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Abstract

Vision–Language Models (VLMs) have emerged
as the dominant approach for zero-shot recog-
nition, adept at handling diverse scenarios and
significant distribution changes. However, their
deployment in risk-sensitive areas requires a deep
understanding of their uncertainty estimation ca-
pabilities, a relatively uncharted area. In this
study, we explore the calibration properties of
VLMs across different architectures, datasets, and
training strategies. In particular, we analyze
the uncertainty estimation performance of VLMs
when calibrated in one domain, label set or hi-
erarchy level, and tested in a different one. Our
findings reveal that while VLMs are not inherently
calibrated for uncertainty, temperature scaling sig-
nificantly and consistently improves calibration,
even across shifts in distribution and changes in
label set. Moreover, VLMs can be calibrated with
a very small set of examples. Through detailed
experimentation, we highlight the potential appli-
cations and importance of our insights, aiming
for more reliable and effective use of VLMs in
critical, real-world scenarios.

1. Introduction
Vision–language models (VLMs), such as CLIP (Radford
et al., 2021) and ALIGN (Jia et al., 2021), have achieved re-
markable results for a wide range of tasks, such as zero-shot
image recognition (Wortsman et al., 2022), open-vocabulary
object detection (Zhou et al., 2022b; Gu et al., 2021), im-
age captioning (Yu et al., 2022a; Mokady et al., 2021) and
egocentric perception (Zeng et al., 2022). The burgeoning
field of VLMs has been characterized by rapid exploration
along various dimensions (Nguyen et al., 2022; Fang et al.,
2022; Wortsman et al., 2022; Cherti et al., 2023; Tu et al.,
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2023), such as dataset creation (Nguyen et al., 2022), re-
producible scaling laws (Cherti et al., 2023), compositional
relationships between objects and attributes (Yuksekgonul
et al., 2022), robust fine-tuning approaches (Goyal et al.,
2023), and visual factor-level robustness (Tu et al., 2023).

However, their application in risk-sensitive domains neces-
sitates a more rigorous understanding of their uncertainty
estimation capabilities, an area that remains largely under-
explored. Model calibration is concerned with ensuring
that the model’s predicted output probabilities correspond to
its empirical frequency of correctness (i.e., accuracy). For
example, a calibrated model that classifies some images as
“cow” with a 50% probability will have misclassified roughly
half. Galil et al. (2023) and Minderer et al. (2021) report that
CLIP models are better calibrated than other models trained
on ImageNet. Notwithstanding this observation, Tu et al.
(2023) point out that they are not always well-calibrated and
attribute this to the impact of the training data distribution
and quantity. Building on this line of research, we study the
calibration properties of various VLMs, each characterized
by different architectures, datasets, and training strategies.

We investigate which factors affect the calibration of VLMs.
Starting from prior research that demonstrates zero-shot
CLIP can be well-calibrated with simple temperature scal-
ing under distribution shifts (Tu et al., 2023), we extend
this analysis to other CLIP variants and exemplar vision–
language models. We then examine whether such a property
persists when the calibration dataset varies in (1) distribu-
tion, (2) label set (e.g., CIFAR-10 vs.. ImageNet), (3) hierar-
chy level (e.g., “Spider” vs.. “Black widow”), (4) the number
of images, and (5) feature-space distance of calibration set
with respect to the target test set.

To this end, we evaluate 35 vision–language models. They
have various image–text pre-training frameworks, such as
CLIP (Radford et al., 2021) and BLIP (Li et al., 2022). They
also have different visual encoder architectures (e.g., ViT
(Shankar et al., 2021) and ConvNeXt (Liu et al., 2022)) and
training dataset distributions and quantities. We assay the
uncertainty estimation of VLMs on three standard image
classification benchmarks: ImageNet (Deng et al., 2009),
CIFAR-10 (Krizhevsky et al., 2009) and DomainNet (Peng
et al., 2019) and 5 types of distribution shift, including re-
production shift (Recht et al., 2019) and sketch shift (Wang
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et al., 2019). Moreover, to study the sensitivity of our find-
ings, we analyze the uncertainty estimation performance of
VLMs when the quantity and quality of the calibration set
are varied and the text prompts are hand-crafted or machine-
generated. Our key observations are:

• After calibrating all models with temperature scal-
ing (Platt et al., 1999), vision–language models are
better calibrated than the other models in this study,
which is not necessarily the case prior to calibration;

• VLMs can be calibrated on datasets with different label
sets than the target set and can be calibrated at a higher
or lower level of the label hierarchy than the level of
the target labels;

• VLMs require a few samples for calibration. For exam-
ple, VLMs can be calibrated using temperature scaling,
spline fitting (Gupta et al., 2021) or histogram binning
(Zadrozny & Elkan, 2001) with less than 100 samples;

• VLMs do not require sophisticated prompting strate-
gies for calibration, with “a photo of a <class>” being
sufficient to achieve good uncertainty estimation;

• Our findings motivate the use of a synthetic calibra-
tion set for VLMs in practical settings where labeled
calibration data is lacking.

