre-trained encoder. Experiments show that pre-scaling improves models’
CL performance with reduced over-smoothing. Moreover, RoBERTa models consistently
outperform BERT models after pre-scaling, which suggests that pre-scaling helps to better
utilize models’ pre-trained capacity in CL.

In conclusion, we make the following contributions: (1) We characterize the attention sink
phenomenon in pre-trained LMs and build a connection to over-smoothing. (2) We conduct
a case study to show that the above attention sinks may propagate unexpected interference
in CL. (3) We propose a pre-scaling mechanism that can significantly improve pre-trained
LMs capacity in CL without experience replay or progressively storing parameters.

2 Related Work

Continual Learning. Models for CL can be divided into three main categories: (1)
regularization-based models which constrain the deviation of new parameters from the
older ones (Kirkpatrick et al., 2017; Zenke et al., 2017; Aljundi et al., 2018; Lee et al., 2017); (2)
replay-based models which reduce catastrophic forgetting by rehearsing on real or pseudo
samples from previous tasks (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2019a) or genera-
tive models (Shin et al., 2017; Kemker & Kanan, 2017); (3) architecture-based models which
learn evolving architectures for sequential tasks, with their capacities for each task carefully
assigned (Rusu et al., 2016; Yoon et al., 2017).

CL in NLP is an emerging area (Liu et al., 2019a; Biesialska et al., 2020). MBPA++ (d’Autume
et al., 2019) uses experience replay and local adaptation to mitigate forgetting; LAMOL (Sun
et al., 2019) generates pseudo samples for replay; IDBR (Huang et al., 2021a) disentangles
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task-agnostic and task-specific information; CTR (Ke et al., 2021) uses a capsule network for
knowledge transfer. All the above models are based on pre-trained LM (Devlin et al., 2018;
Brown et al., 2020; Raffel et al., 2019). Recent works show that pre-training can alleviate
catastrophic forgetting (Wu et al., 2022; Mehta et al., 2023; Lee et al., 2023). Mehta et al.
(2023) claims that the benefit may come from having less sharp minima. In this paper, we
tackle the CL problem from an attention sink perspective, which provides an explanation of
why sometimes RoBERTa underperform BERT in CL tasks (Wu et al., 2022). To the best of
our knowledge, we are the first to tackle CL problems from this angle.

Over-Smoothing. In this paper, we connect attention sinks to an over-smoothing phe-
nomenon, which is first proposed in graph neural networks (Oono & Suzuki, 2020; Huang
et al., 2020; Cai & Wang, 2020; Rusch et al., 2023; Yang et al., 2020). Over-smoothing refers to
the problem that the models’ performance deteriorates as representations of all the nodes
in the graph become similar (Li et al., 2018; Xu et al., 2018). For transformer-based models,
Dong et al. (2021) claims that pure attention loses rank doubly exponentially with model
depth. And Shi et al. (2022) characterize the oversmoothing problem in transformers by
viewing the attention matrix as a form of adjacency matrix in the graph. In this paper, we
connect the over-smoothing problem to attention sinks, to show that in some cases attention
sinks will influence model’s task learning and cause inferior performance in CL.

3 Attention Sinks in Language Models

We first empirically show that certain attention sinks exist in pre-trained LM layers. Then
we study their impact by connecting them to an over-smoothing phenomenon, which may
influence models’ single-task overfitting and in turn can influence their CL abilities. The
attention sinks can also cause cross-task interference in CL, which we discuss in section 4.

3.1 Empirical Analysis of Attention Sinks

We characterize the presence of attention sinks (Xiao et al., 2024) in LMs using data from
NLI datasets SST and MNLI (Socher et al., 2013; Williams et al., 2018a; Wang et al., 2019).

Attention on sink tokens. Fig. 1 illustrates the presence of attention sinks using attention
maps, which show high attention scores are allocated to specific input tokens (i.e., sink
tokens). The figure also shows sink tokens might receive similar (high) attention scores from
all tokens. To empirically quantify these observations, we devise the measurements below.

Let A ∈ Rn×n denote an attention matrix over n tokens for a single attention head. An
element aij ∈ A denotes the attention on the j-th key token for the i-th query token. For the
i-th (query) token, we have the following measurements :

Average outer degree: di = ∑n
k=1 aki

/
n,

Attention deviation: ∆i =
√

∑n
k=1(aki − di)2

/
(ndi) (1)

We average di and ∆i across all attention-heads in each layer. di is the averaged attention
score allocated to the i-th token, and ∆i is the per-degree attention score deviation to the i-th
token’s average outer degree. We study sink tokens with the largest average outer degrees,
and calculate their attention deviations as sink attention deviations.