2. Related Work
Vision–language models have demonstrated strong capa-
bilities by leveraging web-scale datasets and language super-
vision to learn joint image–text representations (Bommasani
et al., 2021; Radford et al., 2021; Jia et al., 2021). A semi-
nal work by Radford et al. (2021) introduced CLIP, a large
VLM trained on 400 million filtered web-crawled image–
text pairs, which exhibits unprecedented zero-shot ability
on numerous downstream visual tasks. Inspired by CLIP,
various algorithms have been created to enhance the perfor-
mance of the model (Singh et al., 2022; Li et al., 2022; Zhai
et al., 2023; Li et al., 2023b). For example, Li et al. (2022)
propose BLIP, a new pre-training framework, that bootstraps
captions to effectively leverage noisy web data. Zhai et al.
(2023) designs a simple pairwise sigmoid loss which solely
operates on the image–text pairs without requiring the global
view of pairwise similarities for normalization.

Encouraged by the strong generalizability of VLMs, re-
searchers have explored their properties from diverse per-
spectives, such as robustness and bias. For instance, Schi-
appa et al. (2022) and Qiu et al. (2022) investigate their
robustness through perturbations, while Fang et al. (2022) at-
tribute the remarkable robustness of CLIP to its diverse train-
ing distribution. Additionally, Yuksekgonul et al. (2022) and
Thrush et al. (2022) assess the capability of VLMs to en-
code compositional information. Liang et al. (2022) study
the modality gap from the perspectives of model initial-

ization and contrastive learning optimization. While Tu
et al. (2023) focus on the calibration of CLIP models using
temperature scaling on ImageNet, our study extends this to
a diverse array of VLMs and various calibration methods
(e.g., Spline, histogram binning, and vector scaling). We
provide an in-depth analysis of calibration factors, examine
the uncertainty estimates of VLMs, and consider different
aspects that may influence calibration performance. Further-
more, we demonstrate the practical utility of our findings in
a real-world problem setup.

Confidence calibration aims to calibrate models so that
their prediction probabilities align with the empirical fre-
quency of correctness (Nguyen & O’Connor, 2015; Guo
et al., 2017). Much research effort has been made in propos-
ing algorithms to improve model calibration performance,
such as post-hoc rescaling the prediction probabilities (Guo
et al., 2017), ensembling (Lakshminarayanan et al., 2017)
and pre-training (Hendrycks et al., 2019). Another line of
research focuses on analyzing calibration of modern neural
networks (Guo et al., 2017; Ovadia et al., 2019; Minderer
et al., 2021; Tu et al., 2023). Guo et al. (2017) point out
that modern neural networks are poorly calibrated. Ova-
dia et al. (2019) observe that distribution shifts degrade the
performance of calibration methods. Minderer et al. (2021)
show that zero-shot CLIP models are well-calibrated given
their performance. Tu et al. (2023) show that zero-shot
CLIP models are well-calibrated with temperature scaling.
This paper builds on this prior research by studying a more
comprehensive suite of factors that influence the uncertainty
estimation performance of VLMs.

3. Definition and Notation
Let Y = 1, . . . ,K and X = Rd denote label and input
spaces, respectively. A sample (x, y) from an unknown
distribution in X × Y is input to a neural network clas-
sifier f : X → ∆k. This classifier outputs a probability
distribution over k classes for x, where ∆k is the k − 1
dimensional simplex. We assume f combines two functions:
f =: σ ◦ g, where g : Rd → Rk is a non-probabilistic
k-way classifier, and σ : Rk → ∆k is the softmax oper-
ator σi(z) = exp(zi)∑k

j=1 exp(zj)
for i ∈ Y . The output g(x) is

referred to as the logits of x relative to f . For any input in-
stance x, f assigns the predicted label ŷ =: argmaxi fi(x)
and the corresponding confidence score p̂ =: maxi f i(x).

Expected Calibration Error (ECE). A model is perfectly
calibrated if P(ŷ = y | p̂ = p) = p for all p in [0,1],
where y is the actual label, ŷ the prediction, and p̂ the
confidence score. To assess model calibration, we typi-
cally use the Expected Calibration Error (ECE) (Guo et al.,
2017), lower values indicating better calibration. ECE
involves dividing samples into M equal bins by confi-
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Figure 1. Comparing the calibration performance of ImageNet-trained models and VLMs. We report the results on the in-distribution
test set (ID-Test) and two out-of-distribution (OOD) test sets: ImageNet-R and ImageNet-S. We plot the expected calibration error (ECE)
before and after temperature scaling for each model. The blue dots represent VLMs and the green crosses denote ImageNet-trained
models. We observe that VLMs are well-calibrated by temperature scaling on both ID and OOD test sets.

dence scores, then computing the mean absolute differ-
ence between each bin’s accuracy and average confidence:
ECE =

∑M
m=1

|Bm|
n |acc(Bm)− avgConf(Bm)|, with n as

the total number of samples

Temperature Scaling. Scaling logits from g with tem-
perature T modifies output probability sharpness. The
new prediction confidence is p̂ = maxi

exp(gi(x)/T )∑n
j=1 exp(gj(x)/T ) .

Higher T softens, and lower T sharpens probabilities. As
T approaches 0 or infinity, probabilities trend towards a
one-hot vector or uniform distribution, respectively. For
a trained classifier f , T is optimized using negative log-
likelihood (NLL) on a calibration set. Since T does not
impact the softmax maximum, ŷ, the predicted class, re-
mains the same, preserving classification accuracy.

4. Experimental Setup
Compared models: VLMs. We consider 35 vision–
language models. These models consist of exemplar VLMs,
such as CLIP (Radford et al., 2021), Flava (Singh et al.,
2022) and BLIP (Li et al., 2022). In particular, we evaluate
zero-shot CLIP models that are trained on different training
distributions, such as the WIT (Radford et al., 2021) and
LAION (Gadre et al., 2023) datasets, diverse dataset quanti-
ties from 3 million to 2 billion, and curated training datasets
(Xu et al., 2023). CLIP variants with different image en-
coders are also assessed, including ViT (Dosovitskiy et al.,
2020) and ConvNeXt (Liu et al., 2022) encoders, as well
as CLIP variants that modify the training objective, such
as SigLIP (Zhai et al., 2023), or the training strategy (Li
et al., 2023c). Unless specified, for each model, we use their
default prompt sets from Radford et al. (2021).

Compared models: non-VLMs. We compare VLM cal-
ibration performance with models trained on ImageNet to
show that VLMs are well-calibrated despite the distribution
shift after temperature scaling. We consider convolutional
neural networks, such as ResNet (He et al., 2016) and Con-
vNeXt (Liu et al., 2022), and vision transformers, exempli-
fied by ViT (Dosovitskiy et al., 2020) and Swin (Liu et al.,

2021). These models are trained solely on ImageNet (Deng
et al., 2009) or pre-trained on a significantly larger dataset
(e.g., ImageNet-21K (Ridnik et al., 2021)). All the mod-
elsmentioned are publicly accessible through OpenCLIP
(Ilharco et al., 2021) and TIMM (Wightman, 2019).

Test sets. We evaluate the calibration of VLM on three
standard image classification benchmarks: ImageNet (Deng
et al., 2009), CIFAR-10 (Krizhevsky et al., 2009) and Do-
mainNet (Peng et al., 2019). Following the protocol in
(Gupta et al., 2021), we divide the validation set of Ima-
geNet into two halves: one for the in-distribution (ID) test
set, and the other for learning calibration methods. OOD
test sets are ImageNet-V2-A (Recht et al., 2019), ImageNet-
R(endition) (Hendrycks et al., 2021), ImageNet-S(ketch)
(Wang et al., 2019), and ObjectNet (Barbu et al., 2019). For
CIFAR-10, its validation set is used for model calibration,
and CIFAR-10.1, CIFAR-10.2 (Recht et al., 2018b) and
CINIC (Darlow et al., 2018) are used for evaluation. The
DomainNet benchmark utilizes the ‘Real’ domain for cali-
bration and evaluates on ‘Painting’ and ‘Sketch’ domains.
Note that ImageNet-R and ObjectNet use a reduced subset
of classes; we follow the literature (Bello et al., 2021) to
select subset of logits for these classes before evaluation.

Calibration method. For model calibration, we by default
use temperature scaling (Guo et al., 2017) on calibration
sets. We also experiment with the spline post-hoc calibration
method (Gupta et al., 2021).

Metrics. (1) Calibration metric: we use ECE as the eval-
uation metric, where a lower score indicates better cal-
ibration performance. Throughout the experiments, we
estimate ECE using equal-mass binning and 15 bins.
(2) Correlation metric: to examine whether the calibrated
prediction probabilities for all models exhibit a correlation
with their classification accuracy, we use coefficients of de-
termination R2 (Nagelkerke et al., 1991) to measure the
linearity and utilize Spearman’s rank coefficient ρ (Kendall,
1948) to measure monotonicity. R2 ranges from 0 to 1,
where an R2 of 1 means that regression predictions perfectly
correlate with model performance. The rank coefficient ρ
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Figure 2. Adaptability of VLMs to different calibration label sets. Left: Calibration error reduction. Here, we observe a significant
decrease in the expected calibration error for VLMs following cross-label-set calibration, as opposed to when no calibration is applied.
Right: Correlation between VLM prediction probability and classification accuracy. This graph illustrates the classification accuracy
of VLMs on ImageNet-R and ImageNet-S against their average prediction probability, before and after calibration with CIFAR-10-Val or
DomainNet-Real. Each point represents a model, with the dashed black line indicating perfect calibration (y=x). The data showcases a
strong linear and rank correlation, even when models are calibrated on label sets different from the target, proving the effectiveness of
cross-label-set calibration for VLMs.

spans [−1, 1], where a value closer to 1 (or −1) indicates a
better ranking index, while 0 indicates no correlation.

5. Factors Affecting Calibration
The cornerstone of safely deploying Vision–Language Mod-
els (VLMs) lies in verifying their decision reliability. Specif-
ically, the prediction probabilities provided by VLMs should
accurately reflect their performance. With this objective,
we have embarked on a comprehensive set of experiments.
These are designed to scrutinize the uncertainty estimation
of VLMs under various conditions, including changes in (1)
distribution, (2) label sets (e.g., CIFAR-10 vs. ImageNet),
(3) hierarchy levels (e.g., “Spider” vs. “Black widow”), (4)
the number of images in the dataset, and (5) the feature-
space distance between the calibration and target test sets.