Fig.2 shows the layer-wise average outer degrees and sink attention deviations for BERT and
RoBERTa models. In Fig.2 (a), tokens with top-3 largest outer degrees obtain 60% attention
scores from input tokens, while the top-1 tokens obtain over 20% attention. This shows that
a small number of tokens obtain major attention in self-attention layers. In Fig.2 (b), we
observe that the sink attention deviations are mostly small, except for the first two layers.
This shows that all tokens pay similar attention to the sink tokens in the top layers.

Sink tokens are usually common tokens. We also find that sink tokens in pre-trained LMs
turn out to be common tokens, ones that appear in many language tasks. These common
tokens include special tokens such as (‘[SEP]’), punctuation (‘.’), or the initial tokens in
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Figure 2: Average outer degrees and attention deviations on MNLI and SST data. (a) The
cumulative average outer degrees of tokens with the top-1, top-3 and top-5 largest outer
degrees. (b). The attention deviation of sink tokens with the top-1 largest outer degrees.
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Figure 3: The left shows models’ over-smoothing and attention deviation on sink tokens.
The right shows the ratio of sink tokens that are common tokens across tasks. Here we
consider special tokens, the punctuation ‘.’ and the second token in the input as the common
tokens. ‘PT’ stands for pre-training, and ‘FT’ stands for fine-tuning on 3k MNLI data.

inputs, which are not semantically significant. The right side of Fig. 3 shows the ratio of
sink tokens with the top-1 largest outer degrees that are also common tokens at each layer.
Almost all sink tokens are common tokens in the first several layers of the pre-trained model.
Even after fine-tuning, the models still have high attention on them in the middle layers.

3.2 Connection between Over-Smoothing and Attention Sinks

We show the impact of attention sinks on single tasks by connecting them to an over-
smoothing phenomenon, where the attention deviations on sink tokens are a key factor.

Over-Smoothing in transformers. Previous works have identified an over-smoothing
phenomenon in transformer-based models: token representations become identical after
several self-attention layers. Over-smoothing is closely related to models’ task learning
ability and their overfitting on a task (Shi et al., 2022). There are several factors that can lead
to over-smoothing, and we focus on the effect of self-attention matrices here.

For a self-attention layer with an attention matrix A ∈ Rn×n, let H ∈ Rn×d be its input
token representations and AH its output. The over-smoothing problem is described as:

dM(AH) ≤
√

λmaxdM(H).

The distance dM(H) := ||(I − eeT)H||F measures the closeness between each token repre-
sentation in H and the averaged token representation eeTH, where e = n− 1

2 [1, 1, ..., 1] ∈ Rn.
λmax is the largest eigenvalue of AT(I− eeT)A. When λmax is small, representations after the
attention layer will be closer to the averaged representations, which causes over-smoothing.

Connection to attention sinks. Over-smoothing has been identified in many transformer-
based models. We analyze the eigenvalue λmax to see the property of the attention matrix A
under the over-smoothing circumstances (i.e., λmax is small). With each attention score aij
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and average outer degree di defined in Section 3.1, λmax is lower bounded as:

λmax ≥ max
i

∑n
k=1

(
aki − di

)2. (2)

The details are in Appendix A. When λmax is small, the RHS of Eq. (2) has to be small.
In particular, the i-th token which has the largest outer degree must have its deviation
∑n

k=1(aki − di)
2 to be small. When di is large (as shown in Fig. 2), to make the deviation

small each attention aki needs to be close to di. Therefore, all tokens have similar (high)
attention on the token with the largest outer degree, which is an attention sink phenomenon.

We empirically show the connection between attention deviations ∆ and over-smoothing
in Fig. 3. The over-smoothing degree is reflected by the average cosine similarity between
token representations (Shi et al., 2022). Going from lower to higher layers, we observe that
the attention deviation decreases while the representation similarity increases. This validates
the connection between attention sinks and the over-smoothing phenomenon.

Impact of over-smoothing with attention sinks. When over-smoothing occurs with at-
tention sinks above, the sink token representations may dominate the averaged token
representation, and make other token representations (including [CLS]) close to them. To
learn a task, models may push sink token representations close to the task data representa-
tion (Fig. 4(a)). Since sink tokens may be irrelevant to tasks (Fig. 3 right), this may distort
pre-trained features and make models less generalizable to OOD data (Kumar et al., 2022).

Comparing BERT and RoBERTa, we observe that pre-trained RoBERTa suffers more from
over-smoothing (i.e., high representation similarity), corresponding with low attention
deviations on sink tokens at the second and last several layers (Fig. 2(b)). Therefore, we
hypothesize that RoBERTa may be more vulnerable to feature distortion in task learning,
which is reflected by its distorted attention patterns (Fig. 1 and Fig. 3 right) after fine-tuning.
This may also influence RoBERTa’s CL capacity.

4 Attention Sink and Interference in Continual Learning

In this section, we first conduct a case study to show that attention sinks above can cause
unnecessary interference when learning across tasks in CL. Then we discuss a transfer vs.
interference trade-off induced by attention sinks, which inspires our method in Section 5.

4.1 Interference in Continual Learning

We study the following CL problem: A model continually learns a sequence of tasks, with
no previous tasks’ data accessible when learning new tasks, and no storage of previous
tasks’ model parameters. The model has different predictors for different tasks, while the
encoder is shared. Each task i consists of data Di = (Xi, yi) where Xi is the input feature for
task i, and yi ∈ R is its target output.

When learning task j after task i, one way to quantify the cross-task interference on the
shared parameter θ is through the dot product between its (vectorized) gradients on the two
tasks’ losses (Riemer et al., 2019):

I(θ; i, j) = ∇θ L(Xi, yi) · ∇θ L(Xj, yj), (3)

where · is the dot product operator on the flattened gradients. The interpretation is that
interference that leads to forgetting happens when I(θ; i, j) < 0, while the positive knowl-
edge transfer may happen if I(θ; i, j) > 0. For tasks that do not have knowledge transfer,
the interference is expected to be 0.

4.2 Case Study: Attention Sink Can Cause Unnecessary Interference Between Tasks

We use a case study to show that attention sinks can propagate unexpected interference
between irrelevant tasks. The study is based on the attention sink phenomenon characterized
in Section 3, which showed: (1). models allocate high attention to sink tokens with small
deviations; (2). sink tokens are usually common tokens shared across different tasks.
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Data. We consider two irrelevant NLP tasks in a CL setting. For task i, we have data
instance (Xi, yi) where Xi consists of embeddings of input tokens. We make the following
assumptions about tasks and data:

1. There is no knowledge transfer between the tasks and there should be no interfer-
ence (positive or destructive) when learning one task after the other.

2. Assume there are k common tokens (e.g., special tokens) in two tasks’ data instances.
For all other tokens in a task, we assume they are irrelevant to non-common tokens
in the other task, with corresponding embeddings being orthogonal.

Model. We use a model consisting of two single-head self-attention layers. For each task i,
the input Xi ∈ Rni×d consists of d-dimensional embeddings for ni tokens. Considering a
regression problem (generalizable to classification), the prediction ŷi is calculated as:

ŷi = bT
i (AiXiW)vi,

where Ai ∈ Rni×ni is the attention matrix in the first attention layer, bi ∈ Rni is the attention
vector in the second attention layer that integrates all hidden representations for the target
task prediction. Both Ai and bi are obtained under the self-attention mechanism (Vaswani
et al., 2017). W ∈ Rd×d is a transformation matrix. vi ∈ Rd×1 is the predictor that maps the
representation to an output value ŷi for task i. The loss function is: L(ŷi, yi) = E[ 1

2 (ŷi − yi)
2].

For simplicity, we sort Xi and Ai to make the k common tokens have indices {1, ..., k} and
others have indices {(k + 1), ..., ni}. We assume the common tokens are sink tokens in Ai.

Claim. The interference on the transformation matrix W between task 1 and task 2 mainly depends
on the outer degrees of sink tokens and the sink attention deviations.

We calculate interference on the shared parameter W based on Eq. (3) and the model above:

I(W) = (ŷ1 − y1)(ŷ2 − y2)(BT
1 B2)(vT

1 v2), (4)

where BT
1 = bT

1 A1X1 and BT
2 = bT

2 A2X2. When both training losses are non-zero (which
is the usual case in CL), interference in Eq. (4) depends on the correlation vT

1 v2 between
predictors and the correlation BT

1 B2 between representations. Since the learned predictors
may not be good enough to reflect the orthogonality between task 1 and task 2 (Kumar et al.,
2022), we have to consider the interference caused by the correlation BT

1 B2, discussed below.

Step 1: decompose B1 and B2. Generally, for any matrix M, we denote M(ij) as the ij-th element
of M. And for any vector b, we denote b(i) as the i-th element of b.