VLMs are well-calibrated after temperature scaling
across various distributions. Figure 1 compares the cali-
bration performance of VLMs with models trained on Im-
ageNet. On both ID and OOD test sets (ImageNet-S and
ImageNet-R), we observe that before calibration with tem-
perature scaling, VLMs do not necessarily have superior
uncertainty estimation performance. For instance, certain
ImageNet models demonstrate a lower Expected Calibration
Error (ECE) before calibration. However, once temperature
scaling is applied, the scenario changes dramatically. VLMs
show a marked decrease in their average ECE, dropping to

0.05, whereas ImageNet models see an increase in ECE,
rising to 0.15. This indicates that VLMs benefit more signif-
icantly from the calibration process than ImageNet models.

Furthermore, while existing research highlights the chal-
lenges in achieving stable calibration results under distri-
bution shifts (Yu et al., 2022b; Zou et al., 2023; Tomani
et al., 2023; Ovadia et al., 2019), VLMs manage to main-
tain consistent and reliable uncertainty estimation after tem-
perature scaling. This is evident in their performance on
OOD test sets (ImageNet-S and ImageNet-R), where they
exhibit competent uncertainty estimation. This enhanced
calibration capability of VLMs, especially after temperature
scaling, underscores their potential for more accurate and
dependable decision-making in diverse applications.

5.1. Adaptability to Different Calibration Label Sets

VLMs can be calibrated on a dataset with a different
label set from the target dataset. The zero-shot capability
of VLMs facilitates their direct application to a diverse array
of downstream classification tasks without the need for ex-
plicit training or fine-tuning. The conventional boundary be-
tween ID and OOD classes becomes less clear-cut for VLMs,
suggesting its potential for cross-label-set calibration. To
evaluate the effect of calibration label sets, we conduct ex-
periments calibrating VLMs on datasets with different label
sets. The findings, depicted in Figure 2, demonstrate an im-

4



What Matters for Calibrating Vision–Language Models

Entity30 Entity13 Living17 Nonliving26

EC
E

EC
E

Coarse concepts → fine-grained concepts

Fine-grained concepts → coarse concepts
Entity30 Entity13 Living17 Nonliving26

1 2 3 1 2 3 1 2 3 1 2 3

No calibration1 Calibrated across hierarchy levels2 Calibrated on the same hierarchy level3

Calibration set

Calibration set

1 2 3 1 2 3 1 2 3 1 2 3

Figure 3. Robustness of VLM calibration to label hierarchy
levels. This figure presents box plots summarizing the calibration
errors (ECEs) of VLMs calibrated with label hierarchies differing
in granularity from the target dataset (ImageNet-S). The top row
shows calibration at a coarser level, and the bottom row at a finer
level. Despite not matching the calibration precision of same-
level calibration, the minimal differences indicate the robustness
of VLM calibration to label granularity.

provement in the uncertainty estimation of VLMs when cal-
ibrated with alternative label sets. For instance, calibrating
VLMs on CIFAR-10-Val or DomainNet-Real significantly
reduces the ECE on ImageNet-R compared to when no cali-
bration is applied. This trend of reduced ECE is consistently
observed on ImageNet-S as well, further validating the ef-
fectiveness of the cross-label-set calibration. Furthermore,
the calibrated prediction probability strongly correlates with
model accuracy, with a linear and rank correlation over 0.90,
despite the presence of non-zero ECE. This indicates that,
even with label set differences, the calibrated prediction
probability is predictive of the rankings of VLMs.

5.2. Calibration Across Semantic Hierarchy Levels

VLMs perform zero-shot classification by generating query
embeddings for each novel class from their natural language
names. Label hierarchy sets have been shown effective
in enhancing model accuracy (Novack et al., 2023; Ren
et al., 2023). For example, mapping the predicted sub-class
back to its parent to produce the final prediction (Novack
et al., 2023). However, there has been little attention on the
influence of a dataset’s label hierarchy for calibration. This
section aims to investigate whether VLMs can be effectively
calibrated across different levels of a semantic hierarchy.
Specifically, we examine whether VLMs can be calibrated
using a dataset with coarsely-defined concepts (e.g., “Bag”)
while the target dataset comprises fine-grained concepts
(e.g., “Backpack”), and vice versa.

ImageNet-Val → ImageNet-V2-A

EC
E

ImageNet-Val → ImageNet-S

DomainNet-Real → DomainNet-SketchCIFAR-10 → CINIC

EC
E

Number of Images in calibration set

Number of Images in calibration set

Figure 4. Data-efficiency of VLM calibration across diverse
datasets. This figure displays the ECE of VLMs as a function
of the calibration set size across four datasets: ImageNet-V2-A,
ImageNet-S, CINIC, and DomainNet. The green stars are the
average ECE of calibrated models trained on the dataset. The blue
solid and green dashed horizontal lines represent the average ECE
before calibration of VLMs and non-VLMs, respectively. The ECE
values, averaged over ten random seeds, plateau after including
merely 40–50 images in the calibration set, chosen at random, 10
times. The results closely approximate the error obtained using
the full set. This trend is observed despite the high number of
classes in DomainNet and ImageNet, where many classes may not
be represented even in the calibration set. These results highlight
the data-efficiency of VLM calibration.

To conduct our evaluation, we use four label sets from
BREEDS (Santurkar et al., 2020)—Entity13, Entity30, Liv-
ing17, and Nonliving26—that define a hierarchical mapping
between coarse and fine-grained classes. For each set, we
adhere to the associated hierarchical mapping to selectively
curate and relabel images sourced from the ImageNet valida-
tion set. This process yields a calibration dataset featuring
coarse concepts. Subsequently, we curate the corresponding
fine-grained class subset from ImageNet-S, thereby estab-
lishing a distinct target test dataset with a different distribu-
tion. We then repeat this procedure in reverse to calibrate
with fine-grained concepts and test on coarse concepts.