Denote d1 as the vector of tokens’ average outer degrees in attention matrices A1. For the
attention A(ij)

1 , we define its deviation to the j-th average outer degree as: ϵ
(ij)
1 = A(ij)

1 − d(j)
1 .

Since the attention vector b1 is row-stochastic, we decompose BT
1 as:

BT
1 = ∑n1

i=1 ∑n1
j=k+1 b(i)

1 A(ij)
1 X(j·)

1︸ ︷︷ ︸
r1 : non-sink representations

+ ∑k
j=1 d(j)

1 X(j·)
1︸ ︷︷ ︸

s1 : sink representations

+∑n1
i=1 ∑k

j=1 b(i)
1 ϵ

(ij)
1 X(j·)

1︸ ︷︷ ︸
δ1 : representation deviations

. (5)

Similarly, we have BT
2 = r2 + s2 + δ2, where r2 denotes the non-sink representations, s2 the

sink representation and δ2 the sink representation deviations for task 2.

Step 2: calculating BT
1 B2. Based on assumption 2 that non-sink token embeddings from two

tasks are orthogonal, we have r1r2
T = 0. Moreover, since sink tokens are common tokens

that are supposed to be neutral to other tokens, we hypothesize that their embeddings are
nearly orthogonal to other token embeddings (Appendix B). This makes (s1 + δ1)r2

T + (s2 +
δ2)r1

T ≈ 0. Then we have BT
1 B2 = (r1 + s1 + δ1)(r2 + s2 + δ2)

T ≈ (s1 + δ1)(s2 + δ2)
T .

Therefore, BT
1 B2 depends largely on tasks’ sink representations s1, s2 and their representation

deviations δ1, δ2. Specifically, it is dominated by s1sT
2 when: (1) each attention deviation ϵ(ij)
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Figure 4: (a) After fine-tuning, sink tokens’ representations can be close to data ([CLS])
representations, even though the sink tokens are irrelevant to the task. (b) Models trained
on 3k MNLI data and evaluated on MNLI and SNLI data, with and without attention on
common sink tokens. Sink tokens ensure models’ capacity and their transfer to similar tasks.

in Eq. (5) is close to 0; or (2) the attention score b(i) is close to 0 when the absolute deviation
|ϵ(ij)| is large, which makes b(i)ϵ(ij) close to 0. When the sink tokens’ outer degrees are large,
the correlation s1s2

T can cause high interference between the orthogonal tasks 1 and 2.

4.3 Transfer vs. Interference

Since attention sinks on common tokens can propagate unnecessary interference, should
we exclude sink tokens that are common tokens (‘common sink tokens’) when calculating
attention in CL? To answer this question, we first train models with and without attention
on common sink tokens, and then compare their in-task and transfer learning capacities.
Results in Fig. 4(b) show that when discarding the attention on common sink tokens in
training, models have a significant performance drop in the in-task evaluation.

In addition, common sink tokens may benefit tasks with positive knowledge transfer. In Fig.
4(b), we use models trained on MNLI data for zero-shot evaluation on SNLI data, which is
for the same sentence entailment task but with a different data distribution. Results show
that the models’ transfer ability significantly drops after discarding the attention on common
sink tokens. We hypothesize that this could be because sink tokens that are common across
tasks can easily transfer knowledge on them.

The analysis above motivates us to balance the transfer and interference caused by attention
sinks in task learning. Specifically, when allowing models to preserve relatively high
attention on sink tokens, we in turn encourage them to pay attention to non-sink tokens that
have relatively low attention on sink tokens. This may increase sink attention deviations,
which help reduce interference and oversmoothing. We develop a pre-scaling model to
achieve this goal, detailed in Section 5.

5 Method: Pre-Scaling For Diverse Attention

We introduce a pre-scaling mechanism that encourages models to allocate diverse attention
to sink tokens and increase attention on non-sink tokens, when learning a downstream task.

As shown in Section 3.1, attention sinks exist in pre-trained models. However, since sink
tokens are usually common tokens that are not semantically significant, their pre-trained
representations may not contain much information related to downstream tasks. On the
other hand, pre-trained representations of non-sink tokens may contain more information
for task prediction. This motivates us to first allocate task-specific attention on tokens based
on their pre-trained representations, for increasing attention on non-sink tokens.

Figure 5: The scaling and regular model.

We design a scaling layer to allocate atten-
tion scores on tokens based on their contri-
butions to the task. To encourage diverse
attention, we have different scaling of atten-
tion scores for different classes. The scaling
layer is first learned through a probing stage
to allocate high attention scores to non-sink
tokens based on their pre-trained represen-
tations. Then we fine-tune the whole model.
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Scaling layer. For each task, let H = {h1, ..., hn} be the pre-trained representations of the n
input tokens, and V = {v1, ..., vc} the learnable class vectors for the c classes in that task.
Each token representation h and class vector v are Rd vectors. The scaling layer computes
attention Ac on tokens for classes as:

Ac = softmax
(
V f (H)T/√d

)
, (6)

where f : Rd → Rd is a learnable linear function. The output for class i is calculated by:

p(i|H) = exp
(
A(i·)

c Hvi
)/

∑c
i=1 exp

(
A(i·)

c Hvi
)
,

where A(i·)
c is the i-th row of the attention Ac, vi is the i-th class vector in V. We use the

cross entropy loss to train the model with scaling layer.

Two-Stage training. For each task, we use a two-stage training process: (1). probing: the
encoder is fixed and we only learn the scaling layer (including class vectors); (2). fine-tuning:
the whole model, including the encoder and the scaling layer, is learned for the target task.

For sequential tasks in CL, we follow the task-incremental training where at each task, the
loss is only computed over classes in that task. However, the scaling and prediction can be
applied over classes in all tasks, and thus our model is general to the task-agnostic setting.

Connection to probing then fine-tuning. Our pre-scaling mechanism has connections to
the probing-then-fine-tuning mechanism proposed in Kumar et al. (2022), since both use a
similar two-step training process. However, our mechanism utilizes a scaling layer to gather
diverse representations of all tokens instead of only using the representation of the [CLS]
token for prediction. As shown in Fig. 5(b), probing-then-fine-tuning under the regular
model is a special case in our mechanism while the attention scores in Eq. (6) are 1 for [CLS]
token and 0 for other tokens. As claimed in Kumar et al. (2022), the two-stage training can
reduce feature distortion by first learning good class vectors v. These good class vectors
may further benefit our pre-scaling mechanism in CL.

6 Experiments

6.1 Experimental Settings

Datasets. We evaluate four sequences of CL tasks: (1) Yahoo Split: a split of Yahoo dataset
for news question-answer categorization (Zhang et al., 2015) with 5 disjoint tasks containing
2 classes each; (3) DB: a split of DBPedia data for Wikipedia article classification (Zhang
et al., 2015) with 7 disjoint tasks containing 2 classes each; (4) News Series: a sequence
of tasks on news-related data, including AG_news (news classification, 4 classes), MRPC
(paraphrase detection, 2 classes) (Dolan & Brockett, 2005), RTE (text entailment, 2 classes)
(Williams et al., 2018b) and SST (sentiment analysis, 2 classes) (Socher et al., 2013). For the
above sequences, we randomly sample 1245 samples per class, which is the least number of
class samples in our datasets.

Baselines. We consider two categories of baselines:

One category performs vanilla sequential learning for CL but has different training strategies
on each single task, including (1) FT: a model where all parameters are sequentially updated;
(2) PT+FT (Kumar et al., 2022): a model first trains the classifier in the probing stage and
then fine-tunes the whole model; (3) Prescale (ours): a model first trains the classifier and a
scaling layer in the probing stage and then fine-tunes the whole model (with scaling).

Another category is designed with specific CL techniques like experience replay, including
(1) ER: a FT model storing all seen examples and performs sparse (1%) experience replay;
(2) A-GEM (Chaudhry et al., 2019a): a FT model constraining on gradients to prevent
degrading performance of previous tasks; (3) MBPA++ (d’Autume et al., 2019): a FT model
that stores and retrieves samples to locally adapt the model at inference time (Sprechmann
et al., 2018). (4). IDBR (Huang et al., 2021b): a FT model with information-disentanglement-
based regularization and replay. We also compare to IDBR without replay, denoted as
IDBR(-R); (5) CTR (Ke et al., 2021): an adapter-based task-incremental model with capsules
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Table 1: Comparison between sequential models on CL. We report ACC and FGT with their
standard deviations (std) on five random seeds. Bold scores are the best scores.