VLMs can be calibrated across label hierarchy levels.
Figure 3 plots the expected calibration errors of VLMs cal-
ibrated at a different label hierarchy level than the target
dataset. We see that for all four sets, the ECE decreases
considerably when calibrated at the ‘wrong’ level of the
hierarchy. While not as well-calibrated as the models where
the calibration and target sets were at the same level of the
hierarchy, the difference is not substantial, especially for
‘Nonliving26’. This suggests that calibration is relatively
robust to the granularity of the labels in the calibration set.
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Figure 5. Impact of the distance between calibration and target
set distributions on VLM uncertainty estimates. The distance
between the calibration dataset and target dataset is computed
by Fréchet inception distance (Heusel et al., 2017). A green star
indicates that the dataset for this column has the same label set as
the target dataset. We find that the calibration error has a weak
correlation with the FID between the calibration and target datasets,
however the label set compatibility also plays a significant role.

5.3. Effect of the Calibration Set Size

In this section, we investigate whether VLMs demand a
large number of images for calibration. We evaluate VLMs
on ImageNet-V2-A, ImageNet-S, CINIC and DomainNet.
For each target test set, we randomly sample a certain num-
ber of images from the corresponding calibration set as
described in Section 4. The performance for each model is
measured by the averaged ECE over ten random seeds.

VLMs can be calibrated with a very small number of
images. Figure 4 plots the calibration error of VLMs with
respect to the size of the calibration set for four different
target datasets. The calibration error plateaus after 40-50
images and is already close to the error after calibration with
the entire set. Notably, DomainNet and ImageNet are 345-
way and 1000-way classification tasks, and so many classes
do not have a single image present in the calibration set.
This suggests that calibrating VLMs is very data-efficient,
and that it is a low-dimensional problem.

5.4. Effect of Calibration-Target Set Distance

Ovadia et al. (2019) report that uncertainty estimation perfor-
mance consistently degrades when calibration and test sets
have distribution shifts. In this section, we explore whether
the same applies to VLMs. Note that, since we have demon-
strated that VLMs can be calibrated on a different label set,
this experiment compares the calibration performance of
VLMs calibrated on a dataset with the same or different

EC
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CuPLRest-PromptSingle-Prompt CuPLRest-PromptSingle-Prompt

Figure 6. Efficient calibration with single prompts for VLMs.
The figure illustrates the transferability of calibration effective-
ness when using a single prompt for VLMs. The tempera-
ture scalar estimated using one random prompt, denoted as
“Single-Prompt” remains highly effective when applied to other
human-designed prompts (“Rest-Prompt”) and machine-generated
prompts (“CuPL”). This finding highlights the efficiency of single
prompts in achieving robust calibration for VLMs.

label sets. The distribution discrepancy of datasets is com-
puted by Fréchet inception distance (FID) (Heusel et al.,
2017). A zero FID means that the calibration set and target
dataset follow a similar distribution.

Figure 5 plots the calibration error of VLMs with respect to
the FID between the calibration and target datasets for four
target datasets: CIFAR-10.1, ImageNet-V2-A, ImageNet-S,
and DomainNet-Painting. We find that FID alone does not
entirely explain the calibration error. Instead, it is a combi-
nation of the FID and the label set similarity that is more
predictive of calibration performance. This observation sug-
gests that we should consider both the distribution shift and
label set differences when selecting a calibration set.

5.5. Transferability of Calibration Across Prompts

VLMs classify images by comparing image features with
class weights computed by the text encoder, which takes as
input the textual prompts describing each class of interest.
This suggests that given the same textual class names, a
better prompt set may improve a VLM’s discriminative
ability, and using specific prompt contexts for the style of
images may also enhance model performance (Pratt et al.,
2023; Zhou et al., 2022a). In the previous experiment, we
use the same set of prompts for classification and calibration.
Here, we question whether a temperature scalar determined
by one set of prompts can effectively calibrate a different
set of prompts used for classification.
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demonstrate that the phenomena observed with temperature scaling persist when employing spline calibration. For example, VLMs can
be effectively calibrated on datasets with differing label sets or label hierarchies compared to the target test set.
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Figure 8. Uncertainty estimation performance of VLMs with
histogram binning and vector scaling across two factors: cali-
bration set size (up) and prompt sets (bottom). The target domain
is ImageNet-S and the calibration set is ImageNet-Validation.

To answer this question, we conducted experiments where
we randomly selected a single prompt from a larger set for
calibration. Surprisingly, we found that calibrating with just
a single prompt yielded effective results. The temperature
scalar discovered through this single prompt calibration
extended its effectiveness to both the rest of the human-
designed prompts (Rest-Prompt) and machine-generated
prompts (CuPL), as depicted in Figure 6. This discovery
highlights a key insight: VLMs do not necessarily require
complex and tailored prompting strategies for calibration.
Instead, a straightforward prompt such as “a photo of a
<class>” suffices for effective calibration.

5.6. Impact of the Calibration Method

In addition to temperature scaling, we undertake an eval-
uation of three post-hoc calibration methods: spline fit-
ting (Gupta et al., 2021), histogram binning (Zadrozny &

Elkan, 2001) and vector scaling (Guo et al., 2017). Spline
calibration involves deriving a function through spline fit-
ting (SF), directly aligning classifier outputs with calibrated
probabilities. Histogram binning (HB) and vector scaling
(VS) both use class-specific parameters and assume an iden-
tical label set between calibration set and target set. Hence,
HB and VS do not support calibration across label sets and
label hierarchy levels. Additionally, as suggested by (Guo
et al., 2017), VS requires the presence of samples for each
class, meaning that VS demands more images for calibration.
This section investigates whether the observed calibration
properties of VLMs hold using SF, HB and VS.

In Figure 7 and Figure 8, we present our findings on SF, HB,
and VS calibration methods. First, we observe that VLMs
achieve lower ECE than calibrated non-VLMs using the
three calibration methods under a distribution shift. Second,
both SF and HB effectively calibrate VLMs using a small
number of samples (i.e. 100). In contrast, VS requires a
larger number of images (10% of 50, 000 samples) for ef-
fective calibration, consistent with the findings in Guo et al.
(2017). Third, similar to temperature scaling, both SF and
VS can calibrate VLMs using a single prompt, which can
differ from the test prompt set. While HB effectively re-
duces the overall average ECE, it may not benefit all outliers.
Lastly, when calibrating VLMs using datasets with different
label sets or hierarchy levels compared to the target test set,
spline calibration exhibits trends and outcomes similar to
those of temperature scaling.

6. Application: Calibration-by-Synthesis
In this section, we take some of the calibration robustness
findings from Section 5 and demonstrate how they might
be applied in a realistic scenario. We consider the setting
where a VLM-based classifier is to be deployed in a new
target domain, but labeled data in that domain is unavailable
due to reasons of cost, time, or expertise. Our previous
findings give us confidence that such a classifier can still be
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Figure 9. Can VLMs be calibrated without labeled data? A calibration-by-synthesis approach. Each column represents a pre-defined
coarse-fine hierarchical mapping, and each row corresponds to a test set formed according to this class hierarchy. The uncertainty
estimation performance of VLMs is plotted grouped by different calibration datasets: (1) no calibration; (2) a synthetic dataset generated
from coarse-grained class labels; (3) a real dataset with coarse-grained labels; (4) a synthetic dataset generated from fine-grained classes;
and (5) a real dataset with fine-grained classes. We observe that calibrating on a synthetic dataset with fine-grained classes is a successful
strategy in reducing calibration error and is competitive with the performance of using real data for calibration. This indicates that using a
small number of synthetic images, generated from and calibrated with detailed and specific class labels, suffices to calibrate VLMs.

calibrated even if the calibration set and target domain have
a significant distribution shift, if the hierarchy level of the
labels differs, and if the calibration set is small.

Our approach is as follows. First, we construct a set of
text descriptions for each class by prompting GPT-3 (Brown
et al., 2020), a large language model, following the approach
of CuPL (Pratt et al., 2023). Second, we feed these descrip-
tions to Stable Diffusion (Rombach et al., 2022), a text-
to-image model, to synthesize images associated with the
descriptions. These are used as a synthetic, automatically-
labeled calibration set. We consider two situations: (i) the
target task is under-specified, so we only have coarsely-
defined target classes at calibration time; and (ii) the target
task is fully-specified, so we have access to the full (fine-
grained) target label set at calibration time. For the former,
the calibration set has 5 images per coarse class. For the
latter, the calibration set has 1 image per fine-grained class.
To obtain the coarse–fine label mapping, we use the defined
hierarchies (Entity13, Entity30, Living17, and Nonliving26)
in the BREEDS benchmark (Santurkar et al., 2020) and form
the corresponding fine-grained class subsets of ImageNet-
V2-A and ImageNet-S for the two target test datasets.

In Figure 9, we plot the ECE, evaluated on the target dataset
with fine-grained class labels, for a set of VLMs grouped by

No calibration Synthetic calibration

Label set MECE MAE ρ MECE MAE ρ

Entity13 0.15 15.21 0.77 0.05 5.07 0.93
Entity30 0.16 16.12 0.75 0.04 3.57 0.94
Living17 0.22 21.90 0.74 0.12 11.45 0.94
Nonliving26 0.13 12.73 0.79 0.05 5.29 0.91

Average 0.17 16.49 0.76 0.07 6.35 0.93

Table 1. Uncertainty estimation performance on ImageNet-
S for calibration-by-synthesis. We report the mean expected
calibration error (MECE ↓), the mean absolute error (MAE ↓) of
the average confidence with respect to the model accuracy, and
Spearman’s rank correlation (ρ ↑). We see that by calibrating on a
synthetic set with fine-grained classes, prediction probabilities are
informative of the model’s performance and its ranking.

the calibration procedure: (1) no calibration; (2) calibration
on a synthetic dataset generated from coarse-grained class
labels; (3) calibration on a real labeled dataset (the ImageNet
validation set) with coarse-grained class labels; (4) calibra-
tion on a synthetic dataset generated from fine-grained class
labels; and (5) calibration on a real labeled dataset with
fine-grained class labels. Results across four fine-grained
label sets show that calibration with synthetic images based
on fine-grained classes is remarkably effective, often out-
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performing calibration with real data. For each label set,
calibration using fine-grained synthetic classes (Dataset 4)
consistently yields lower ECE values compared to uncali-
brated models (Dataset 1). Moreover, coarse synthetic label
calibration (Dataset 2) is less effective due to compounded
domain shift and label granularity discrepancies.