Model Yahoo Split DB Split News Series

ACC std FGT std ACC std FGT std ACC std FGT std

BERT Probing 88.43 0.06 — 99.30 0.03 — 74.81 0.46 —
FT 86.19 0.92 6.70 1.08 66.22 8.13 39.15 9.47 68.98 5.68 17.13 7.48

PT+FT 90.24 0.53 2.23 0.77 98.47 2.23 1.64 2.59 77.09 2.11 8.16 2.50

Prescale (ours) 90.92 0.53 1.47 0.71 99.74 0.05 0.13 0.06 79.76 0.76 4.40 1.18

RoBERTa Probing 88.06 0.09 — 99.33 0.01 — 68.27 1.32 —
FT 83.54 4.66 10.91 5.74 71.94 7.48 32.53 8.73 70.61 4.42 18.24 5.21

PT+FT 90.76 0.86 2.14 1.06 99.68 0.24 0.21 0.29 79.39 2.00 8.01 3.24

Prescale (ours) 90.92 0.77 1.95 1.01 99.78 0.08 0.09 0.11 81.59 1.74 4.16 2.33
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Figure 6: The last layer’s representation similarity (for over-smoothing) and attention
deviations (for attention sinks) for BERT and RoBERTa models on CL tasks. For an overall
view, we average attention deviations over the tokens with top-5 largest outer degrees.

and task transfer routing; (6) L2P (Wang et al., 2022): a prompt-based model that learns to
dynamically prompt for different data and tasks. We also compare models under multi-task
learning (MTL) and separate learning for each task (Separate) as non-CL baselines to show
the performance gap from CL models to them. Detailed settings are in Appendix C.

We compare BERT-base and RoBERTa-base models in sequential learning, and use BERT-
base for CL-specific models. For BERT models, we use learning rate 2e-5 to train 3 epochs
for each task; and for RoBERTa models, we use learning rate 1e-5 to train 5 epochs per task.
For probing and pre-scaling, we use the learning rate 5e-4 to train the classifier.

Metrics. We train models in a task-incremental setting where task identifiers are given
(task-aware). We evaluate models’ CL performance by evaluating their average accuracy
(ACC) and forgetting (FGT) on the sequence (Chaudhry et al., 2019b), with or without task
identifiers (task-agnostic). For analysis, we evaluate models’ over-smoothing and attention
deviations on sink tokens using metrics in Eq. (1).

6.2 Results

RoBERTa does not always outperform BERT in CL. Table 1 compares BERT and RoBERTa’s
CL performance under sequential learning. With fine-tuning, RoBERTa does not always
outperform BERT in CL despite its high pre-trained capacity. Specifically, RoBERTa has a
lower accuracy than BERT on Yahoo Split and a higher forgetting on News Series. This may
relate to its higher over-smoothing and lower sink attention deviations than BERT, which
make it more vulnerable to feature distortion and easier to propagate interference.

Prescaling improves RoBERTa’s CL capacity. With PT+FT, RoBERTa consistently outper-
forms BERT on CL tasks. We believe that is because PT+FT first learns good class vectors v,
which reduces feature distortion in each single task and then benefits CL. After applying
our prescaling method, BERT and RoBERTa achieve further improvements in CL tasks.

Prescaling increases attention deviations. In Fig. 6, we compare models’ representational
similarity and attention deviations after CL. After prescaling, RoBERTa’s representation
similarity decreases while the attention deviations increase. This suggests that our pre-
scaling can encourage diverse attention, which reduces over-smoothing and benefits CL.

Prescaling model outperforms CL models with replay. In Fig. 5, we compare our pre-
scaling model to CL-specific models to evaluate its overall CL capacity. Without experience
replay or progressively storing model parameters, Prescale achieves overall best accuracies
on CL tasks. Even for the News Series sequence which has knowledge transfer between
tasks, Prescale outperforms replay-based models that are effective in this scenario. This
validates the effectiveness of our prescaling mechanism in CL.
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Table 2: Results for task-incremental learning. We report ACC and FGT with their std on five
random seeds. Bold scores are the best scores and underline scores are the second best.

Model Yahoo Split DB Split News Series

ACC std FGT std ACC std FGT std ACC std FGT std

CL ER 87.42 0.52 5.61 0.68 91.05 10.20 10.20 10.14 75.47 3.93 7.81 5.27

A-GEM 89.43 0.58 2.95 0.64 94.71 4.70 5.98 5.49 75.90 3.34 6.60 3.84

MBPA++ 86.50 2.78 6.62 2.82 97.17 3.76 3.09 3.68 72.55 5.50 9.64 3.99

IDBR (-R) 89.32 1.46 2.74 1.35 96.47 4.67 3.95 4.66 72.36 2.93 8.67 4.23

IDBR 90.48 0.55 1.32 0.64 99.84 0.03 0.04 0.03 76.90 1.98 3.24 2.50

CTR 87.06 1.23 1.28 0.93 99.04 0.95 0.29 0.35 75.12 3.09 3.40 2.92

L2P 90.82 0.58 0.60 0.56 99.63 0.36 0.29 0.36 73.99 2.36 3.43 2.42

Sequential FT 86.19 0.92 6.70 1.08 66.22 8.13 39.15 9.47 68.98 5.68 17.13 7.48

Prescale (ours) 90.92 0.53 1.47 0.71 99.74 0.05 0.13 0.06 79.76 0.76 4.40 1.18

Non-CL Separate 92.25 0.04 — 99.87 0.01 — 83.72 0.53 —
MTL 92.27 0.05 — 99.88 0.01 — 82.04 0.90 —

Table 3: ACC and FGT
of different scaling strate-
gies on News Series.

Model ACC FGT

BERT Uniform 78.98 5.32
Prescale Sink 76.08 9.27

Full 79.76 4.40

RoBERTa Uniform 79.44 7.07
Prescale Sink 79.09 9.26

Full 81.59 4.16

Table 4: ACC on task-
agnostic evaluations for
DB and Yahoo Split.

Model DB Yahoo

BERT FT 15.90 36.19
PT+FT 72.41 53.34

Prescale 70.38 53.21

RoBERTa FT 18.71 36.24
PT+FT 67.32 52.98

Prescale 77.55 53.51
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Figure 7: Attention for each class on
tokens in SST (from News Series).

6.3 Ablation Study

Scaling strategies. In Table 3, we compare our prescaling strategy (Full) to two other scaling
strategies: one uniformly distributing attention to all tokens (Uniform); another learning
to scale attention only on common sink tokens including special tokens, the punctuation
‘.’ and the second token in the sentence (Sink). Results show that only scaling attention
on common sink tokens does not yield improvements to PT+FT, and uniform scaling does
not give as much improvement as full scaling. These suggest that the effectiveness of our
prescaling strategy does not come only from having distributed attention on tokens.

Scaling visualization. Fig. 7 shows a heapmap of the scaled attention on the SST data
(with task classes {positive, negative}) after training the model on News Series. For the
corresponding positive/negative classes, we observe that attention is also distributed on
task-related tokens (e.g., charming, affecting) besides common tokens.

Task-agnostic evaluation. In Table 4, we evaluate models in the task-agnostic setting after
task-aware training to show the separation of data representations across tasks. Both PT+FT
and Prescale perform better than FT. This may relate to their larger attention deviations and
less over-smoothing (Fig. 6), which make data representations contain more information
from non-sink tokens with different distributions across tasks. On BERT, PT+FT outperforms
Prescale. We hypothesize that this is because BERT is pre-trained with the next sentence
prediction, and thus [CLS] may contain more general sentence-level information across
tasks than the learned scaling. On the other hand, for RoBERTa which does not have
sentence-level pre-training, Prescale performs better than PT+FT.

7 Conclusion

In this paper, we study an attention sink phenomenon that can cause pre-trained models to
perform inferior in CL tasks, despite their pre-trained capacity on downstream tasks. Specif-
ically, we find that the small attention deviation on sink tokens and the fact that sink tokens
are usually common tokens across tasks can cause the model having an over-smoothing
problem and easily propagate interference during CL. To mitigate such interference, we
propose a prescaling mechanism which first learns a scaling layer during probing to allocate
diverse attention on non-sink tokens, and then fine-tunes the model with scaling. Results
show that our pre-scaling method outperform most CL models and other scaling strategies.
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A Connection between Over-Smoothing and Attention Sinks

Denote P = AT(I − eeT)A and λmax is the largest eigenvalue of P. Denote the layer’s
attention matrix as A ∈ Rn×n (n is the number of input tokens) and its ij-th element as aij.
The eigenvalue λmax is lower bounded by:

λmax ≥ max
i

∑n
k=1

(
aki − di

)2,

where di = ∑n
k=1 aki

/
n is the average outer degree of the i-th token.

Derivation. Each element in P can be written as:

Pij = ∑n
k=1

[
akiakj − (

1
n ∑n

q=1 aqi
)( 1

n ∑n
q=1 aqj

)]
,

where aij represents the ij-th element in A. Because P is symmetric and positive semi
definite, its max eigenvalue λmax is real and positive, which also satisfies:

λmax = max||x||=1 xTPx,

where x ∈ Rn. Set {x} = {x1, ..., xn} as a set of unit vectors, where each xi has the element
as 1 at the i-th place and others as 0. Then λmax is lower bounded as:

λmax ≥ max
i

∑n
k=1

(
aki − di

)(
aki + di

)
= max

i
∑n

k=1

(
aki − di

)2
+ 2di ∑n

k=1

(
aki − di

)︸ ︷︷ ︸
= 0 by the definition of di

= max
i

∑n
k=1

(
aki − di

)2

The RHS above can be further decomposed as maxi d2
i ∑n

k=1
(
aki − di

)2/d2
i to reflect the

effects of the outer degree and the per-degree attention deviations.