Beyond model calibration, we showcase the tangible bene-
fits of using calibrated prediction probabilities for choosing
models and estimating their accuracy, particularly when
labeled data is scarce or absent. Table 1 assesses how pre-
dictive the estimated VLM probabilities are for the model’s
performance, before and after calibration with a synthetic
dataset with fine-grained classes. Calibration improvements
are evident: a reduction in both the mean expected cali-
bration error (MECE) and the mean absolute error (MAE)
of average confidence in relation to actual model accuracy,
along with a boost in rank correlation with model accuracy.
Overall, the above analysis shows how our findings about
calibration can be applied to a real scenario where labeled
calibration data is not available.

7. Conclusion and Discussion
In this study, we have investigated the factors that affect
the uncertainty estimation performance of Vision–Language
Models (VLMs). Our experiments, spanning various facets
of uncertainty estimation, have revealed insights into the
strengths of VLMs. Notably, when coupled with tempera-
ture scaling as a calibration method, VLMs surpass other
models in their ability to estimate uncertainty accurately.
This finding holds promise for tasks that demand precise un-
certainty information. Furthermore, we have demonstrated
VLMs’ remarkable adaptability—they can be effectively
calibrated with datasets of that have different label sets or
label hierarchy levels.

Additionally, VLMs exhibit efficiency by maintaining cal-
ibration quality with a limited number of images and sim-
plified prompts. Real-world applications confirm their po-
tential, showing that VLMs can be calibrated with a small
number of synthetic images. Looking ahead, we anticipate
exciting avenues for research, including exploring alterna-
tive calibration methods and investigating uncertainty esti-
mation properties in domains beyond image classification.
These insights, we believe, pave the way for more robust
and reliable VLMs, contributing to the broader landscape of
algorithmic design and multi-modal understanding.

This work leaves open many interesting directions for future
research. We primarily focus on calibrating classification
confidence estimates for vanilla/backbone VLM networks.
It would be interesting to explore the calibration of regres-
sion confidence estimates. Some more parameter-efficient
fine-tuning methods for prompts can be included to study the

transferability of calibration across prompts. Additionally,
a broader class of large language model-based VLMs, such
as LLaVA (Liu et al., 2023), can be further evaluated and
examined. These models could potential present a unique
calibration property for the lack of inherent capability to
generate classification confidence scores.

Lastly, our scope is the calibration of classification confi-
dence estimates for vanilla/backbone VLM networks, rather
than the calibration of regression confidence estimates used
for other tasks (e.g., object detection and segmentation). In
the context of VLMs, these tasks require compound net-
works with additional modules. We acknowledge that the
findings in this study may not transfer to these other tasks,
and that this would be interesting to study in future work.
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A. Appendix.
A.1. Datasets:

ImageNet (Deng et al., 2009) (https://www.image-net.org/);
ImageNet-V2 (Shankar et al., 2021) (https://github.com/modestyachts/ImageNetV2);
ImageNet-Rendition (Hendrycks et al., 2021) (https://github.com/hendrycks/robustness);
ImageNet-Sketch (Wang et al., 2019) (https://github.com/HaohanWang/ImageNet-Sketch);
ObjectNet (Barbu et al., 2019) (https://objectnet.dev/download.html);
CIFAR-10 (Krizhevsky et al., 2009): (https://www.cs.toronto.edu/ kriz/cifar.html);
CIFAR-10.1 (Recht et al., 2018a): (https://github.com/modestyachts/CIFAR-10.1);
CIFAR-10.2 (Recht et al., 2018a): (https://github.com/modestyachts/CIFAR-10.1);
CINIC (Darlow et al., 2018): (https://www.v7labs.com/open-datasets/cinic-10);
DomainNet (Peng et al., 2019): (http://ai.bu.edu/M3SDA/);

A.2. Models Included in Experiments

(1) Vision–language models:

(1) we use the zero-shot CLIP models provided in OpenCLIP (Ilharco et al., 2021). They are listed as follows in the pattern
(architecture, source):

(RN50, openai)

(RN50, yfcc15m)

(RN50, cc12m)

(ViT-B-32, openai)

(ViT-B-32, laion400m e32)

(ViT-B-32, laion2b s34b b79k)

(ViT-B-16, openai)

(ViT-B-16, laion400m e32)

(ViT-L-14, openai)

(ViT-L-14, laion400m e32)

(ViT-H-14, laion2b s32b b79k)

(ViT-g-14, laion2b s34b b88k)

(ViT-bigG-14, laion2b s39b b160k)

(convnext base, laion400m s13b b51k)

(convnext base w, laion aesthetic s13b b82k)

(convnext xxlarge, laion2b s34b b82k augreg)

(ViT-B-32, Model-B-32 Data-80M Samples-34B lr-1e-3 bs-88k.pt)

(ViT-B-16, Model-B-16 Data-80M Samples-34B lr-1e-3 bs-88k.pt)

(ViT-L-14, Model-L-14 Data-80M Samples-34B lr-1e-3 bs-88k.pt)