There are several cases that can make λmax small. When the largest average degree di is
large, λmax is small when its per-degree attention deviations are small. On the other hand,
when the largest average degree is small, λmax can be small even when the per-degree
attention deviations are relatively large. In the paper, we focus on the case when the largest
average is large, for the observed attention sink phenomenon.

B Correlation between Sink and Non-Sink Token Embeddings

In Section 4, the interference BT
1 B2 depends on correlations between representations of

the sink and non-sink tokens, which is related to correlations between their embeddings
in X1 and X2. Here we empirically calculate the correlations (i.e., dot product) between
embeddings of the sink and non-sink tokens in BERT and RoBERTa-base, to verify our
hypothesis that (common) sink tokens’ embeddings are nearly orthogonal to other tokens’
embeddings. Results are shown in Fig. 8.

For both BERT and RoBERTa, embeddings of sink tokens (e.g, [CLS] and [SEP]) have close
to 0 correlations to most other token embeddings. On BERT, the punctuation ‘.’ has negative
correlations to many other tokens, while on RoBERTa the distribution of its correlations is
also centered around 0. We also randomly sample non-sink tokens from the vocabulary and
show their embeddings’ correlation distributions as a reference. On BERT, the embedding
of non-sink token ‘exchange’ tends to have positive (non-zero) correlation to other tokens’
embeddings. On RoBERTa, although the embedding of the non-sink token ‘aution’ has
centered to 0 correlations to other tokens’ embeddings, it has large correlations up to 8.
However, the correlation distributions of cls (<s>) and sep (<\s>) tokens’ embeddings have
a much smaller range.

Compared to the correlation to other tokens’ embeddings, we also compute the self-
correlation on sink tokens’ embeddings as shown in Fig. 9. The embeddings’ self-
correlations can not be ignored on both BERT and RoBERTa. When the common sink
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tokens are allocated high attention, the correlation between sink token representations from
two tasks may be large, leading to interference in CL.
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Figure 8: Correlation distributions between pre-trained sink token embeddings and all
other tokens’ embeddings based on BERT and RoBERTa. The right-most column shows the
correlation distribution of a randomly selected token embedding for reference.
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Figure 9: (a). Distribution of token embeddings’ self-correlations on BERT and RoBERTa.
(b). Self-correlations of sink tokens’ embeddings.

C Detailed Experimental Settings

In Section 5, we train all models with task-incremental settings (i.e., training with the loss
only on classes in that task), while evaluating them in both task-incremental and class-
incremental settings. We perform all experiments on one Nvidia RTX A6000 machine.

We provide detailed experimental settings of baselines below:

• Probing: We fix the encoder and only train the classifier. We train 5 epochs for each
task in BERT and RoBERTa, with the learning rate 5e-4.

• FT: We fine-tune the whole model, including the encoder and classifier. We train
3 epochs for each task in BERT, with the learning rate 2e-5; and train 5 epochs for
each task in RoBERTa, with the learning rate 1e-5.

• PT+FT: We first train the classifier with the same setting in Probing, and then train
the whole model with the same setting in FT.

• Prescale: We first train the classifier and the scaling layer with the learning rate 5e-4
for 5 epochs, and then train the whole model with the same setting in FT.

• IDBR: We train IDBR with the learning rate 3e-5 for 3 epoches per task. We follow
the k-means memory selection rule, and the replay batch size is 16 (training batch
size) × number of tasks in the memory.

• CTR: We follow the settings in the original paper, training 5 epochs for each task.
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• L2P: We have the prompt pool with 100 prompt tokens and select 50 of them to
prepend to the input. We train the model with the learning rate 1e-3 for 20 epochs
for each task.

• ER: We apply sparse experience replay with 1% replay ratio. At each replay time,
we sample 32 samples from the memory and perform one-step gradient descent
based on them.

• A-GEM: We store all previous data in the memory. At each gradient step, we
randomly extract 32 samples from the memory and apply the A-GEM gradient
projection.

• MBPA++: We fine-tune the model with ER and then adapt the model at the inference
time. At the inference time, we retrieve 32 nearest samples in the memory for local
adaptation.
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