(ViT-B-32, datacomp m s128m b4k)

(ViT-B-32, datacomp s s13m b4k)

(ViT-B-16, datacomp l s1b b8k)
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(ViT-L-14, datacomp xl s13b b90k)

(2) Other vision–language models:

(EVA02-B-16, merged2b s8b b131k)

(EVA02-L-14, merged2b s8b b131k)

(ViT-B-32-quickgelu, metaclip 400m)

(ViT-B-16-quickgelu, metaclip fullcc)

(ViT-B-16-SigLIP, webli)

(ViT-B-16-SigLIP-256, webli)

(ViT-H-14-CLIPA, datacomp1b)

(ViT-L-14-CLIPA, datacomp1b)

Flava can be derived from Hugging Face, Transformer module (Wolf et al., 2020).

BLIP (Li et al., 2022), BLIP-2 (Li et al., 2023b) and ALBEF (Li et al., 2021) models are publicly available through LAVIS
package (Li et al., 2023a).

(2) ImageNet-trained models:

we compare VLMs’ uncertainty estimate performance with following models from TIMM (Wightman, 2019)

Trained from scratch on ImageNet:

swin base patch4 window12 384

deit small distilled patch16 224

deit base patch16 224

swin small patch4 window7 224

deit base patch16 384

wide resnet50 2

convnext base

tv resnet50

densenet121

inception v4

resmlp 36 224

xception

vgg19

Pre-trained on a larger dataset then fine-tuned on ImageNet training split:

vit base patch16 224.orig in21k ft in1k

vit base patch32 224

vit large r50 s32 384

beit large patch16 224

vit large patch16 384

swin large patch4 window12 384
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convnext small.in12k ft in1k

ig resnext101 32x16d

mixer b16 224 miil

resnetv2 50x1 bitm

ig resnext101 32x8d

A.3. Prompt Template

In this section, we provide the prompt set used in our experiments. For experiments included in Section 5.1, Section 5.2,
Section 5.4 and Section 5.6, we also use default prompt sets provided by Radford et al. (2021). For experiments in
Section 5.5, the calibration prompt set is “a photo of a <class>”. In Section 6, the calibration prompt set is “a photo of a
<class>”, while the test prompt set is generated by CuPL.

A.4. Computation Resources

PyTorch version is 1.10.0+cu111 and timm version is 0.8.21dev0. All experiment is run on one 3090 and the CPU AMD
EPYC 7343 16-Core Processor.
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A.5. Experiments on Specialized Domain: Satellite Images

We further conduct experiments on whether our findings maintain on more specialized domains: Satellite images. We use
EuroSAT (Helber et al., 2019) as the target set. Two different calibration datasets are considered: 1) ImageNet validation set;
2) A generated dataset which consists of 68 images from finer-grained classes of Living17 hierarchy. The calibration method
is temperature scaling. We see that our observations persist on such a specialized domain that VLMs can be calibrated
across different label sets using a few samples.

Before calibration After calibration Before calibration After calibration

EC
E

ImageNet → EuroSAT Synthetic Living17-fine-grained classes → EuroSAT

Figure 10. Uncertainty estimate performance of VLMs when the target domain contains Satellite images. Left: The calibration set
is ImageNet-Validation set. Right: The calibration set is a synthesized dataset containing fine-grained classes of Living17.

A.6. Additional Results for Adaptability to Different Calibration Label Sets

Following the same practice as Section 5.1, we additionally validate that the findings on ImageNet-S and ImageNet-R persist
when the target datasets change to ImageNet-A or ObjectNet.
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Figure 11. Adaptability of VLMs to different calibration label sets. Left: Calibration error reduction. Here, we observe a significant
decrease in the expected calibration error for VLMs following cross-label-set calibration, as opposed to when no calibration is applied.
Right: Correlation between VLM prediction probability and classification accuracy. This graph illustrates the classification accuracy
of VLMs on ObejctNet and ImageNet-A against their average prediction probability, before and after calibration with CIFAR-10-Val or
DomainNet-Real. Each point represents a model, with the dashed black line indicating perfect calibration (y = x). The data showcases a
strong linear and rank correlation, even when models are calibrated on label sets different from the target, proving the effectiveness of
cross-label-set calibration for VLMs.
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A.7. Additional Results for Calibration Across Semantic Hierarchy Levels

We also show the ECE of VLMs calibrated with label hierarchies differing in granularity from the target dataset (ImageNet-
V2-A). The results validate that VLMs can be calibrated across label hierarchies.

Entity30 Entity13 Living17 Nonliving26

EC
E

EC
E

Coarse concepts → fine-grained concepts

Fine-grained concepts → coarse concepts

Entity30 Entity13 Living17 Nonliving26

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3 1 2 3

No calibration1 Calibrated across hierarchy levels2 Calibrated on the same hierarchy 
level

3

Calibration set

Calibration set
Figure 12. Robustness of VLM calibration to label hierarchy levels. This figure presents box plots summarizing the calibration errors
(ECEs) of VLMs calibrated with label hierarchies differing in granularity from the target dataset (ImageNet-V2-A). The top row shows
calibration at a coarser level, and the bottom row at a finer level. Despite not matching the calibration precision of same-level calibration,
the minimal differences indicate the robustness of VLM calibration to label granularity.
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